Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming

Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 8; p. 760
Main Authors Lai, Xiaowei, Li, Qian, Wu, Fang, Lin, Jiechun, Chen, Jiekai, Zheng, Hui, Guo, Lin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 06.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
AbstractList Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Author Li, Qian
Lin, Jiechun
Zheng, Hui
Lai, Xiaowei
Wu, Fang
Chen, Jiekai
Guo, Lin
AuthorAffiliation 3 Savaid Medical School, University of Chinese Academy of Sciences , Beijing , China
2 Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) , Guangzhou , China
4 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine , Guangzhou , China
1 CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
AuthorAffiliation_xml – name: 2 Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) , Guangzhou , China
– name: 1 CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
– name: 4 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine , Guangzhou , China
– name: 3 Savaid Medical School, University of Chinese Academy of Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Lai
  fullname: Lai, Xiaowei
– sequence: 2
  givenname: Qian
  surname: Li
  fullname: Li, Qian
– sequence: 3
  givenname: Fang
  surname: Wu
  fullname: Wu, Fang
– sequence: 4
  givenname: Jiechun
  surname: Lin
  fullname: Lin, Jiechun
– sequence: 5
  givenname: Jiekai
  surname: Chen
  fullname: Chen, Jiekai
– sequence: 6
  givenname: Hui
  surname: Zheng
  fullname: Zheng, Hui
– sequence: 7
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
BookMark eNp1kc1r3DAQxUVJaNI09x517MVbWbJluYdCWZI2sCGQD-hNjOXRroIsbSVvSv772ruhNIWeJEbv_eaJ944chRiQkA8lWwih2k_WoPcLzjhbMNZI9oacct7KQorqx9Ff9xNynvMjY6zkdVMr8ZacCK5qpiQ_Jf5i68YNege-uMaMwWyeB_D0PkHIbnQxUAg9vcYRuuidoXe_3Gg2LqypC3QJwWD6TFeYcwyZXqY40Ls4wDgpl1M8eovbFNcJhmGyvCfHFnzG85fzjDxcXtwvvxerm29Xy6-rwtSsHgvRScv6WvRK2X76KVONaTvWWS4bxa0qq6ZSlQHZNvNQWAmyq23JELkxyogzcnXg9hEe9Ta5AdKzjuD0fhDTWkOaInrUZctLwww2QvYV7zowPYCyNU6w0oCYWF8OrO2uG7A3GMYE_hX09UtwG72OT7qpuFBiBnx8AaT4c4d51IPLc3UQMO6y5pVoVNUqNUvZQWpSzDmh_bOmZHruXO8713Pnet_5ZJH_WIwbYe5tCuP8_42_AS5etX8
CitedBy_id crossref_primary_10_2147_IJGM_S401747
crossref_primary_10_3390_cells9112439
crossref_primary_10_1021_acs_jmedchem_2c00573
crossref_primary_10_3390_cancers14246214
crossref_primary_10_31857_S0006302924060117
crossref_primary_10_3390_ijms24043562
crossref_primary_10_3390_ph17101394
crossref_primary_10_3892_or_2024_8759
crossref_primary_10_5812_jjcmb_131286
crossref_primary_10_1038_s41420_023_01718_1
crossref_primary_10_3389_fonc_2023_1215194
crossref_primary_10_1021_acsabm_3c00941
crossref_primary_10_3390_cells11233790
crossref_primary_10_1038_s41419_023_06356_0
crossref_primary_10_1002_ctd2_260
crossref_primary_10_1016_j_bbamcr_2023_119616
crossref_primary_10_1134_S0006350924701161
crossref_primary_10_3390_proteomes10040035
crossref_primary_10_1016_j_biopha_2022_113929
crossref_primary_10_3892_br_2024_1906
crossref_primary_10_3390_cancers14225483
crossref_primary_10_3892_ijo_2024_5636
crossref_primary_10_1016_j_gene_2023_148057
crossref_primary_10_1002_ijc_34172
crossref_primary_10_1007_s11033_024_09477_7
crossref_primary_10_1152_ajpendo_00074_2022
crossref_primary_10_1002_tox_24061
crossref_primary_10_1016_j_yexcr_2024_113993
crossref_primary_10_3389_fcell_2021_728759
crossref_primary_10_1016_j_semcancer_2022_11_001
crossref_primary_10_3390_ijms25094970
crossref_primary_10_3390_cancers15204997
crossref_primary_10_1016_j_tcb_2022_09_009
crossref_primary_10_1158_0008_5472_CAN_23_3082
crossref_primary_10_3390_ijms22115687
crossref_primary_10_3390_cells13020159
crossref_primary_10_1186_s12964_024_01925_y
crossref_primary_10_3389_fcell_2021_657888
crossref_primary_10_3389_fcell_2025_1535563
crossref_primary_10_1016_j_mito_2024_101977
crossref_primary_10_3389_fonc_2023_1227884
crossref_primary_10_3390_ijms26051798
crossref_primary_10_1016_j_ejcb_2022_151225
crossref_primary_10_17221_77_2022_VETMED
crossref_primary_10_3390_ijms23126395
crossref_primary_10_3389_fonc_2022_912065
crossref_primary_10_1590_1414_431x2024e13796
crossref_primary_10_3390_ijms241411861
crossref_primary_10_1016_j_critrevonc_2023_103964
crossref_primary_10_18632_aging_205409
crossref_primary_10_3390_molecules28072907
crossref_primary_10_7554_eLife_97327_3
crossref_primary_10_3390_biom12010029
crossref_primary_10_1016_j_biomaterials_2023_122077
crossref_primary_10_1186_s12943_024_01932_0
crossref_primary_10_1016_j_cytogfr_2022_01_006
crossref_primary_10_1080_09603123_2023_2196058
crossref_primary_10_1016_j_pbiomolbio_2023_06_003
crossref_primary_10_1038_s42003_023_05561_z
crossref_primary_10_3389_fcell_2024_1463807
crossref_primary_10_3390_ijms24032494
crossref_primary_10_1016_j_placenta_2024_05_131
crossref_primary_10_3390_cancers15020395
crossref_primary_10_3390_cancers16050902
crossref_primary_10_1016_j_ejca_2022_11_025
crossref_primary_10_3390_ijms24076157
crossref_primary_10_1080_01913123_2022_2115596
crossref_primary_10_3390_biomedicines9091245
crossref_primary_10_3390_metabo11030154
crossref_primary_10_1016_j_actbio_2024_08_026
crossref_primary_10_3389_fonc_2021_661620
crossref_primary_10_3390_nu15132884
crossref_primary_10_3390_ijms242115500
crossref_primary_10_1177_11782234241276310
crossref_primary_10_1016_j_biopha_2024_116638
crossref_primary_10_1016_j_prp_2024_155540
crossref_primary_10_2174_1573399818666220519143414
crossref_primary_10_3390_metabo13010065
crossref_primary_10_4062_biomolther_2023_054
crossref_primary_10_7554_eLife_97327
crossref_primary_10_1016_j_celrep_2023_112590
crossref_primary_10_1007_s12079_023_00752_z
crossref_primary_10_2174_1574888X18666230417084518
crossref_primary_10_3390_cancers15174250
Cites_doi 10.1074/jbc.M117.810457
10.1038/nrm3758
10.1021/ja4028346
10.1186/s13059-014-0513-0
10.1016/j.cell.2017.07.032
10.18632/oncotarget.10837
10.1155/2015/865816
10.1038/nature22963
10.1038/onc.2011.383
10.1016/j.stem.2010.04.014
10.1038/nbt.3835
10.1530/jrf.0.0990673
10.1242/dev.091777
10.3389/fonc.2015.00155
10.1038/s41568-019-0213-x
10.1016/j.cell.2016.11.037
10.1002/stem.2012
10.4062/biomolther.2017.178
10.1158/0008-5472.CAN-06-3126
10.1073/pnas.1618298114
10.1038/nm.2304
10.1038/s41580-018-0080-4
10.1016/j.biocel.2018.08.003
10.1038/nature11742
10.1016/j.tcb.2018.12.001
10.1038/s41589-019-0264-z
10.1016/j.ccr.2011.08.006
10.1126/sciadv.aax7525
10.1038/s41586-018-0040-3
10.1016/j.cell.2009.11.007
10.1016/j.cell.2013.12.019
10.1016/j.stem.2014.01.001
10.4161/cc.10.24.18552
10.1126/science.aad7016
10.1371/journal.pone.0053498
10.1128/mcb.24.1.306-319.2004
10.1016/j.ccr.2010.11.015
10.1371/journal.pone.0045633
10.1016/j.stem.2015.11.012
10.1038/nature10860
10.1002/jcp.27740
10.3390/ijms19071901
10.1002/jcb.21460
10.1038/ng.3225
10.1038/s41568-019-0135-7
10.1016/j.bbagrm.2013.05.002
10.1038/nrc3536
10.1038/367645a0
10.1038/nrg.2017.33
10.1038/nature23876
10.1016/j.cell.2012.02.008
10.1002/jcp.27885
10.1038/srep09841
10.1016/j.gde.2014.08.005
10.3390/ijms20082042
10.1016/j.cell.2011.03.054
10.1038/nrm1835
10.1038/nsmb.1499
10.1371/journal.pone.0102041
10.1371/journal.pgen.1002723
10.1186/gb-2013-14-8-r91
10.1038/cr.2011.107
10.15252/embj.201490441
10.1158/0008-5472.CAN-14-2535
10.1182/blood.V85.4.873.bloodjournal854873
10.1074/jbc.C800074200
10.1038/ng.2491
10.1038/s41556-018-0195-z
10.1074/jbc.M112.347682
10.1038/s41421-018-0074-6
10.1038/nature13981
10.1038/nm0797-730
10.1016/j.cell.2013.06.005
10.1016/j.stem.2011.10.005
10.1186/s12929-018-0461-1
10.1038/s41580-020-0237-9
10.1016/j.cmet.2015.02.002
10.1038/ncb2765
10.1038/nature16064
10.1242/dev.071209
10.1016/j.stem.2013.02.005
10.1038/nature12885
10.1016/j.celrep.2017.01.055
10.1038/ncomms14374
10.1002/1878-0261.12083
10.1038/nm.4409
10.1038/ncomms15166
10.1038/nbt.3569
10.1073/pnas.78.12.7634
10.1097/01.mco.0000232894.28674.30
10.15252/embj.2019102961
10.1002/stem.1552
10.1038/nature12362
10.1038/srep30903
10.1073/pnas.0530291100
10.1038/sj.onc.1208927
10.1016/j.tcb.2015.07.012
10.1038/s41580-018-0076-0
10.1074/jbc.M116.729236
10.1038/nature14897
10.1186/s13619-015-0027-6
10.1158/0008-5472.CAN-16-2074
10.1016/j.yexcr.2018.01.024
10.1038/nrc3447
10.1002/path.4416
10.1016/j.cmet.2014.03.017
10.1126/science.1234850
10.1177/1535370218759636
10.1038/nature10953
10.1038/ncb1998
10.1093/glycob/cwx055
10.1038/nature15748
10.2466/pms.1979.48.1.79
10.3389/fonc.2020.00499
10.1089/scd.2016.0309
10.1016/j.cmet.2011.06.011
10.1093/nar/gkv430
10.1038/nature22816
10.1016/j.stem.2011.03.001
10.1101/gad.1640608
10.1016/j.molcel.2012.12.019
10.1038/s41388-018-0435-5
10.1074/jbc.C111.235960
10.1007/s00018-016-2313-z
10.3389/fonc.2020.00792
10.1016/j.cell.2016.08.008
10.1038/emboj.2012.71
10.1126/science.1226603
10.1038/292154a0
10.1016/j.gendis.2019.09.012
10.1038/nature11925
10.1016/j.stem.2020.02.008
10.1126/scisignal.2005304
10.3389/fmolb.2020.00079
10.1126/science.123.3191.309
10.1016/j.cell.2016.06.028
10.1016/j.ccr.2013.06.014
10.1172/JCI37691
10.1038/nature11333
10.1002/jcp.20166
10.1016/j.celrep.2017.10.091
10.1038/emboj.2012.357
10.1016/j.stem.2016.06.006
10.1007/s11684-018-0656-6
10.1016/j.stem.2010.04.015
10.1038/celldisc.2017.17
10.1016/j.stem.2012.10.005
10.1016/j.stem.2014.02.012
10.1016/j.cell.2006.07.024
10.1016/j.cell.2011.03.003
10.1038/ng.2807
10.1016/j.bbadis.2019.165556
10.1016/j.cell.2004.12.012
10.1016/j.stem.2014.12.002
ContentType Journal Article
Copyright Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo.
Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo
Copyright_xml – notice: Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo.
– notice: Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2020.00760
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3
PMC7423833
10_3389_fcell_2020_00760
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c505t-3b6f0d53d88fd389087c9b0bf26782f8147484ca6970bf23f6a6b5f10ee2cc8c3
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:32:07 EDT 2025
Thu Aug 21 13:57:27 EDT 2025
Thu Jul 10 16:25:45 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
Tue Jul 01 01:37:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-3b6f0d53d88fd389087c9b0bf26782f8147484ca6970bf23f6a6b5f10ee2cc8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Anup Kumar Singh, Beckman Research Institute, City of Hope, United States; Monica Montopoli, University of Padua, Italy
These authors have contributed equally to this work
Edited by: Marco Fiorillo, University of Salford, United Kingdom
This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2020.00760
PMID 32850862
PQID 2437849883
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423833
proquest_miscellaneous_2437849883
crossref_primary_10_3389_fcell_2020_00760
crossref_citationtrail_10_3389_fcell_2020_00760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-06
PublicationDateYYYYMMDD 2020-08-06
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-06
  day: 06
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Yin (B146) 2013; 135
Zhou (B156) 2017; 21
Pei (B101) 2019; 21
Calon (B16) 2015; 47
Li (B72) 2010; 7
Evans (B39) 1981; 292
Warburg (B133) 1956; 123
Arsenault (B7) 2013; 288
Thankamony (B123) 2020; 7
He (B53); 3
Yu (B147) 2017; 77
Ang (B5) 2011; 145
Peinado (B102) 2004; 24
Lee (B70) 2012; 7
Doege (B34) 2012; 488
Yang (B142) 2016; 7
Jolly (B62) 2017; 11
Moon (B85) 2011; 21
Yang (B141) 2020; 21
Bierie (B12) 2017; 114
Mathieu (B82) 2014; 14
Bonnet (B14) 1997; 3
Georgakopoulos-Soares (B48) 2020; 10
Carey (B18) 2015; 518
Fischer (B42) 1993; 99
Sampson (B107) 2014; 9
Chen (B23); 493
Feng (B40) 2020; 1866
Zhou (B155) 2012; 31
Shyh-Chang (B114) 2013; 140
Vella (B128) 2013; 49
Zheng (B154) 2015; 527
Lambert (B66) 2017; 168
Thiery (B124) 2009; 139
He (B54) 2015; 4
Shu (B113) 2014; 28
Uckun (B127) 1995; 85
Zhang (B153) 2018; 12
Chaffer (B20) 2013; 154
Lamouille (B67) 2014; 15
Moussaieff (B87) 2015; 21
Wu (B139) 2017; 18
Saunders (B108) 2017; 18
Amente (B4) 2013; 1829
Liu (B75) 2013; 15
Fumagalli (B46) 2020; 26
Najafi (B89) 2019; 234
He (B55); 292
Jiang (B60) 2019; 38
Ye (B144) 2015; 525
Wei (B134) 2015; 43
Mu (B88) 2015; 33
Wang (B131) 2020; 7
Liao (B73) 2011; 286
Deplus (B33) 2013; 32
Guo (B49) 2012; 148
Zaravinos (B148) 2015; 2015
Emmett (B38) 2019; 20
Aiello (B2) 2017; 547
Choi (B24) 2018; 26
Zhang (B152) 2014; 7
Davalos (B32) 2012; 31
He (B56) 2019; 5
Ye (B143) 2017; 547
Onder (B96) 2012; 483
Sun (B119) 2020; 10
Lee (B69) 2016; 73
Bronsert (B15) 2014; 234
Pastushenko (B99) 2018; 556
Jolly (B61) 2015; 5
Thiery (B125) 2006; 7
Lucena (B77) 2016; 291
Costa (B30) 2013; 495
Prigione (B103) 2014; 32
Ye (B145) 2015; 25
Lapidot (B68) 1994; 367
Morel (B86) 2012; 8
Lim (B74) 2012; 139
Dongre (B35) 2019; 20
Shiraki (B112) 2014; 19
Barcellos-Hoff (B9) 2013; 13
Mathieu (B83) 2017; 11
Patra (B100) 2013; 24
Neri (B91) 2013; 14
Kang (B63) 2019; 20
Harosh-Davidovich (B50) 2018; 364
Asadzadeh (B8) 2019; 234
Clevers (B27) 2011; 17
Eiriksson (B37) 2018; 103
Cao (B17) 2015; 34
Park (B97) 2008; 22
Malik (B80) 2015; 5
Wang (B129) 2017; 26
Takahashi (B122) 2006; 126
Nassour (B90) 2012; 7
Zavadil (B149) 2005; 24
Foster (B45) 1979; 48
Al-Hajj (B3) 2003; 100
Anokye-Danso (B6) 2011; 8
Batlle (B10) 2017; 23
Martin (B81) 1981; 78
Ng (B92) 2013; 339
Cervo (B19) 2017; 35
Folmes (B44) 2011; 14
Ryall (B105) 2015; 17
Shi (B111) 2004; 119
Hiew (B57) 2018; 25
Samavarchi-Tehrani (B106) 2010; 7
Wang (B132) 2016; 19
Li (B71) 2017; 3
Hu (B59) 2014; 14
Pastushenko (B98) 2019; 29
Chen (B21); 45
Macheda (B79) 2005; 202
Korpal (B65) 2008; 283
Craene (B31) 2013; 13
Clevers (B28) 2015; 350
Blaschke (B13) 2013; 500
He (B52) 2008; 15
Nieto (B94) 2013; 342
Stefano (B116) 2014; 506
Figueroa (B41) 2010; 18
Chen (B22); 45
Wu (B137) 2014; 156
McCoy (B84) 2009; 119
Schliekelman (B109) 2015; 75
Zhang (B151) 2012; 11
Kim (B64) 2017; 8
Luo (B78) 2011; 145
Williams (B136) 2019; 19
Lu (B76) 2012; 483
Ebrahimi (B36) 2019; 15
Ngo (B93) 2019; 19
Quivoron (B104) 2011; 20
Sun (B117) 2016; 6
Gao (B47) 2013; 12
Agathocleous (B1) 2017; 549
Hsu (B58) 2018; 243
Hay (B51) 1968
Setty (B110) 2016; 34
Wu (B140) 2019; 5
Nieto (B95) 2016; 166
Siemens (B115) 2011; 10
Swinnen (B121) 2006; 9
Clarke (B26) 2006; 66
Fischer (B43) 2015; 527
Beck (B11) 2015; 16
Constable (B29) 2017; 27
Sun (B118) 2020; 39
Cimmino (B25) 2017; 170
Wu (B138) 2016; 166
Tsai (B126) 2014; 15
Wang (B130) 2011; 9
Suzuki (B120) 2018; 19
Zhang (B150) 2008; 103
Wellner (B135) 2009; 11
References_xml – volume: 292
  start-page: 18542
  ident: B55
  article-title: Passive DNA demethylation preferentially up-regulates pluripotency-related genes and facilitates the generation of induced pluripotent stem cells.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.810457
– volume: 15
  start-page: 178
  year: 2014
  ident: B67
  article-title: Molecular mechanisms of epithelial-mesenchymal transition.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3758
– volume: 135
  start-page: 10396
  year: 2013
  ident: B146
  article-title: Ascorbic acid enhances Tet-Mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4028346
– volume: 15
  year: 2014
  ident: B126
  article-title: TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0513-0
– volume: 170
  start-page: 1079
  year: 2017
  ident: B25
  article-title: Restoration of TET2 function blocks aberrant self-renewal and leukemia progression.
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.032
– volume: 7
  start-page: 55543
  year: 2016
  ident: B142
  article-title: A FASN-TGF-beta1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer.
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10837
– volume: 2015
  year: 2015
  ident: B148
  article-title: The regulatory role of MicroRNAs in EMT and cancer.
  publication-title: J. Oncol.
  doi: 10.1155/2015/865816
– volume: 547
  start-page: E7
  year: 2017
  ident: B2
  article-title: Upholding a role for EMT in pancreatic cancer metastasis.
  publication-title: Nature
  doi: 10.1038/nature22963
– volume: 31
  start-page: 2062
  year: 2012
  ident: B32
  article-title: Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis.
  publication-title: Oncogene
  doi: 10.1038/onc.2011.383
– volume: 7
  start-page: 51
  year: 2010
  ident: B72
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 35
  start-page: 444
  year: 2017
  ident: B19
  article-title: Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3835
– volume: 99
  start-page: 673
  year: 1993
  ident: B42
  article-title: Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits.
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.0990673
– volume: 140
  start-page: 2535
  year: 2013
  ident: B114
  article-title: Stem cell metabolism in tissue development and aging.
  publication-title: Development
  doi: 10.1242/dev.091777
– volume: 5
  year: 2015
  ident: B61
  article-title: Implications of the hybrid epithelial/mesenchymal phenotype in metastasis.
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2015.00155
– volume: 19
  start-page: 716
  year: 2019
  ident: B136
  article-title: Controversies around epithelial-mesenchymal plasticity in cancer metastasis.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0213-x
– volume: 168
  start-page: 670
  year: 2017
  ident: B66
  article-title: Emerging Biological Principles of Metastasis.
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.037
– volume: 33
  start-page: 2135
  year: 2015
  ident: B88
  article-title: Sox2 Deacetylation by Sirt1 Is Involved in Mouse Somatic Reprogramming.
  publication-title: Stem Cells
  doi: 10.1002/stem.2012
– volume: 26
  start-page: 19
  year: 2018
  ident: B24
  article-title: Targeting glutamine metabolism for cancer treatment.
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2017.178
– volume: 66
  start-page: 9339
  year: 2006
  ident: B26
  article-title: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells.
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-3126
– volume: 114
  start-page: E2337
  year: 2017
  ident: B12
  article-title: Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1618298114
– volume: 17
  start-page: 313
  year: 2011
  ident: B27
  article-title: The cancer stem cell: premises, promises and challenges.
  publication-title: Nat. Med.
  doi: 10.1038/nm.2304
– volume: 20
  start-page: 69
  year: 2019
  ident: B35
  article-title: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0080-4
– volume: 103
  start-page: 99
  year: 2018
  ident: B37
  article-title: Altered plasmalogen content and fatty acid saturation following epithelial to mesenchymal transition in breast epithelial cell lines.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2018.08.003
– volume: 493
  start-page: 561
  ident: B23
  article-title: TET2 promotes histone O-GlcNAcylation during gene transcription.
  publication-title: Nature
  doi: 10.1038/nature11742
– volume: 29
  start-page: 212
  year: 2019
  ident: B98
  article-title: EMT transition states during tumor progression and metastasis.
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.12.001
– volume: 15
  start-page: 519
  year: 2019
  ident: B36
  article-title: Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0264-z
– volume: 20
  start-page: 25
  year: 2011
  ident: B104
  article-title: TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.08.006
– volume: 5
  year: 2019
  ident: B140
  article-title: Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax7525
– volume: 556
  start-page: 463
  year: 2018
  ident: B99
  article-title: Identification of the tumour transition states occurring during EMT.
  publication-title: Nature
  doi: 10.1038/s41586-018-0040-3
– volume: 139
  start-page: 871
  year: 2009
  ident: B124
  article-title: Epithelial-mesenchymal transitions in development and disease.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 156
  start-page: 45
  year: 2014
  ident: B137
  article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions.
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.019
– volume: 14
  start-page: 512
  year: 2014
  ident: B59
  article-title: Tet and TDG Mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.001
– volume: 10
  start-page: 4256
  year: 2011
  ident: B115
  article-title: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions.
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.24.18552
– volume: 350
  start-page: 1319
  year: 2015
  ident: B28
  article-title: STEM CELLS. What is an adult stem cell?
  publication-title: Science
  doi: 10.1126/science.aad7016
– volume: 7
  year: 2012
  ident: B90
  article-title: Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053498
– volume: 24
  start-page: 306
  year: 2004
  ident: B102
  article-title: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex.
  publication-title: Mol. Cell Biol.
  doi: 10.1128/mcb.24.1.306-319.2004
– volume: 18
  start-page: 553
  year: 2010
  ident: B41
  article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.11.015
– volume: 7
  year: 2012
  ident: B70
  article-title: Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045633
– volume: 17
  start-page: 651
  year: 2015
  ident: B105
  article-title: Metabolic Reprogramming of Stem Cell Epigenetics.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.11.012
– volume: 483
  start-page: 474
  year: 2012
  ident: B76
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation.
  publication-title: Nature
  doi: 10.1038/nature10860
– volume: 234
  start-page: 8381
  year: 2019
  ident: B89
  article-title: Cancer stem cells (CSCs) in cancer progression and therapy.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27740
– volume: 19
  year: 2018
  ident: B120
  article-title: MicroRNA control of TGF-beta signaling.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19071901
– volume: 103
  start-page: 709
  year: 2008
  ident: B150
  article-title: Mechanisms that mediate stem cell self-renewal and differentiation.
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21460
– volume: 47
  start-page: 320
  year: 2015
  ident: B16
  article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3225
– volume: 19
  start-page: 271
  year: 2019
  ident: B93
  article-title: Targeting cancer vulnerabilities with high-dose vitamin C.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0135-7
– volume: 1829
  start-page: 981
  year: 2013
  ident: B4
  article-title: The histone LSD1 demethylase in stemness and cancer transcription programs.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2013.05.002
– volume: 13
  start-page: 511
  year: 2013
  ident: B9
  article-title: The evolution of the cancer niche during multistage carcinogenesis.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3536
– volume: 367
  start-page: 645
  year: 1994
  ident: B68
  article-title: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
  publication-title: Nature
  doi: 10.1038/367645a0
– volume: 18
  start-page: 517
  year: 2017
  ident: B139
  article-title: TET-mediated active DNA demethylation: mechanism, function and beyond.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.33
– volume: 549
  start-page: 476
  year: 2017
  ident: B1
  article-title: Ascorbate regulates haematopoietic stem cell function and leukaemogenesis.
  publication-title: Nature
  doi: 10.1038/nature23876
– volume: 148
  start-page: 1015
  year: 2012
  ident: B49
  article-title: Slug and Sox9 cooperatively determine the mammary stem cell state.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.008
– volume: 234
  start-page: 10002
  year: 2019
  ident: B8
  article-title: microRNAs in cancer stem cells: biology, pathways, and therapeutic opportunities.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27885
– volume: 5
  year: 2015
  ident: B80
  article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors.
  publication-title: Sci. Rep.
  doi: 10.1038/srep09841
– volume: 28
  start-page: 32
  year: 2014
  ident: B113
  article-title: The function and regulation of mesenchymal-to-epithelial transition in somatic cell reprogramming.
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2014.08.005
– volume: 20
  year: 2019
  ident: B63
  article-title: Role of metabolic reprogramming in epithelial-mesenchymal transition (EMT).
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20082042
– volume: 145
  start-page: 732
  year: 2011
  ident: B78
  article-title: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.054
– volume: 7
  start-page: 131
  year: 2006
  ident: B125
  article-title: Complex networks orchestrate epithelial-mesenchymal transitions.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1835
– volume: 15
  start-page: 1169
  year: 2008
  ident: B52
  article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b(Ink4b).
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1499
– volume: 9
  year: 2014
  ident: B107
  article-title: Wilms’ tumor protein induces an epithelial-mesenchymal hybrid differentiation state in clear cell renal cell carcinoma.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102041
– volume: 8
  year: 2012
  ident: B86
  article-title: EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002723
– volume: 14
  year: 2013
  ident: B91
  article-title: Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-8-r91
– volume: 21
  start-page: 1305
  year: 2011
  ident: B85
  article-title: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1.
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.107
– volume: 34
  start-page: 609
  year: 2015
  ident: B17
  article-title: miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency.
  publication-title: EMBO J.
  doi: 10.15252/embj.201490441
– volume: 75
  start-page: 1789
  year: 2015
  ident: B109
  article-title: Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival.
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2535
– volume: 85
  start-page: 873
  year: 1995
  ident: B127
  article-title: Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia.
  publication-title: Blood
  doi: 10.1182/blood.V85.4.873.bloodjournal854873
– volume: 283
  start-page: 14910
  year: 2008
  ident: B65
  article-title: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800074200
– volume: 45
  start-page: 34
  ident: B22
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2491
– volume: 21
  start-page: 44
  year: 2019
  ident: B101
  article-title: Mesenchymal-epithelial transition in development and reprogramming.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0195-z
– volume: 288
  start-page: 633
  year: 2013
  ident: B7
  article-title: ras-Induced up-regulation of CTP:phosphocholine cytidylyltransferase alpha contributes to malignant transformation of intestinal epithelial cells.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.347682
– volume: 5
  year: 2019
  ident: B56
  article-title: Hemi-methylated CpG sites connect Dnmt1-knockdown-induced and Tet1-induced DNA demethylation during somatic cell reprogramming.
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0074-6
– volume: 518
  start-page: 413
  year: 2015
  ident: B18
  article-title: Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.
  publication-title: Nature
  doi: 10.1038/nature13981
– volume: 3
  start-page: 730
  year: 1997
  ident: B14
  article-title: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
  publication-title: Nat. Med.
  doi: 10.1038/nm0797-730
– volume: 154
  start-page: 61
  year: 2013
  ident: B20
  article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.005
– volume: 9
  start-page: 575
  year: 2011
  ident: B130
  article-title: The Histone Demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.10.005
– volume: 25
  year: 2018
  ident: B57
  article-title: Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype.
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-018-0461-1
– volume: 21
  start-page: 341
  year: 2020
  ident: B141
  article-title: Guidelines and definitions for research on epithelial-mesenchymal transition.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0237-9
– volume: 21
  start-page: 392
  year: 2015
  ident: B87
  article-title: Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.02.002
– volume: 15
  start-page: 829
  year: 2013
  ident: B75
  article-title: Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2765
– volume: 527
  start-page: 525
  year: 2015
  ident: B154
  article-title: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.
  publication-title: Nature
  doi: 10.1038/nature16064
– volume: 139
  start-page: 3471
  year: 2012
  ident: B74
  article-title: Epithelial-mesenchymal transitions: insights from development.
  publication-title: Development
  doi: 10.1242/dev.071209
– volume: 12
  start-page: 453
  year: 2013
  ident: B47
  article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.02.005
– volume: 506
  start-page: 235
  year: 2014
  ident: B116
  article-title: C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells.
  publication-title: Nature
  doi: 10.1038/nature12885
– volume: 18
  start-page: 1713
  year: 2017
  ident: B108
  article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency.
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.01.055
– volume: 8
  year: 2017
  ident: B64
  article-title: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14374
– volume: 11
  start-page: 755
  year: 2017
  ident: B83
  article-title: EMT and MET: Necessary or permissive for metastasis?
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12083
– volume: 23
  start-page: 1124
  year: 2017
  ident: B10
  article-title: Cancer stem cells revisited.
  publication-title: Nat. Med.
  doi: 10.1038/nm.4409
– volume: 3
  year: 2017
  ident: B71
  article-title: A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15166
– volume: 34
  start-page: 637
  year: 2016
  ident: B110
  article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3569
– volume: 78
  start-page: 7634
  year: 1981
  ident: B81
  article-title: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.78.12.7634
– volume: 9
  start-page: 358
  year: 2006
  ident: B121
  article-title: Increased lipogenesis in cancer cells: new players, novel targets.
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/01.mco.0000232894.28674.30
– volume: 39
  year: 2020
  ident: B118
  article-title: Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency.
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102961
– volume: 32
  start-page: 364
  year: 2014
  ident: B103
  article-title: HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
  publication-title: Stem Cells
  doi: 10.1002/stem.1552
– volume: 500
  start-page: 222
  year: 2013
  ident: B13
  article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.
  publication-title: Nature
  doi: 10.1038/nature12362
– volume: 6
  year: 2016
  ident: B117
  article-title: Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch.
  publication-title: Sci. Rep.
  doi: 10.1038/srep30903
– volume: 100
  start-page: 3983
  year: 2003
  ident: B3
  article-title: Prospective identification of tumorigenic breast cancer cells.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0530291100
– volume: 24
  start-page: 5764
  year: 2005
  ident: B149
  article-title: TGF-beta and epithelial-to-mesenchymal transitions.
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208927
– volume: 25
  start-page: 675
  year: 2015
  ident: B145
  article-title: Epithelial-mesenchymal plasticity: a central regulator of cancer progression.
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.07.012
– volume: 11
  start-page: 755
  year: 2017
  ident: B62
  article-title: EMT and MET: necessary or permissive for metastasis?
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12083
– volume: 20
  start-page: 102
  year: 2019
  ident: B38
  article-title: Integrative regulation of physiology by histone deacetylase 3.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0076-0
– volume: 291
  start-page: 12917
  year: 2016
  ident: B77
  article-title: Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.729236
– volume: 525
  start-page: 256
  year: 2015
  ident: B144
  article-title: Distinct EMT programs control normal mammary stem cells and tumour-initiating cells.
  publication-title: Nature
  doi: 10.1038/nature14897
– volume: 4
  year: 2015
  ident: B54
  article-title: Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo.
  publication-title: Cell Regen.
  doi: 10.1186/s13619-015-0027-6
– volume: 77
  start-page: 1564
  year: 2017
  ident: B147
  article-title: Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation.
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2074
– volume: 364
  start-page: 42
  year: 2018
  ident: B50
  article-title: O-GlcNAcylation affects beta-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2018.01.024
– volume: 13
  start-page: 97
  year: 2013
  ident: B31
  article-title: Regulatory networks defining EMT during cancer initiation and progression.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3447
– volume: 234
  start-page: 410
  year: 2014
  ident: B15
  article-title: Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface.
  publication-title: J. Pathol.
  doi: 10.1002/path.4416
– volume: 19
  start-page: 780
  year: 2014
  ident: B112
  article-title: Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.017
– volume: 342
  year: 2013
  ident: B94
  article-title: Epithelial plasticity: a common theme in embryonic and cancer cells.
  publication-title: Science
  doi: 10.1126/science.1234850
– volume: 243
  start-page: 563
  year: 2018
  ident: B58
  article-title: Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370218759636
– volume: 483
  start-page: 598
  year: 2012
  ident: B96
  article-title: Chromatin-modifying enzymes as modulators of reprogramming.
  publication-title: Nature
  doi: 10.1038/nature10953
– volume: 11
  start-page: 1487
  year: 2009
  ident: B135
  article-title: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1998
– volume: 27
  start-page: 927
  year: 2017
  ident: B29
  article-title: O-GlcNAc transferase regulates transcriptional activity of human Oct4.
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwx055
– volume: 527
  start-page: 472
  year: 2015
  ident: B43
  article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.
  publication-title: Nature
  doi: 10.1038/nature15748
– volume: 48
  start-page: 79
  year: 1979
  ident: B45
  article-title: Birth order and intelligence: an immunological interpretation.
  publication-title: Percept. Mot. Skills
  doi: 10.2466/pms.1979.48.1.79
– start-page: 31
  year: 1968
  ident: B51
  article-title: Organization and fine structure of epithelium and mesenchyme in the developing chick embryos
  publication-title: Proceedings of the 18th Hahnemann Symposium Epithelial-MesenchymalInteractions
– volume: 10
  year: 2020
  ident: B48
  article-title: EMT factors and metabolic pathways in cancer.
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00499
– volume: 26
  start-page: 743
  year: 2017
  ident: B129
  article-title: CCCTC-binding factor transcriptionally targets Wdr5 to mediate somatic cell reprogramming.
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2016.0309
– volume: 14
  start-page: 264
  year: 2011
  ident: B44
  article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.06.011
– volume: 43
  start-page: 5409
  year: 2015
  ident: B134
  article-title: An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv430
– volume: 547
  start-page: E1
  year: 2017
  ident: B143
  article-title: Upholding a role for EMT in breast cancer metastasis.
  publication-title: Nature
  doi: 10.1038/nature22816
– volume: 8
  start-page: 376
  year: 2011
  ident: B6
  article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.03.001
– volume: 22
  start-page: 894
  year: 2008
  ident: B97
  article-title: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1640608
– volume: 49
  start-page: 645
  year: 2013
  ident: B128
  article-title: Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.019
– volume: 38
  start-page: 301
  year: 2019
  ident: B60
  article-title: O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit.
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0435-5
– volume: 286
  start-page: 17359
  year: 2011
  ident: B73
  article-title: MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.235960
– volume: 73
  start-page: 4643
  year: 2016
  ident: B69
  article-title: Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2313-z
– volume: 10
  year: 2020
  ident: B119
  article-title: Metabolic reprogramming and epithelial-mesenchymal plasticity: opportunities and challenges for cancer therapy.
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00792
– volume: 166
  start-page: 1371
  year: 2016
  ident: B138
  article-title: Cellular Metabolism and Induced Pluripotency.
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.008
– volume: 31
  start-page: 2103
  year: 2012
  ident: B155
  article-title: HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.71
– volume: 339
  start-page: 222
  year: 2013
  ident: B92
  article-title: Influence of threonine metabolism on S-Adenosylmethionine and histone methylation.
  publication-title: Science
  doi: 10.1126/science.1226603
– volume: 292
  start-page: 154
  year: 1981
  ident: B39
  article-title: Establishment in culture of pluripotential cells from mouse embryos.
  publication-title: Nature
  doi: 10.1038/292154a0
– volume: 7
  start-page: 172
  year: 2020
  ident: B131
  article-title: Metabolic reprogram associated with epithelial-mesenchymal transition in tumor progression and metastasis.
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2019.09.012
– volume: 495
  start-page: 370
  year: 2013
  ident: B30
  article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency.
  publication-title: Nature
  doi: 10.1038/nature11925
– volume: 26
  start-page: 569
  year: 2020
  ident: B46
  article-title: Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.02.008
– volume: 7
  year: 2014
  ident: B152
  article-title: TGF-beta-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops.
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2005304
– volume: 7
  year: 2020
  ident: B123
  article-title: Cancer stem cell plasticity - a deadly deal.
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00079
– volume: 123
  start-page: 309
  year: 1956
  ident: B133
  article-title: On the origin of cancer cells.
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 166
  start-page: 21
  year: 2016
  ident: B95
  article-title: Emt: 2016.
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.028
– volume: 24
  start-page: 213
  year: 2013
  ident: B100
  article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.06.014
– volume: 119
  start-page: 2663
  year: 2009
  ident: B84
  article-title: Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition.
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI37691
– volume: 488
  start-page: 652
  year: 2012
  ident: B34
  article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
  publication-title: Nature
  doi: 10.1038/nature11333
– volume: 202
  start-page: 654
  year: 2005
  ident: B79
  article-title: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20166
– volume: 21
  start-page: 2160
  year: 2017
  ident: B156
  article-title: Kdm2b regulates somatic reprogramming through variant PRC1 complex-dependent function.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.091
– volume: 32
  start-page: 645
  year: 2013
  ident: B33
  article-title: TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.357
– volume: 19
  start-page: 449
  year: 2016
  ident: B132
  article-title: Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.06.006
– volume: 12
  start-page: 361
  year: 2018
  ident: B153
  article-title: Epithelial-to-mesenchymal transition in cancer: complexity and opportunities.
  publication-title: Front. Med.
  doi: 10.1007/s11684-018-0656-6
– volume: 7
  start-page: 64
  year: 2010
  ident: B106
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– volume: 3
  ident: B53
  article-title: Sequential EMT-MET induces neuronal conversion through Sox2.
  publication-title: Cell Discov.
  doi: 10.1038/celldisc.2017.17
– volume: 11
  start-page: 589
  year: 2012
  ident: B151
  article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.005
– volume: 14
  start-page: 592
  year: 2014
  ident: B82
  article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.02.012
– volume: 126
  start-page: 663
  year: 2006
  ident: B122
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 145
  start-page: 183
  year: 2011
  ident: B5
  article-title: Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.003
– volume: 45
  start-page: 1504
  ident: B21
  article-title: Vitamin C modulates TET1 function during somatic cell reprogramming.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2807
– volume: 1866
  year: 2020
  ident: B40
  article-title: O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fibrosis.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2019.165556
– volume: 119
  start-page: 941
  year: 2004
  ident: B111
  article-title: Histone demethylation mediated by the nuclear arnine oxidase homolog LSD1.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– volume: 16
  start-page: 67
  year: 2015
  ident: B11
  article-title: Different levels of Twist1 regulate skin tumor initiation, stemness, and progression.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.12.002
SSID ssj0001257583
Score 2.4389696
SecondaryResourceType review_article
Snippet Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 760
SubjectTerms cancer
Cell and Developmental Biology
EMT
energy metabolism
glycolysis
OXPHOS
reprogramming
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8iCL6Inzi_iOCLD2Vt06aJbzo2RJwvOthbaNIEB1s3Zofsv_cu3XR90Rdf0wtJ7q65u-TyO0JuChmaxDoeILZUkICHH8gUBcIQXI5pKUJ8O9x_4Y-D5GmYDjdKfWFOWA0PXDOujXhdJjQ2Y7xIYq1zU-S5cKkNrY1M7nE-weZtBFP16Qq4IYLV95IQhcm2w4NwiAdjTOXKPCLljx3ycP0NH7OZIblhcnr7ZG_lK9L7eo4HZMuWh2Snrh65PCLj7gwfVIxBg4I-PiIy78sJ0Hvz4zOxaF4WtG8rEPR4ZOjr56jyqZN0VNIOint-R59hqwPNo735dEJfpx7BlXZgFRR88zp5awJdjsmg133rPAar4gmBAaemCpjmLixSVgjhCmBAKDIjdahdDOYpdiJKEEXU5Fxm2Mgcz7lOXQRsjY0Rhp2Q7XJa2lNCnYtElnEJezSEY1aLBCgyIbUObcFM1CLtNSuVWSGLY4GLsYIIA5mvPPMVMl955rfI7XePWY2q8QvtA0rnmw7xsH0DaIlaaYn6S0ta5HotWwX_Dw6Rl3a6-FAIyCgSKQTQZA2hN0ZsfilH7x6JG6-5BWNn_zHFc7KLi_bJhfyCbFfzhb0Eh6fSV163vwCqNANR
  priority: 102
  providerName: Directory of Open Access Journals
Title Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming
URI https://www.proquest.com/docview/2437849883
https://pubmed.ncbi.nlm.nih.gov/PMC7423833
https://doaj.org/article/1921c0ce736d42bbacdaa8f5e0ee1ca3
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEA6Hx8G9yHl6uJ5KDnzxoWfbtEkqyKGLixyuL96Cb6FJE13otloruv_embR6VxCf7jWdkGYmycwkM98QsldkoUms4wFiSwUJWPhBlqJAGILLMZ3JEHOHpxf8bJb8vkqv_qZH9wy8f9O1w3pSs6b8-XS3_AUb_gg9TtC3Bw7vuMHVizFKS3Bw4D-CXhJYz2DaG_vdjQuYJpJ1b5VvdhzoJg_hP7A7h1GT_6ihyRey2tuP9LgT-Br5YKuv5FNXUXK5TsrTW0yyKGFVBVNMLDI3ywXQe5Xko7NoXhV0alsQfjk39PJx3vpwSjqv6BiXQHNIz-H4g9VIJ029oJe1R3WlY5gFBXu9C-haQJcNMpuc_hmfBX1BhcCAodMGTHMXFikrpHQFMCCUwmQ61C4GlRU7GSWILGpynglsZI7nXKcuCq2NjZGGfSMrVV3ZTUKdi6QQPINzG1w0q2UCFEJmWoe2YCYakYMXVirTo41j0YtSgdeBzFee-QqZrzzzR2T_tcdth7TxDu0JSueVDjGyfUPdXKt-yylEejOhsYLxIom1zk2R59KlFqYTmZyNyI8X2SrYUzhEXtn64V4hSKNMMimBRgyEPhhx-KWa33h0bnz6loxt_Y9f_E4-46R9wCHfJitt82B3wAhq9a6_PNj1K_wZLhQLcA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-Mesenchymal+Transition+and+Metabolic+Switching+in+Cancer%3A+Lessons+From+Somatic+Cell+Reprogramming&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Xiaowei+Lai&rft.au=Xiaowei+Lai&rft.au=Xiaowei+Lai&rft.au=Qian+Li&rft.date=2020-08-06&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcell.2020.00760&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon