Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 8; p. 760 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
06.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment. |
---|---|
AbstractList | Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment. Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment. |
Author | Li, Qian Lin, Jiechun Zheng, Hui Lai, Xiaowei Wu, Fang Chen, Jiekai Guo, Lin |
AuthorAffiliation | 3 Savaid Medical School, University of Chinese Academy of Sciences , Beijing , China 2 Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) , Guangzhou , China 4 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine , Guangzhou , China 1 CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China |
AuthorAffiliation_xml | – name: 2 Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) , Guangzhou , China – name: 1 CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China – name: 4 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine , Guangzhou , China – name: 3 Savaid Medical School, University of Chinese Academy of Sciences , Beijing , China |
Author_xml | – sequence: 1 givenname: Xiaowei surname: Lai fullname: Lai, Xiaowei – sequence: 2 givenname: Qian surname: Li fullname: Li, Qian – sequence: 3 givenname: Fang surname: Wu fullname: Wu, Fang – sequence: 4 givenname: Jiechun surname: Lin fullname: Lin, Jiechun – sequence: 5 givenname: Jiekai surname: Chen fullname: Chen, Jiekai – sequence: 6 givenname: Hui surname: Zheng fullname: Zheng, Hui – sequence: 7 givenname: Lin surname: Guo fullname: Guo, Lin |
BookMark | eNp1kc1r3DAQxUVJaNI09x517MVbWbJluYdCWZI2sCGQD-hNjOXRroIsbSVvSv772ruhNIWeJEbv_eaJ944chRiQkA8lWwih2k_WoPcLzjhbMNZI9oacct7KQorqx9Ff9xNynvMjY6zkdVMr8ZacCK5qpiQ_Jf5i68YNege-uMaMwWyeB_D0PkHIbnQxUAg9vcYRuuidoXe_3Gg2LqypC3QJwWD6TFeYcwyZXqY40Ls4wDgpl1M8eovbFNcJhmGyvCfHFnzG85fzjDxcXtwvvxerm29Xy6-rwtSsHgvRScv6WvRK2X76KVONaTvWWS4bxa0qq6ZSlQHZNvNQWAmyq23JELkxyogzcnXg9hEe9Ta5AdKzjuD0fhDTWkOaInrUZctLwww2QvYV7zowPYCyNU6w0oCYWF8OrO2uG7A3GMYE_hX09UtwG72OT7qpuFBiBnx8AaT4c4d51IPLc3UQMO6y5pVoVNUqNUvZQWpSzDmh_bOmZHruXO8713Pnet_5ZJH_WIwbYe5tCuP8_42_AS5etX8 |
CitedBy_id | crossref_primary_10_2147_IJGM_S401747 crossref_primary_10_3390_cells9112439 crossref_primary_10_1021_acs_jmedchem_2c00573 crossref_primary_10_3390_cancers14246214 crossref_primary_10_31857_S0006302924060117 crossref_primary_10_3390_ijms24043562 crossref_primary_10_3390_ph17101394 crossref_primary_10_3892_or_2024_8759 crossref_primary_10_5812_jjcmb_131286 crossref_primary_10_1038_s41420_023_01718_1 crossref_primary_10_3389_fonc_2023_1215194 crossref_primary_10_1021_acsabm_3c00941 crossref_primary_10_3390_cells11233790 crossref_primary_10_1038_s41419_023_06356_0 crossref_primary_10_1002_ctd2_260 crossref_primary_10_1016_j_bbamcr_2023_119616 crossref_primary_10_1134_S0006350924701161 crossref_primary_10_3390_proteomes10040035 crossref_primary_10_1016_j_biopha_2022_113929 crossref_primary_10_3892_br_2024_1906 crossref_primary_10_3390_cancers14225483 crossref_primary_10_3892_ijo_2024_5636 crossref_primary_10_1016_j_gene_2023_148057 crossref_primary_10_1002_ijc_34172 crossref_primary_10_1007_s11033_024_09477_7 crossref_primary_10_1152_ajpendo_00074_2022 crossref_primary_10_1002_tox_24061 crossref_primary_10_1016_j_yexcr_2024_113993 crossref_primary_10_3389_fcell_2021_728759 crossref_primary_10_1016_j_semcancer_2022_11_001 crossref_primary_10_3390_ijms25094970 crossref_primary_10_3390_cancers15204997 crossref_primary_10_1016_j_tcb_2022_09_009 crossref_primary_10_1158_0008_5472_CAN_23_3082 crossref_primary_10_3390_ijms22115687 crossref_primary_10_3390_cells13020159 crossref_primary_10_1186_s12964_024_01925_y crossref_primary_10_3389_fcell_2021_657888 crossref_primary_10_3389_fcell_2025_1535563 crossref_primary_10_1016_j_mito_2024_101977 crossref_primary_10_3389_fonc_2023_1227884 crossref_primary_10_3390_ijms26051798 crossref_primary_10_1016_j_ejcb_2022_151225 crossref_primary_10_17221_77_2022_VETMED crossref_primary_10_3390_ijms23126395 crossref_primary_10_3389_fonc_2022_912065 crossref_primary_10_1590_1414_431x2024e13796 crossref_primary_10_3390_ijms241411861 crossref_primary_10_1016_j_critrevonc_2023_103964 crossref_primary_10_18632_aging_205409 crossref_primary_10_3390_molecules28072907 crossref_primary_10_7554_eLife_97327_3 crossref_primary_10_3390_biom12010029 crossref_primary_10_1016_j_biomaterials_2023_122077 crossref_primary_10_1186_s12943_024_01932_0 crossref_primary_10_1016_j_cytogfr_2022_01_006 crossref_primary_10_1080_09603123_2023_2196058 crossref_primary_10_1016_j_pbiomolbio_2023_06_003 crossref_primary_10_1038_s42003_023_05561_z crossref_primary_10_3389_fcell_2024_1463807 crossref_primary_10_3390_ijms24032494 crossref_primary_10_1016_j_placenta_2024_05_131 crossref_primary_10_3390_cancers15020395 crossref_primary_10_3390_cancers16050902 crossref_primary_10_1016_j_ejca_2022_11_025 crossref_primary_10_3390_ijms24076157 crossref_primary_10_1080_01913123_2022_2115596 crossref_primary_10_3390_biomedicines9091245 crossref_primary_10_3390_metabo11030154 crossref_primary_10_1016_j_actbio_2024_08_026 crossref_primary_10_3389_fonc_2021_661620 crossref_primary_10_3390_nu15132884 crossref_primary_10_3390_ijms242115500 crossref_primary_10_1177_11782234241276310 crossref_primary_10_1016_j_biopha_2024_116638 crossref_primary_10_1016_j_prp_2024_155540 crossref_primary_10_2174_1573399818666220519143414 crossref_primary_10_3390_metabo13010065 crossref_primary_10_4062_biomolther_2023_054 crossref_primary_10_7554_eLife_97327 crossref_primary_10_1016_j_celrep_2023_112590 crossref_primary_10_1007_s12079_023_00752_z crossref_primary_10_2174_1574888X18666230417084518 crossref_primary_10_3390_cancers15174250 |
