Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men
Background: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO re...
Saved in:
Published in | Nutrients Vol. 12; no. 8; p. 2220 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. Methods: In a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. Results: Choline bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p < 0.05). Conclusion: Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk |
---|---|
AbstractList | Background: Trimethylamine-
N
-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. Methods: In a randomized, controlled, double-blinded, crossover study, healthy men (
n
= 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. Results: Choline bitartrate yielded three-times greater plasma TMAO AUC (
p
= 0.01) and 2.5-times greater urinary TMAO change from baseline (
p
= 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA;
p
= 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of
Clostridium
from
Ruminococcaceae
and
Lachnospiraceae
compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM;
p
< 0.05). Conclusion: Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk Background: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. Methods: In a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. Results: Choline bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p < 0.05). Conclusion: Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response.BACKGROUNDTrimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response.In a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control.METHODSIn a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control.Choline bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p < 0.05).RESULTSCholine bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p < 0.05).Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk.CONCLUSIONGiven that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk. Trimethylamine- -oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. In a randomized, controlled, double-blinded, crossover study, healthy men ( = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. Choline bitartrate yielded three-times greater plasma TMAO AUC ( = 0.01) and 2.5-times greater urinary TMAO change from baseline ( = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of from and compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; < 0.05). Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk. |
Author | Aardema, Niklas D. J. Bergeson, Janet R. Caudill, Marie A. Aguilar, Sheryl S. Cho, Clara E. Malysheva, Olga V. Larson, Deanna P. Lefevre, Michael Bunnell, Madison L. |
AuthorAffiliation | 2 Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; ovm4@cornell.edu (O.V.M.); mac379@cornell.edu (M.A.C.) 1 Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA; niklas.aardema@usu.edu (N.D.J.A.); maddielbunnell@gmail.com (M.L.B.); dpassarolarson@gmail.com (D.P.L.); sheryl.aguilar@usu.edu (S.S.A.); janet.bergeson@usu.edu (J.R.B.); michael.lefevre@usu.edu (M.L.) |
AuthorAffiliation_xml | – name: 2 Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; ovm4@cornell.edu (O.V.M.); mac379@cornell.edu (M.A.C.) – name: 1 Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA; niklas.aardema@usu.edu (N.D.J.A.); maddielbunnell@gmail.com (M.L.B.); dpassarolarson@gmail.com (D.P.L.); sheryl.aguilar@usu.edu (S.S.A.); janet.bergeson@usu.edu (J.R.B.); michael.lefevre@usu.edu (M.L.) |
