Decontamination of indoor air to reduce the risk of airborne infections: Studies on survival and inactivation of airborne pathogens using an aerobiology chamber

Highlights • We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air. • Bacteria (in soil load) aerosolized into the chamber were uniformly distributed. • A slit-to-agar sampler was used to collect the chamber air for viable bac...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of infection control Vol. 44; no. 10; pp. e177 - e182
Main Authors Sattar, Syed A., PhD, Kibbee, Richard J., MLT, Zargar, Bahram, PhD, Wright, Kathryn E., PhD, Rubino, Joseph R., MA, Ijaz, M. Khalid, PhD
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2016
Mosby-Year Book, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights • We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air. • Bacteria (in soil load) aerosolized into the chamber were uniformly distributed. • A slit-to-agar sampler was used to collect the chamber air for viable bacteria. • We compared airborne survival of Staphylococcus aureus and Klebsiella pneumoniae under ambient conditions. • Three ultraviolet-HEPA (high-efficiency particulate air) filter devices reduced airborne bacteria by ≥3 log10 in 45-210 minutes.
AbstractList Background: Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Methods: Staphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m^sup 3^). The chamber's relative humidity and air temperature were at 50% ± 5% and 20 °C ± 2 °C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes. Results: The challenge in the air varied between 4.2 log^sub 10^ colony forming units (CFU)/m^sup 3^ and 5.0 log10 CFU/m^sup 3^, sufficient to show a ≥3 log^sub 10^ (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log^sub 10^ CFU/m^sup 3^/min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes. Conclusions: The setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies.
BACKGROUNDAlthough indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse.METHODSStaphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m3). The chamber's relative humidity and air temperature were at 50% ± 5% and 20°C ± 2°C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes.RESULTSThe challenge in the air varied between 4.2 log10 colony forming units (CFU)/m3 and 5.0 log10 CFU/m3, sufficient to show a ≥3 log10 (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log10 CFU/m3/min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes.CONCLUSIONSThe setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies.
Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Staphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m ). The chamber's relative humidity and air temperature were at 50% ± 5% and 20°C ± 2°C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes. The challenge in the air varied between 4.2 log colony forming units (CFU)/m and 5.0 log CFU/m , sufficient to show a ≥3 log (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log CFU/m /min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes. The setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies.
•We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air.•Bacteria (in soil load) aerosolized into the chamber were uniformly distributed.•A slit-to-agar sampler was used to collect the chamber air for viable bacteria.•We compared airborne survival of Staphylococcus aureus and Klebsiella pneumoniae under ambient conditions.•Three ultraviolet-HEPA (high-efficiency particulate air) filter devices reduced airborne bacteria by ≥3 log10 in 45-210 minutes. Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Staphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m3). The chamber's relative humidity and air temperature were at 50% ± 5% and 20°C ± 2°C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes. The challenge in the air varied between 4.2 log10 colony forming units (CFU)/m3 and 5.0 log10 CFU/m3, sufficient to show a ≥3 log10 (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log10 CFU/m3/min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes. The setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies.
Highlights • We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air. • Bacteria (in soil load) aerosolized into the chamber were uniformly distributed. • A slit-to-agar sampler was used to collect the chamber air for viable bacteria. • We compared airborne survival of Staphylococcus aureus and Klebsiella pneumoniae under ambient conditions. • Three ultraviolet-HEPA (high-efficiency particulate air) filter devices reduced airborne bacteria by ≥3 log10 in 45-210 minutes.
Author Ijaz, M. Khalid, PhD
Kibbee, Richard J., MLT
Wright, Kathryn E., PhD
Zargar, Bahram, PhD
Sattar, Syed A., PhD
Rubino, Joseph R., MA
Author_xml – sequence: 1
  fullname: Sattar, Syed A., PhD
– sequence: 2
  fullname: Kibbee, Richard J., MLT
– sequence: 3
  fullname: Zargar, Bahram, PhD
– sequence: 4
  fullname: Wright, Kathryn E., PhD
– sequence: 5
  fullname: Rubino, Joseph R., MA
– sequence: 6
  fullname: Ijaz, M. Khalid, PhD
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27375064$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAURi1URKeFF2CBLLFhk-CfiRMjhIQKFKRKLNq95dg3M04Te7CTkeZteFQcpkylLljZks_3yfa5F-jMBw8IvaakpISK932pe2dKlvcl4SUR9TO0ohWrC86kOEMrQqUoRFXxc3SRUk8IkVxUL9A5q3ldEbFeod9fwAQ_6dF5Pbngceiw8zaEiLWLeAo4gp0N4GkLOLp0vwD5pA3RQyY7MEssfcC302wdJJw70hz3bq8HrL3NjM7I_tR-Cu_0tA0b8AnPyflNhrGGGFoXhrA5YLPVYwvxJXre6SHBq4f1Et19-3p39b24-Xn94-rzTWEqUk1FZbixTEuxrutOdoZw3dnWtpwQblrJZNVobaVuLSec1JJrA82aMiY63rKOX6J3x9pdDL9mSJMaXTIwDNpDmJOiDRM1FYTTjL59gvZhjj5f7i8laSPqJlPsSJkYUorQqV10o44HRYla9KleLfrUok8RrrK-HHrzUD23I9hT5J-vDHw8ApC_Yu8gqmQceAPWxWxC2eD-3__pSdwMzjujh3s4QHp8h0pMEXW7DNAyP1Rwsq5lxf8AQxfFig
CitedBy_id crossref_primary_10_1016_j_ajic_2016_06_010
crossref_primary_10_1080_02786826_2018_1562151
crossref_primary_10_1111_lam_13109
crossref_primary_10_1155_2016_1548326
crossref_primary_10_3390_su13010369
crossref_primary_10_1111_lam_13289
crossref_primary_10_7717_peerj_16420
crossref_primary_10_1016_j_jhazmat_2020_122715
crossref_primary_10_1038_s41598_017_08679_3
crossref_primary_10_1016_j_idnow_2020_11_001
crossref_primary_10_1128_AEM_00258_17
crossref_primary_10_1038_s41598_019_42548_5
crossref_primary_10_3389_fmicb_2017_02336
crossref_primary_10_1111_ina_12991
crossref_primary_10_3390_microorganisms11041021
crossref_primary_10_1016_j_ajic_2017_07_026
crossref_primary_10_1007_s11356_019_06557_1
crossref_primary_10_1007_s11869_019_00782_w
crossref_primary_10_1016_j_ajic_2016_06_008
crossref_primary_10_1186_s42269_022_00761_9
crossref_primary_10_1080_19475705_2024_2322482
crossref_primary_10_1016_j_ajic_2016_06_006
crossref_primary_10_1016_j_ajic_2018_12_019
crossref_primary_10_1111_jam_15262
crossref_primary_10_3390_ijerph19031197
Cites_doi 10.1098/rsif.2009.0407.focus
10.1128/JCM.00266-14
10.1017/S002217240001158X
10.1016/j.ajic.2012.01.031
10.1016/j.pharma.2012.06.003
10.1097/CCM.0b013e31829136c3
10.1080/10934529.2013.823335
10.1155/2013/493960
10.1086/652648
10.2174/1875040001104010083
10.1016/j.jinf.2010.11.010
10.1016/S0196-6553(99)70037-4
10.1097/CCM.0b013e31828a39c0
ContentType Journal Article
Copyright Association for Professionals in Infection Control and Epidemiology, Inc.
2016 Association for Professionals in Infection Control and Epidemiology, Inc.
Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Copyright Mosby-Year Book, Inc. Oct 2016
Copyright_xml – notice: Association for Professionals in Infection Control and Epidemiology, Inc.
– notice: 2016 Association for Professionals in Infection Control and Epidemiology, Inc.
– notice: Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Mosby-Year Book, Inc. Oct 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.ajic.2016.03.067
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1527-3296
EndPage e182
ExternalDocumentID 4208045501
10_1016_j_ajic_2016_03_067
27375064
S0196655316304795
1_s2_0_S0196655316304795
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0-6
08R
0R
1
1-
1B1
1P
1RT
1Z5
1~.
1~5
23M
2KS
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P
9JM
AAAJQ
AABNK
AABSN
AACTN
AAEDT
AAIAV
AAIKC
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAWTL
AAXUO
ABBQC
ABFLS
ABLVK
ABMAC
ABMZM
ABPIF
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACJTP
ACRLP
ACXZT
ADALY
ADBBV
ADEZE
ADIMB
AEBSH
AEKER
AENEX
AEVXI
AFFNX
AFKWA
AFRHN
AFTJW
AFXBA
AFXIZ
AGBRE
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AISVY
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AZFZN
BEEDS
BKOJK
BLXMC
BNPGV
C45
CAG
CJTIS
COF
COPKO
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FAFAN
FDB
FEDTE
FGOYB
FIRID
FNPLU
FO
G-
G-2
G-Q
GBLVA
GJ
HEJ
HMK
HMO
HVGLF
HZ
H~W
I
IH2
IHE
IPNFZ
J1W
J5H
K
K-O
K78
KOM
L7B
LCYCR
LUGTX
M
M27
M41
MO0
N4W
N9A
NAHTW
O-L
O9-
OAUVE
OD-
OEN
OMK
ONC
ONOOK
OO.
OUGNH
OVD
OZT
P-8
P-9
PC.
PQEST
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SNC
SND
SNG
SPCBC
SSH
SSI
SSZ
T5K
TEORI
TWZ
UGJ
UHS
UV1
WH7
WOQ
WOW
WUQ
XCE
YFH
YOC
Z5R
ZA5
ZGI
ZXP
---
--K
--M
..I
.1-
.FO
.~1
0R~
1P~
8P~
AAEDW
AAMNW
AXJTR
EFLBG
FYGXN
~G-
AAXKI
AFCTW
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
AAYXX
ADMUD
ADVLN
AFJKZ
CITATION
HZ~
7X8
ID FETCH-LOGICAL-c505t-5c3cd2a96477f9fc03afdbdb3003cb92958aad9abd3030793ace841226f3b2f3
IEDL.DBID AIKHN
ISSN 0196-6553
IngestDate Fri Aug 16 03:58:07 EDT 2024
Fri Sep 13 02:20:04 EDT 2024
Thu Sep 26 17:29:39 EDT 2024
Sat Sep 28 08:50:19 EDT 2024
Fri Feb 23 02:32:49 EST 2024
Thu Aug 18 17:13:00 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Aerobiology
air decontamination
indoor air quality
airborne bacteria
airborne pathogens
Language English
License Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-5c3cd2a96477f9fc03afdbdb3003cb92958aad9abd3030793ace841226f3b2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27375064
PQID 1826918678
PQPubID 105487
ParticipantIDs proquest_miscellaneous_1826716031
proquest_journals_1826918678
crossref_primary_10_1016_j_ajic_2016_03_067
pubmed_primary_27375064
elsevier_sciencedirect_doi_10_1016_j_ajic_2016_03_067
elsevier_clinicalkeyesjournals_1_s2_0_S0196655316304795
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Louis
PublicationTitle American journal of infection control
PublicationTitleAlternate Am J Infect Control
PublicationYear 2016
Publisher Elsevier Inc
Mosby-Year Book, Inc
Publisher_xml – name: Elsevier Inc
– name: Mosby-Year Book, Inc
References Mandin, Derbez, Kitchner (bib0030) 2012; 70
Sattar, Tetro, Springthorpe (bib0075) 1999; 27
Gralton, Tovey, McLaws, Rawlinson (bib0060) 2011; 62
Miles, Misra (bib0095) 1938; 38
ASTM International (bib0085) 1942; Vol. 11.5
Nenonen, Hannoun, Svensson, Torén, Andersson, Westin (bib0045) 2014; 52
Yang, Marr (bib0080) 2011; 6
Spellberg, Bonomo (bib0040) 2013; 41
Best, Fawley, Parnell, Wilcox (bib0050) 2010; 50
Grinshpun, Buttner, Willeke (bib0100) 2007
Muzslay, Moore, Turton, Wilson (bib0065) 2013; 41
Eames, Tang, Li, Wilson (bib0070) 2009; 6
Environmental Protection Agency (bib0090) 2012
Fernstrom, Goldblatt (bib0010) 2013; 2013
Munoz-Price, Fajardo-Aquino, Arheart, Cleary, DePascale, Pizano (bib0035) 2013; 41
Sattar, Bhardwaj, Ijaz (bib0055) 2016
Kowalski (bib0015) 2012
Organization for Economic Co-Operation and Development (bib0105)
Traistaru, Moldovan, Menelaou, Kakourou, Georgescu (bib0020) 2013; 48
Mandal, Brandl (bib0025) 2011; 4
ASTM International (10.1016/j.ajic.2016.03.067_bib0085) 1942; Vol. 11.5
Traistaru (10.1016/j.ajic.2016.03.067_bib0020) 2013; 48
Gralton (10.1016/j.ajic.2016.03.067_bib0060) 2011; 62
Munoz-Price (10.1016/j.ajic.2016.03.067_bib0035) 2013; 41
Environmental Protection Agency (10.1016/j.ajic.2016.03.067_bib0090)
Organization for Economic Co-Operation and Development (10.1016/j.ajic.2016.03.067_bib0105)
Miles (10.1016/j.ajic.2016.03.067_bib0095) 1938; 38
Fernstrom (10.1016/j.ajic.2016.03.067_bib0010) 2013; 2013
Muzslay (10.1016/j.ajic.2016.03.067_bib0065) 2013; 41
Kowalski (10.1016/j.ajic.2016.03.067_bib0015) 2012
Spellberg (10.1016/j.ajic.2016.03.067_bib0040) 2013; 41
Grinshpun (10.1016/j.ajic.2016.03.067_bib0100) 2007
Mandin (10.1016/j.ajic.2016.03.067_bib0030) 2012; 70
Best (10.1016/j.ajic.2016.03.067_bib0050) 2010; 50
Mandal (10.1016/j.ajic.2016.03.067_bib0025) 2011; 4
Sattar (10.1016/j.ajic.2016.03.067_bib0075) 1999; 27
Yang (10.1016/j.ajic.2016.03.067_bib0080) 2011; 6
Nenonen (10.1016/j.ajic.2016.03.067_bib0045) 2014; 52
Eames (10.1016/j.ajic.2016.03.067_bib0070) 2009; 6
Sattar (10.1016/j.ajic.2016.03.067_bib0055) 2016
References_xml – volume: 2013
  start-page: 493960
  year: 2013
  ident: bib0010
  article-title: Aerobiology and its role in the transmission of infectious diseases
  publication-title: J Pathog
  contributor:
    fullname: Goldblatt
– volume: 48
  start-page: 1806
  year: 2013
  end-page: 1814
  ident: bib0020
  article-title: A comparative study on the quality of air in offices and homes
  publication-title: J Environ Sci Health A Tox Hazard Subst Environ Eng
  contributor:
    fullname: Georgescu
– volume: 50
  start-page: 1450
  year: 2010
  end-page: 1457
  ident: bib0050
  article-title: The potential for airborne dispersal of Clostridium difficile from symptomatic patients
  publication-title: Clin Infect Dis
  contributor:
    fullname: Wilcox
– ident: bib0105
  article-title: Guidance document on quantitative methods for evaluating the activity of microbicides used on hard, non-porous surfaces
  contributor:
    fullname: Organization for Economic Co-Operation and Development
– volume: 41
  start-page: 1915
  year: 2013
  end-page: 1918
  ident: bib0035
  article-title: Aerosolization of Acinetobacter baumannii in a trauma ICU
  publication-title: Crit Care Med
  contributor:
    fullname: Pizano
– volume: Vol. 11.5
  year: 1942
  ident: bib0085
  publication-title: Annual book of ASTM standards – water and environmental technology
  contributor:
    fullname: ASTM International
– volume: 41
  start-page: 2042
  year: 2013
  end-page: 2044
  ident: bib0040
  article-title: “Airborne assault”: a new dimension in Acinetobacter baumannii transmission
  publication-title: Crit Care Med
  contributor:
    fullname: Bonomo
– volume: 6
  start-page: S697
  year: 2009
  end-page: 702
  ident: bib0070
  article-title: Airborne transmission of disease in hospitals
  publication-title: J R Soc Interface
  contributor:
    fullname: Wilson
– volume: 62
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0060
  article-title: The role of particle size in pathogen transmission: a review
  publication-title: J Infect
  contributor:
    fullname: Rawlinson
– volume: 41
  start-page: 57
  year: 2013
  end-page: 60
  ident: bib0065
  article-title: Dissemination of antibiotic-resistant enterococci within the ward environment: the role of airborne bacteria and the risk posed by unrecognized carriers
  publication-title: Am J Infect Control
  contributor:
    fullname: Wilson
– year: 2016
  ident: bib0055
  article-title: Airborne viruses
  publication-title: Manual of environmental microbiology
  contributor:
    fullname: Ijaz
– year: 2007
  ident: bib0100
  article-title: Sampling for airborne microorganisms
  publication-title: Manual of environmental microbiology
  contributor:
    fullname: Willeke
– volume: 4
  start-page: 83
  year: 2011
  end-page: 96
  ident: bib0025
  article-title: Bioaerosols in indoor environment—a review with special reference to residential and occupational locations
  publication-title: Open Environ Biol Monit J
  contributor:
    fullname: Brandl
– volume: 6
  year: 2011
  ident: bib0080
  article-title: Dynamics of airborne influenza A viruses indoors and dependence on humidity
  publication-title: PLoS ONE
  contributor:
    fullname: Marr
– volume: 38
  start-page: 732
  year: 1938
  end-page: 749
  ident: bib0095
  article-title: The estimation of the bactericidal power of the blood
  publication-title: J Hyg (Lond)
  contributor:
    fullname: Misra
– volume: 27
  start-page: S4
  year: 1999
  end-page: 21
  ident: bib0075
  article-title: Impact of changing societal trends on the spread of infectious diseases in American & Canadian homes
  publication-title: Am J Infect Control
  contributor:
    fullname: Springthorpe
– year: 2012
  ident: bib0015
  article-title: Hospital airborne infection control
  contributor:
    fullname: Kowalski
– volume: 70
  start-page: 204
  year: 2012
  end-page: 212
  ident: bib0030
  article-title: Schools, office buildings, leisure settings: diversity of indoor air quality issues. Global review of indoor air quality in these settings
  publication-title: Ann Pharm Fr
  contributor:
    fullname: Kitchner
– year: 2012
  ident: bib0090
  article-title: Air sanitizers—efficacy data recommendations
  contributor:
    fullname: Environmental Protection Agency
– volume: 52
  start-page: 2352
  year: 2014
  end-page: 2358
  ident: bib0045
  article-title: Norovirus GII.4 detection in environmental samples from patient rooms during nosocomial outbreaks
  publication-title: J Clin Microbiol
  contributor:
    fullname: Westin
– volume: 6
  start-page: S697
  issue: Suppl 6
  year: 2009
  ident: 10.1016/j.ajic.2016.03.067_bib0070
  article-title: Airborne transmission of disease in hospitals
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2009.0407.focus
  contributor:
    fullname: Eames
– volume: Vol. 11.5
  year: 1942
  ident: 10.1016/j.ajic.2016.03.067_bib0085
  contributor:
    fullname: ASTM International
– volume: 52
  start-page: 2352
  year: 2014
  ident: 10.1016/j.ajic.2016.03.067_bib0045
  article-title: Norovirus GII.4 detection in environmental samples from patient rooms during nosocomial outbreaks
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00266-14
  contributor:
    fullname: Nenonen
– volume: 38
  start-page: 732
  year: 1938
  ident: 10.1016/j.ajic.2016.03.067_bib0095
  article-title: The estimation of the bactericidal power of the blood
  publication-title: J Hyg (Lond)
  doi: 10.1017/S002217240001158X
  contributor:
    fullname: Miles
– ident: 10.1016/j.ajic.2016.03.067_bib0105
  contributor:
    fullname: Organization for Economic Co-Operation and Development
– year: 2016
  ident: 10.1016/j.ajic.2016.03.067_bib0055
  article-title: Airborne viruses
  contributor:
    fullname: Sattar
– volume: 41
  start-page: 57
  year: 2013
  ident: 10.1016/j.ajic.2016.03.067_bib0065
  article-title: Dissemination of antibiotic-resistant enterococci within the ward environment: the role of airborne bacteria and the risk posed by unrecognized carriers
  publication-title: Am J Infect Control
  doi: 10.1016/j.ajic.2012.01.031
  contributor:
    fullname: Muzslay
– volume: 70
  start-page: 204
  year: 2012
  ident: 10.1016/j.ajic.2016.03.067_bib0030
  article-title: Schools, office buildings, leisure settings: diversity of indoor air quality issues. Global review of indoor air quality in these settings
  publication-title: Ann Pharm Fr
  doi: 10.1016/j.pharma.2012.06.003
  contributor:
    fullname: Mandin
– year: 2007
  ident: 10.1016/j.ajic.2016.03.067_bib0100
  article-title: Sampling for airborne microorganisms
  contributor:
    fullname: Grinshpun
– volume: 6
  year: 2011
  ident: 10.1016/j.ajic.2016.03.067_bib0080
  article-title: Dynamics of airborne influenza A viruses indoors and dependence on humidity
  publication-title: PLoS ONE
  contributor:
    fullname: Yang
– volume: 41
  start-page: 2042
  year: 2013
  ident: 10.1016/j.ajic.2016.03.067_bib0040
  article-title: “Airborne assault”: a new dimension in Acinetobacter baumannii transmission
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e31829136c3
  contributor:
    fullname: Spellberg
– volume: 48
  start-page: 1806
  year: 2013
  ident: 10.1016/j.ajic.2016.03.067_bib0020
  article-title: A comparative study on the quality of air in offices and homes
  publication-title: J Environ Sci Health A Tox Hazard Subst Environ Eng
  doi: 10.1080/10934529.2013.823335
  contributor:
    fullname: Traistaru
– volume: 2013
  start-page: 493960
  year: 2013
  ident: 10.1016/j.ajic.2016.03.067_bib0010
  article-title: Aerobiology and its role in the transmission of infectious diseases
  publication-title: J Pathog
  doi: 10.1155/2013/493960
  contributor:
    fullname: Fernstrom
– volume: 50
  start-page: 1450
  year: 2010
  ident: 10.1016/j.ajic.2016.03.067_bib0050
  article-title: The potential for airborne dispersal of Clostridium difficile from symptomatic patients
  publication-title: Clin Infect Dis
  doi: 10.1086/652648
  contributor:
    fullname: Best
– year: 2012
  ident: 10.1016/j.ajic.2016.03.067_bib0015
  contributor:
    fullname: Kowalski
– volume: 4
  start-page: 83
  year: 2011
  ident: 10.1016/j.ajic.2016.03.067_bib0025
  article-title: Bioaerosols in indoor environment—a review with special reference to residential and occupational locations
  publication-title: Open Environ Biol Monit J
  doi: 10.2174/1875040001104010083
  contributor:
    fullname: Mandal
– volume: 62
  start-page: 1
  year: 2011
  ident: 10.1016/j.ajic.2016.03.067_bib0060
  article-title: The role of particle size in pathogen transmission: a review
  publication-title: J Infect
  doi: 10.1016/j.jinf.2010.11.010
  contributor:
    fullname: Gralton
– volume: 27
  start-page: S4
  year: 1999
  ident: 10.1016/j.ajic.2016.03.067_bib0075
  article-title: Impact of changing societal trends on the spread of infectious diseases in American & Canadian homes
  publication-title: Am J Infect Control
  doi: 10.1016/S0196-6553(99)70037-4
  contributor:
    fullname: Sattar
– volume: 41
  start-page: 1915
  year: 2013
  ident: 10.1016/j.ajic.2016.03.067_bib0035
  article-title: Aerosolization of Acinetobacter baumannii in a trauma ICU
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e31828a39c0
  contributor:
    fullname: Munoz-Price
– ident: 10.1016/j.ajic.2016.03.067_bib0090
  contributor:
    fullname: Environmental Protection Agency
SSID ssj0009365
Score 2.341343
Snippet Highlights • We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air. • Bacteria (in soil...
•We built a test chamber conforming to the U.S. Environmental Protection Agency's guide on studying pathogens in indoor air.•Bacteria (in soil load)...
Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Staphylococcus aureus...
Background: Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Methods:...
BACKGROUNDAlthough indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage e177
SubjectTerms Aerobiology
air decontamination
Air filters
Air Microbiology
Air Pollution, Indoor - analysis
Air Pollution, Indoor - prevention & control
airborne bacteria
airborne pathogens
Bacteria - isolation & purification
Decontamination - instrumentation
Decontamination - methods
Disease Transmission, Infectious - prevention & control
Filtration - instrumentation
Filtration - methods
Humans
Humidity
Indoor air quality
Infection Control
Infectious Disease
Pneumonia
Staphylococcus infections
Survival analysis
Temperature
Temperature effects
Ultraviolet Rays
Title Decontamination of indoor air to reduce the risk of airborne infections: Studies on survival and inactivation of airborne pathogens using an aerobiology chamber
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0196655316304795
https://dx.doi.org/10.1016/j.ajic.2016.03.067
https://www.ncbi.nlm.nih.gov/pubmed/27375064
https://www.proquest.com/docview/1826918678/abstract/
https://search.proquest.com/docview/1826716031
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wsSQnwTaCsjcUNhkzh2Ym5VS7WA6IUi9WbZiU23h6TaZDnyW_ipzMRJKgT00OOu7XzNePycvHkD8EbmhU18IWLjExfnTvlYeYOblcLUtiiNTz297_hyJlff8k8X4mIHjqdcGKJVjrE_xPQhWo__LMenubxer5dfSdlFCvQhSZ-OlNiFPVyO8nwBe0cfP6_ObrR3uQxMRiVjGjDmzgSal7lak5JhKget06Hc_D_Xp__hz2EdOn0ID0YAyY7CNT6CHdc8hvvh7RsLSUVP4NcJ7XN7QzwXevKs9Qw33227YWa9YX3LNiTZ6hjCP0bscuqALegQjWMTQavp3rORZ8jwGN0Wwwo6JjNNjX0oI-LHfPR5MJU4btErO0aU-u_YmRk3iz2x6tJQCZKncH764fx4FY-1GOIKMVIfi4pXdWaGvFWvfJVw42tbW45RobKIsURpTK2MrTmFDcVN5co8RXDnuc08fwaLpm3cC2BZig3eKiscQgvLVeqzQngpVWlKm8kI3k4G0NdBcUNPVLQrTebSZC6dcI3miqCYbKSnXFKMfq4bp2KnU91lOtF_uUsEYh75h8dpXExuPeP-5Ar65iS4S1OkDVhG8HpuxplKn19M49pt6FMMVb0jeB5caL5BBJEFSQe-vONFvYJ79CuwDPdh0W-27gDRUm8PYffdz_RwnBO_AXv-Fms
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEkhHgTKGAkbijaTRw7MbeqUG1puxcWqTfLTmzYHpJqk-X39Kd2Jk5SIR4HrrGd14zHn5NvvgF4L7PcLnwuYuMXLs6c8rHyBjcrualsXhifePrecb6Sy2_ZlwtxsQdHYy4M0SqH2B9ieh-thyPz4W3Orzab-VdSdpECfUjSryMl7sB-JvIkm8H-4cnpcnWrvctlYDIqGdOAIXcm0LzM5YaUDBPZa5325eb_uD79DX_269DxQ3gwAEh2GO7xEey5-jHcD1_fWEgqegLXn2if2xniudCbZ41nuPlumi0zmy3rGrYlyVbHEP4xYpdTB2xBh6gdGwladfuRDTxDhudodxhW0DGZqSvsQxkRP6ezT4OpxHGDXtkyotR_x87MuEnsiZU_DJUgeQrr48_ro2U81GKIS8RIXSxKXlap6fNWvfLlghtf2cpyjAqlRYwlCmMqZWzFKWwobkpXZAmCO89t6vkzmNVN7V4ASxNs8FZZ4RBaWK4Sn-bCS6kKU9hURvBhNIC-CoobeqSiXWoylyZz6QXXaK4I8tFGeswlxejn2mEqtjrRbaoX-jd3iUBMI3_xOI2LyT-veDC6gr69CO7SFGkDFhG8m5pxptLvF1O7Zhf65H1V7wieBxeaHhBBZE7SgS__86bewt3l-vxMn52sTl_BPWoJjMMDmHXbnXuNyKmzb4aZcQMuhBhd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decontamination+of+indoor+air+to+reduce+the+risk+of+airborne+infections%3A+Studies+on+survival+and+inactivation+of+airborne+pathogens+using+an+aerobiology+chamber&rft.jtitle=American+journal+of+infection+control&rft.au=Sattar%2C+Syed+A&rft.au=Kibbee%2C+Richard+J&rft.au=Zargar%2C+Bahram&rft.au=Wright%2C+Kathryn+E&rft.date=2016-10-01&rft.eissn=1527-3296&rft.volume=44&rft.issue=10&rft.spage=e177&rft_id=info:doi/10.1016%2Fj.ajic.2016.03.067&rft_id=info%3Apmid%2F27375064&rft.externalDocID=27375064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-6553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-6553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-6553&client=summon