The ectodysplasin pathway: from diseases to adaptations
•The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adapta...
Saved in:
Published in | Trends in genetics Vol. 30; no. 1; pp. 24 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adaptations in fish and humans.
The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a ‘hopeful pathway’ that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. |
---|---|
AbstractList | The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)- alpha family, EDAR, a receptor related to the TNF alpha receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF- Kappa B pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution.The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. Highlights • The Ectodysplasin pathway controls ectodermal appendages in vertebrates. • The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD. • Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans. • The EDA pathway has been associated with specific adaptations in fish and humans. •The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and EDARADD.•Mutation of the pathway causes anhidrotic/hypohidrotic ectodermal dysplasia in humans.•The EDA pathway has been associated with specific adaptations in fish and humans. The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a ‘hopeful pathway’ that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. |
Author | Pantalacci, Sophie Laudet, Vincent Viriot, Laurent Sadier, Alexa |
Author_xml | – sequence: 1 givenname: Alexa surname: Sadier fullname: Sadier, Alexa – sequence: 2 givenname: Laurent surname: Viriot fullname: Viriot, Laurent – sequence: 3 givenname: Sophie surname: Pantalacci fullname: Pantalacci, Sophie – sequence: 4 givenname: Vincent surname: Laudet fullname: Laudet, Vincent email: Vincent.Laudet@ens-lyon.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24070496$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhn1oRT_gB3BBOfay6Ti2E4cDUlUBrVSJA-U8cuwJ9ZKNg-0F7b_Hq20vSG1PlkbP-1rzzBk7msNMjL3nUHPg7eW6zv5n3QAXNegaoD1ip2WuV71q1Ak7S2kNAKoT6g07aSR0IPv2lHX3D1SRzcHt0jKZ5OdqMfnhr9l9rMYYNpXziUyiVOVQGWeWbLIPc3rLjkczJXr3-J6zH18-31_frO6-fb29vrpbWQUqryRpQ0JLO3SdcENr1KhdS2SFHjU3HehBONUqZZUAapvRKHJaCtnrwYnGinN2cehdYvi9pZRx45OlaTIzhW1CrlstpBRCv47KvmzdKZAF_fCIbocNOVyi35i4wycvBegOgI0hpUgjWn_YPEfjJ-SAe-u4xmId99YRNBbrJcn_Sz6Vv5T5dMhQMfnHU0Q7-dlbM_2iHaV12Ma5SEaOqUHA7_u77s_KBQCXGkpB_3wBuuBf-PwfviSu8Q |
CitedBy_id | crossref_primary_10_1016_j_smim_2014_05_002 crossref_primary_10_1093_icb_icw059 crossref_primary_10_1016_j_smim_2014_05_003 crossref_primary_10_3390_ani11030657 crossref_primary_10_1038_s41598_021_84653_4 crossref_primary_10_1098_rsta_2020_0270 crossref_primary_10_1038_s41368_021_00135_3 crossref_primary_10_1038_s41437_020_0349_1 crossref_primary_10_1038_s41586_023_06047_y crossref_primary_10_1111_jdv_14107 crossref_primary_10_1186_2041_9139_5_19 crossref_primary_10_1002_jez_b_23030 crossref_primary_10_1038_s41467_023_36367_6 crossref_primary_10_1093_iob_obac018 crossref_primary_10_1371_journal_pone_0204079 crossref_primary_10_1002_dvdy_729 crossref_primary_10_1369_00221554231201691 crossref_primary_10_1172_JCI89056 crossref_primary_10_1038_ncomms11616 crossref_primary_10_1371_journal_pone_0258212 crossref_primary_10_1093_molbev_msw093 crossref_primary_10_1242_dev_201866 crossref_primary_10_1073_pnas_1511680112 crossref_primary_10_1038_s41588_019_0484_x crossref_primary_10_1111_evo_12866 crossref_primary_10_1038_s41418_018_0128_1 crossref_primary_10_1007_s00439_024_02705_x crossref_primary_10_3390_ijms232415700 crossref_primary_10_1126_sciadv_abj7912 crossref_primary_10_1016_j_ydbio_2024_01_002 crossref_primary_10_18699_VJGB_23_78 crossref_primary_10_1016_j_archoralbio_2019_05_007 crossref_primary_10_1016_j_ceca_2016_12_004 crossref_primary_10_1080_17843286_2022_2140246 crossref_primary_10_1111_1346_8138_16044 crossref_primary_10_1111_cge_13714 crossref_primary_10_1186_s12862_015_0395_0 crossref_primary_10_1093_icb_icaa038 crossref_primary_10_3390_genes16010012 crossref_primary_10_1111_mec_14772 crossref_primary_10_1371_journal_pone_0138221 crossref_primary_10_1002_mgg3_1824 crossref_primary_10_1042_BST20230197 crossref_primary_10_1038_s41598_017_11523_3 crossref_primary_10_1111_febs_15636 crossref_primary_10_1098_rspb_2015_0746 crossref_primary_10_1177_0022034514522059 crossref_primary_10_1016_j_molmed_2024_02_002 crossref_primary_10_3389_fphys_2021_788411 crossref_primary_10_1007_s00056_015_0005_1 crossref_primary_10_1016_j_ydbio_2025_02_010 crossref_primary_10_3390_ijms23168911 crossref_primary_10_1007_s00114_020_01696_9 crossref_primary_10_1073_pnas_2216959120 crossref_primary_10_1186_s13148_020_00836_2 crossref_primary_10_1111_mec_16989 crossref_primary_10_1126_sciadv_adf8834 crossref_primary_10_1093_hmg_ddw202 crossref_primary_10_1186_s12864_016_2975_9 crossref_primary_10_1016_j_isci_2019_06_003 crossref_primary_10_1053_j_tcam_2019_03_002 crossref_primary_10_1371_journal_pgen_1006369 crossref_primary_10_7554_eLife_59653 crossref_primary_10_1007_s11427_020_1712_4 crossref_primary_10_3389_fgene_2023_1168538 crossref_primary_10_1111_1346_8138_14983 crossref_primary_10_1111_1346_8138_16204 crossref_primary_10_1002_humu_24104 crossref_primary_10_2139_ssrn_3362261 crossref_primary_10_1016_j_devcel_2018_06_019 crossref_primary_10_3389_fmolb_2021_689037 crossref_primary_10_1086_679280 crossref_primary_10_1111_ele_13225 crossref_primary_10_1186_s13023_019_1251_x crossref_primary_10_1016_j_archoralbio_2016_03_015 crossref_primary_10_1242_jcs_255422 crossref_primary_10_1186_s13223_021_00510_z crossref_primary_10_1111_cge_13218 crossref_primary_10_1371_journal_pbio_3000132 crossref_primary_10_1002_jmor_20557 crossref_primary_10_3390_jdb11020025 crossref_primary_10_1016_j_archoralbio_2022_105600 crossref_primary_10_1093_icb_icaa053 crossref_primary_10_1371_journal_pbio_3000064 crossref_primary_10_1073_pnas_1711788115 crossref_primary_10_1111_1346_8138_16610 crossref_primary_10_1111_jipb_12697 crossref_primary_10_1111_ijd_14048 |
Cites_doi | 10.1111/j.0022-202X.2004.23405.x 10.1086/521988 10.1073/pnas.94.24.13069 10.1002/ajmg.a.32855 10.1371/journal.pone.0004985 10.1242/dev.079558 10.1242/dev.127.21.4691 10.1016/j.ydbio.2003.12.019 10.1016/j.cytogfr.2008.04.008 10.1038/414913a 10.1111/j.1525-142X.2007.00145.x 10.1016/j.tig.2010.06.005 10.1038/jid.2011.453 10.1007/s00439-008-0537-1 10.1038/11937 10.1242/dev.02278 10.1016/j.cub.2008.04.027 10.1038/nrg979 10.1111/j.1365-2133.2010.09670.x 10.1073/pnas.1110627109 10.1111/j.1558-5646.2008.00450.x 10.1128/MCB.24.4.1608-1613.2004 10.1016/j.dci.2011.03.031 10.1073/pnas.132636999 10.1016/S1359-6101(03)00020-0 10.1002/dvdy.20110 10.1126/science.1107239 10.1006/excr.2001.5331 10.1038/jhg.2012.60 10.1002/humu.21384 10.1111/j.1469-1809.2007.00390.x 10.1002/ajmg.a.31567 10.1177/154405910808701205 10.1038/nm861 10.1038/ncomms3504 10.1111/j.1558-5646.2007.00105.x 10.1242/dev.129.10.2541 10.1111/j.1095-8649.2010.02640.x 10.1093/molbev/msn038 10.1038/nature02927 10.1111/j.1558-5646.2012.01724.x 10.1007/s10038-006-0389-2 10.1186/1471-2156-12-91 10.1073/pnas.0502300102 10.1073/pnas.0600825103 10.1016/j.ejmg.2008.06.002 10.1038/11943 10.1242/dev.01651 10.1371/journal.pone.0002209 10.1074/jbc.M111.267997 10.1126/science.290.5491.523 10.1111/j.1365-294X.2011.05071.x 10.1101/gr.4326505 10.1111/j.1399-0004.2008.01037.x 10.1098/rsbl.2009.0416 10.1002/ar.a.10045 10.1210/en.2004-1246 10.1038/nature06250 10.1007/s00335-004-2463-4 10.1177/0022034513487210 10.1136/jmedgenet-2012-100877 10.1002/dvdy.10400 10.1086/316914 10.1186/1471-213X-9-32 10.1002/humu.20795 10.1016/j.ydbio.2007.02.011 10.1093/hmg/ddn232 10.1038/nature10876 10.1016/S0960-9822(01)00324-4 10.1111/j.1600-065X.2012.01096.x 10.1038/ng0895-409 10.1679/aohc.73.139 10.1093/hmg/6.9.1589 10.1093/hmg/ddi405 10.1016/j.ajhg.2009.09.006 10.1111/j.1365-2133.2011.10620.x 10.1007/978-1-4419-6612-4_3 10.1126/science.1159978 10.1111/j.1582-4934.2010.01054.x 10.1101/gr.182501 10.1371/journal.pgen.1000206 10.1371/journal.pbio.0040072 10.1371/journal.pbio.0050171 10.1016/j.devcel.2009.05.011 10.1074/jbc.M008356200 10.1093/hmg/ddg325 10.1016/j.cell.2013.01.016 10.1093/hmg/10.9.953 10.1242/dev.01377 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 |
DOI | 10.1016/j.tig.2013.08.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 31 |
ExternalDocumentID | 24070496 10_1016_j_tig_2013_08_006 1_s2_0_S0168952513001480 S0168952513001480 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT AACTN AFKWA AJOXV AMFUW PKN RIG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 |
ID | FETCH-LOGICAL-c505t-4e8ae384cb773db6a5f8d6eec38f81a708b3d5655c530e62fa5ed843498bd32c3 |
ISSN | 0168-9525 |
IngestDate | Fri Jul 11 16:06:36 EDT 2025 Thu Aug 07 14:54:38 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Tue Jul 01 01:43:34 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Sun Feb 23 10:18:57 EST 2025 Tue Aug 26 19:58:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ectodermal appendages adaptation ectodysplasin anhidrotic/hypohidrotic ectodermal dysplasia signaling pathways |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c505t-4e8ae384cb773db6a5f8d6eec38f81a708b3d5655c530e62fa5ed843498bd32c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 24070496 |
PQID | 1490707504 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1868344338 proquest_miscellaneous_1490707504 pubmed_primary_24070496 crossref_citationtrail_10_1016_j_tig_2013_08_006 crossref_primary_10_1016_j_tig_2013_08_006 elsevier_clinicalkeyesjournals_1_s2_0_S0168952513001480 elsevier_clinicalkey_doi_10_1016_j_tig_2013_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yan (bib0165) 2000; 290 Le Rouzic (bib0315) 2011; 20 Drew (bib0125) 2007; 305 Hoekstra, Coyne (bib0405) 2007; 61 Sofaer (bib0040) 1969; 22 Mou (bib0290) 2006; 103 Wisniewski, Trzeciak (bib0170) 2012; 49 Naito (bib0200) 2002; 99 Houghton (bib0120) 2005; 132 Kumar (bib0150) 2001; 276 Clauss (bib0455) 2008; 87 Mikkola (bib0145) 2008; 19 Mustonen (bib0250) 2004; 131 Park (bib0390) 2012; 57 Carlson (bib0350) 2005; 15 Han (bib0095) 2008; 51 Tucker (bib0275) 2004; 268 Laurikkala (bib0295) 2002; 129 Casal (bib0415) 2007; 81 Knecht (bib0335) 2007; 9 Martin, Orgogozo (bib0430) 2013; 67 Barrett (bib0340) 2009; 5 Pantalacci (bib0435) 2008; 25 Cui (bib0240) 2003; 12 Mikkola, Thesleff (bib0065) 2003; 14 Kere (bib0030) 1996; 13 Ferguson (bib0045) 1997; 6 Drögemüller (bib0110) 2001; 11 Mikkola (bib0080) 2009; 149A Christin (bib0425) 2010; 26 Atukorala (bib0135) 2010; 73 Elomaa (bib0155) 2001; 10 Fujimoto (bib0380) 2008; 124 Bryk (bib0375) 2008; 3 Koppinen (bib0180) 2001; 269 Wiśniewski (bib0010) 2002; 43 Barrett (bib0320) 2010; 77 Zonana (bib0205) 2000; 67 Gilmore, Wolenski (bib0220) 2012; 246 Sabeti (bib0345) 2007; 449 Tao (bib0100) 2006; 51 Leinonen (bib0325) 2012; 66 Newton (bib0175) 2004; 24 Kangas (bib0280) 2004; 432 Mou (bib0395) 2008; 29 Wiens, Glenney (bib0440) 2011; 35 Voight (bib0360) 2006; 4 Kimura (bib0385) 2009; 85 Charles (bib0460) 2009; 4 Cascallana (bib0235) 2005; 146 Cluzeau (bib0015) 2011; 32 Nikopensius (bib0465) 2013; 92 Tucker (bib0160) 2000; 127 Kitano (bib0330) 2008; 18 Kamberov (bib0025) 2013; 152 Dickson (bib0215) 2004; 231 Williamson (bib0355) 2005; 102 Barrett (bib0310) 2008; 322 Kuramoto (bib0115) 2011; 12 Schmidt-Ullrich (bib0190) 2006; 133 Melnik (bib0260) 2009; 9 Kowalczyk (bib0420) 2011; 286 Kondo (bib0130) 2001; 11 Cluzeau (bib0400) 2012; 166 Headon (bib0070) 2001; 414 Tarpey (bib0090) 2007; 143 Zhang (bib0300) 2009; 17 Gomes Rodrigues (bib0470) 2013; 4 Darwin (bib0005) 1875 Mikkola (bib0265) 2011; 691 Colosimo (bib0020) 2005; 307 Srivastava (bib0035) 1996; 58 Srivastava (bib0050) 1997; 94 Myles (bib0370) 2008; 72 Pispa (bib0210) 2008; 17 Lexner (bib0450) 2008; 74 Shimomura (bib0075) 2004; 123 Voutilainen (bib0270) 2012; 109 Ohazama (bib0195) 2004; 229 Dietrich (bib0445) 2003; 4 Headon, Overbeek (bib0055) 1999; 22 Lefebvre (bib0230) 2012; 132 Monreal (bib0060) 1999; 22 Gaide, Schneider (bib0245) 2003; 9 Stern, Orgogozo (bib0410) 2008; 62 Jaskoll (bib0255) 2003; 271 Casal (bib0105) 2005; 16 Harjunmaa (bib0285) 2012; 483 Tang (bib0365) 2007; 5 Shifera (bib0225) 2010; 14 Chassaing (bib0085) 2010; 162 Harris (bib0140) 2008; 4 Häärä (bib0305) 2012; 139 Morlon (bib0185) 2005; 14 Kere (10.1016/j.tig.2013.08.006_bib0030) 1996; 13 Mikkola (10.1016/j.tig.2013.08.006_bib0265) 2011; 691 Cascallana (10.1016/j.tig.2013.08.006_bib0235) 2005; 146 Kangas (10.1016/j.tig.2013.08.006_bib0280) 2004; 432 Voutilainen (10.1016/j.tig.2013.08.006_bib0270) 2012; 109 Mikkola (10.1016/j.tig.2013.08.006_bib0145) 2008; 19 Gomes Rodrigues (10.1016/j.tig.2013.08.006_bib0470) 2013; 4 Mou (10.1016/j.tig.2013.08.006_bib0290) 2006; 103 Kamberov (10.1016/j.tig.2013.08.006_bib0025) 2013; 152 Barrett (10.1016/j.tig.2013.08.006_bib0310) 2008; 322 Clauss (10.1016/j.tig.2013.08.006_bib0455) 2008; 87 Atukorala (10.1016/j.tig.2013.08.006_bib0135) 2010; 73 Darwin (10.1016/j.tig.2013.08.006_bib0005) 1875 Shifera (10.1016/j.tig.2013.08.006_bib0225) 2010; 14 Tang (10.1016/j.tig.2013.08.006_bib0365) 2007; 5 Le Rouzic (10.1016/j.tig.2013.08.006_bib0315) 2011; 20 Wiens (10.1016/j.tig.2013.08.006_bib0440) 2011; 35 Knecht (10.1016/j.tig.2013.08.006_bib0335) 2007; 9 Yan (10.1016/j.tig.2013.08.006_bib0165) 2000; 290 Lefebvre (10.1016/j.tig.2013.08.006_bib0230) 2012; 132 Tucker (10.1016/j.tig.2013.08.006_bib0275) 2004; 268 Kuramoto (10.1016/j.tig.2013.08.006_bib0115) 2011; 12 Voight (10.1016/j.tig.2013.08.006_bib0360) 2006; 4 Zhang (10.1016/j.tig.2013.08.006_bib0300) 2009; 17 Tao (10.1016/j.tig.2013.08.006_bib0100) 2006; 51 Laurikkala (10.1016/j.tig.2013.08.006_bib0295) 2002; 129 Schmidt-Ullrich (10.1016/j.tig.2013.08.006_bib0190) 2006; 133 Barrett (10.1016/j.tig.2013.08.006_bib0340) 2009; 5 Carlson (10.1016/j.tig.2013.08.006_bib0350) 2005; 15 Kimura (10.1016/j.tig.2013.08.006_bib0385) 2009; 85 Casal (10.1016/j.tig.2013.08.006_bib0105) 2005; 16 Koppinen (10.1016/j.tig.2013.08.006_bib0180) 2001; 269 Drögemüller (10.1016/j.tig.2013.08.006_bib0110) 2001; 11 Kondo (10.1016/j.tig.2013.08.006_bib0130) 2001; 11 Williamson (10.1016/j.tig.2013.08.006_bib0355) 2005; 102 Bryk (10.1016/j.tig.2013.08.006_bib0375) 2008; 3 Christin (10.1016/j.tig.2013.08.006_bib0425) 2010; 26 Headon (10.1016/j.tig.2013.08.006_bib0070) 2001; 414 Häärä (10.1016/j.tig.2013.08.006_bib0305) 2012; 139 Martin (10.1016/j.tig.2013.08.006_bib0430) 2013; 67 Srivastava (10.1016/j.tig.2013.08.006_bib0035) 1996; 58 Tucker (10.1016/j.tig.2013.08.006_bib0160) 2000; 127 Mikkola (10.1016/j.tig.2013.08.006_bib0080) 2009; 149A Houghton (10.1016/j.tig.2013.08.006_bib0120) 2005; 132 Charles (10.1016/j.tig.2013.08.006_bib0460) 2009; 4 Gaide (10.1016/j.tig.2013.08.006_bib0245) 2003; 9 Colosimo (10.1016/j.tig.2013.08.006_bib0020) 2005; 307 Nikopensius (10.1016/j.tig.2013.08.006_bib0465) 2013; 92 Kumar (10.1016/j.tig.2013.08.006_bib0150) 2001; 276 Pantalacci (10.1016/j.tig.2013.08.006_bib0435) 2008; 25 Shimomura (10.1016/j.tig.2013.08.006_bib0075) 2004; 123 Myles (10.1016/j.tig.2013.08.006_bib0370) 2008; 72 Casal (10.1016/j.tig.2013.08.006_bib0415) 2007; 81 Dickson (10.1016/j.tig.2013.08.006_bib0215) 2004; 231 Cluzeau (10.1016/j.tig.2013.08.006_bib0400) 2012; 166 Stern (10.1016/j.tig.2013.08.006_bib0410) 2008; 62 Monreal (10.1016/j.tig.2013.08.006_bib0060) 1999; 22 Fujimoto (10.1016/j.tig.2013.08.006_bib0380) 2008; 124 Pispa (10.1016/j.tig.2013.08.006_bib0210) 2008; 17 Headon (10.1016/j.tig.2013.08.006_bib0055) 1999; 22 Wisniewski (10.1016/j.tig.2013.08.006_bib0170) 2012; 49 Mou (10.1016/j.tig.2013.08.006_bib0395) 2008; 29 Kowalczyk (10.1016/j.tig.2013.08.006_bib0420) 2011; 286 Srivastava (10.1016/j.tig.2013.08.006_bib0050) 1997; 94 Harris (10.1016/j.tig.2013.08.006_bib0140) 2008; 4 Drew (10.1016/j.tig.2013.08.006_bib0125) 2007; 305 Park (10.1016/j.tig.2013.08.006_bib0390) 2012; 57 Zonana (10.1016/j.tig.2013.08.006_bib0205) 2000; 67 Naito (10.1016/j.tig.2013.08.006_bib0200) 2002; 99 Barrett (10.1016/j.tig.2013.08.006_bib0320) 2010; 77 Ohazama (10.1016/j.tig.2013.08.006_bib0195) 2004; 229 Leinonen (10.1016/j.tig.2013.08.006_bib0325) 2012; 66 Kitano (10.1016/j.tig.2013.08.006_bib0330) 2008; 18 Cluzeau (10.1016/j.tig.2013.08.006_bib0015) 2011; 32 Chassaing (10.1016/j.tig.2013.08.006_bib0085) 2010; 162 Sabeti (10.1016/j.tig.2013.08.006_bib0345) 2007; 449 Tarpey (10.1016/j.tig.2013.08.006_bib0090) 2007; 143 Cui (10.1016/j.tig.2013.08.006_bib0240) 2003; 12 Dietrich (10.1016/j.tig.2013.08.006_bib0445) 2003; 4 Sofaer (10.1016/j.tig.2013.08.006_bib0040) 1969; 22 Hoekstra (10.1016/j.tig.2013.08.006_bib0405) 2007; 61 Morlon (10.1016/j.tig.2013.08.006_bib0185) 2005; 14 Lexner (10.1016/j.tig.2013.08.006_bib0450) 2008; 74 Ferguson (10.1016/j.tig.2013.08.006_bib0045) 1997; 6 Mikkola (10.1016/j.tig.2013.08.006_bib0065) 2003; 14 Harjunmaa (10.1016/j.tig.2013.08.006_bib0285) 2012; 483 Newton (10.1016/j.tig.2013.08.006_bib0175) 2004; 24 Han (10.1016/j.tig.2013.08.006_bib0095) 2008; 51 Mustonen (10.1016/j.tig.2013.08.006_bib0250) 2004; 131 Melnik (10.1016/j.tig.2013.08.006_bib0260) 2009; 9 Wiśniewski (10.1016/j.tig.2013.08.006_bib0010) 2002; 43 Elomaa (10.1016/j.tig.2013.08.006_bib0155) 2001; 10 Gilmore (10.1016/j.tig.2013.08.006_bib0220) 2012; 246 Jaskoll (10.1016/j.tig.2013.08.006_bib0255) 2003; 271 |
References_xml | – volume: 14 start-page: 2404 year: 2010 end-page: 2414 ident: bib0225 article-title: The zinc finger domain of IKKγ (NEMO) protein in health and disease publication-title: J. Cell. Mol. Med. – volume: 22 start-page: 181 year: 1969 end-page: 205 ident: bib0040 article-title: Aspects of the Tabby–crinkled–downless syndrome. I. The development of Tabby teeth publication-title: J. Embryol. Exp. Morphol. – volume: 127 start-page: 4691 year: 2000 end-page: 4700 ident: bib0160 article-title: Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis publication-title: Development – volume: 35 start-page: 1324 year: 2011 end-page: 1335 ident: bib0440 article-title: Origin and evolution of TNF and TNF receptor superfamilies publication-title: Dev. Comp. Immunol. – volume: 4 start-page: 2504 year: 2013 ident: bib0470 article-title: Roles of dental development and adaptation in rodent evolution publication-title: Nat. Commun. – volume: 14 start-page: 3751 year: 2005 end-page: 3757 ident: bib0185 article-title: TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd publication-title: Hum. Mol. Genet. – volume: 432 start-page: 211 year: 2004 end-page: 214 ident: bib0280 article-title: Nonindependence of mammalian dental characters publication-title: Nature – volume: 123 start-page: 649 year: 2004 end-page: 655 ident: bib0075 article-title: A rare case of hypohidrotic ectodermal dysplasia caused by compound heterozygous mutations in the EDAR gene publication-title: J. Invest. Dermatol. – volume: 103 start-page: 9075 year: 2006 end-page: 9080 ident: bib0290 article-title: Generation of the primary hair follicle pattern publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 5 start-page: 788 year: 2009 end-page: 791 ident: bib0340 article-title: Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback publication-title: Biol. Lett. – volume: 61 start-page: 995 year: 2007 end-page: 1016 ident: bib0405 article-title: The locus of evolution: evo devo and the genetics of adaptation publication-title: Evolution – volume: 17 start-page: 3380 year: 2008 end-page: 3391 ident: bib0210 article-title: Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development publication-title: Hum. Mol. Genet. – volume: 139 start-page: 3189 year: 2012 end-page: 3199 ident: bib0305 article-title: Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling publication-title: Development – volume: 72 start-page: 99 year: 2008 end-page: 110 ident: bib0370 article-title: Identification and analysis of high Fst regions from genome-wide SNP data from three human populations publication-title: Ann. Hum. Genet. – volume: 276 start-page: 2668 year: 2001 end-page: 2677 ident: bib0150 article-title: The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A publication-title: J. Biol. Chem. – volume: 162 start-page: 1044 year: 2010 end-page: 1048 ident: bib0085 article-title: Mutations in EDARADD account for a small proportion of hypohidrotic ectodermal dysplasia cases publication-title: Br. J. Dermatol. – volume: 12 start-page: 2931 year: 2003 end-page: 2940 ident: bib0240 article-title: Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles publication-title: Hum. Mol. Genet. – volume: 269 start-page: 180 year: 2001 end-page: 192 ident: bib0180 article-title: Signaling and subcellular localization of the TNF receptor Edar publication-title: Exp. Cell Res. – volume: 143 start-page: 390 year: 2007 end-page: 394 ident: bib0090 article-title: A novel Gln358Glu mutation in ectodysplasin A associated with X-linked dominant incisor hypodontia publication-title: Am. J. Med. Genet. A – volume: 129 start-page: 2541 year: 2002 end-page: 2553 ident: bib0295 article-title: Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar publication-title: Development – volume: 67 start-page: 1235 year: 2013 end-page: 1250 ident: bib0430 article-title: The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation publication-title: Evolution – volume: 12 start-page: 91 year: 2011 ident: bib0115 article-title: A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene publication-title: BMC Genet. – volume: 43 start-page: 97 year: 2002 end-page: 107 ident: bib0010 article-title: Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors publication-title: J. Appl. Genet. – volume: 124 start-page: 179 year: 2008 end-page: 185 ident: bib0380 article-title: A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia publication-title: Hum. Genet. – volume: 87 start-page: 1089 year: 2008 end-page: 1099 ident: bib0455 article-title: Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review publication-title: J. Dent. Res. – volume: 149A start-page: 2031 year: 2009 end-page: 2036 ident: bib0080 article-title: Molecular aspects of hypohidrotic ectodermal dysplasia publication-title: Am. J. Med. Genet. A – volume: 57 start-page: 508 year: 2012 end-page: 514 ident: bib0390 article-title: Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits publication-title: J. Hum. Genet. – volume: 4 start-page: e72 year: 2006 ident: bib0360 article-title: A map of recent positive selection in the human genome publication-title: PLoS Biol. – volume: 414 start-page: 913 year: 2001 end-page: 916 ident: bib0070 article-title: Gene defect in ectodermal dysplasia implicates a death domain adapter in development publication-title: Nature – volume: 17 start-page: 49 year: 2009 end-page: 61 ident: bib0300 article-title: Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction publication-title: Dev. Cell – volume: 49 start-page: 499 year: 2012 end-page: 501 ident: bib0170 article-title: A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia publication-title: J. Med. Genet. – volume: 246 start-page: 14 year: 2012 end-page: 35 ident: bib0220 article-title: NF-κB: where did it come from and why? publication-title: Immunol. Rev. – volume: 85 start-page: 528 year: 2009 end-page: 535 ident: bib0385 article-title: A common variation in EDAR is a genetic determinant of shovel-shaped incisors publication-title: Am. J. Hum. Genet. – volume: 271 start-page: 322 year: 2003 end-page: 331 ident: bib0255 article-title: Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development publication-title: Anat. Rec. A: Discov. Mol. Cell. Evol. Biol. – volume: 133 start-page: 1045 year: 2006 end-page: 1057 ident: bib0190 article-title: NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth publication-title: Development – volume: 29 start-page: 1405 year: 2008 end-page: 1411 ident: bib0395 article-title: Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form publication-title: Hum. Mutat. – volume: 132 start-page: 1094 year: 2012 end-page: 1102 ident: bib0230 article-title: Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development publication-title: J. Invest. Dermatol. – year: 1875 ident: bib0005 article-title: The Variations of Animals and Plants under Domestication – volume: 99 start-page: 8766 year: 2002 end-page: 8771 ident: bib0200 article-title: TRAF6-deficient mice display hypohidrotic ectodermal dysplasia publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 14 start-page: 211 year: 2003 end-page: 224 ident: bib0065 article-title: Ectodysplasin signaling in development publication-title: Cytokine Growth Factor Rev. – volume: 74 start-page: 252 year: 2008 end-page: 259 ident: bib0450 article-title: X-linked hypohidrotic ectodermal dysplasia. Genetic and dental findings in 67 Danish patients from 19 families publication-title: Clin. Genet. – volume: 449 start-page: 913 year: 2007 end-page: 918 ident: bib0345 article-title: Genome-wide detection and characterization of positive selection in human populations publication-title: Nature – volume: 307 start-page: 1928 year: 2005 end-page: 1933 ident: bib0020 article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles publication-title: Science – volume: 268 start-page: 185 year: 2004 end-page: 194 ident: bib0275 article-title: The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development publication-title: Dev. Biol. – volume: 131 start-page: 4907 year: 2004 end-page: 4919 ident: bib0250 article-title: Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages publication-title: Development – volume: 11 start-page: 1699 year: 2001 end-page: 1705 ident: bib0110 article-title: Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle publication-title: Genome Res. – volume: 58 start-page: 126 year: 1996 end-page: 132 ident: bib0035 article-title: Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed publication-title: Am. J. Hum. Genet. – volume: 51 start-page: 498 year: 2006 end-page: 502 ident: bib0100 article-title: A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia publication-title: J. Hum. Genet. – volume: 5 start-page: e171 year: 2007 ident: bib0365 article-title: A new approach for using genome scans to detect recent positive selection in the human genome publication-title: PLoS Biol. – volume: 92 start-page: 507 year: 2013 end-page: 511 ident: bib0465 article-title: Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA) publication-title: J. Dent. Res. – volume: 20 start-page: 2483 year: 2011 end-page: 2493 ident: bib0315 article-title: Strong and consistent natural selection associated with armour reduction in sticklebacks publication-title: Mol. Ecol. – volume: 6 start-page: 1589 year: 1997 end-page: 1594 ident: bib0045 article-title: Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain publication-title: Hum. Mol. Genet. – volume: 26 start-page: 400 year: 2010 end-page: 405 ident: bib0425 article-title: Causes and evolutionary significance of genetic convergence publication-title: Trends Genet. – volume: 166 start-page: 678 year: 2012 end-page: 681 ident: bib0400 article-title: The EDAR370A allele attenuates the severity of hypohidrotic ectodermal dysplasia caused by EDA gene mutation publication-title: Br. J. Dermatol. – volume: 132 start-page: 863 year: 2005 end-page: 872 ident: bib0120 article-title: The ectodysplasin pathway in feather tract development publication-title: Development – volume: 73 start-page: 139 year: 2010 end-page: 148 ident: bib0135 article-title: Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth publication-title: Arch. Histol. Cytol. – volume: 286 start-page: 30769 year: 2011 end-page: 30779 ident: bib0420 article-title: Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies publication-title: J. Biol. Chem. – volume: 22 start-page: 366 year: 1999 end-page: 369 ident: bib0060 article-title: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia publication-title: Nat. Genet. – volume: 3 start-page: e2209 year: 2008 ident: bib0375 article-title: Positive selection in East Asians for an EDAR allele that enhances NF-kappaB activation publication-title: PLoS ONE – volume: 10 start-page: 953 year: 2001 end-page: 962 ident: bib0155 article-title: Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein publication-title: Hum. Mol. Genet. – volume: 9 start-page: 32 year: 2009 ident: bib0260 article-title: Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFkappaB paradigm publication-title: BMC Dev. Biol. – volume: 32 start-page: 70 year: 2011 end-page: 72 ident: bib0015 article-title: Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases publication-title: Hum. Mutat. – volume: 152 start-page: 691 year: 2013 end-page: 702 ident: bib0025 article-title: Modeling recent human evolution in mice by expression of a selected EDAR variant publication-title: Cell – volume: 146 start-page: 2629 year: 2005 end-page: 2638 ident: bib0235 article-title: Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia publication-title: Endocrinology – volume: 290 start-page: 523 year: 2000 end-page: 527 ident: bib0165 article-title: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors publication-title: Science – volume: 9 start-page: 614 year: 2003 end-page: 618 ident: bib0245 article-title: Permanent correction of an inherited ectodermal dysplasia with recombinant EDA publication-title: Nat. Med. – volume: 94 start-page: 13069 year: 1997 end-page: 13074 ident: bib0050 article-title: The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 19 start-page: 219 year: 2008 end-page: 230 ident: bib0145 article-title: TNF superfamily in skin appendage development publication-title: Cytokine Growth Factor Rev. – volume: 4 start-page: e4985 year: 2009 ident: bib0460 article-title: Distinct impacts of Eda and Edar loss of function on the mouse dentition publication-title: PLoS ONE – volume: 16 start-page: 524 year: 2005 end-page: 531 ident: bib0105 article-title: Mutation identification in a canine model of X-linked ectodermal dysplasia publication-title: Mamm. Genome – volume: 305 start-page: 232 year: 2007 end-page: 245 ident: bib0125 article-title: The Edar subfamily in feather placode formation publication-title: Dev. Biol. – volume: 231 start-page: 122 year: 2004 end-page: 127 ident: bib0215 article-title: TRAF6-dependent NF-kB transcriptional activity during mouse development publication-title: Dev. Dyn. – volume: 18 start-page: 769 year: 2008 end-page: 774 ident: bib0330 article-title: Reverse evolution of armor plates in the threespine stickleback publication-title: Curr. Biol. – volume: 15 start-page: 1553 year: 2005 end-page: 1565 ident: bib0350 article-title: Genomic regions exhibiting positive selection identified from dense genotype data publication-title: Genome Res. – volume: 691 start-page: 23 year: 2011 end-page: 33 ident: bib0265 article-title: The Edar subfamily in hair and exocrine gland development publication-title: Adv. Exp. Med. Biol. – volume: 109 start-page: 5744 year: 2012 end-page: 5749 ident: bib0270 article-title: Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 141 year: 2007 end-page: 154 ident: bib0335 article-title: Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution publication-title: Evol. Dev. – volume: 4 start-page: e1000206 year: 2008 ident: bib0140 article-title: Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates publication-title: PLoS Genet. – volume: 81 start-page: 1050 year: 2007 end-page: 1056 ident: bib0415 article-title: Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia publication-title: Am. J. Hum. Genet. – volume: 483 start-page: 324 year: 2012 end-page: 327 ident: bib0285 article-title: On the difficulty of increasing dental complexity publication-title: Nature – volume: 51 start-page: 536 year: 2008 end-page: 546 ident: bib0095 article-title: Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis publication-title: Eur. J. Med. Genet. – volume: 66 start-page: 3866 year: 2012 end-page: 3875 ident: bib0325 article-title: Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks publication-title: Evolution – volume: 102 start-page: 7882 year: 2005 end-page: 7887 ident: bib0355 article-title: Simultaneous inference of selection and population growth from patterns of variation in the human genome publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 11 start-page: 1202 year: 2001 end-page: 1206 ident: bib0130 article-title: The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor publication-title: Curr. Biol. – volume: 229 start-page: 131 year: 2004 end-page: 135 ident: bib0195 article-title: Traf6 is essential for murine tooth cusp morphogenesis publication-title: Dev. Dyn. – volume: 77 start-page: 311 year: 2010 end-page: 328 ident: bib0320 article-title: Adaptive evolution of lateral plates in three-spined stickleback publication-title: J. Fish Biol. – volume: 13 start-page: 409 year: 1996 end-page: 416 ident: bib0030 article-title: X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein publication-title: Nat. Genet. – volume: 4 start-page: 68 year: 2003 end-page: 74 ident: bib0445 article-title: Richard Goldschmidt: hopeful monsters and other ‘heresies’ publication-title: Nat. Rev. Genet. – volume: 22 start-page: 370 year: 1999 end-page: 374 ident: bib0055 article-title: Involvement of a novel Tnf receptor homologue in hair follicle induction publication-title: Nat. Genet. – volume: 24 start-page: 1608 year: 2004 end-page: 1613 ident: bib0175 article-title: Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency publication-title: Mol. Cell. Biol. – volume: 25 start-page: 912 year: 2008 end-page: 928 ident: bib0435 article-title: Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development publication-title: Mol. Biol. Evol. – volume: 322 start-page: 255 year: 2008 end-page: 257 ident: bib0310 article-title: Natural selection on a major armor gene in threespine stickleback publication-title: Science – volume: 62 start-page: 2155 year: 2008 end-page: 2177 ident: bib0410 article-title: The loci of evolution: how predictable is genetic evolution? publication-title: Evolution – volume: 67 start-page: 1555 year: 2000 end-page: 1562 ident: bib0205 article-title: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO) publication-title: Am. J. Hum. Genet. – volume: 123 start-page: 649 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0075 article-title: A rare case of hypohidrotic ectodermal dysplasia caused by compound heterozygous mutations in the EDAR gene publication-title: J. Invest. Dermatol. doi: 10.1111/j.0022-202X.2004.23405.x – volume: 81 start-page: 1050 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0415 article-title: Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia publication-title: Am. J. Hum. Genet. doi: 10.1086/521988 – volume: 94 start-page: 13069 year: 1997 ident: 10.1016/j.tig.2013.08.006_bib0050 article-title: The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.24.13069 – volume: 149A start-page: 2031 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0080 article-title: Molecular aspects of hypohidrotic ectodermal dysplasia publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.32855 – volume: 4 start-page: e4985 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0460 article-title: Distinct impacts of Eda and Edar loss of function on the mouse dentition publication-title: PLoS ONE doi: 10.1371/journal.pone.0004985 – volume: 139 start-page: 3189 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0305 article-title: Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling publication-title: Development doi: 10.1242/dev.079558 – volume: 127 start-page: 4691 year: 2000 ident: 10.1016/j.tig.2013.08.006_bib0160 article-title: Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis publication-title: Development doi: 10.1242/dev.127.21.4691 – volume: 268 start-page: 185 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0275 article-title: The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2003.12.019 – volume: 19 start-page: 219 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0145 article-title: TNF superfamily in skin appendage development publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2008.04.008 – volume: 414 start-page: 913 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0070 article-title: Gene defect in ectodermal dysplasia implicates a death domain adapter in development publication-title: Nature doi: 10.1038/414913a – volume: 9 start-page: 141 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0335 article-title: Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution publication-title: Evol. Dev. doi: 10.1111/j.1525-142X.2007.00145.x – volume: 26 start-page: 400 year: 2010 ident: 10.1016/j.tig.2013.08.006_bib0425 article-title: Causes and evolutionary significance of genetic convergence publication-title: Trends Genet. doi: 10.1016/j.tig.2010.06.005 – volume: 132 start-page: 1094 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0230 article-title: Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.453 – volume: 124 start-page: 179 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0380 article-title: A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia publication-title: Hum. Genet. doi: 10.1007/s00439-008-0537-1 – volume: 22 start-page: 366 year: 1999 ident: 10.1016/j.tig.2013.08.006_bib0060 article-title: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia publication-title: Nat. Genet. doi: 10.1038/11937 – volume: 133 start-page: 1045 year: 2006 ident: 10.1016/j.tig.2013.08.006_bib0190 article-title: NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth publication-title: Development doi: 10.1242/dev.02278 – volume: 58 start-page: 126 year: 1996 ident: 10.1016/j.tig.2013.08.006_bib0035 article-title: Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed publication-title: Am. J. Hum. Genet. – volume: 18 start-page: 769 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0330 article-title: Reverse evolution of armor plates in the threespine stickleback publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.04.027 – volume: 4 start-page: 68 year: 2003 ident: 10.1016/j.tig.2013.08.006_bib0445 article-title: Richard Goldschmidt: hopeful monsters and other ‘heresies’ publication-title: Nat. Rev. Genet. doi: 10.1038/nrg979 – volume: 162 start-page: 1044 year: 2010 ident: 10.1016/j.tig.2013.08.006_bib0085 article-title: Mutations in EDARADD account for a small proportion of hypohidrotic ectodermal dysplasia cases publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2010.09670.x – volume: 109 start-page: 5744 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0270 article-title: Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1110627109 – volume: 62 start-page: 2155 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0410 article-title: The loci of evolution: how predictable is genetic evolution? publication-title: Evolution doi: 10.1111/j.1558-5646.2008.00450.x – volume: 24 start-page: 1608 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0175 article-title: Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.4.1608-1613.2004 – volume: 35 start-page: 1324 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0440 article-title: Origin and evolution of TNF and TNF receptor superfamilies publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2011.03.031 – volume: 99 start-page: 8766 year: 2002 ident: 10.1016/j.tig.2013.08.006_bib0200 article-title: TRAF6-deficient mice display hypohidrotic ectodermal dysplasia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.132636999 – volume: 14 start-page: 211 year: 2003 ident: 10.1016/j.tig.2013.08.006_bib0065 article-title: Ectodysplasin signaling in development publication-title: Cytokine Growth Factor Rev. doi: 10.1016/S1359-6101(03)00020-0 – volume: 22 start-page: 181 year: 1969 ident: 10.1016/j.tig.2013.08.006_bib0040 article-title: Aspects of the Tabby–crinkled–downless syndrome. I. The development of Tabby teeth publication-title: J. Embryol. Exp. Morphol. – volume: 231 start-page: 122 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0215 article-title: TRAF6-dependent NF-kB transcriptional activity during mouse development publication-title: Dev. Dyn. doi: 10.1002/dvdy.20110 – volume: 307 start-page: 1928 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0020 article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles publication-title: Science doi: 10.1126/science.1107239 – volume: 269 start-page: 180 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0180 article-title: Signaling and subcellular localization of the TNF receptor Edar publication-title: Exp. Cell Res. doi: 10.1006/excr.2001.5331 – volume: 57 start-page: 508 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0390 article-title: Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits publication-title: J. Hum. Genet. doi: 10.1038/jhg.2012.60 – volume: 32 start-page: 70 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0015 article-title: Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases publication-title: Hum. Mutat. doi: 10.1002/humu.21384 – volume: 72 start-page: 99 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0370 article-title: Identification and analysis of high Fst regions from genome-wide SNP data from three human populations publication-title: Ann. Hum. Genet. doi: 10.1111/j.1469-1809.2007.00390.x – volume: 143 start-page: 390 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0090 article-title: A novel Gln358Glu mutation in ectodysplasin A associated with X-linked dominant incisor hypodontia publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.31567 – volume: 87 start-page: 1089 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0455 article-title: Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review publication-title: J. Dent. Res. doi: 10.1177/154405910808701205 – volume: 9 start-page: 614 year: 2003 ident: 10.1016/j.tig.2013.08.006_bib0245 article-title: Permanent correction of an inherited ectodermal dysplasia with recombinant EDA publication-title: Nat. Med. doi: 10.1038/nm861 – volume: 4 start-page: 2504 year: 2013 ident: 10.1016/j.tig.2013.08.006_bib0470 article-title: Roles of dental development and adaptation in rodent evolution publication-title: Nat. Commun. doi: 10.1038/ncomms3504 – volume: 43 start-page: 97 year: 2002 ident: 10.1016/j.tig.2013.08.006_bib0010 article-title: Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors publication-title: J. Appl. Genet. – volume: 61 start-page: 995 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0405 article-title: The locus of evolution: evo devo and the genetics of adaptation publication-title: Evolution doi: 10.1111/j.1558-5646.2007.00105.x – volume: 67 start-page: 1235 year: 2013 ident: 10.1016/j.tig.2013.08.006_bib0430 article-title: The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation publication-title: Evolution – volume: 129 start-page: 2541 year: 2002 ident: 10.1016/j.tig.2013.08.006_bib0295 article-title: Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar publication-title: Development doi: 10.1242/dev.129.10.2541 – volume: 77 start-page: 311 year: 2010 ident: 10.1016/j.tig.2013.08.006_bib0320 article-title: Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.2010.02640.x – volume: 25 start-page: 912 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0435 article-title: Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msn038 – volume: 432 start-page: 211 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0280 article-title: Nonindependence of mammalian dental characters publication-title: Nature doi: 10.1038/nature02927 – volume: 66 start-page: 3866 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0325 article-title: Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks publication-title: Evolution doi: 10.1111/j.1558-5646.2012.01724.x – volume: 51 start-page: 498 year: 2006 ident: 10.1016/j.tig.2013.08.006_bib0100 article-title: A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia publication-title: J. Hum. Genet. doi: 10.1007/s10038-006-0389-2 – volume: 12 start-page: 91 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0115 article-title: A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene publication-title: BMC Genet. doi: 10.1186/1471-2156-12-91 – volume: 102 start-page: 7882 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0355 article-title: Simultaneous inference of selection and population growth from patterns of variation in the human genome publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0502300102 – volume: 103 start-page: 9075 year: 2006 ident: 10.1016/j.tig.2013.08.006_bib0290 article-title: Generation of the primary hair follicle pattern publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600825103 – volume: 51 start-page: 536 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0095 article-title: Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis publication-title: Eur. J. Med. Genet. doi: 10.1016/j.ejmg.2008.06.002 – volume: 22 start-page: 370 year: 1999 ident: 10.1016/j.tig.2013.08.006_bib0055 article-title: Involvement of a novel Tnf receptor homologue in hair follicle induction publication-title: Nat. Genet. doi: 10.1038/11943 – volume: 132 start-page: 863 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0120 article-title: The ectodysplasin pathway in feather tract development publication-title: Development doi: 10.1242/dev.01651 – volume: 3 start-page: e2209 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0375 article-title: Positive selection in East Asians for an EDAR allele that enhances NF-kappaB activation publication-title: PLoS ONE doi: 10.1371/journal.pone.0002209 – volume: 286 start-page: 30769 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0420 article-title: Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.267997 – volume: 290 start-page: 523 year: 2000 ident: 10.1016/j.tig.2013.08.006_bib0165 article-title: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors publication-title: Science doi: 10.1126/science.290.5491.523 – volume: 20 start-page: 2483 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0315 article-title: Strong and consistent natural selection associated with armour reduction in sticklebacks publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2011.05071.x – volume: 15 start-page: 1553 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0350 article-title: Genomic regions exhibiting positive selection identified from dense genotype data publication-title: Genome Res. doi: 10.1101/gr.4326505 – volume: 74 start-page: 252 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0450 article-title: X-linked hypohidrotic ectodermal dysplasia. Genetic and dental findings in 67 Danish patients from 19 families publication-title: Clin. Genet. doi: 10.1111/j.1399-0004.2008.01037.x – volume: 5 start-page: 788 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0340 article-title: Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback publication-title: Biol. Lett. doi: 10.1098/rsbl.2009.0416 – volume: 271 start-page: 322 year: 2003 ident: 10.1016/j.tig.2013.08.006_bib0255 article-title: Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development publication-title: Anat. Rec. A: Discov. Mol. Cell. Evol. Biol. doi: 10.1002/ar.a.10045 – volume: 146 start-page: 2629 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0235 article-title: Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia publication-title: Endocrinology doi: 10.1210/en.2004-1246 – volume: 449 start-page: 913 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0345 article-title: Genome-wide detection and characterization of positive selection in human populations publication-title: Nature doi: 10.1038/nature06250 – volume: 16 start-page: 524 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0105 article-title: Mutation identification in a canine model of X-linked ectodermal dysplasia publication-title: Mamm. Genome doi: 10.1007/s00335-004-2463-4 – volume: 92 start-page: 507 year: 2013 ident: 10.1016/j.tig.2013.08.006_bib0465 article-title: Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA) publication-title: J. Dent. Res. doi: 10.1177/0022034513487210 – volume: 49 start-page: 499 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0170 article-title: A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2012-100877 – volume: 229 start-page: 131 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0195 article-title: Traf6 is essential for murine tooth cusp morphogenesis publication-title: Dev. Dyn. doi: 10.1002/dvdy.10400 – volume: 67 start-page: 1555 year: 2000 ident: 10.1016/j.tig.2013.08.006_bib0205 article-title: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO) publication-title: Am. J. Hum. Genet. doi: 10.1086/316914 – volume: 9 start-page: 32 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0260 article-title: Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFkappaB paradigm publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-9-32 – volume: 29 start-page: 1405 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0395 article-title: Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form publication-title: Hum. Mutat. doi: 10.1002/humu.20795 – volume: 305 start-page: 232 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0125 article-title: The Edar subfamily in feather placode formation publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.02.011 – volume: 17 start-page: 3380 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0210 article-title: Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn232 – volume: 483 start-page: 324 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0285 article-title: On the difficulty of increasing dental complexity publication-title: Nature doi: 10.1038/nature10876 – volume: 11 start-page: 1202 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0130 article-title: The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00324-4 – volume: 246 start-page: 14 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0220 article-title: NF-κB: where did it come from and why? publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2012.01096.x – volume: 13 start-page: 409 year: 1996 ident: 10.1016/j.tig.2013.08.006_bib0030 article-title: X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein publication-title: Nat. Genet. doi: 10.1038/ng0895-409 – volume: 73 start-page: 139 year: 2010 ident: 10.1016/j.tig.2013.08.006_bib0135 article-title: Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth publication-title: Arch. Histol. Cytol. doi: 10.1679/aohc.73.139 – volume: 6 start-page: 1589 year: 1997 ident: 10.1016/j.tig.2013.08.006_bib0045 article-title: Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/6.9.1589 – volume: 14 start-page: 3751 year: 2005 ident: 10.1016/j.tig.2013.08.006_bib0185 article-title: TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi405 – volume: 85 start-page: 528 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0385 article-title: A common variation in EDAR is a genetic determinant of shovel-shaped incisors publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.09.006 – volume: 166 start-page: 678 year: 2012 ident: 10.1016/j.tig.2013.08.006_bib0400 article-title: The EDAR370A allele attenuates the severity of hypohidrotic ectodermal dysplasia caused by EDA gene mutation publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2011.10620.x – volume: 691 start-page: 23 year: 2011 ident: 10.1016/j.tig.2013.08.006_bib0265 article-title: The Edar subfamily in hair and exocrine gland development publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-6612-4_3 – volume: 322 start-page: 255 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0310 article-title: Natural selection on a major armor gene in threespine stickleback publication-title: Science doi: 10.1126/science.1159978 – volume: 14 start-page: 2404 year: 2010 ident: 10.1016/j.tig.2013.08.006_bib0225 article-title: The zinc finger domain of IKKγ (NEMO) protein in health and disease publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2010.01054.x – volume: 11 start-page: 1699 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0110 article-title: Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle publication-title: Genome Res. doi: 10.1101/gr.182501 – volume: 4 start-page: e1000206 year: 2008 ident: 10.1016/j.tig.2013.08.006_bib0140 article-title: Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000206 – year: 1875 ident: 10.1016/j.tig.2013.08.006_bib0005 – volume: 4 start-page: e72 year: 2006 ident: 10.1016/j.tig.2013.08.006_bib0360 article-title: A map of recent positive selection in the human genome publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040072 – volume: 5 start-page: e171 year: 2007 ident: 10.1016/j.tig.2013.08.006_bib0365 article-title: A new approach for using genome scans to detect recent positive selection in the human genome publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050171 – volume: 17 start-page: 49 year: 2009 ident: 10.1016/j.tig.2013.08.006_bib0300 article-title: Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.05.011 – volume: 276 start-page: 2668 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0150 article-title: The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M008356200 – volume: 12 start-page: 2931 year: 2003 ident: 10.1016/j.tig.2013.08.006_bib0240 article-title: Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg325 – volume: 152 start-page: 691 year: 2013 ident: 10.1016/j.tig.2013.08.006_bib0025 article-title: Modeling recent human evolution in mice by expression of a selected EDAR variant publication-title: Cell doi: 10.1016/j.cell.2013.01.016 – volume: 10 start-page: 953 year: 2001 ident: 10.1016/j.tig.2013.08.006_bib0155 article-title: Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.9.953 – volume: 131 start-page: 4907 year: 2004 ident: 10.1016/j.tig.2013.08.006_bib0250 article-title: Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages publication-title: Development doi: 10.1242/dev.01377 |
SSID | ssj0005735 |
Score | 2.4305854 |
SecondaryResourceType | review_article |
Snippet | •The Ectodysplasin pathway controls ectodermal appendages in vertebrates.•The core of the pathway contains three main gene products: EDA, EDAR, and... Highlights • The Ectodysplasin pathway controls ectodermal appendages in vertebrates. • The core of the pathway contains three main gene products: EDA, EDAR,... The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24 |
SubjectTerms | adaptation Adaptation, Physiological - genetics anhidrotic/hypohidrotic ectodermal dysplasia Animals ectodermal appendages Ectodermal Dysplasia 1, Anhidrotic - genetics ectodysplasin Ectodysplasins - genetics Ectodysplasins - metabolism Edar Receptor - genetics Edar Receptor - metabolism Edar-Associated Death Domain Protein - genetics Edar-Associated Death Domain Protein - metabolism Gene Expression Regulation Humans Medical Education NF-kappa B - genetics NF-kappa B - metabolism Receptors, Tumor Necrosis Factor - genetics Receptors, Tumor Necrosis Factor - metabolism Signal Transduction signaling pathways Vertebrates - genetics |
Title | The ectodysplasin pathway: from diseases to adaptations |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168952513001480 https://www.clinicalkey.es/playcontent/1-s2.0-S0168952513001480 https://www.ncbi.nlm.nih.gov/pubmed/24070496 https://www.proquest.com/docview/1490707504 https://www.proquest.com/docview/1868344338 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx0ZfxtZ9ZV94sKeBi21Zsry3MVrKaLtBk5I3IcvSmjDskLiU7mF_--5syfW6NHR7MUHo4kR3Op3u7ndHyPs4iTXjWR5qlSVharIozAvGwxJrP_FSWZshOPnomB9M0i9TNr1qgtiiS5piV_9ciyv5H67CGPAVUbL_wNn-S2EAPgN_4QkchueteYxe9_JytUA4ZFsm9exCtVWcWuCIi7-0ZRxUqRbNwEE3b65lxcJ7ENLYW9knmA627GEwfvh0tpzVjQdVDxJnvimEViqt2wyBk3pxNuvFBqaWXdzjdFZpT-TcDXE6cDc4DyQHDck6tLJXoS60MhQVpw_Twcnaqfu_dHbnPpjDEf0dU-1oW1I1WlMf-_ir3J8cHsrx3nR8l9xL4GKAmm331yCpJ-taqvof6ePYbUbftRfcZIncdNNoLY7xI_LQXRWCTx3fH5M7ptoh97vmoZc75MGRS4t4QjIQhOAPQQicIHwMUAwCLwZBUwcDMXhKJvt7488HoeuIEWqwVBvYS0IZKlJdZBktC66YFSU3RlNhRayySBS0BBOdaUYjwxOrmClFStNcFCVNNH1Gtqq6Mi9IwJiKtDVY2Yql1jKldGHz3GprE614MiKRXx2pXbl47FryQ_q8wLmEBZW4oBI7mUZ8RD70JIuuVsqmyYlfculBwHBsSZCKTUTZOiKzcptyJWO5SmSEOYtcoABgtBZu_NGIvPNslaBAMSqmKlOfA0WaY8krFqUb5giO_WgoFSPyvJOJ_h-iSwSu2fzlLahfke2rPfWabDXLc_MGjNqmeNvK8W9Fz6H9 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ectodysplasin+pathway%3A+from+diseases+to+adaptations&rft.jtitle=Trends+in+genetics&rft.au=Sadier%2C+Alexa&rft.au=Viriot%2C+Laurent&rft.au=Pantalacci%2C+Sophie&rft.au=Laudet%2C+Vincent&rft.date=2014-01-01&rft.issn=0168-9525&rft.volume=30&rft.issue=1&rft.spage=24&rft.epage=31&rft_id=info:doi/10.1016%2Fj.tig.2013.08.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01689525%2FS0168952513X00137%2Fcov150h.gif |