Author_xml | – sequence: 1 givenname: Clara E. surname: Cho fullname: Cho, Clara E. – sequence: 2 givenname: Niklas D. J. surname: Aardema fullname: Aardema, Niklas D. J. – sequence: 3 givenname: Madison L. surname: Bunnell fullname: Bunnell, Madison L. – sequence: 4 givenname: Deanna P. surname: Larson fullname: Larson, Deanna P. – sequence: 5 givenname: Sheryl S. surname: Aguilar fullname: Aguilar, Sheryl S. – sequence: 6 givenname: Janet R. surname: Bergeson fullname: Bergeson, Janet R. – sequence: 7 givenname: Olga V. surname: Malysheva fullname: Malysheva, Olga V. – sequence: 8 givenname: Marie A. orcidid: 0000-0002-7192-5743 surname: Caudill fullname: Caudill, Marie A. – sequence: 9 givenname: Michael orcidid: 0000-0002-2046-3593 surname: Lefevre fullname: Lefevre, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32722424$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFTEUhYNU7MW--AMk4IsURvfkMpm8COXQi9BakPocMpk9npSZ5DjJiP335thWa_HBEEgg316s7LX3yU6IAQl5VcM7zjW8D0vNoGWMwTOyx0CxqmkE33l03yWHKd3AdilQDX9BdjlTjAkm9sj6ZBjQZRoHulrH0Qekp3GeErWhp2dLppfezbHzMVu6itMmJp99DLTs69lPmNe3o51KWfWpuvrhe6SfMW1iSEh9oOdox0LQSwwvyfPBjgkP788D8uX05Hp1Xl1cnX1cHV9UToLMlQSHthG6143tgBVvoLRlljktuhr63rU9gGydtMiwtt3QCV5r2WgUGlzHD8iHO93N0k3YOwx5tqPZFLN2vjXRevP3S_Br8zV-N0o0rQYoAm_vBeb4bcGUzeSTw3G0AeOSDJOlcy3n7D_QAkop6rot6Jsn6E1c5lA68YtirZJKFer1Y_O_XT_kVQC4A0ooKc04GOez3SZS_uJHU4PZToX5MxWl5OhJyYPqP-Cf4Di3DA |
CitedBy_id | crossref_primary_10_1186_s13195_024_01480_1 crossref_primary_10_3390_agriculture15030242 crossref_primary_10_1016_j_fbio_2024_104768 crossref_primary_10_1007_s12275_022_1451_2 crossref_primary_10_1016_j_ecl_2024_10_007 crossref_primary_10_1111_nyas_15215 crossref_primary_10_29219_fnr_v67_10359 crossref_primary_10_1039_D1FO02021H crossref_primary_10_31857_S0869813923120099 crossref_primary_10_3390_biom14111345 crossref_primary_10_3390_nu16111767 crossref_primary_10_1093_advances_nmab077 crossref_primary_10_22416_1382_4376_2022_32_2_19_34 crossref_primary_10_3390_ijms24032074 crossref_primary_10_3390_nu15030563 crossref_primary_10_3233_NHA_220198 crossref_primary_10_3390_metabo12010064 crossref_primary_10_3389_fcvm_2021_739093 crossref_primary_10_3389_fsysb_2023_1074749 crossref_primary_10_1134_S1990750824600043 crossref_primary_10_3390_nu13124510 crossref_primary_10_1016_j_jnutbio_2021_108906 crossref_primary_10_3390_foods10030494 crossref_primary_10_3390_nu16234200 crossref_primary_10_1096_fj_202401018RR crossref_primary_10_3390_ijms252413529 crossref_primary_10_5534_wjmh_230181 crossref_primary_10_1016_j_jnutbio_2024_109806 crossref_primary_10_1007_s11883_021_00910_x crossref_primary_10_3390_nu12123815 crossref_primary_10_3390_nu13082519 crossref_primary_10_3390_nu15173708 crossref_primary_10_3390_nu14194116 crossref_primary_10_1016_j_schres_2021_03_008 crossref_primary_10_1021_acs_jafc_4c01974 crossref_primary_10_1089_met_2023_0096 crossref_primary_10_2903_j_efsa_2023_8115 crossref_primary_10_1134_S002209302306025X crossref_primary_10_1002_jpen_2577 crossref_primary_10_1007_s00394_022_03059_8 crossref_primary_10_1093_clinchem_hvae087 crossref_primary_10_3389_fnut_2021_724006 crossref_primary_10_3390_nu15173687 crossref_primary_10_1002_biof_2014 crossref_primary_10_1021_acs_jafc_1c03077 crossref_primary_10_1016_j_jnutbio_2021_108617 |
Cites_doi | 10.3945/ajcn.114.087692 10.1093/molbev/mst010 10.1093/jn/133.5.1302 10.1096/fj.201700692RR 10.1056/NEJMoa1109400 10.3390/nu10121971 10.3945/ajcn.111.022772 10.1016/j.celrep.2017.06.053 10.1080/07315724.2017.1365026 10.1038/nature09922 10.1146/annurev.nu.01.070181.000523 10.1080/07315724.2018.1466213 10.1038/nm.3145 10.1186/2047-217X-2-16 10.1073/pnas.1215689109 10.3390/nu11102548 10.1073/pnas.0504978102 10.1016/j.gene.2013.03.010 10.1111/j.1471-4159.1977.tb07732.x 10.1002/jms.1339 10.1111/j.1753-4887.2009.00246.x 10.1002/mnfr.201770016 10.7326/0003-4819-150-9-200905050-00006 10.1016/j.yclnex.2016.10.002 10.1016/j.bcp.2013.03.020 10.2174/1389200054021807 10.1096/fj.12-221648 10.1038/nmeth.3869 10.1373/49.2.286 10.3945/ajcn.110.005975 10.1021/ac025624x 10.1146/annurev.nutr.26.061505.111156 10.1128/AEM.03006-05 10.1128/AEM.01043-13 10.1128/mBio.02481-14 10.1096/fj.12-207894 10.1016/j.jnutbio.2017.02.010 10.1128/AEM.71.12.8228-8235.2005 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.3390/nu12082220 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2072-6643 |
ExternalDocumentID | PMC7468900 32722424 10_3390_nu12082220 |
Genre | Randomized Controlled Trial Journal Article |
GeographicLocations | United States--US Utah |
GeographicLocations_xml | – name: United States--US – name: Utah |
GrantInformation_xml | – fundername: Utah Agricultural Experiment Station grantid: Seed Grants Program |
GroupedDBID | --- 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAWTL AAYXX ABUWG ACIWK ACPRK AENEX AFKRA AFRAH AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS BENPR BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ECGQY EIHBH ESTFP EYRJQ F5P FYUFA GX1 HMCUK HYE KQ8 LK8 M1P M48 MODMG M~E OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7TS 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c505t-50cea649d96ab02fec079a2a2c94b10ddc8d0058c5ae2e1abfb4319569e490cb3 |
IEDL.DBID | M48 |
ISSN | 2072-6643 |
IngestDate | Thu Aug 21 18:17:01 EDT 2025 Tue Aug 05 10:11:41 EDT 2025 Thu Jul 10 19:55:04 EDT 2025 Fri Jul 25 09:19:51 EDT 2025 Thu Apr 03 07:03:33 EDT 2025 Tue Jul 01 02:30:57 EDT 2025 Thu Apr 24 22:54:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | trimethylamine-N-oxide choline metabolism dietary precursor intake gut microbiota |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-50cea649d96ab02fec079a2a2c94b10ddc8d0058c5ae2e1abfb4319569e490cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-2046-3593 0000-0002-7192-5743 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu12082220 |
PMID | 32722424 |
PQID | 2428287577 |
PQPubID | 2032353 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468900 proquest_miscellaneous_2524283320 proquest_miscellaneous_2428554118 proquest_journals_2428287577 pubmed_primary_32722424 crossref_citationtrail_10_3390_nu12082220 crossref_primary_10_3390_nu12082220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200725 |
PublicationDateYYYYMMDD | 2020-07-25 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200725 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nutrients |
PublicationTitleAlternate | Nutrients |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ley (ref_10) 2005; 102 Yan (ref_8) 2012; 95 Levey (ref_13) 2009; 150 Craciun (ref_35) 2012; 109 ref_36 Johnson (ref_15) 2008; 43 ref_33 Yamazaki (ref_26) 2013; 85 ref_31 Zeisel (ref_32) 1981; 1 Taesuwan (ref_12) 2017; 45 DeSantis (ref_22) 2006; 72 Koeth (ref_39) 2013; 19 Koc (ref_16) 2002; 74 Holm (ref_17) 2003; 49 ref_19 Katoh (ref_23) 2013; 30 ref_37 Growdon (ref_6) 1977; 28 Yan (ref_18) 2011; 93 Callahan (ref_21) 2016; 13 Bain (ref_11) 2005; 6 Schugar (ref_38) 2017; 20 Wang (ref_2) 2011; 472 Missimer (ref_34) 2018; 37 Jiang (ref_43) 2013; 27 Tang (ref_1) 2013; 368 Zeisel (ref_5) 1983; 225 Cashman (ref_30) 2001; 29 Miller (ref_7) 2014; 100 Zeisel (ref_3) 2003; 133 Demirkaya (ref_27) 2013; 521 Cho (ref_14) 2016; 10 Kozich (ref_20) 2013; 79 Caudill (ref_44) 2018; 32 Zeisel (ref_41) 2006; 26 Lozupone (ref_25) 2005; 71 ref_28 Zeisel (ref_40) 2009; 67 ref_9 Jiang (ref_42) 2012; 26 Pirrung (ref_24) 2013; 2 ref_4 Mandal (ref_29) 2015; 26 |
References_xml | – volume: 100 start-page: 778 year: 2014 ident: ref_7 article-title: Effect of egg ingestion on trimethylamine-N-oxide production in humans: A randomized, controlled, dose-response study publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.114.087692 – ident: ref_28 – volume: 30 start-page: 772 year: 2013 ident: ref_23 article-title: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 133 start-page: 1302 year: 2003 ident: ref_3 article-title: Concentrations of choline-containing compounds and betaine in common foods publication-title: J. Nutr. doi: 10.1093/jn/133.5.1302 – volume: 32 start-page: 2172 year: 2018 ident: ref_44 article-title: Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: A randomized, double-blind, controlled feeding study publication-title: FASEB J. doi: 10.1096/fj.201700692RR – volume: 368 start-page: 1575 year: 2013 ident: ref_1 article-title: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1109400 – ident: ref_37 doi: 10.3390/nu10121971 – volume: 95 start-page: 1060 year: 2012 ident: ref_8 article-title: Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.111.022772 – volume: 20 start-page: 279 year: 2017 ident: ref_38 article-title: The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.06.053 – volume: 37 start-page: 140 year: 2018 ident: ref_34 article-title: Compared to an oatmeal breakfast, two eggs/day increased plasma carotenoids and choline without increasing trimethyl amine n-oxide concentrations publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2017.1365026 – volume: 472 start-page: 57 year: 2011 ident: ref_2 article-title: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease publication-title: Nature doi: 10.1038/nature09922 – volume: 1 start-page: 95 year: 1981 ident: ref_32 article-title: Dietary choline: Biochemistry, physiology, and pharmacology publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nu.01.070181.000523 – ident: ref_33 doi: 10.1080/07315724.2018.1466213 – volume: 19 start-page: 576 year: 2013 ident: ref_39 article-title: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis publication-title: Nat. Med. doi: 10.1038/nm.3145 – volume: 2 start-page: 16 year: 2013 ident: ref_24 article-title: EMPeror: A tool for visualizing high-throughput microbial community data publication-title: Gigascience doi: 10.1186/2047-217X-2-16 – volume: 109 start-page: 21307 year: 2012 ident: ref_35 article-title: Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1215689109 – ident: ref_31 doi: 10.3390/nu11102548 – volume: 102 start-page: 11070 year: 2005 ident: ref_10 article-title: Obesity alters gut microbial ecology publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504978102 – volume: 521 start-page: 116 year: 2013 ident: ref_27 article-title: Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke publication-title: Gene doi: 10.1016/j.gene.2013.03.010 – volume: 28 start-page: 229 year: 1977 ident: ref_6 article-title: Effects of oral choline administration on serum and CSF choline levels in patients with Huntington’s disease publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1977.tb07732.x – volume: 43 start-page: 495 year: 2008 ident: ref_15 article-title: A flow injection electrospray ionization tandem mass spectrometric method for the simultaneous measurement of trimethylamine and trimethylamine N-oxide in urine publication-title: J. Mass Spectrom. doi: 10.1002/jms.1339 – volume: 67 start-page: 615 year: 2009 ident: ref_40 article-title: Choline: An essential nutrient for public health publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.2009.00246.x – ident: ref_9 doi: 10.1002/mnfr.201770016 – volume: 150 start-page: 604 year: 2009 ident: ref_13 article-title: A new equation to estimate glomerular filtration rate publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-150-9-200905050-00006 – volume: 10 start-page: 1 year: 2016 ident: ref_14 article-title: Choline and one-carbon metabolite response to egg, beef and fish among healthy young men: A short-term randomized clinical study publication-title: Clin. Nutr. Exper. doi: 10.1016/j.yclnex.2016.10.002 – volume: 85 start-page: 1588 year: 2013 ident: ref_26 article-title: Survey of variants of human flavin-containing monooxygenase 3 (FMO3) and their drug oxidation activities publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2013.03.020 – volume: 6 start-page: 227 year: 2005 ident: ref_11 article-title: Trimethylamine: Metabolic, pharmacokinetic and safety aspects publication-title: Curr. Drug Metab. doi: 10.2174/1389200054021807 – volume: 27 start-page: 1245 year: 2013 ident: ref_43 article-title: A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1) publication-title: FASEB J. doi: 10.1096/fj.12-221648 – ident: ref_4 – volume: 26 start-page: 27663 year: 2015 ident: ref_29 article-title: Analysis of composition of microbiomes: A novel method for studying microbial composition publication-title: Microb. Ecol. Health Dis. – volume: 13 start-page: 581 year: 2016 ident: ref_21 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 49 start-page: 286 year: 2003 ident: ref_17 article-title: Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry publication-title: Clin. Chem. doi: 10.1373/49.2.286 – volume: 93 start-page: 348 year: 2011 ident: ref_18 article-title: MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.110.005975 – volume: 74 start-page: 4734 year: 2002 ident: ref_16 article-title: Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac025624x – volume: 26 start-page: 229 year: 2006 ident: ref_41 article-title: Choline: Critical role during fetal development and dietary requirements in adults publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.26.061505.111156 – volume: 72 start-page: 5069 year: 2006 ident: ref_22 article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03006-05 – volume: 225 start-page: 320 year: 1983 ident: ref_5 article-title: Formation of methylamines from ingested choline and lecithin publication-title: J. Pharmacol. Exp. Ther. – volume: 79 start-page: 5112 year: 2013 ident: ref_20 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01043-13 – volume: 29 start-page: 1629 year: 2001 ident: ref_30 article-title: Population distribution of human flavin-containing monooxygenase form 3: Gene polymorphisms publication-title: Drug Metab. Dispos. – ident: ref_19 – ident: ref_36 doi: 10.1128/mBio.02481-14 – volume: 26 start-page: 3563 year: 2012 ident: ref_42 article-title: Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans publication-title: FASEB J. doi: 10.1096/fj.12-207894 – volume: 45 start-page: 77 year: 2017 ident: ref_12 article-title: The metabolic fate of isotopically labeled trimethylamine-N-oxide (TMAO) in humans publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2017.02.010 – volume: 71 start-page: 8228 year: 2005 ident: ref_25 article-title: UniFrac: A new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 |
SSID | ssj0000070763 |
Score | 2.4627726 |
Snippet | Background: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease.... Trimethylamine- -oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought... Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought... Background: Trimethylamine- N -oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2220 |
SubjectTerms | Adult Biomarkers - blood Biomarkers - urine Blood cardiovascular diseases Cardiovascular Diseases - etiology choline Choline - administration & dosage Clostridium Cross-Over Studies Diet - adverse effects Dietary Supplements digestive system Double-Blind Method Female Gastrointestinal Microbiome - drug effects Gut microbiota Healthy Volunteers Heart Disease Risk Factors Humans intestinal microorganisms Lachnospiraceae Male Meals Meals - physiology metabolites Methylamines - blood Methylamines - urine microbiome Microbiota Middle Aged multivariate analysis Nutrition phosphatidylcholines Phosphatidylcholines - administration & dosage risk factors Ruminococcaceae Urine Womens health |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZd97KX0a37kbYbGh2DPYjKsmxFT6OUpaWQDkYLeTOydCGBTukaB9r_vneW4y7bKPhNZyx8J-m-0913jH3OwNTBQC2InUxoACOsglL4zIKziJ-nGRUnjy_Ksyt9PikmXcBt2aVVrvfEdqMOC08x8iM8SoibvTDm281vQV2j6Ha1a6HxjD0n6jKyajMxfYyl5bIp88RKmiO6P4qrTLU9rOXmOfSPc_l3juQfh85oh73svEV-nNT7im1BfM12jyMi5V_3_Atv8zfbwPgumyUiYr6Y8pMZteIBPkKHdMldDPx01fDxPJEuNY7TLtBla3F8LonjHzWG1oGviQvx424egP9M-bPA55GncqV7Pob4hl2Nvl-enImuj4Lw6N80opAeXKltsKWrpcK5SGOdcspbXWcyBD8M1F7QFw4UZK6e1uhWIHCyoK30df6WbcdFhPeM57r0iHGszhDNuqkelrkeUi1IQD8qAxiwr-u_WvmOZJx6XVxXCDZIA9WjBgbssJe9SdQa_5U6WCun6pbXsno0hgH71A_jwqDbDhdhsUoy6CshgHpCpiCpPKfPvEv67qeSK6OodmbAzIYl9AJEzL05EuezlqDb6HJopdx7eur77IUi8C6JKuOAbTe3K_iAHk5Tf2zN-AGXzvzS priority: 102 providerName: ProQuest |
Title | Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32722424 https://www.proquest.com/docview/2428287577 https://www.proquest.com/docview/2428554118 https://www.proquest.com/docview/2524283320 https://pubmed.ncbi.nlm.nih.gov/PMC7468900 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZd-7KXsbX7ka0LGhuDPWizZNmKHsZoS9MySDZKA3kzsnwhgVbZWgea_353lpM1bRkDvxifsNCdfN9nSd8x9kGCKSsDpSB1MqEBjLAKcuGlBWeRP08kHU4eDPPTkf4-zsZbbFW_sx3A6wepHdWTGl1dfL75vfyGE_4rMU6k7F_CQqqmMDVS9x3MSIYqGQxamB9hsEG6TovNKjFK5JiFo1Lpneabueke4Ly7b_JWIuo_ZU9aBMkPosufsS0Iu2zvICB7vlzyj7zZ09n8LN9j0yhOzOcTfjSl8jzA-whSr7kLFT9Z1Hwwi0JMteP0ZWh3cHG8zkn3H72IEYPNxFD8uJlVwM_inlrgs8DjEaYlH0B4zkb94_OjU9HWVhAeMU8tssSDy7WtbO7KRGFfEmOdcspbXcqkqnyvopKDPnOgQLpyUiLUQDJlQdvEl-kLth3mAV4xnurcI--xWiLDdRPdy1Pdo_MhFWIrCdBhn1ajWvhWeJzqX1wUSEDIA8VfD3TY-7Xtryi38aDV_so5xSpiCsQaJN6fGdNh79aPcbLQCogLMF9EG8RPSKr-YZORVZrSa15Gf6-7kiqj6DxNh5mNSFgbkFj35pMwmzai3UbnPZskr_-jb2_YY0WsPiENjX22XV8t4C1Cn7rsskdmbLps5_B4-PMM707GstvE-h-YTAXt |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoALAsojpcAiHhKHVdfrx2YPCFWFkNImSCiVcjPr9ViJRDeFOIL8KX4jM36VAOqtkk_22F55ZnfmW898w9iLAHSWa8gEsZOJCEALoyARLjBgDeLnIqDi5NE4GZ5GH6fxdIv9amthKK2yXROrhTpfONoj30dXQtzssdZvz78J6hpFf1fbFhq1WRzD-gdCtuWbo3eo35dKDd5PDoei6SogHHr7UsTSgU0ik5vEZlIV4KQ2VlnlTJQFMs9dP6dmey62oCCwWZGhk0UYYSAy0mUhPvcau47nJIE9PdXdnk7FnZOENQtqGBq571eBqnpmy02_908w-3dO5h9ObnCb3WqiU35Qm9MdtgX-Lts58IjMz9b8Fa_yRauN-B02q4mP-aLghzNq_QN8gAHwkluf8w-rko_mNclTaTmtOk12GMdjQj0F0ELQGvE2MRaffs5z4J_rfF3gc8_r8qg1H4G_x06v5AvfZ9t-4eEh42GUOMRUJgoQPdsi6idh1KfakxzjtgCgx163XzV1Dak59db4miK4IQ2kFxroseed7HlN5fFfqb1WOWkznZfphfH12LPuMk5E-rtiPSxWtQzGZgjYLpGJSSoM6TUPan13QwmVVlSr02N6wxI6ASIC37zi57OKEFxHSd9IuXv50J-yG8PJ6CQ9ORofP2I3FW0cSKLp2GPb5fcVPMboqsyeVCbN2ZernkO_AQTCOtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAeKQUW8ZA4WLHXj80eECptQ0tJqKpW6s2s12MlEt0U4gjy1_h1zNiOSwD1Vsm3Hdsrz-zOfOuZbwBeBqiyXGHmMTuZFyEqT0tMPBtoNJrwcxFwcfJwlOyfRh_P4rM1-LWsheG0yuWeWG3U-dTyGXmPXAlzs8dK9YomLeJod_Du4pvHHaT4T-uynUZtIoe4-EHwbfb2YJd0_UrKwd7Jzr7XdBjwLHn-0ot9iyaJdK4Tk_myQOsrbaSRVkdZ4Oe57efceM_GBiUGJisycrgEKTRG2rdZSM-9AeuKUVEH1t_vjY6O2xOeikknCWtO1DDUfs_NA1l10PZXveA_oe3fGZp_uLzBHbjdxKpiuzauu7CG7h5sbDvC6ecL8VpU2aPVsfwGjGsaZDEtxM6YGwGhGFA4PBPG5eLDvBTDSU35VBrBe1CTKyboOuEOA2QvZJt0mzfyPv-c5CiO6-xdFBMn6mKphRiiuw-n1_KNH0DHTR0-AhFGiSWEpaOAsLQpon4SRn2uRMkpigsQu_Bm-VVT21Ccc6eNrylBHdZAeqmBLrxoZS9qYo__Sm0tlZM2i3uWXppiF563w7Qs-V-LcTid1zIUqRF8u0ImZqkw5Nc8rPXdTiWUSnLlThfUiiW0AkwLvjriJuOKHlxFSV_7_ubVU38GN2n9pJ8ORoeP4ZbkUwSfOTu2oFN-n-MTCrXK7Glj0wK-XPcy-g3LZUBv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Choline+Forms+and+Gut+Microbiota+Composition+on+Trimethylamine-N-Oxide+Response+in+Healthy+Men&rft.jtitle=Nutrients&rft.au=Cho%2C+Clara+E&rft.au=Aardema%2C+Niklas+D+J&rft.au=Bunnell%2C+Madison+L&rft.au=Larson%2C+Deanna+P&rft.date=2020-07-25&rft.issn=2072-6643&rft.eissn=2072-6643&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fnu12082220&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon |