The ectodysplasin pathway: from diseases to adaptations

•The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adapta...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 30; no. 1; pp. 24 - 31
Main Authors Sadier, Alexa, Viriot, Laurent, Pantalacci, Sophie, Laudet, Vincent
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adaptations in fish and humans. The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a ‘hopeful pathway’ that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
AbstractList The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)- alpha family, EDAR, a receptor related to the TNF alpha receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF- Kappa B pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
Highlights • The Ectodysplasin pathway controls ectodermal appendages in vertebrates. • The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD. • Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans. • The EDA pathway has been associated with specific adaptations in fish and humans.
•The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adaptations in fish and humans. The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a ‘hopeful pathway’ that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.
Author Pantalacci, Sophie
Laudet, Vincent
Viriot, Laurent
Sadier, Alexa
Author_xml – sequence: 1
  givenname: Alexa
  surname: Sadier
  fullname: Sadier, Alexa
– sequence: 2
  givenname: Laurent
  surname: Viriot
  fullname: Viriot, Laurent
– sequence: 3
  givenname: Sophie
  surname: Pantalacci
  fullname: Pantalacci, Sophie
– sequence: 4
  givenname: Vincent
  surname: Laudet
  fullname: Laudet, Vincent
  email: Vincent.Laudet@ens-lyon.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24070496$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhn1oRT_gB3BBOfay6Ti2E4cDUlUBrVSJA-U8cuwJ9ZKNg-0F7b_Hq20vSG1PlkbP-1rzzBk7msNMjL3nUHPg7eW6zv5n3QAXNegaoD1ip2WuV71q1Ak7S2kNAKoT6g07aSR0IPv2lHX3D1SRzcHt0jKZ5OdqMfnhr9l9rMYYNpXziUyiVOVQGWeWbLIPc3rLjkczJXr3-J6zH18-31_frO6-fb29vrpbWQUqryRpQ0JLO3SdcENr1KhdS2SFHjU3HehBONUqZZUAapvRKHJaCtnrwYnGinN2cehdYvi9pZRx45OlaTIzhW1CrlstpBRCv47KvmzdKZAF_fCIbocNOVyi35i4wycvBegOgI0hpUgjWn_YPEfjJ-SAe-u4xmId99YRNBbrJcn_Sz6Vv5T5dMhQMfnHU0Q7-dlbM_2iHaV12Ma5SEaOqUHA7_u77s_KBQCXGkpB_3wBuuBf-PwfviSu8Q
CitedBy_id crossref_primary_10_1016_j_smim_2014_05_002
crossref_primary_10_1093_icb_icw059
crossref_primary_10_1016_j_smim_2014_05_003
crossref_primary_10_3390_ani11030657
crossref_primary_10_1038_s41598_021_84653_4
crossref_primary_10_1098_rsta_2020_0270
crossref_primary_10_1038_s41368_021_00135_3
crossref_primary_10_1038_s41437_020_0349_1
crossref_primary_10_1038_s41586_023_06047_y
crossref_primary_10_1111_jdv_14107
crossref_primary_10_1186_2041_9139_5_19
crossref_primary_10_1002_jez_b_23030
crossref_primary_10_1038_s41467_023_36367_6
crossref_primary_10_1093_iob_obac018
crossref_primary_10_1371_journal_pone_0204079
crossref_primary_10_1002_dvdy_729
crossref_primary_10_1369_00221554231201691
crossref_primary_10_1172_JCI89056
crossref_primary_10_1038_ncomms11616
crossref_primary_10_1371_journal_pone_0258212
crossref_primary_10_1093_molbev_msw093
crossref_primary_10_1242_dev_201866
crossref_primary_10_1073_pnas_1511680112
crossref_primary_10_1038_s41588_019_0484_x
crossref_primary_10_1111_evo_12866
crossref_primary_10_1038_s41418_018_0128_1
crossref_primary_10_1007_s00439_024_02705_x
crossref_primary_10_3390_ijms232415700
crossref_primary_10_1126_sciadv_abj7912
crossref_primary_10_1016_j_ydbio_2024_01_002
crossref_primary_10_18699_VJGB_23_78
crossref_primary_10_1016_j_archoralbio_2019_05_007
crossref_primary_10_1016_j_ceca_2016_12_004
crossref_primary_10_1080_17843286_2022_2140246
crossref_primary_10_1111_1346_8138_16044
crossref_primary_10_1111_cge_13714
crossref_primary_10_1186_s12862_015_0395_0
crossref_primary_10_1093_icb_icaa038
crossref_primary_10_3390_genes16010012
crossref_primary_10_1111_mec_14772
crossref_primary_10_1371_journal_pone_0138221
crossref_primary_10_1002_mgg3_1824
crossref_primary_10_1042_BST20230197
crossref_primary_10_1038_s41598_017_11523_3
crossref_primary_10_1111_febs_15636
crossref_primary_10_1098_rspb_2015_0746
crossref_primary_10_1177_0022034514522059
crossref_primary_10_1016_j_molmed_2024_02_002
crossref_primary_10_3389_fphys_2021_788411
crossref_primary_10_1007_s00056_015_0005_1
crossref_primary_10_1016_j_ydbio_2025_02_010
crossref_primary_10_3390_ijms23168911
crossref_primary_10_1007_s00114_020_01696_9
crossref_primary_10_1073_pnas_2216959120
crossref_primary_10_1186_s13148_020_00836_2
crossref_primary_10_1111_mec_16989
crossref_primary_10_1126_sciadv_adf8834
crossref_primary_10_1093_hmg_ddw202
crossref_primary_10_1186_s12864_016_2975_9
crossref_primary_10_1016_j_isci_2019_06_003
crossref_primary_10_1053_j_tcam_2019_03_002
crossref_primary_10_1371_journal_pgen_1006369
crossref_primary_10_7554_eLife_59653
crossref_primary_10_1007_s11427_020_1712_4
crossref_primary_10_3389_fgene_2023_1168538
crossref_primary_10_1111_1346_8138_14983
crossref_primary_10_1111_1346_8138_16204
crossref_primary_10_1002_humu_24104
crossref_primary_10_2139_ssrn_3362261
crossref_primary_10_1016_j_devcel_2018_06_019
crossref_primary_10_3389_fmolb_2021_689037
crossref_primary_10_1086_679280
crossref_primary_10_1111_ele_13225
crossref_primary_10_1186_s13023_019_1251_x
crossref_primary_10_1016_j_archoralbio_2016_03_015
crossref_primary_10_1242_jcs_255422
crossref_primary_10_1186_s13223_021_00510_z
crossref_primary_10_1111_cge_13218
crossref_primary_10_1371_journal_pbio_3000132
crossref_primary_10_1002_jmor_20557
crossref_primary_10_3390_jdb11020025
crossref_primary_10_1016_j_archoralbio_2022_105600
crossref_primary_10_1093_icb_icaa053
crossref_primary_10_1371_journal_pbio_3000064
crossref_primary_10_1073_pnas_1711788115
crossref_primary_10_1111_1346_8138_16610
crossref_primary_10_1111_jipb_12697
crossref_primary_10_1111_ijd_14048
Cites_doi 10.1111/j.0022-202X.2004.23405.x
10.1086/521988
10.1073/pnas.94.24.13069
10.1002/ajmg.a.32855
10.1371/journal.pone.0004985
10.1242/dev.079558
10.1242/dev.127.21.4691
10.1016/j.ydbio.2003.12.019
10.1016/j.cytogfr.2008.04.008
10.1038/414913a
10.1111/j.1525-142X.2007.00145.x
10.1016/j.tig.2010.06.005
10.1038/jid.2011.453
10.1007/s00439-008-0537-1
10.1038/11937
10.1242/dev.02278
10.1016/j.cub.2008.04.027
10.1038/nrg979
10.1111/j.1365-2133.2010.09670.x
10.1073/pnas.1110627109
10.1111/j.1558-5646.2008.00450.x
10.1128/MCB.24.4.1608-1613.2004
10.1016/j.dci.2011.03.031
10.1073/pnas.132636999
10.1016/S1359-6101(03)00020-0
10.1002/dvdy.20110
10.1126/science.1107239
10.1006/excr.2001.5331
10.1038/jhg.2012.60
10.1002/humu.21384
10.1111/j.1469-1809.2007.00390.x
10.1002/ajmg.a.31567
10.1177/154405910808701205
10.1038/nm861
10.1038/ncomms3504
10.1111/j.1558-5646.2007.00105.x
10.1242/dev.129.10.2541
10.1111/j.1095-8649.2010.02640.x
10.1093/molbev/msn038
10.1038/nature02927
10.1111/j.1558-5646.2012.01724.x
10.1007/s10038-006-0389-2
10.1186/1471-2156-12-91
10.1073/pnas.0502300102
10.1073/pnas.0600825103
10.1016/j.ejmg.2008.06.002
10.1038/11943
10.1242/dev.01651
10.1371/journal.pone.0002209
10.1074/jbc.M111.267997
10.1126/science.290.5491.523
10.1111/j.1365-294X.2011.05071.x
10.1101/gr.4326505
10.1111/j.1399-0004.2008.01037.x
10.1098/rsbl.2009.0416
10.1002/ar.a.10045
10.1210/en.2004-1246
10.1038/nature06250
10.1007/s00335-004-2463-4
10.1177/0022034513487210
10.1136/jmedgenet-2012-100877
10.1002/dvdy.10400
10.1086/316914
10.1186/1471-213X-9-32
10.1002/humu.20795
10.1016/j.ydbio.2007.02.011
10.1093/hmg/ddn232
10.1038/nature10876
10.1016/S0960-9822(01)00324-4
10.1111/j.1600-065X.2012.01096.x
10.1038/ng0895-409
10.1679/aohc.73.139
10.1093/hmg/6.9.1589
10.1093/hmg/ddi405
10.1016/j.ajhg.2009.09.006
10.1111/j.1365-2133.2011.10620.x
10.1007/978-1-4419-6612-4_3
10.1126/science.1159978
10.1111/j.1582-4934.2010.01054.x
10.1101/gr.182501
10.1371/journal.pgen.1000206
10.1371/journal.pbio.0040072
10.1371/journal.pbio.0050171
10.1016/j.devcel.2009.05.011
10.1074/jbc.M008356200
10.1093/hmg/ddg325
10.1016/j.cell.2013.01.016
10.1093/hmg/10.9.953
10.1242/dev.01377
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
DOI 10.1016/j.tig.2013.08.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 31
ExternalDocumentID 24070496
10_1016_j_tig_2013_08_006
1_s2_0_S0168952513001480
S0168952513001480
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
AACTN
AFKWA
AJOXV
AMFUW
PKN
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c505t-4e8ae384cb773db6a5f8d6eec38f81a708b3d5655c530e62fa5ed843498bd32c3
ISSN 0168-9525
IngestDate Fri Jul 11 16:06:36 EDT 2025
Thu Aug 07 14:54:38 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 01:43:34 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Sun Feb 23 10:18:57 EST 2025
Tue Aug 26 19:58:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ectodermal appendages
adaptation
ectodysplasin
anhidrotic/hypohidrotic ectodermal dysplasia
signaling pathways
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-4e8ae384cb773db6a5f8d6eec38f81a708b3d5655c530e62fa5ed843498bd32c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24070496
PQID 1490707504
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1868344338
proquest_miscellaneous_1490707504
pubmed_primary_24070496
crossref_citationtrail_10_1016_j_tig_2013_08_006
crossref_primary_10_1016_j_tig_2013_08_006
elsevier_clinicalkeyesjournals_1_s2_0_S0168952513001480
elsevier_clinicalkey_doi_10_1016_j_tig_2013_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yan (bib0165) 2000; 290
Le Rouzic (bib0315) 2011; 20
Drew (bib0125) 2007; 305
Hoekstra, Coyne (bib0405) 2007; 61
Sofaer (bib0040) 1969; 22
Mou (bib0290) 2006; 103
Wisniewski, Trzeciak (bib0170) 2012; 49
Naito (bib0200) 2002; 99
Houghton (bib0120) 2005; 132
Kumar (bib0150) 2001; 276
Clauss (bib0455) 2008; 87
Mikkola (bib0145) 2008; 19
Mustonen (bib0250) 2004; 131
Park (bib0390) 2012; 57
Carlson (bib0350) 2005; 15
Han (bib0095) 2008; 51
Tucker (bib0275) 2004; 268
Laurikkala (bib0295) 2002; 129
Casal (bib0415) 2007; 81
Knecht (bib0335) 2007; 9
Martin, Orgogozo (bib0430) 2013; 67
Barrett (bib0340) 2009; 5
Pantalacci (bib0435) 2008; 25
Cui (bib0240) 2003; 12
Mikkola, Thesleff (bib0065) 2003; 14
Kere (bib0030) 1996; 13
Ferguson (bib0045) 1997; 6
Drögemüller (bib0110) 2001; 11
Mikkola (bib0080) 2009; 149A
Christin (bib0425) 2010; 26
Atukorala (bib0135) 2010; 73
Elomaa (bib0155) 2001; 10
Fujimoto (bib0380) 2008; 124
Bryk (bib0375) 2008; 3
Koppinen (bib0180) 2001; 269
Wiśniewski (bib0010) 2002; 43
Barrett (bib0320) 2010; 77
Zonana (bib0205) 2000; 67
Gilmore, Wolenski (bib0220) 2012; 246
Sabeti (bib0345) 2007; 449
Tao (bib0100) 2006; 51
Leinonen (bib0325) 2012; 66
Newton (bib0175) 2004; 24
Kangas (bib0280) 2004; 432
Mou (bib0395) 2008; 29
Wiens, Glenney (bib0440) 2011; 35
Voight (bib0360) 2006; 4
Kimura (bib0385) 2009; 85
Charles (bib0460) 2009; 4
Cascallana (bib0235) 2005; 146
Cluzeau (bib0015) 2011; 32
Nikopensius (bib0465) 2013; 92
Tucker (bib0160) 2000; 127
Kitano (bib0330) 2008; 18
Kamberov (bib0025) 2013; 152
Dickson (bib0215) 2004; 231
Williamson (bib0355) 2005; 102
Barrett (bib0310) 2008; 322
Kuramoto (bib0115) 2011; 12
Schmidt-Ullrich (bib0190) 2006; 133
Melnik (bib0260) 2009; 9
Kowalczyk (bib0420) 2011; 286
Kondo (bib0130) 2001; 11
Cluzeau (bib0400) 2012; 166
Headon (bib0070) 2001; 414
Tarpey (bib0090) 2007; 143
Zhang (bib0300) 2009; 17
Gomes Rodrigues (bib0470) 2013; 4
Darwin (bib0005) 1875
Mikkola (bib0265) 2011; 691
Colosimo (bib0020) 2005; 307
Srivastava (bib0035) 1996; 58
Srivastava (bib0050) 1997; 94
Myles (bib0370) 2008; 72
Pispa (bib0210) 2008; 17
Lexner (bib0450) 2008; 74
Shimomura (bib0075) 2004; 123
Voutilainen (bib0270) 2012; 109
Ohazama (bib0195) 2004; 229
Dietrich (bib0445) 2003; 4
Headon, Overbeek (bib0055) 1999; 22
Lefebvre (bib0230) 2012; 132
Monreal (bib0060) 1999; 22
Gaide, Schneider (bib0245) 2003; 9
Stern, Orgogozo (bib0410) 2008; 62
Jaskoll (bib0255) 2003; 271
Casal (bib0105) 2005; 16
Harjunmaa (bib0285) 2012; 483
Tang (bib0365) 2007; 5
Shifera (bib0225) 2010; 14
Chassaing (bib0085) 2010; 162
Harris (bib0140) 2008; 4
Häärä (bib0305) 2012; 139
Morlon (bib0185) 2005; 14
Kere (10.1016/j.tig.2013.08.006_bib0030) 1996; 13
Mikkola (10.1016/j.tig.2013.08.006_bib0265) 2011; 691
Cascallana (10.1016/j.tig.2013.08.006_bib0235) 2005; 146
Kangas (10.1016/j.tig.2013.08.006_bib0280) 2004; 432
Voutilainen (10.1016/j.tig.2013.08.006_bib0270) 2012; 109
Mikkola (10.1016/j.tig.2013.08.006_bib0145) 2008; 19
Gomes Rodrigues (10.1016/j.tig.2013.08.006_bib0470) 2013; 4
Mou (10.1016/j.tig.2013.08.006_bib0290) 2006; 103
Kamberov (10.1016/j.tig.2013.08.006_bib0025) 2013; 152
Barrett (10.1016/j.tig.2013.08.006_bib0310) 2008; 322
Clauss (10.1016/j.tig.2013.08.006_bib0455) 2008; 87
Atukorala (10.1016/j.tig.2013.08.006_bib0135) 2010; 73
Darwin (10.1016/j.tig.2013.08.006_bib0005) 1875
Shifera (10.1016/j.tig.2013.08.006_bib0225) 2010; 14
Tang (10.1016/j.tig.2013.08.006_bib0365) 2007; 5
Le Rouzic (10.1016/j.tig.2013.08.006_bib0315) 2011; 20
Wiens (10.1016/j.tig.2013.08.006_bib0440) 2011; 35
Knecht (10.1016/j.tig.2013.08.006_bib0335) 2007; 9
Yan (10.1016/j.tig.2013.08.006_bib0165) 2000; 290
Lefebvre (10.1016/j.tig.2013.08.006_bib0230) 2012; 132
Tucker (10.1016/j.tig.2013.08.006_bib0275) 2004; 268
Kuramoto (10.1016/j.tig.2013.08.006_bib0115) 2011; 12
Voight (10.1016/j.tig.2013.08.006_bib0360) 2006; 4
Zhang (10.1016/j.tig.2013.08.006_bib0300) 2009; 17
Tao (10.1016/j.tig.2013.08.006_bib0100) 2006; 51
Laurikkala (10.1016/j.tig.2013.08.006_bib0295) 2002; 129
Schmidt-Ullrich (10.1016/j.tig.2013.08.006_bib0190) 2006; 133
Barrett (10.1016/j.tig.2013.08.006_bib0340) 2009; 5
Carlson (10.1016/j.tig.2013.08.006_bib0350) 2005; 15
Kimura (10.1016/j.tig.2013.08.006_bib0385) 2009; 85
Casal (10.1016/j.tig.2013.08.006_bib0105) 2005; 16
Koppinen (10.1016/j.tig.2013.08.006_bib0180) 2001; 269
Drögemüller (10.1016/j.tig.2013.08.006_bib0110) 2001; 11
Kondo (10.1016/j.tig.2013.08.006_bib0130) 2001; 11
Williamson (10.1016/j.tig.2013.08.006_bib0355) 2005; 102
Bryk (10.1016/j.tig.2013.08.006_bib0375) 2008; 3
Christin (10.1016/j.tig.2013.08.006_bib0425) 2010; 26
Headon (10.1016/j.tig.2013.08.006_bib0070) 2001; 414
Häärä (10.1016/j.tig.2013.08.006_bib0305) 2012; 139
Martin (10.1016/j.tig.2013.08.006_bib0430) 2013; 67
Srivastava (10.1016/j.tig.2013.08.006_bib0035) 1996; 58
Tucker (10.1016/j.tig.2013.08.006_bib0160) 2000; 127
Mikkola (10.1016/j.tig.2013.08.006_bib0080) 2009; 149A
Houghton (10.1016/j.tig.2013.08.006_bib0120) 2005; 132
Charles (10.1016/j.tig.2013.08.006_bib0460) 2009; 4
Gaide (10.1016/j.tig.2013.08.006_bib0245) 2003; 9
Colosimo (10.1016/j.tig.2013.08.006_bib0020) 2005; 307
Nikopensius (10.1016/j.tig.2013.08.006_bib0465) 2013; 92
Kumar (10.1016/j.tig.2013.08.006_bib0150) 2001; 276
Pantalacci (10.1016/j.tig.2013.08.006_bib0435) 2008; 25
Shimomura (10.1016/j.tig.2013.08.006_bib0075) 2004; 123
Myles (10.1016/j.tig.2013.08.006_bib0370) 2008; 72
Casal (10.1016/j.tig.2013.08.006_bib0415) 2007; 81
Dickson (10.1016/j.tig.2013.08.006_bib0215) 2004; 231
Cluzeau (10.1016/j.tig.2013.08.006_bib0400) 2012; 166
Stern (10.1016/j.tig.2013.08.006_bib0410) 2008; 62
Monreal (10.1016/j.tig.2013.08.006_bib0060) 1999; 22
Fujimoto (10.1016/j.tig.2013.08.006_bib0380) 2008; 124
Pispa (10.1016/j.tig.2013.08.006_bib0210) 2008; 17
Headon (10.1016/j.tig.2013.08.006_bib0055) 1999; 22
Wisniewski (10.1016/j.tig.2013.08.006_bib0170) 2012; 49
Mou (10.1016/j.tig.2013.08.006_bib0395) 2008; 29
Kowalczyk (10.1016/j.tig.2013.08.006_bib0420) 2011; 286
Srivastava (10.1016/j.tig.2013.08.006_bib0050) 1997; 94
Harris (10.1016/j.tig.2013.08.006_bib0140) 2008; 4
Drew (10.1016/j.tig.2013.08.006_bib0125) 2007; 305
Park (10.1016/j.tig.2013.08.006_bib0390) 2012; 57
Zonana (10.1016/j.tig.2013.08.006_bib0205) 2000; 67
Naito (10.1016/j.tig.2013.08.006_bib0200) 2002; 99
Barrett (10.1016/j.tig.2013.08.006_bib0320) 2010; 77
Ohazama (10.1016/j.tig.2013.08.006_bib0195) 2004; 229
Leinonen (10.1016/j.tig.2013.08.006_bib0325) 2012; 66
Kitano (10.1016/j.tig.2013.08.006_bib0330) 2008; 18
Cluzeau (10.1016/j.tig.2013.08.006_bib0015) 2011; 32
Chassaing (10.1016/j.tig.2013.08.006_bib0085) 2010; 162
Sabeti (10.1016/j.tig.2013.08.006_bib0345) 2007; 449
Tarpey (10.1016/j.tig.2013.08.006_bib0090) 2007; 143
Cui (10.1016/j.tig.2013.08.006_bib0240) 2003; 12
Dietrich (10.1016/j.tig.2013.08.006_bib0445) 2003; 4
Sofaer (10.1016/j.tig.2013.08.006_bib0040) 1969; 22
Hoekstra (10.1016/j.tig.2013.08.006_bib0405) 2007; 61
Morlon (10.1016/j.tig.2013.08.006_bib0185) 2005; 14
Lexner (10.1016/j.tig.2013.08.006_bib0450) 2008; 74
Ferguson (10.1016/j.tig.2013.08.006_bib0045) 1997; 6
Mikkola (10.1016/j.tig.2013.08.006_bib0065) 2003; 14
Harjunmaa (10.1016/j.tig.2013.08.006_bib0285) 2012; 483
Newton (10.1016/j.tig.2013.08.006_bib0175) 2004; 24
Han (10.1016/j.tig.2013.08.006_bib0095) 2008; 51
Mustonen (10.1016/j.tig.2013.08.006_bib0250) 2004; 131
Melnik (10.1016/j.tig.2013.08.006_bib0260) 2009; 9
Wiśniewski (10.1016/j.tig.2013.08.006_bib0010) 2002; 43
Elomaa (10.1016/j.tig.2013.08.006_bib0155) 2001; 10
Gilmore (10.1016/j.tig.2013.08.006_bib0220) 2012; 246
Jaskoll (10.1016/j.tig.2013.08.006_bib0255) 2003; 271
References_xml – volume: 14
  start-page: 2404
  year: 2010
  end-page: 2414
  ident: bib0225
  article-title: The zinc finger domain of IKKγ (NEMO) protein in health and disease
  publication-title: J. Cell. Mol. Med.
– volume: 22
  start-page: 181
  year: 1969
  end-page: 205
  ident: bib0040
  article-title: Aspects of the Tabby–crinkled–downless syndrome. I. The development of Tabby teeth
  publication-title: J. Embryol. Exp. Morphol.
– volume: 127
  start-page: 4691
  year: 2000
  end-page: 4700
  ident: bib0160
  article-title: Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis
  publication-title: Development
– volume: 35
  start-page: 1324
  year: 2011
  end-page: 1335
  ident: bib0440
  article-title: Origin and evolution of TNF and TNF receptor superfamilies
  publication-title: Dev. Comp. Immunol.
– volume: 4
  start-page: 2504
  year: 2013
  ident: bib0470
  article-title: Roles of dental development and adaptation in rodent evolution
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3751
  year: 2005
  end-page: 3757
  ident: bib0185
  article-title: TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd
  publication-title: Hum. Mol. Genet.
– volume: 432
  start-page: 211
  year: 2004
  end-page: 214
  ident: bib0280
  article-title: Nonindependence of mammalian dental characters
  publication-title: Nature
– volume: 123
  start-page: 649
  year: 2004
  end-page: 655
  ident: bib0075
  article-title: A rare case of hypohidrotic ectodermal dysplasia caused by compound heterozygous mutations in the EDAR gene
  publication-title: J. Invest. Dermatol.
– volume: 103
  start-page: 9075
  year: 2006
  end-page: 9080
  ident: bib0290
  article-title: Generation of the primary hair follicle pattern
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 5
  start-page: 788
  year: 2009
  end-page: 791
  ident: bib0340
  article-title: Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback
  publication-title: Biol. Lett.
– volume: 61
  start-page: 995
  year: 2007
  end-page: 1016
  ident: bib0405
  article-title: The locus of evolution: evo devo and the genetics of adaptation
  publication-title: Evolution
– volume: 17
  start-page: 3380
  year: 2008
  end-page: 3391
  ident: bib0210
  article-title: Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development
  publication-title: Hum. Mol. Genet.
– volume: 139
  start-page: 3189
  year: 2012
  end-page: 3199
  ident: bib0305
  article-title: Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling
  publication-title: Development
– volume: 72
  start-page: 99
  year: 2008
  end-page: 110
  ident: bib0370
  article-title: Identification and analysis of high Fst regions from genome-wide SNP data from three human populations
  publication-title: Ann. Hum. Genet.
– volume: 276
  start-page: 2668
  year: 2001
  end-page: 2677
  ident: bib0150
  article-title: The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A
  publication-title: J. Biol. Chem.
– volume: 162
  start-page: 1044
  year: 2010
  end-page: 1048
  ident: bib0085
  article-title: Mutations in EDARADD account for a small proportion of hypohidrotic ectodermal dysplasia cases
  publication-title: Br. J. Dermatol.
– volume: 12
  start-page: 2931
  year: 2003
  end-page: 2940
  ident: bib0240
  article-title: Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles
  publication-title: Hum. Mol. Genet.
– volume: 269
  start-page: 180
  year: 2001
  end-page: 192
  ident: bib0180
  article-title: Signaling and subcellular localization of the TNF receptor Edar
  publication-title: Exp. Cell Res.
– volume: 143
  start-page: 390
  year: 2007
  end-page: 394
  ident: bib0090
  article-title: A novel Gln358Glu mutation in ectodysplasin A associated with X-linked dominant incisor hypodontia
  publication-title: Am. J. Med. Genet. A
– volume: 129
  start-page: 2541
  year: 2002
  end-page: 2553
  ident: bib0295
  article-title: Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar
  publication-title: Development
– volume: 67
  start-page: 1235
  year: 2013
  end-page: 1250
  ident: bib0430
  article-title: The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation
  publication-title: Evolution
– volume: 12
  start-page: 91
  year: 2011
  ident: bib0115
  article-title: A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene
  publication-title: BMC Genet.
– volume: 43
  start-page: 97
  year: 2002
  end-page: 107
  ident: bib0010
  article-title: Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors
  publication-title: J. Appl. Genet.
– volume: 124
  start-page: 179
  year: 2008
  end-page: 185
  ident: bib0380
  article-title: A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia
  publication-title: Hum. Genet.
– volume: 87
  start-page: 1089
  year: 2008
  end-page: 1099
  ident: bib0455
  article-title: Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review
  publication-title: J. Dent. Res.
– volume: 149A
  start-page: 2031
  year: 2009
  end-page: 2036
  ident: bib0080
  article-title: Molecular aspects of hypohidrotic ectodermal dysplasia
  publication-title: Am. J. Med. Genet. A
– volume: 57
  start-page: 508
  year: 2012
  end-page: 514
  ident: bib0390
  article-title: Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits
  publication-title: J. Hum. Genet.
– volume: 4
  start-page: e72
  year: 2006
  ident: bib0360
  article-title: A map of recent positive selection in the human genome
  publication-title: PLoS Biol.
– volume: 414
  start-page: 913
  year: 2001
  end-page: 916
  ident: bib0070
  article-title: Gene defect in ectodermal dysplasia implicates a death domain adapter in development
  publication-title: Nature
– volume: 17
  start-page: 49
  year: 2009
  end-page: 61
  ident: bib0300
  article-title: Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction
  publication-title: Dev. Cell
– volume: 49
  start-page: 499
  year: 2012
  end-page: 501
  ident: bib0170
  article-title: A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia
  publication-title: J. Med. Genet.
– volume: 246
  start-page: 14
  year: 2012
  end-page: 35
  ident: bib0220
  article-title: NF-κB: where did it come from and why?
  publication-title: Immunol. Rev.
– volume: 85
  start-page: 528
  year: 2009
  end-page: 535
  ident: bib0385
  article-title: A common variation in EDAR is a genetic determinant of shovel-shaped incisors
  publication-title: Am. J. Hum. Genet.
– volume: 271
  start-page: 322
  year: 2003
  end-page: 331
  ident: bib0255
  article-title: Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development
  publication-title: Anat. Rec. A: Discov. Mol. Cell. Evol. Biol.
– volume: 133
  start-page: 1045
  year: 2006
  end-page: 1057
  ident: bib0190
  article-title: NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth
  publication-title: Development
– volume: 29
  start-page: 1405
  year: 2008
  end-page: 1411
  ident: bib0395
  article-title: Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form
  publication-title: Hum. Mutat.
– volume: 132
  start-page: 1094
  year: 2012
  end-page: 1102
  ident: bib0230
  article-title: Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development
  publication-title: J. Invest. Dermatol.
– year: 1875
  ident: bib0005
  article-title: The Variations of Animals and Plants under Domestication
– volume: 99
  start-page: 8766
  year: 2002
  end-page: 8771
  ident: bib0200
  article-title: TRAF6-deficient mice display hypohidrotic ectodermal dysplasia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 14
  start-page: 211
  year: 2003
  end-page: 224
  ident: bib0065
  article-title: Ectodysplasin signaling in development
  publication-title: Cytokine Growth Factor Rev.
– volume: 74
  start-page: 252
  year: 2008
  end-page: 259
  ident: bib0450
  article-title: X-linked hypohidrotic ectodermal dysplasia. Genetic and dental findings in 67 Danish patients from 19 families
  publication-title: Clin. Genet.
– volume: 449
  start-page: 913
  year: 2007
  end-page: 918
  ident: bib0345
  article-title: Genome-wide detection and characterization of positive selection in human populations
  publication-title: Nature
– volume: 307
  start-page: 1928
  year: 2005
  end-page: 1933
  ident: bib0020
  article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles
  publication-title: Science
– volume: 268
  start-page: 185
  year: 2004
  end-page: 194
  ident: bib0275
  article-title: The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development
  publication-title: Dev. Biol.
– volume: 131
  start-page: 4907
  year: 2004
  end-page: 4919
  ident: bib0250
  article-title: Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages
  publication-title: Development
– volume: 11
  start-page: 1699
  year: 2001
  end-page: 1705
  ident: bib0110
  article-title: Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle
  publication-title: Genome Res.
– volume: 58
  start-page: 126
  year: 1996
  end-page: 132
  ident: bib0035
  article-title: Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed
  publication-title: Am. J. Hum. Genet.
– volume: 51
  start-page: 498
  year: 2006
  end-page: 502
  ident: bib0100
  article-title: A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia
  publication-title: J. Hum. Genet.
– volume: 5
  start-page: e171
  year: 2007
  ident: bib0365
  article-title: A new approach for using genome scans to detect recent positive selection in the human genome
  publication-title: PLoS Biol.
– volume: 92
  start-page: 507
  year: 2013
  end-page: 511
  ident: bib0465
  article-title: Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA)
  publication-title: J. Dent. Res.
– volume: 20
  start-page: 2483
  year: 2011
  end-page: 2493
  ident: bib0315
  article-title: Strong and consistent natural selection associated with armour reduction in sticklebacks
  publication-title: Mol. Ecol.
– volume: 6
  start-page: 1589
  year: 1997
  end-page: 1594
  ident: bib0045
  article-title: Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain
  publication-title: Hum. Mol. Genet.
– volume: 26
  start-page: 400
  year: 2010
  end-page: 405
  ident: bib0425
  article-title: Causes and evolutionary significance of genetic convergence
  publication-title: Trends Genet.
– volume: 166
  start-page: 678
  year: 2012
  end-page: 681
  ident: bib0400
  article-title: The EDAR370A allele attenuates the severity of hypohidrotic ectodermal dysplasia caused by EDA gene mutation
  publication-title: Br. J. Dermatol.
– volume: 132
  start-page: 863
  year: 2005
  end-page: 872
  ident: bib0120
  article-title: The ectodysplasin pathway in feather tract development
  publication-title: Development
– volume: 73
  start-page: 139
  year: 2010
  end-page: 148
  ident: bib0135
  article-title: Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth
  publication-title: Arch. Histol. Cytol.
– volume: 286
  start-page: 30769
  year: 2011
  end-page: 30779
  ident: bib0420
  article-title: Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 366
  year: 1999
  end-page: 369
  ident: bib0060
  article-title: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia
  publication-title: Nat. Genet.
– volume: 3
  start-page: e2209
  year: 2008
  ident: bib0375
  article-title: Positive selection in East Asians for an EDAR allele that enhances NF-kappaB activation
  publication-title: PLoS ONE
– volume: 10
  start-page: 953
  year: 2001
  end-page: 962
  ident: bib0155
  article-title: Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein
  publication-title: Hum. Mol. Genet.
– volume: 9
  start-page: 32
  year: 2009
  ident: bib0260
  article-title: Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFkappaB paradigm
  publication-title: BMC Dev. Biol.
– volume: 32
  start-page: 70
  year: 2011
  end-page: 72
  ident: bib0015
  article-title: Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases
  publication-title: Hum. Mutat.
– volume: 152
  start-page: 691
  year: 2013
  end-page: 702
  ident: bib0025
  article-title: Modeling recent human evolution in mice by expression of a selected EDAR variant
  publication-title: Cell
– volume: 146
  start-page: 2629
  year: 2005
  end-page: 2638
  ident: bib0235
  article-title: Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia
  publication-title: Endocrinology
– volume: 290
  start-page: 523
  year: 2000
  end-page: 527
  ident: bib0165
  article-title: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors
  publication-title: Science
– volume: 9
  start-page: 614
  year: 2003
  end-page: 618
  ident: bib0245
  article-title: Permanent correction of an inherited ectodermal dysplasia with recombinant EDA
  publication-title: Nat. Med.
– volume: 94
  start-page: 13069
  year: 1997
  end-page: 13074
  ident: bib0050
  article-title: The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 19
  start-page: 219
  year: 2008
  end-page: 230
  ident: bib0145
  article-title: TNF superfamily in skin appendage development
  publication-title: Cytokine Growth Factor Rev.
– volume: 4
  start-page: e4985
  year: 2009
  ident: bib0460
  article-title: Distinct impacts of Eda and Edar loss of function on the mouse dentition
  publication-title: PLoS ONE
– volume: 16
  start-page: 524
  year: 2005
  end-page: 531
  ident: bib0105
  article-title: Mutation identification in a canine model of X-linked ectodermal dysplasia
  publication-title: Mamm. Genome
– volume: 305
  start-page: 232
  year: 2007
  end-page: 245
  ident: bib0125
  article-title: The Edar subfamily in feather placode formation
  publication-title: Dev. Biol.
– volume: 231
  start-page: 122
  year: 2004
  end-page: 127
  ident: bib0215
  article-title: TRAF6-dependent NF-kB transcriptional activity during mouse development
  publication-title: Dev. Dyn.
– volume: 18
  start-page: 769
  year: 2008
  end-page: 774
  ident: bib0330
  article-title: Reverse evolution of armor plates in the threespine stickleback
  publication-title: Curr. Biol.
– volume: 15
  start-page: 1553
  year: 2005
  end-page: 1565
  ident: bib0350
  article-title: Genomic regions exhibiting positive selection identified from dense genotype data
  publication-title: Genome Res.
– volume: 691
  start-page: 23
  year: 2011
  end-page: 33
  ident: bib0265
  article-title: The Edar subfamily in hair and exocrine gland development
  publication-title: Adv. Exp. Med. Biol.
– volume: 109
  start-page: 5744
  year: 2012
  end-page: 5749
  ident: bib0270
  article-title: Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 141
  year: 2007
  end-page: 154
  ident: bib0335
  article-title: Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution
  publication-title: Evol. Dev.
– volume: 4
  start-page: e1000206
  year: 2008
  ident: bib0140
  article-title: Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates
  publication-title: PLoS Genet.
– volume: 81
  start-page: 1050
  year: 2007
  end-page: 1056
  ident: bib0415
  article-title: Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia
  publication-title: Am. J. Hum. Genet.
– volume: 483
  start-page: 324
  year: 2012
  end-page: 327
  ident: bib0285
  article-title: On the difficulty of increasing dental complexity
  publication-title: Nature
– volume: 51
  start-page: 536
  year: 2008
  end-page: 546
  ident: bib0095
  article-title: Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis
  publication-title: Eur. J. Med. Genet.
– volume: 66
  start-page: 3866
  year: 2012
  end-page: 3875
  ident: bib0325
  article-title: Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks
  publication-title: Evolution
– volume: 102
  start-page: 7882
  year: 2005
  end-page: 7887
  ident: bib0355
  article-title: Simultaneous inference of selection and population growth from patterns of variation in the human genome
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 11
  start-page: 1202
  year: 2001
  end-page: 1206
  ident: bib0130
  article-title: The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor
  publication-title: Curr. Biol.
– volume: 229
  start-page: 131
  year: 2004
  end-page: 135
  ident: bib0195
  article-title: Traf6 is essential for murine tooth cusp morphogenesis
  publication-title: Dev. Dyn.
– volume: 77
  start-page: 311
  year: 2010
  end-page: 328
  ident: bib0320
  article-title: Adaptive evolution of lateral plates in three-spined stickleback
  publication-title: J. Fish Biol.
– volume: 13
  start-page: 409
  year: 1996
  end-page: 416
  ident: bib0030
  article-title: X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein
  publication-title: Nat. Genet.
– volume: 4
  start-page: 68
  year: 2003
  end-page: 74
  ident: bib0445
  article-title: Richard Goldschmidt: hopeful monsters and other ‘heresies’
  publication-title: Nat. Rev. Genet.
– volume: 22
  start-page: 370
  year: 1999
  end-page: 374
  ident: bib0055
  article-title: Involvement of a novel Tnf receptor homologue in hair follicle induction
  publication-title: Nat. Genet.
– volume: 24
  start-page: 1608
  year: 2004
  end-page: 1613
  ident: bib0175
  article-title: Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency
  publication-title: Mol. Cell. Biol.
– volume: 25
  start-page: 912
  year: 2008
  end-page: 928
  ident: bib0435
  article-title: Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development
  publication-title: Mol. Biol. Evol.
– volume: 322
  start-page: 255
  year: 2008
  end-page: 257
  ident: bib0310
  article-title: Natural selection on a major armor gene in threespine stickleback
  publication-title: Science
– volume: 62
  start-page: 2155
  year: 2008
  end-page: 2177
  ident: bib0410
  article-title: The loci of evolution: how predictable is genetic evolution?
  publication-title: Evolution
– volume: 67
  start-page: 1555
  year: 2000
  end-page: 1562
  ident: bib0205
  article-title: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO)
  publication-title: Am. J. Hum. Genet.
– volume: 123
  start-page: 649
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0075
  article-title: A rare case of hypohidrotic ectodermal dysplasia caused by compound heterozygous mutations in the EDAR gene
  publication-title: J. Invest. Dermatol.
  doi: 10.1111/j.0022-202X.2004.23405.x
– volume: 81
  start-page: 1050
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0415
  article-title: Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/521988
– volume: 94
  start-page: 13069
  year: 1997
  ident: 10.1016/j.tig.2013.08.006_bib0050
  article-title: The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.24.13069
– volume: 149A
  start-page: 2031
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0080
  article-title: Molecular aspects of hypohidrotic ectodermal dysplasia
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.32855
– volume: 4
  start-page: e4985
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0460
  article-title: Distinct impacts of Eda and Edar loss of function on the mouse dentition
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004985
– volume: 139
  start-page: 3189
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0305
  article-title: Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling
  publication-title: Development
  doi: 10.1242/dev.079558
– volume: 127
  start-page: 4691
  year: 2000
  ident: 10.1016/j.tig.2013.08.006_bib0160
  article-title: Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis
  publication-title: Development
  doi: 10.1242/dev.127.21.4691
– volume: 268
  start-page: 185
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0275
  article-title: The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2003.12.019
– volume: 19
  start-page: 219
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0145
  article-title: TNF superfamily in skin appendage development
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2008.04.008
– volume: 414
  start-page: 913
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0070
  article-title: Gene defect in ectodermal dysplasia implicates a death domain adapter in development
  publication-title: Nature
  doi: 10.1038/414913a
– volume: 9
  start-page: 141
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0335
  article-title: Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution
  publication-title: Evol. Dev.
  doi: 10.1111/j.1525-142X.2007.00145.x
– volume: 26
  start-page: 400
  year: 2010
  ident: 10.1016/j.tig.2013.08.006_bib0425
  article-title: Causes and evolutionary significance of genetic convergence
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2010.06.005
– volume: 132
  start-page: 1094
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0230
  article-title: Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2011.453
– volume: 124
  start-page: 179
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0380
  article-title: A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-008-0537-1
– volume: 22
  start-page: 366
  year: 1999
  ident: 10.1016/j.tig.2013.08.006_bib0060
  article-title: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia
  publication-title: Nat. Genet.
  doi: 10.1038/11937
– volume: 133
  start-page: 1045
  year: 2006
  ident: 10.1016/j.tig.2013.08.006_bib0190
  article-title: NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth
  publication-title: Development
  doi: 10.1242/dev.02278
– volume: 58
  start-page: 126
  year: 1996
  ident: 10.1016/j.tig.2013.08.006_bib0035
  article-title: Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed
  publication-title: Am. J. Hum. Genet.
– volume: 18
  start-page: 769
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0330
  article-title: Reverse evolution of armor plates in the threespine stickleback
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.04.027
– volume: 4
  start-page: 68
  year: 2003
  ident: 10.1016/j.tig.2013.08.006_bib0445
  article-title: Richard Goldschmidt: hopeful monsters and other ‘heresies’
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg979
– volume: 162
  start-page: 1044
  year: 2010
  ident: 10.1016/j.tig.2013.08.006_bib0085
  article-title: Mutations in EDARADD account for a small proportion of hypohidrotic ectodermal dysplasia cases
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2010.09670.x
– volume: 109
  start-page: 5744
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0270
  article-title: Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1110627109
– volume: 62
  start-page: 2155
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0410
  article-title: The loci of evolution: how predictable is genetic evolution?
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2008.00450.x
– volume: 24
  start-page: 1608
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0175
  article-title: Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.4.1608-1613.2004
– volume: 35
  start-page: 1324
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0440
  article-title: Origin and evolution of TNF and TNF receptor superfamilies
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2011.03.031
– volume: 99
  start-page: 8766
  year: 2002
  ident: 10.1016/j.tig.2013.08.006_bib0200
  article-title: TRAF6-deficient mice display hypohidrotic ectodermal dysplasia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.132636999
– volume: 14
  start-page: 211
  year: 2003
  ident: 10.1016/j.tig.2013.08.006_bib0065
  article-title: Ectodysplasin signaling in development
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/S1359-6101(03)00020-0
– volume: 22
  start-page: 181
  year: 1969
  ident: 10.1016/j.tig.2013.08.006_bib0040
  article-title: Aspects of the Tabby–crinkled–downless syndrome. I. The development of Tabby teeth
  publication-title: J. Embryol. Exp. Morphol.
– volume: 231
  start-page: 122
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0215
  article-title: TRAF6-dependent NF-kB transcriptional activity during mouse development
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20110
– volume: 307
  start-page: 1928
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0020
  article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles
  publication-title: Science
  doi: 10.1126/science.1107239
– volume: 269
  start-page: 180
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0180
  article-title: Signaling and subcellular localization of the TNF receptor Edar
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.2001.5331
– volume: 57
  start-page: 508
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0390
  article-title: Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits
  publication-title: J. Hum. Genet.
  doi: 10.1038/jhg.2012.60
– volume: 32
  start-page: 70
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0015
  article-title: Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21384
– volume: 72
  start-page: 99
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0370
  article-title: Identification and analysis of high Fst regions from genome-wide SNP data from three human populations
  publication-title: Ann. Hum. Genet.
  doi: 10.1111/j.1469-1809.2007.00390.x
– volume: 143
  start-page: 390
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0090
  article-title: A novel Gln358Glu mutation in ectodysplasin A associated with X-linked dominant incisor hypodontia
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.31567
– volume: 87
  start-page: 1089
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0455
  article-title: Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910808701205
– volume: 9
  start-page: 614
  year: 2003
  ident: 10.1016/j.tig.2013.08.006_bib0245
  article-title: Permanent correction of an inherited ectodermal dysplasia with recombinant EDA
  publication-title: Nat. Med.
  doi: 10.1038/nm861
– volume: 4
  start-page: 2504
  year: 2013
  ident: 10.1016/j.tig.2013.08.006_bib0470
  article-title: Roles of dental development and adaptation in rodent evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3504
– volume: 43
  start-page: 97
  year: 2002
  ident: 10.1016/j.tig.2013.08.006_bib0010
  article-title: Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors
  publication-title: J. Appl. Genet.
– volume: 61
  start-page: 995
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0405
  article-title: The locus of evolution: evo devo and the genetics of adaptation
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2007.00105.x
– volume: 67
  start-page: 1235
  year: 2013
  ident: 10.1016/j.tig.2013.08.006_bib0430
  article-title: The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation
  publication-title: Evolution
– volume: 129
  start-page: 2541
  year: 2002
  ident: 10.1016/j.tig.2013.08.006_bib0295
  article-title: Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar
  publication-title: Development
  doi: 10.1242/dev.129.10.2541
– volume: 77
  start-page: 311
  year: 2010
  ident: 10.1016/j.tig.2013.08.006_bib0320
  article-title: Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2010.02640.x
– volume: 25
  start-page: 912
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0435
  article-title: Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msn038
– volume: 432
  start-page: 211
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0280
  article-title: Nonindependence of mammalian dental characters
  publication-title: Nature
  doi: 10.1038/nature02927
– volume: 66
  start-page: 3866
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0325
  article-title: Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2012.01724.x
– volume: 51
  start-page: 498
  year: 2006
  ident: 10.1016/j.tig.2013.08.006_bib0100
  article-title: A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia
  publication-title: J. Hum. Genet.
  doi: 10.1007/s10038-006-0389-2
– volume: 12
  start-page: 91
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0115
  article-title: A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-91
– volume: 102
  start-page: 7882
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0355
  article-title: Simultaneous inference of selection and population growth from patterns of variation in the human genome
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0502300102
– volume: 103
  start-page: 9075
  year: 2006
  ident: 10.1016/j.tig.2013.08.006_bib0290
  article-title: Generation of the primary hair follicle pattern
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0600825103
– volume: 51
  start-page: 536
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0095
  article-title: Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis
  publication-title: Eur. J. Med. Genet.
  doi: 10.1016/j.ejmg.2008.06.002
– volume: 22
  start-page: 370
  year: 1999
  ident: 10.1016/j.tig.2013.08.006_bib0055
  article-title: Involvement of a novel Tnf receptor homologue in hair follicle induction
  publication-title: Nat. Genet.
  doi: 10.1038/11943
– volume: 132
  start-page: 863
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0120
  article-title: The ectodysplasin pathway in feather tract development
  publication-title: Development
  doi: 10.1242/dev.01651
– volume: 3
  start-page: e2209
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0375
  article-title: Positive selection in East Asians for an EDAR allele that enhances NF-kappaB activation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002209
– volume: 286
  start-page: 30769
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0420
  article-title: Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.267997
– volume: 290
  start-page: 523
  year: 2000
  ident: 10.1016/j.tig.2013.08.006_bib0165
  article-title: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors
  publication-title: Science
  doi: 10.1126/science.290.5491.523
– volume: 20
  start-page: 2483
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0315
  article-title: Strong and consistent natural selection associated with armour reduction in sticklebacks
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2011.05071.x
– volume: 15
  start-page: 1553
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0350
  article-title: Genomic regions exhibiting positive selection identified from dense genotype data
  publication-title: Genome Res.
  doi: 10.1101/gr.4326505
– volume: 74
  start-page: 252
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0450
  article-title: X-linked hypohidrotic ectodermal dysplasia. Genetic and dental findings in 67 Danish patients from 19 families
  publication-title: Clin. Genet.
  doi: 10.1111/j.1399-0004.2008.01037.x
– volume: 5
  start-page: 788
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0340
  article-title: Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2009.0416
– volume: 271
  start-page: 322
  year: 2003
  ident: 10.1016/j.tig.2013.08.006_bib0255
  article-title: Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development
  publication-title: Anat. Rec. A: Discov. Mol. Cell. Evol. Biol.
  doi: 10.1002/ar.a.10045
– volume: 146
  start-page: 2629
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0235
  article-title: Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1246
– volume: 449
  start-page: 913
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0345
  article-title: Genome-wide detection and characterization of positive selection in human populations
  publication-title: Nature
  doi: 10.1038/nature06250
– volume: 16
  start-page: 524
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0105
  article-title: Mutation identification in a canine model of X-linked ectodermal dysplasia
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-004-2463-4
– volume: 92
  start-page: 507
  year: 2013
  ident: 10.1016/j.tig.2013.08.006_bib0465
  article-title: Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA)
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034513487210
– volume: 49
  start-page: 499
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0170
  article-title: A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia
  publication-title: J. Med. Genet.
  doi: 10.1136/jmedgenet-2012-100877
– volume: 229
  start-page: 131
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0195
  article-title: Traf6 is essential for murine tooth cusp morphogenesis
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.10400
– volume: 67
  start-page: 1555
  year: 2000
  ident: 10.1016/j.tig.2013.08.006_bib0205
  article-title: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO)
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/316914
– volume: 9
  start-page: 32
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0260
  article-title: Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFkappaB paradigm
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-9-32
– volume: 29
  start-page: 1405
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0395
  article-title: Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20795
– volume: 305
  start-page: 232
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0125
  article-title: The Edar subfamily in feather placode formation
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.02.011
– volume: 17
  start-page: 3380
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0210
  article-title: Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn232
– volume: 483
  start-page: 324
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0285
  article-title: On the difficulty of increasing dental complexity
  publication-title: Nature
  doi: 10.1038/nature10876
– volume: 11
  start-page: 1202
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0130
  article-title: The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00324-4
– volume: 246
  start-page: 14
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0220
  article-title: NF-κB: where did it come from and why?
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2012.01096.x
– volume: 13
  start-page: 409
  year: 1996
  ident: 10.1016/j.tig.2013.08.006_bib0030
  article-title: X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein
  publication-title: Nat. Genet.
  doi: 10.1038/ng0895-409
– volume: 73
  start-page: 139
  year: 2010
  ident: 10.1016/j.tig.2013.08.006_bib0135
  article-title: Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth
  publication-title: Arch. Histol. Cytol.
  doi: 10.1679/aohc.73.139
– volume: 6
  start-page: 1589
  year: 1997
  ident: 10.1016/j.tig.2013.08.006_bib0045
  article-title: Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/6.9.1589
– volume: 14
  start-page: 3751
  year: 2005
  ident: 10.1016/j.tig.2013.08.006_bib0185
  article-title: TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi405
– volume: 85
  start-page: 528
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0385
  article-title: A common variation in EDAR is a genetic determinant of shovel-shaped incisors
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.09.006
– volume: 166
  start-page: 678
  year: 2012
  ident: 10.1016/j.tig.2013.08.006_bib0400
  article-title: The EDAR370A allele attenuates the severity of hypohidrotic ectodermal dysplasia caused by EDA gene mutation
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2011.10620.x
– volume: 691
  start-page: 23
  year: 2011
  ident: 10.1016/j.tig.2013.08.006_bib0265
  article-title: The Edar subfamily in hair and exocrine gland development
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-6612-4_3
– volume: 322
  start-page: 255
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0310
  article-title: Natural selection on a major armor gene in threespine stickleback
  publication-title: Science
  doi: 10.1126/science.1159978
– volume: 14
  start-page: 2404
  year: 2010
  ident: 10.1016/j.tig.2013.08.006_bib0225
  article-title: The zinc finger domain of IKKγ (NEMO) protein in health and disease
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2010.01054.x
– volume: 11
  start-page: 1699
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0110
  article-title: Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle
  publication-title: Genome Res.
  doi: 10.1101/gr.182501
– volume: 4
  start-page: e1000206
  year: 2008
  ident: 10.1016/j.tig.2013.08.006_bib0140
  article-title: Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000206
– year: 1875
  ident: 10.1016/j.tig.2013.08.006_bib0005
– volume: 4
  start-page: e72
  year: 2006
  ident: 10.1016/j.tig.2013.08.006_bib0360
  article-title: A map of recent positive selection in the human genome
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040072
– volume: 5
  start-page: e171
  year: 2007
  ident: 10.1016/j.tig.2013.08.006_bib0365
  article-title: A new approach for using genome scans to detect recent positive selection in the human genome
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050171
– volume: 17
  start-page: 49
  year: 2009
  ident: 10.1016/j.tig.2013.08.006_bib0300
  article-title: Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.05.011
– volume: 276
  start-page: 2668
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0150
  article-title: The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M008356200
– volume: 12
  start-page: 2931
  year: 2003
  ident: 10.1016/j.tig.2013.08.006_bib0240
  article-title: Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg325
– volume: 152
  start-page: 691
  year: 2013
  ident: 10.1016/j.tig.2013.08.006_bib0025
  article-title: Modeling recent human evolution in mice by expression of a selected EDAR variant
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.016
– volume: 10
  start-page: 953
  year: 2001
  ident: 10.1016/j.tig.2013.08.006_bib0155
  article-title: Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.9.953
– volume: 131
  start-page: 4907
  year: 2004
  ident: 10.1016/j.tig.2013.08.006_bib0250
  article-title: Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages
  publication-title: Development
  doi: 10.1242/dev.01377
SSID ssj0005735
Score 2.4305854
SecondaryResourceType review_article
Snippet •The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and...
Highlights • The Ectodysplasin pathway controls ectodermal appendages in vertebrates. • The core of the pathway contains three main gene products: EDA, EDAR,...
The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms adaptation
Adaptation, Physiological - genetics
anhidrotic/hypohidrotic ectodermal dysplasia
Animals
ectodermal appendages
Ectodermal Dysplasia 1, Anhidrotic - genetics
ectodysplasin
Ectodysplasins - genetics
Ectodysplasins - metabolism
Edar Receptor - genetics
Edar Receptor - metabolism
Edar-Associated Death Domain Protein - genetics
Edar-Associated Death Domain Protein - metabolism
Gene Expression Regulation
Humans
Medical Education
NF-kappa B - genetics
NF-kappa B - metabolism
Receptors, Tumor Necrosis Factor - genetics
Receptors, Tumor Necrosis Factor - metabolism
Signal Transduction
signaling pathways
Vertebrates - genetics
Title The ectodysplasin pathway: from diseases to adaptations
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168952513001480
https://www.clinicalkey.es/playcontent/1-s2.0-S0168952513001480
https://www.ncbi.nlm.nih.gov/pubmed/24070496
https://www.proquest.com/docview/1490707504
https://www.proquest.com/docview/1868344338
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx0ZfxtZ9ZV94sKeBi21Zsry3MVrKaLtBk5I3IcvSmjDskLiU7mF_--5syfW6NHR7MUHo4kR3Op3u7ndHyPs4iTXjWR5qlSVharIozAvGwxJrP_FSWZshOPnomB9M0i9TNr1qgtiiS5piV_9ciyv5H67CGPAVUbL_wNn-S2EAPgN_4QkchueteYxe9_JytUA4ZFsm9exCtVWcWuCIi7-0ZRxUqRbNwEE3b65lxcJ7ENLYW9knmA627GEwfvh0tpzVjQdVDxJnvimEViqt2wyBk3pxNuvFBqaWXdzjdFZpT-TcDXE6cDc4DyQHDck6tLJXoS60MhQVpw_Twcnaqfu_dHbnPpjDEf0dU-1oW1I1WlMf-_ir3J8cHsrx3nR8l9xL4GKAmm331yCpJ-taqvof6ePYbUbftRfcZIncdNNoLY7xI_LQXRWCTx3fH5M7ptoh97vmoZc75MGRS4t4QjIQhOAPQQicIHwMUAwCLwZBUwcDMXhKJvt7488HoeuIEWqwVBvYS0IZKlJdZBktC66YFSU3RlNhRayySBS0BBOdaUYjwxOrmClFStNcFCVNNH1Gtqq6Mi9IwJiKtDVY2Yql1jKldGHz3GprE614MiKRXx2pXbl47FryQ_q8wLmEBZW4oBI7mUZ8RD70JIuuVsqmyYlfculBwHBsSZCKTUTZOiKzcptyJWO5SmSEOYtcoABgtBZu_NGIvPNslaBAMSqmKlOfA0WaY8krFqUb5giO_WgoFSPyvJOJ_h-iSwSu2fzlLahfke2rPfWabDXLc_MGjNqmeNvK8W9Fz6H9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ectodysplasin+pathway%3A+from+diseases+to+adaptations&rft.jtitle=Trends+in+genetics&rft.au=Sadier%2C+Alexa&rft.au=Viriot%2C+Laurent&rft.au=Pantalacci%2C+Sophie&rft.au=Laudet%2C+Vincent&rft.date=2014-01-01&rft.issn=0168-9525&rft.volume=30&rft.issue=1&rft.spage=24&rft.epage=31&rft_id=info:doi/10.1016%2Fj.tig.2013.08.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01689525%2FS0168952513X00137%2Fcov150h.gif