Cites_doi | 10.1074/jbc.M117.810457 10.1038/nrm3758 10.1021/ja4028346 10.1186/s13059-014-0513-0 10.1016/j.cell.2017.07.032 10.18632/oncotarget.10837 10.1155/2015/865816 10.1038/nature22963 10.1038/onc.2011.383 10.1016/j.stem.2010.04.014 10.1038/nbt.3835 10.1530/jrf.0.0990673 10.1242/dev.091777 10.3389/fonc.2015.00155 10.1038/s41568-019-0213-x 10.1016/j.cell.2016.11.037 10.1002/stem.2012 10.4062/biomolther.2017.178 10.1158/0008-5472.CAN-06-3126 10.1073/pnas.1618298114 10.1038/nm.2304 10.1038/s41580-018-0080-4 10.1016/j.biocel.2018.08.003 10.1038/nature11742 10.1016/j.tcb.2018.12.001 10.1038/s41589-019-0264-z 10.1016/j.ccr.2011.08.006 10.1126/sciadv.aax7525 10.1038/s41586-018-0040-3 10.1016/j.cell.2009.11.007 10.1016/j.cell.2013.12.019 10.1016/j.stem.2014.01.001 10.4161/cc.10.24.18552 10.1126/science.aad7016 10.1371/journal.pone.0053498 10.1128/mcb.24.1.306-319.2004 10.1016/j.ccr.2010.11.015 10.1371/journal.pone.0045633 10.1016/j.stem.2015.11.012 10.1038/nature10860 10.1002/jcp.27740 10.3390/ijms19071901 10.1002/jcb.21460 10.1038/ng.3225 10.1038/s41568-019-0135-7 10.1016/j.bbagrm.2013.05.002 10.1038/nrc3536 10.1038/367645a0 10.1038/nrg.2017.33 10.1038/nature23876 10.1016/j.cell.2012.02.008 10.1002/jcp.27885 10.1038/srep09841 10.1016/j.gde.2014.08.005 10.3390/ijms20082042 10.1016/j.cell.2011.03.054 10.1038/nrm1835 10.1038/nsmb.1499 10.1371/journal.pone.0102041 10.1371/journal.pgen.1002723 10.1186/gb-2013-14-8-r91 10.1038/cr.2011.107 10.15252/embj.201490441 10.1158/0008-5472.CAN-14-2535 10.1182/blood.V85.4.873.bloodjournal854873 10.1074/jbc.C800074200 10.1038/ng.2491 10.1038/s41556-018-0195-z 10.1074/jbc.M112.347682 10.1038/s41421-018-0074-6 10.1038/nature13981 10.1038/nm0797-730 10.1016/j.cell.2013.06.005 10.1016/j.stem.2011.10.005 10.1186/s12929-018-0461-1 10.1038/s41580-020-0237-9 10.1016/j.cmet.2015.02.002 10.1038/ncb2765 10.1038/nature16064 10.1242/dev.071209 10.1016/j.stem.2013.02.005 10.1038/nature12885 10.1016/j.celrep.2017.01.055 10.1038/ncomms14374 10.1002/1878-0261.12083 10.1038/nm.4409 10.1038/ncomms15166 10.1038/nbt.3569 10.1073/pnas.78.12.7634 10.1097/01.mco.0000232894.28674.30 10.15252/embj.2019102961 10.1002/stem.1552 10.1038/nature12362 10.1038/srep30903 10.1073/pnas.0530291100 10.1038/sj.onc.1208927 10.1016/j.tcb.2015.07.012 10.1038/s41580-018-0076-0 10.1074/jbc.M116.729236 10.1038/nature14897 10.1186/s13619-015-0027-6 10.1158/0008-5472.CAN-16-2074 10.1016/j.yexcr.2018.01.024 10.1038/nrc3447 10.1002/path.4416 10.1016/j.cmet.2014.03.017 10.1126/science.1234850 10.1177/1535370218759636 10.1038/nature10953 10.1038/ncb1998 10.1093/glycob/cwx055 10.1038/nature15748 10.2466/pms.1979.48.1.79 10.3389/fonc.2020.00499 10.1089/scd.2016.0309 10.1016/j.cmet.2011.06.011 10.1093/nar/gkv430 10.1038/nature22816 10.1016/j.stem.2011.03.001 10.1101/gad.1640608 10.1016/j.molcel.2012.12.019 10.1038/s41388-018-0435-5 10.1074/jbc.C111.235960 10.1007/s00018-016-2313-z 10.3389/fonc.2020.00792 10.1016/j.cell.2016.08.008 10.1038/emboj.2012.71 10.1126/science.1226603 10.1038/292154a0 10.1016/j.gendis.2019.09.012 10.1038/nature11925 10.1016/j.stem.2020.02.008 10.1126/scisignal.2005304 10.3389/fmolb.2020.00079 10.1126/science.123.3191.309 10.1016/j.cell.2016.06.028 10.1016/j.ccr.2013.06.014 10.1172/JCI37691 10.1038/nature11333 10.1002/jcp.20166 10.1016/j.celrep.2017.10.091 10.1038/emboj.2012.357 10.1016/j.stem.2016.06.006 10.1007/s11684-018-0656-6 10.1016/j.stem.2010.04.015 10.1038/celldisc.2017.17 10.1016/j.stem.2012.10.005 10.1016/j.stem.2014.02.012 10.1016/j.cell.2006.07.024 10.1016/j.cell.2011.03.003 10.1038/ng.2807 10.1016/j.bbadis.2019.165556 10.1016/j.cell.2004.12.012 10.1016/j.stem.2014.12.002 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo |
Copyright_xml | – notice: Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. – notice: Copyright © 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo. 2020 Lai, Li, Wu, Lin, Chen, Zheng and Guo |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2020.00760 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3 PMC7423833 10_3389_fcell_2020_00760 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c505t-3b6f0d53d88fd389087c9b0bf26782f8147484ca6970bf23f6a6b5f10ee2cc8c3 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Thu Aug 21 13:57:27 EDT 2025 Thu Jul 10 16:25:45 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 Tue Jul 01 01:37:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-3b6f0d53d88fd389087c9b0bf26782f8147484ca6970bf23f6a6b5f10ee2cc8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Anup Kumar Singh, Beckman Research Institute, City of Hope, United States; Monica Montopoli, University of Padua, Italy These authors have contributed equally to this work Edited by: Marco Fiorillo, University of Salford, United Kingdom This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2020.00760 |
PMID | 32850862 |
PQID | 2437849883 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423833 proquest_miscellaneous_2437849883 crossref_primary_10_3389_fcell_2020_00760 crossref_citationtrail_10_3389_fcell_2020_00760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-06 |
PublicationDateYYYYMMDD | 2020-08-06 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Yin (B146) 2013; 135 Zhou (B156) 2017; 21 Pei (B101) 2019; 21 Calon (B16) 2015; 47 Li (B72) 2010; 7 Evans (B39) 1981; 292 Warburg (B133) 1956; 123 Arsenault (B7) 2013; 288 Thankamony (B123) 2020; 7 He (B53); 3 Yu (B147) 2017; 77 Ang (B5) 2011; 145 Peinado (B102) 2004; 24 Lee (B70) 2012; 7 Doege (B34) 2012; 488 Yang (B142) 2016; 7 Jolly (B62) 2017; 11 Moon (B85) 2011; 21 Yang (B141) 2020; 21 Bierie (B12) 2017; 114 Mathieu (B82) 2014; 14 Bonnet (B14) 1997; 3 Georgakopoulos-Soares (B48) 2020; 10 Carey (B18) 2015; 518 Fischer (B42) 1993; 99 Sampson (B107) 2014; 9 Chen (B23); 493 Feng (B40) 2020; 1866 Zhou (B155) 2012; 31 Shyh-Chang (B114) 2013; 140 Vella (B128) 2013; 49 Zheng (B154) 2015; 527 Lambert (B66) 2017; 168 Thiery (B124) 2009; 139 He (B54) 2015; 4 Shu (B113) 2014; 28 Uckun (B127) 1995; 85 Zhang (B153) 2018; 12 Chaffer (B20) 2013; 154 Lamouille (B67) 2014; 15 Moussaieff (B87) 2015; 21 Wu (B139) 2017; 18 Saunders (B108) 2017; 18 Amente (B4) 2013; 1829 Liu (B75) 2013; 15 Fumagalli (B46) 2020; 26 Najafi (B89) 2019; 234 He (B55); 292 Jiang (B60) 2019; 38 Ye (B144) 2015; 525 Wei (B134) 2015; 43 Mu (B88) 2015; 33 Wang (B131) 2020; 7 Liao (B73) 2011; 286 Deplus (B33) 2013; 32 Guo (B49) 2012; 148 Zaravinos (B148) 2015; 2015 Emmett (B38) 2019; 20 Aiello (B2) 2017; 547 Choi (B24) 2018; 26 Zhang (B152) 2014; 7 Davalos (B32) 2012; 31 He (B56) 2019; 5 Ye (B143) 2017; 547 Onder (B96) 2012; 483 Sun (B119) 2020; 10 Lee (B69) 2016; 73 Bronsert (B15) 2014; 234 Pastushenko (B99) 2018; 556 Jolly (B61) 2015; 5 Thiery (B125) 2006; 7 Lucena (B77) 2016; 291 Costa (B30) 2013; 495 Prigione (B103) 2014; 32 Ye (B145) 2015; 25 Lapidot (B68) 1994; 367 Morel (B86) 2012; 8 Lim (B74) 2012; 139 Dongre (B35) 2019; 20 Shiraki (B112) 2014; 19 Barcellos-Hoff (B9) 2013; 13 Mathieu (B83) 2017; 11 Patra (B100) 2013; 24 Neri (B91) 2013; 14 Kang (B63) 2019; 20 Harosh-Davidovich (B50) 2018; 364 Asadzadeh (B8) 2019; 234 Clevers (B27) 2011; 17 Eiriksson (B37) 2018; 103 Cao (B17) 2015; 34 Park (B97) 2008; 22 Malik (B80) 2015; 5 Wang (B129) 2017; 26 Takahashi (B122) 2006; 126 Nassour (B90) 2012; 7 Zavadil (B149) 2005; 24 Foster (B45) 1979; 48 Al-Hajj (B3) 2003; 100 Anokye-Danso (B6) 2011; 8 Batlle (B10) 2017; 23 Martin (B81) 1981; 78 Ng (B92) 2013; 339 Cervo (B19) 2017; 35 Folmes (B44) 2011; 14 Ryall (B105) 2015; 17 Shi (B111) 2004; 119 Hiew (B57) 2018; 25 Samavarchi-Tehrani (B106) 2010; 7 Wang (B132) 2016; 19 Li (B71) 2017; 3 Hu (B59) 2014; 14 Pastushenko (B98) 2019; 29 Chen (B21); 45 Macheda (B79) 2005; 202 Korpal (B65) 2008; 283 Craene (B31) 2013; 13 Clevers (B28) 2015; 350 Blaschke (B13) 2013; 500 He (B52) 2008; 15 Nieto (B94) 2013; 342 Stefano (B116) 2014; 506 Figueroa (B41) 2010; 18 Chen (B22); 45 Wu (B137) 2014; 156 McCoy (B84) 2009; 119 Schliekelman (B109) 2015; 75 Zhang (B151) 2012; 11 Kim (B64) 2017; 8 Luo (B78) 2011; 145 Williams (B136) 2019; 19 Lu (B76) 2012; 483 Ebrahimi (B36) 2019; 15 Ngo (B93) 2019; 19 Quivoron (B104) 2011; 20 Sun (B117) 2016; 6 Gao (B47) 2013; 12 Agathocleous (B1) 2017; 549 Hsu (B58) 2018; 243 Hay (B51) 1968 Setty (B110) 2016; 34 Wu (B140) 2019; 5 Nieto (B95) 2016; 166 Siemens (B115) 2011; 10 Swinnen (B121) 2006; 9 Clarke (B26) 2006; 66 Fischer (B43) 2015; 527 Beck (B11) 2015; 16 Constable (B29) 2017; 27 Sun (B118) 2020; 39 Cimmino (B25) 2017; 170 Wu (B138) 2016; 166 Tsai (B126) 2014; 15 Wang (B130) 2011; 9 Suzuki (B120) 2018; 19 Zhang (B150) 2008; 103 Wellner (B135) 2009; 11 |
References_xml | – volume: 292 start-page: 18542 ident: B55 article-title: Passive DNA demethylation preferentially up-regulates pluripotency-related genes and facilitates the generation of induced pluripotent stem cells. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.810457 – volume: 15 start-page: 178 year: 2014 ident: B67 article-title: Molecular mechanisms of epithelial-mesenchymal transition. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3758 – volume: 135 start-page: 10396 year: 2013 ident: B146 article-title: Ascorbic acid enhances Tet-Mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4028346 – volume: 15 year: 2014 ident: B126 article-title: TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. publication-title: Genome Biol. doi: 10.1186/s13059-014-0513-0 – volume: 170 start-page: 1079 year: 2017 ident: B25 article-title: Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. publication-title: Cell doi: 10.1016/j.cell.2017.07.032 – volume: 7 start-page: 55543 year: 2016 ident: B142 article-title: A FASN-TGF-beta1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. publication-title: Oncotarget doi: 10.18632/oncotarget.10837 – volume: 2015 year: 2015 ident: B148 article-title: The regulatory role of MicroRNAs in EMT and cancer. publication-title: J. Oncol. doi: 10.1155/2015/865816 – volume: 547 start-page: E7 year: 2017 ident: B2 article-title: Upholding a role for EMT in pancreatic cancer metastasis. publication-title: Nature doi: 10.1038/nature22963 – volume: 31 start-page: 2062 year: 2012 ident: B32 article-title: Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. publication-title: Oncogene doi: 10.1038/onc.2011.383 – volume: 7 start-page: 51 year: 2010 ident: B72 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.014 – volume: 35 start-page: 444 year: 2017 ident: B19 article-title: Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3835 – volume: 99 start-page: 673 year: 1993 ident: B42 article-title: Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. publication-title: J. Reprod. Fertil. doi: 10.1530/jrf.0.0990673 – volume: 140 start-page: 2535 year: 2013 ident: B114 article-title: Stem cell metabolism in tissue development and aging. publication-title: Development doi: 10.1242/dev.091777 – volume: 5 year: 2015 ident: B61 article-title: Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00155 – volume: 19 start-page: 716 year: 2019 ident: B136 article-title: Controversies around epithelial-mesenchymal plasticity in cancer metastasis. publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0213-x – volume: 168 start-page: 670 year: 2017 ident: B66 article-title: Emerging Biological Principles of Metastasis. publication-title: Cell doi: 10.1016/j.cell.2016.11.037 – volume: 33 start-page: 2135 year: 2015 ident: B88 article-title: Sox2 Deacetylation by Sirt1 Is Involved in Mouse Somatic Reprogramming. publication-title: Stem Cells doi: 10.1002/stem.2012 – volume: 26 start-page: 19 year: 2018 ident: B24 article-title: Targeting glutamine metabolism for cancer treatment. publication-title: Biomol. Ther. doi: 10.4062/biomolther.2017.178 – volume: 66 start-page: 9339 year: 2006 ident: B26 article-title: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-3126 – volume: 114 start-page: E2337 year: 2017 ident: B12 article-title: Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1618298114 – volume: 17 start-page: 313 year: 2011 ident: B27 article-title: The cancer stem cell: premises, promises and challenges. publication-title: Nat. Med. doi: 10.1038/nm.2304 – volume: 20 start-page: 69 year: 2019 ident: B35 article-title: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0080-4 – volume: 103 start-page: 99 year: 2018 ident: B37 article-title: Altered plasmalogen content and fatty acid saturation following epithelial to mesenchymal transition in breast epithelial cell lines. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2018.08.003 – volume: 493 start-page: 561 ident: B23 article-title: TET2 promotes histone O-GlcNAcylation during gene transcription. publication-title: Nature doi: 10.1038/nature11742 – volume: 29 start-page: 212 year: 2019 ident: B98 article-title: EMT transition states during tumor progression and metastasis. publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.12.001 – volume: 15 start-page: 519 year: 2019 ident: B36 article-title: Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0264-z – volume: 20 start-page: 25 year: 2011 ident: B104 article-title: TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.08.006 – volume: 5 year: 2019 ident: B140 article-title: Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. publication-title: Sci. Adv. doi: 10.1126/sciadv.aax7525 – volume: 556 start-page: 463 year: 2018 ident: B99 article-title: Identification of the tumour transition states occurring during EMT. publication-title: Nature doi: 10.1038/s41586-018-0040-3 – volume: 139 start-page: 871 year: 2009 ident: B124 article-title: Epithelial-mesenchymal transitions in development and disease. publication-title: Cell doi: 10.1016/j.cell.2009.11.007 – volume: 156 start-page: 45 year: 2014 ident: B137 article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions. publication-title: Cell doi: 10.1016/j.cell.2013.12.019 – volume: 14 start-page: 512 year: 2014 ident: B59 article-title: Tet and TDG Mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.001 – volume: 10 start-page: 4256 year: 2011 ident: B115 article-title: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. publication-title: Cell Cycle doi: 10.4161/cc.10.24.18552 – volume: 350 start-page: 1319 year: 2015 ident: B28 article-title: STEM CELLS. What is an adult stem cell? publication-title: Science doi: 10.1126/science.aad7016 – volume: 7 year: 2012 ident: B90 article-title: Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. publication-title: PLoS One doi: 10.1371/journal.pone.0053498 – volume: 24 start-page: 306 year: 2004 ident: B102 article-title: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. publication-title: Mol. Cell Biol. doi: 10.1128/mcb.24.1.306-319.2004 – volume: 18 start-page: 553 year: 2010 ident: B41 article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.11.015 – volume: 7 year: 2012 ident: B70 article-title: Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways. publication-title: PLoS One doi: 10.1371/journal.pone.0045633 – volume: 17 start-page: 651 year: 2015 ident: B105 article-title: Metabolic Reprogramming of Stem Cell Epigenetics. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.11.012 – volume: 483 start-page: 474 year: 2012 ident: B76 article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation. publication-title: Nature doi: 10.1038/nature10860 – volume: 234 start-page: 8381 year: 2019 ident: B89 article-title: Cancer stem cells (CSCs) in cancer progression and therapy. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27740 – volume: 19 year: 2018 ident: B120 article-title: MicroRNA control of TGF-beta signaling. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19071901 – volume: 103 start-page: 709 year: 2008 ident: B150 article-title: Mechanisms that mediate stem cell self-renewal and differentiation. publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21460 – volume: 47 start-page: 320 year: 2015 ident: B16 article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. publication-title: Nat. Genet. doi: 10.1038/ng.3225 – volume: 19 start-page: 271 year: 2019 ident: B93 article-title: Targeting cancer vulnerabilities with high-dose vitamin C. publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0135-7 – volume: 1829 start-page: 981 year: 2013 ident: B4 article-title: The histone LSD1 demethylase in stemness and cancer transcription programs. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2013.05.002 – volume: 13 start-page: 511 year: 2013 ident: B9 article-title: The evolution of the cancer niche during multistage carcinogenesis. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3536 – volume: 367 start-page: 645 year: 1994 ident: B68 article-title: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. publication-title: Nature doi: 10.1038/367645a0 – volume: 18 start-page: 517 year: 2017 ident: B139 article-title: TET-mediated active DNA demethylation: mechanism, function and beyond. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.33 – volume: 549 start-page: 476 year: 2017 ident: B1 article-title: Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. publication-title: Nature doi: 10.1038/nature23876 – volume: 148 start-page: 1015 year: 2012 ident: B49 article-title: Slug and Sox9 cooperatively determine the mammary stem cell state. publication-title: Cell doi: 10.1016/j.cell.2012.02.008 – volume: 234 start-page: 10002 year: 2019 ident: B8 article-title: microRNAs in cancer stem cells: biology, pathways, and therapeutic opportunities. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27885 – volume: 5 year: 2015 ident: B80 article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. publication-title: Sci. Rep. doi: 10.1038/srep09841 – volume: 28 start-page: 32 year: 2014 ident: B113 article-title: The function and regulation of mesenchymal-to-epithelial transition in somatic cell reprogramming. publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2014.08.005 – volume: 20 year: 2019 ident: B63 article-title: Role of metabolic reprogramming in epithelial-mesenchymal transition (EMT). publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20082042 – volume: 145 start-page: 732 year: 2011 ident: B78 article-title: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. publication-title: Cell doi: 10.1016/j.cell.2011.03.054 – volume: 7 start-page: 131 year: 2006 ident: B125 article-title: Complex networks orchestrate epithelial-mesenchymal transitions. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1835 – volume: 15 start-page: 1169 year: 2008 ident: B52 article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b(Ink4b). publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1499 – volume: 9 year: 2014 ident: B107 article-title: Wilms’ tumor protein induces an epithelial-mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. publication-title: PLoS One doi: 10.1371/journal.pone.0102041 – volume: 8 year: 2012 ident: B86 article-title: EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002723 – volume: 14 year: 2013 ident: B91 article-title: Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. publication-title: Genome Biol. doi: 10.1186/gb-2013-14-8-r91 – volume: 21 start-page: 1305 year: 2011 ident: B85 article-title: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. publication-title: Cell Res. doi: 10.1038/cr.2011.107 – volume: 34 start-page: 609 year: 2015 ident: B17 article-title: miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. publication-title: EMBO J. doi: 10.15252/embj.201490441 – volume: 75 start-page: 1789 year: 2015 ident: B109 article-title: Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-2535 – volume: 85 start-page: 873 year: 1995 ident: B127 article-title: Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia. publication-title: Blood doi: 10.1182/blood.V85.4.873.bloodjournal854873 – volume: 283 start-page: 14910 year: 2008 ident: B65 article-title: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800074200 – volume: 45 start-page: 34 ident: B22 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. publication-title: Nat. Genet. doi: 10.1038/ng.2491 – volume: 21 start-page: 44 year: 2019 ident: B101 article-title: Mesenchymal-epithelial transition in development and reprogramming. publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0195-z – volume: 288 start-page: 633 year: 2013 ident: B7 article-title: ras-Induced up-regulation of CTP:phosphocholine cytidylyltransferase alpha contributes to malignant transformation of intestinal epithelial cells. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.347682 – volume: 5 year: 2019 ident: B56 article-title: Hemi-methylated CpG sites connect Dnmt1-knockdown-induced and Tet1-induced DNA demethylation during somatic cell reprogramming. publication-title: Cell Discov. doi: 10.1038/s41421-018-0074-6 – volume: 518 start-page: 413 year: 2015 ident: B18 article-title: Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. publication-title: Nature doi: 10.1038/nature13981 – volume: 3 start-page: 730 year: 1997 ident: B14 article-title: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. publication-title: Nat. Med. doi: 10.1038/nm0797-730 – volume: 154 start-page: 61 year: 2013 ident: B20 article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. publication-title: Cell doi: 10.1016/j.cell.2013.06.005 – volume: 9 start-page: 575 year: 2011 ident: B130 article-title: The Histone Demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.005 – volume: 25 year: 2018 ident: B57 article-title: Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype. publication-title: J. Biomed. Sci. doi: 10.1186/s12929-018-0461-1 – volume: 21 start-page: 341 year: 2020 ident: B141 article-title: Guidelines and definitions for research on epithelial-mesenchymal transition. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0237-9 – volume: 21 start-page: 392 year: 2015 ident: B87 article-title: Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.02.002 – volume: 15 start-page: 829 year: 2013 ident: B75 article-title: Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2765 – volume: 527 start-page: 525 year: 2015 ident: B154 article-title: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. publication-title: Nature doi: 10.1038/nature16064 – volume: 139 start-page: 3471 year: 2012 ident: B74 article-title: Epithelial-mesenchymal transitions: insights from development. publication-title: Development doi: 10.1242/dev.071209 – volume: 12 start-page: 453 year: 2013 ident: B47 article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.02.005 – volume: 506 start-page: 235 year: 2014 ident: B116 article-title: C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. publication-title: Nature doi: 10.1038/nature12885 – volume: 18 start-page: 1713 year: 2017 ident: B108 article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency. publication-title: Cell Rep doi: 10.1016/j.celrep.2017.01.055 – volume: 8 year: 2017 ident: B64 article-title: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. publication-title: Nat. Commun. doi: 10.1038/ncomms14374 – volume: 11 start-page: 755 year: 2017 ident: B83 article-title: EMT and MET: Necessary or permissive for metastasis? publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12083 – volume: 23 start-page: 1124 year: 2017 ident: B10 article-title: Cancer stem cells revisited. publication-title: Nat. Med. doi: 10.1038/nm.4409 – volume: 3 year: 2017 ident: B71 article-title: A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. publication-title: Nat. Commun. doi: 10.1038/ncomms15166 – volume: 34 start-page: 637 year: 2016 ident: B110 article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3569 – volume: 78 start-page: 7634 year: 1981 ident: B81 article-title: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.78.12.7634 – volume: 9 start-page: 358 year: 2006 ident: B121 article-title: Increased lipogenesis in cancer cells: new players, novel targets. publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/01.mco.0000232894.28674.30 – volume: 39 year: 2020 ident: B118 article-title: Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency. publication-title: EMBO J. doi: 10.15252/embj.2019102961 – volume: 32 start-page: 364 year: 2014 ident: B103 article-title: HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. publication-title: Stem Cells doi: 10.1002/stem.1552 – volume: 500 start-page: 222 year: 2013 ident: B13 article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. publication-title: Nature doi: 10.1038/nature12362 – volume: 6 year: 2016 ident: B117 article-title: Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. publication-title: Sci. Rep. doi: 10.1038/srep30903 – volume: 100 start-page: 3983 year: 2003 ident: B3 article-title: Prospective identification of tumorigenic breast cancer cells. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0530291100 – volume: 24 start-page: 5764 year: 2005 ident: B149 article-title: TGF-beta and epithelial-to-mesenchymal transitions. publication-title: Oncogene doi: 10.1038/sj.onc.1208927 – volume: 25 start-page: 675 year: 2015 ident: B145 article-title: Epithelial-mesenchymal plasticity: a central regulator of cancer progression. publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.07.012 – volume: 11 start-page: 755 year: 2017 ident: B62 article-title: EMT and MET: necessary or permissive for metastasis? publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12083 – volume: 20 start-page: 102 year: 2019 ident: B38 article-title: Integrative regulation of physiology by histone deacetylase 3. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0076-0 – volume: 291 start-page: 12917 year: 2016 ident: B77 article-title: Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.729236 – volume: 525 start-page: 256 year: 2015 ident: B144 article-title: Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. publication-title: Nature doi: 10.1038/nature14897 – volume: 4 year: 2015 ident: B54 article-title: Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. publication-title: Cell Regen. doi: 10.1186/s13619-015-0027-6 – volume: 77 start-page: 1564 year: 2017 ident: B147 article-title: Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2074 – volume: 364 start-page: 42 year: 2018 ident: B50 article-title: O-GlcNAcylation affects beta-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2018.01.024 – volume: 13 start-page: 97 year: 2013 ident: B31 article-title: Regulatory networks defining EMT during cancer initiation and progression. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3447 – volume: 234 start-page: 410 year: 2014 ident: B15 article-title: Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. publication-title: J. Pathol. doi: 10.1002/path.4416 – volume: 19 start-page: 780 year: 2014 ident: B112 article-title: Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.017 – volume: 342 year: 2013 ident: B94 article-title: Epithelial plasticity: a common theme in embryonic and cancer cells. publication-title: Science doi: 10.1126/science.1234850 – volume: 243 start-page: 563 year: 2018 ident: B58 article-title: Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. publication-title: Exp. Biol. Med. doi: 10.1177/1535370218759636 – volume: 483 start-page: 598 year: 2012 ident: B96 article-title: Chromatin-modifying enzymes as modulators of reprogramming. publication-title: Nature doi: 10.1038/nature10953 – volume: 11 start-page: 1487 year: 2009 ident: B135 article-title: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. publication-title: Nat. Cell Biol. doi: 10.1038/ncb1998 – volume: 27 start-page: 927 year: 2017 ident: B29 article-title: O-GlcNAc transferase regulates transcriptional activity of human Oct4. publication-title: Glycobiology doi: 10.1093/glycob/cwx055 – volume: 527 start-page: 472 year: 2015 ident: B43 article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. publication-title: Nature doi: 10.1038/nature15748 – volume: 48 start-page: 79 year: 1979 ident: B45 article-title: Birth order and intelligence: an immunological interpretation. publication-title: Percept. Mot. Skills doi: 10.2466/pms.1979.48.1.79 – start-page: 31 year: 1968 ident: B51 article-title: Organization and fine structure of epithelium and mesenchyme in the developing chick embryos publication-title: Proceedings of the 18th Hahnemann Symposium Epithelial-MesenchymalInteractions – volume: 10 year: 2020 ident: B48 article-title: EMT factors and metabolic pathways in cancer. publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00499 – volume: 26 start-page: 743 year: 2017 ident: B129 article-title: CCCTC-binding factor transcriptionally targets Wdr5 to mediate somatic cell reprogramming. publication-title: Stem Cells Dev. doi: 10.1089/scd.2016.0309 – volume: 14 start-page: 264 year: 2011 ident: B44 article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.06.011 – volume: 43 start-page: 5409 year: 2015 ident: B134 article-title: An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv430 – volume: 547 start-page: E1 year: 2017 ident: B143 article-title: Upholding a role for EMT in breast cancer metastasis. publication-title: Nature doi: 10.1038/nature22816 – volume: 8 start-page: 376 year: 2011 ident: B6 article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.03.001 – volume: 22 start-page: 894 year: 2008 ident: B97 article-title: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. publication-title: Genes Dev. doi: 10.1101/gad.1640608 – volume: 49 start-page: 645 year: 2013 ident: B128 article-title: Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.019 – volume: 38 start-page: 301 year: 2019 ident: B60 article-title: O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. publication-title: Oncogene doi: 10.1038/s41388-018-0435-5 – volume: 286 start-page: 17359 year: 2011 ident: B73 article-title: MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.235960 – volume: 73 start-page: 4643 year: 2016 ident: B69 article-title: Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2313-z – volume: 10 year: 2020 ident: B119 article-title: Metabolic reprogramming and epithelial-mesenchymal plasticity: opportunities and challenges for cancer therapy. publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00792 – volume: 166 start-page: 1371 year: 2016 ident: B138 article-title: Cellular Metabolism and Induced Pluripotency. publication-title: Cell doi: 10.1016/j.cell.2016.08.008 – volume: 31 start-page: 2103 year: 2012 ident: B155 article-title: HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. publication-title: EMBO J. doi: 10.1038/emboj.2012.71 – volume: 339 start-page: 222 year: 2013 ident: B92 article-title: Influence of threonine metabolism on S-Adenosylmethionine and histone methylation. publication-title: Science doi: 10.1126/science.1226603 – volume: 292 start-page: 154 year: 1981 ident: B39 article-title: Establishment in culture of pluripotential cells from mouse embryos. publication-title: Nature doi: 10.1038/292154a0 – volume: 7 start-page: 172 year: 2020 ident: B131 article-title: Metabolic reprogram associated with epithelial-mesenchymal transition in tumor progression and metastasis. publication-title: Genes Dis. doi: 10.1016/j.gendis.2019.09.012 – volume: 495 start-page: 370 year: 2013 ident: B30 article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. publication-title: Nature doi: 10.1038/nature11925 – volume: 26 start-page: 569 year: 2020 ident: B46 article-title: Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.02.008 – volume: 7 year: 2014 ident: B152 article-title: TGF-beta-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. publication-title: Sci. Signal. doi: 10.1126/scisignal.2005304 – volume: 7 year: 2020 ident: B123 article-title: Cancer stem cell plasticity - a deadly deal. publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00079 – volume: 123 start-page: 309 year: 1956 ident: B133 article-title: On the origin of cancer cells. publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 166 start-page: 21 year: 2016 ident: B95 article-title: Emt: 2016. publication-title: Cell doi: 10.1016/j.cell.2016.06.028 – volume: 24 start-page: 213 year: 2013 ident: B100 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.06.014 – volume: 119 start-page: 2663 year: 2009 ident: B84 article-title: Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. publication-title: J. Clin. Invest. doi: 10.1172/JCI37691 – volume: 488 start-page: 652 year: 2012 ident: B34 article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. publication-title: Nature doi: 10.1038/nature11333 – volume: 202 start-page: 654 year: 2005 ident: B79 article-title: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20166 – volume: 21 start-page: 2160 year: 2017 ident: B156 article-title: Kdm2b regulates somatic reprogramming through variant PRC1 complex-dependent function. publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.091 – volume: 32 start-page: 645 year: 2013 ident: B33 article-title: TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. publication-title: EMBO J. doi: 10.1038/emboj.2012.357 – volume: 19 start-page: 449 year: 2016 ident: B132 article-title: Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.06.006 – volume: 12 start-page: 361 year: 2018 ident: B153 article-title: Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. publication-title: Front. Med. doi: 10.1007/s11684-018-0656-6 – volume: 7 start-page: 64 year: 2010 ident: B106 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – volume: 3 ident: B53 article-title: Sequential EMT-MET induces neuronal conversion through Sox2. publication-title: Cell Discov. doi: 10.1038/celldisc.2017.17 – volume: 11 start-page: 589 year: 2012 ident: B151 article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.005 – volume: 14 start-page: 592 year: 2014 ident: B82 article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.012 – volume: 126 start-page: 663 year: 2006 ident: B122 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 145 start-page: 183 year: 2011 ident: B5 article-title: Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. publication-title: Cell doi: 10.1016/j.cell.2011.03.003 – volume: 45 start-page: 1504 ident: B21 article-title: Vitamin C modulates TET1 function during somatic cell reprogramming. publication-title: Nat. Genet. doi: 10.1038/ng.2807 – volume: 1866 year: 2020 ident: B40 article-title: O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fibrosis. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2019.165556 – volume: 119 start-page: 941 year: 2004 ident: B111 article-title: Histone demethylation mediated by the nuclear arnine oxidase homolog LSD1. publication-title: Cell doi: 10.1016/j.cell.2004.12.012 – volume: 16 start-page: 67 year: 2015 ident: B11 article-title: Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.12.002 |
SSID | ssj0001257583 |
Score | 2.4389696 |
SecondaryResourceType | review_article |
Snippet | Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 760 |
SubjectTerms | cancer Cell and Developmental Biology EMT energy metabolism glycolysis OXPHOS reprogramming |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8iCL6Inzi_iOCLD2Vt06aJbzo2RJwvOthbaNIEB1s3Zofsv_cu3XR90Rdf0wtJ7q65u-TyO0JuChmaxDoeILZUkICHH8gUBcIQXI5pKUJ8O9x_4Y-D5GmYDjdKfWFOWA0PXDOujXhdJjQ2Y7xIYq1zU-S5cKkNrY1M7nE-weZtBFP16Qq4IYLV95IQhcm2w4NwiAdjTOXKPCLljx3ycP0NH7OZIblhcnr7ZG_lK9L7eo4HZMuWh2Snrh65PCLj7gwfVIxBg4I-PiIy78sJ0Hvz4zOxaF4WtG8rEPR4ZOjr56jyqZN0VNIOint-R59hqwPNo735dEJfpx7BlXZgFRR88zp5awJdjsmg133rPAar4gmBAaemCpjmLixSVgjhCmBAKDIjdahdDOYpdiJKEEXU5Fxm2Mgcz7lOXQRsjY0Rhp2Q7XJa2lNCnYtElnEJezSEY1aLBCgyIbUObcFM1CLtNSuVWSGLY4GLsYIIA5mvPPMVMl955rfI7XePWY2q8QvtA0rnmw7xsH0DaIlaaYn6S0ta5HotWwX_Dw6Rl3a6-FAIyCgSKQTQZA2hN0ZsfilH7x6JG6-5BWNn_zHFc7KLi_bJhfyCbFfzhb0Eh6fSV163vwCqNANR priority: 102 providerName: Directory of Open Access Journals |
Title | Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming |
URI | https://www.proquest.com/docview/2437849883 https://pubmed.ncbi.nlm.nih.gov/PMC7423833 https://doaj.org/article/1921c0ce736d42bbacdaa8f5e0ee1ca3 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEA6Hx8G9yHl6uJ5KDnzxoWfbtEkqyKGLixyuL96Cb6FJE13otloruv_embR6VxCf7jWdkGYmycwkM98QsldkoUms4wFiSwUJWPhBlqJAGILLMZ3JEHOHpxf8bJb8vkqv_qZH9wy8f9O1w3pSs6b8-XS3_AUb_gg9TtC3Bw7vuMHVizFKS3Bw4D-CXhJYz2DaG_vdjQuYJpJ1b5VvdhzoJg_hP7A7h1GT_6ihyRey2tuP9LgT-Br5YKuv5FNXUXK5TsrTW0yyKGFVBVNMLDI3ywXQe5Xko7NoXhV0alsQfjk39PJx3vpwSjqv6BiXQHNIz-H4g9VIJ029oJe1R3WlY5gFBXu9C-haQJcNMpuc_hmfBX1BhcCAodMGTHMXFikrpHQFMCCUwmQ61C4GlRU7GSWILGpynglsZI7nXKcuCq2NjZGGfSMrVV3ZTUKdi6QQPINzG1w0q2UCFEJmWoe2YCYakYMXVirTo41j0YtSgdeBzFee-QqZrzzzR2T_tcdth7TxDu0JSueVDjGyfUPdXKt-yylEejOhsYLxIom1zk2R59KlFqYTmZyNyI8X2SrYUzhEXtn64V4hSKNMMimBRgyEPhhx-KWa33h0bnz6loxt_Y9f_E4-46R9wCHfJitt82B3wAhq9a6_PNj1K_wZLhQLcA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-Mesenchymal+Transition+and+Metabolic+Switching+in+Cancer%3A+Lessons+From+Somatic+Cell+Reprogramming&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Xiaowei+Lai&rft.au=Xiaowei+Lai&rft.au=Xiaowei+Lai&rft.au=Qian+Li&rft.date=2020-08-06&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcell.2020.00760&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1921c0ce736d42bbacdaa8f5e0ee1ca3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |