Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering
Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. H...
Saved in:
Published in | Biomaterials Vol. 173; pp. 11 - 21 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide “nuclear trafficking peptide” (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine. |
---|---|
AbstractList | Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide "nuclear trafficking peptide" (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide "nuclear trafficking peptide" (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine. Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide “nuclear trafficking peptide” (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine. |
Author | Takashina, Tomoki Iijima, Kenta Shimura, Mari Ishizaka, Yukihito Hasegawa, Masakatsu Ishiguro, Akira Lu, Jun Yamamoto, Takashi Koyama, Takayoshi Nohara, Satoshi Okamura, Tadashi Sakuma, Tetsushi |
Author_xml | – sequence: 1 givenname: Tomoki surname: Takashina fullname: Takashina, Tomoki organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 2 givenname: Takayoshi surname: Koyama fullname: Koyama, Takayoshi organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 3 givenname: Satoshi surname: Nohara fullname: Nohara, Satoshi organization: Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan – sequence: 4 givenname: Masakatsu surname: Hasegawa fullname: Hasegawa, Masakatsu organization: Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan – sequence: 5 givenname: Akira surname: Ishiguro fullname: Ishiguro, Akira organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 6 givenname: Kenta surname: Iijima fullname: Iijima, Kenta organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 7 givenname: Jun surname: Lu fullname: Lu, Jun organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 8 givenname: Mari surname: Shimura fullname: Shimura, Mari organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 9 givenname: Tadashi surname: Okamura fullname: Okamura, Tadashi organization: Section of Animal Models, Department of Infectious Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan – sequence: 10 givenname: Tetsushi surname: Sakuma fullname: Sakuma, Tetsushi organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan – sequence: 11 givenname: Takashi surname: Yamamoto fullname: Yamamoto, Takashi organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan – sequence: 12 givenname: Yukihito surname: Ishizaka fullname: Ishizaka, Yukihito email: zakay@ri.ncgm.go.jp organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29734017$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1u1DAQhS1URLeFV0AWV9xksRNvfrgCyl-lStzAteXYk9VsEzvY3op9El6XSbcg1KuVLFkz-nw8c84FO_PBA2OvpFhLIes3u3WPYTIZIpoxrUsh27VQdMQTtpJt0xabTmzO2EpIVRZdLctzdpHSTlAtVPmMnZddUykhmxX7fe3AZxzQmozB8zBwwy2MYzGDhxyp67d8hjmjA27meSSyH4HnQOAcQwb0RW8SOE60TzbifK9kbMY7k0MsRrwFDsMAlioOv-YIKS1IOqQMEx-ou3zJwW_RA63lt8_Z04GWgxcP9yX78fnT96uvxc23L9dX728KuxGbXJTKdaIfTF0JKzvTWlnLxomq76uu6YTqXdW6uilLqySovhKubalTuVoNbgEv2eujLq3ycw8p6wnTMozxEPZJl6KqyWDVdIS-fED3_QROzxEnEw_6r5kEvD0CNoaUIgz_ECn0kpze6f-T00tyWig6yyDvHj22mO8zIVtxPE3i41ECyLA7hKiTRfAWHEbyXruAp8l8eCRjR_QU-3gLh1NF_gCtpdkJ |
CitedBy_id | crossref_primary_10_1007_s12015_018_9861_6 crossref_primary_10_1097_HC9_0000000000000051 crossref_primary_10_1021_acsomega_1c00532 crossref_primary_10_1186_s12951_022_01383_z crossref_primary_10_1016_j_yexcr_2021_112893 crossref_primary_10_1111_cas_13832 crossref_primary_10_1038_s41416_019_0708_y crossref_primary_10_1016_j_bbrep_2022_101386 crossref_primary_10_3390_app12094688 |
Cites_doi | 10.1101/gr.171264.113 10.1038/nature07314 10.1073/pnas.97.2.559 10.1038/nbt.1775 10.1016/j.bbrc.2004.05.126 10.1016/0378-1119(96)00312-5 10.1038/nn.3299 10.1128/JVI.79.24.15443-15451.2005 10.1016/j.biomaterials.2012.03.061 10.1038/srep03379 10.2183/pjab.85.348 10.1111/j.1365-2958.1996.tb02464.x 10.1126/science.1178817 10.1038/nbt.1755 10.1016/j.pharmthera.2015.07.003 10.1074/jbc.M300248200 10.1016/j.stem.2009.05.005 10.1016/j.cell.2006.07.024 10.1089/scd.2012.0650 10.1074/jbc.M004044200 10.1042/BJ20041759 10.1073/pnas.92.7.2770 10.1016/j.mib.2008.12.006 10.1016/j.stem.2014.01.003 10.1126/science.1178811 10.1128/JVI.64.6.3097-3099.1990 10.1083/jcb.201010118 10.1084/jem.189.1.51 10.1128/JVI.74.12.5424-5431.2000 10.1016/j.jconrel.2012.01.023 10.1006/viro.1994.1225 10.1016/S0022-2836(03)00060-3 10.1101/gad.12.2.175 10.1016/j.stem.2014.01.008 10.1126/science.3289117 10.1038/sj.onc.1209831 10.1016/j.stem.2011.05.001 10.1101/cshperspect.a023754 10.1128/MCB.00359-08 10.1016/j.stemcr.2013.06.002 10.1016/j.stem.2009.04.005 10.1016/j.stem.2011.03.001 10.1053/j.gastro.2011.01.041 10.1101/gad.2.6.718 10.1016/j.stem.2011.09.002 10.1073/pnas.90.10.4528 10.1016/j.cell.2016.08.055 10.1161/CIRCRESAHA.112.271148 10.1038/nature11044 10.1016/j.bbrc.2005.10.112 10.1038/nature05934 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.biomaterials.2018.04.040 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 21 |
ExternalDocumentID | 29734017 10_1016_j_biomaterials_2018_04_040 S0142961218303077 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c505t-24d90bfa630c19a8c1617d03bb397904bd38d6722c41e4b30d8838d3d64fd7d03 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 02:17:09 EDT 2025 Thu Apr 03 06:57:20 EDT 2025 Tue Jul 01 01:19:34 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:31:36 EST 2024 Tue Aug 26 20:00:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mouse embryonic fibroblast (MEF) Induced pluripotent stem cell (iPSC) Cell-penetrating peptide (CPP) Artificial transcription factor Transcription activator-like effector (TALE) |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-24d90bfa630c19a8c1617d03bb397904bd38d6722c41e4b30d8838d3d64fd7d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29734017 |
PQID | 2036201479 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2036201479 pubmed_primary_29734017 crossref_primary_10_1016_j_biomaterials_2018_04_040 crossref_citationtrail_10_1016_j_biomaterials_2018_04_040 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_04_040 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_04_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | De la Rossa, Bellone, Golding, Vitali, Moss, Toni, Lüscher, Jabaudon (bib7) 2013; 16 Morellet, Bouaziz, Petitjean, Proques (bib52) 2003; 327 Henklein, Bruns, Sherman, Tessmer, Licha, Kopp, de Noronha, Greene, Wray, Schubert (bib20) 2000; 275 Mizoguchi, Ooe, Hoshino, Shimura, Kasahara, Kano, Ohta, Takaku, Nakayama, Ishizaka (bib25) 2005; 338 Lai, Zimmerman, Planelles, Chen (bib46) 2005; 79 IG1, Arunagiri, Hewish, White, Azad (bib57) 1996; 19 Koyama, Sun, Tokunaga, Tatsumi, Ishizaka (bib18) 2013; 10 Moscou, Bogdanove (bib11) 2009; 326 Wang, Mukherjee, Narayan, Zhao (bib49) 1996; 178 Venkatachari, Walker, Tastan, Le, Dempsey, Li, Yanamala, Srinivasan, Klein-Seetharaman, Montelaro, Ayyavoo (bib53) 2010; 7 Card, Hebbar, Li, Trotter, Komatsu, Mishina, Archer (bib41) 2008; 28 Du, Wang, Jia, Song, Xiang, Xu, Hou, Su, Liu, Jiang, Zhao, Sun, Shu, Guo, Yin, Sun, Lu, Shi, Deng (bib4) 2014; 14 Landschulz, Johnson, McKnight (bib51) 1998; 240 Coeytaux, Coulaud, Le Cam, Danos, Kichler (bib23) 2003; 278 Taguchi, Shimura, Osawa, Suzuki, Mizoguchi, Niino, Takaku, Ishizaka (bib24) 2004; 320 Liu, Gaj, Patterson, Sirk, Barbas (bib31) 2014; 9 Zhou, Wu, Joo, Zhu, Han, Lin, Trauger, Bien, Yao, Zhu, Siuzdak, Schöler, Duan, Ding (bib27) 2009; 4 Kay, Bonas (bib12) 2009; 12 Chen, Lansford, Stewart, Young, Alt (bib44) 1993; 90 Miller, Tan, Qiao, Barlow, Wang, Xia, Meng, Paschon, Leung, Hinkley, Dulay, Hua, Ankoudinova, Cost, Urnov, Zhang, Holmes, Zhang, Gregory, Rebar (bib15) 2011; 29 Iijima, Kobayashi, Ishizaka (bib48) 2018; 15 Huang, Zhang, Gao, He, Yao, Wu, Cen, Chen, Liu, Hu, Lai, Hu, Chen, Zhang, Cheng, Ma, Pan, Wang, Hui (bib3) 2014; 14 Kim, Kim, Moon, Chung, Chang, Han, Ko, Yang, Cha, Lanza, Kim (bib28) 2009; 4 Zhou, Brown, Kanarek, Rajagopal, Melton (bib9) 2008; 455 Gaj, Sirk, Shui, Liu (bib13) 2016; 8 Ramakrishna, Kwaku Dad, Beloor, Gopalappa, Lee, Kim (bib32) 2014; 24 Wang, Mukherjee, Narayan, Zhao (bib54) 1996; 178 Balliet, Kolson, Eiger, Kim, McGann, Srinivasan, Collman (bib17) 1994; 200 Inagawa, Miyamoto, Yamakawa, Muraoka, Sadahiro, Umei, Wada, Katsumata, Kaneda, Nakade, Kurihara, Obata, Miyake, Fukuda, Ieda (bib5) 2012; 111 Triezenberg, Kingsbury, McKnight (bib33) 1982; 2 Sakuma, Ochiai, Kaneko, Mashimo, Tokumasu, Sakane, Suzuki, Miyamoto, Sakamoto, Matsuura, Yamamoto (bib42) 2013; 3 Qian, Huang, Spencer, Foley, Vedantham, Liu, Conway, Fu, Srivastava (bib6) 2012; 485 Takahashi, Yamanaka (bib2) 2006; 126 Gao, Yang, Tsang, Ooi, Wu, Liu (bib47) 2013; 1 Cohen, Dehni, Sodroski, Haseltine (bib16) 1990; 64 Zhang, Wu (bib36) 2013; 22 Vodicka, Koepp, Silver, Emerman (bib19) 1998; 12 Anokye-Danso, Trivedi, Juhr, Gupta, Cui, Tian, Zhang, Yang, Gruber, Epstein, Morrisey (bib34) 2011; 8 Kichler, Pages, Leborgne, Druillennec, Lenoir, Coulaud, Delain, Le Cam, Roques, Danos (bib22) 2000; 74 Nakai-Murakami, Shimura, Kinomoto, Takizawa, Tokunaga, Taguchi, Hoshino, Miyagawa, Sata, Kurumizaka, Yuo, Ishizaka (bib21) 2007; 26 Ru, Yao, Yu, Yin, Xu, Zhao, Qin, Chen (bib30) 2013; 2 Shimura, Toyoda, Iijima, Kinomoto, Tokunaga, Yoda, Yanagida, Sata, Ishizaka (bib39) 2011; 194 Boch, Scholze, Schornack, Landgraf, Hahn, Kay, Kay, Lahaye, Nickstadt, Bonas (bib10) 2009; 326 Bourbigot, Beltz, Denis, Morellet, Roques, Mély, Bouaziz (bib50) 2005; 387 Madin, Sawasaki, Ogasawara, Endo (bib40) 2000; 97 Koyama, Shimura, Minemoto, Nohara, Shibata, Iida, Iwashita, Hasegawa, Kurabayashi, Hamada, Kono, Honda, Aoki, Ishizaka (bib38) 2012; 159 Kino, Gragerov, Kopp, Stauber, Pavlakis, Chrousos (bib55) 1999; 189 Zhang, Cong, Lodato, Kosuri, Church, Arlotta (bib14) 2011; 29 Macreadie, Castelli, Hewish, Kirkpatrick, Ward, Azad (bib56) 1995; 92 Srivastava, DeWitt (bib1) 2016; 166 Miyoshi, Ishii, Nagano, Haraguchi, Dewi, Kano, Nishikawa, Tanemura, Mimori, Tanaka, Saito, Nishimura, Takemasa, Mizushima, Ikeda, Yamamoto, Sekimoto, Doki, Mori (bib35) 2011; 8 Fusaki, Ban, Nishiyama, Saeki, Hasegawa (bib43) 2009; 85 Sasawatari, Okamura, Kasumi, Tanaka-Furuyama, Yanobu-Takanashi, Shirasawa, Kato, Toyama-Sorimachi (bib45) 2011; 140 Marro, Pang, Yang, Tsai, Qu, Chang, Südhof, Wernig (bib8) 2011; 9 Ramsey, Flynn (bib26) 2015; 154 Zhang, Ma, Gu, Liao, Li, Wong, Jin (bib29) 2012; 33 Okita, Ichisaka, Yamanaka (bib37) 2007; 448 Ramakrishna (10.1016/j.biomaterials.2018.04.040_bib32) 2014; 24 Koyama (10.1016/j.biomaterials.2018.04.040_bib38) 2012; 159 Card (10.1016/j.biomaterials.2018.04.040_bib41) 2008; 28 Iijima (10.1016/j.biomaterials.2018.04.040_bib48) 2018; 15 Liu (10.1016/j.biomaterials.2018.04.040_bib31) 2014; 9 Gao (10.1016/j.biomaterials.2018.04.040_bib47) 2013; 1 Shimura (10.1016/j.biomaterials.2018.04.040_bib39) 2011; 194 Sasawatari (10.1016/j.biomaterials.2018.04.040_bib45) 2011; 140 De la Rossa (10.1016/j.biomaterials.2018.04.040_bib7) 2013; 16 Marro (10.1016/j.biomaterials.2018.04.040_bib8) 2011; 9 Ru (10.1016/j.biomaterials.2018.04.040_bib30) 2013; 2 Henklein (10.1016/j.biomaterials.2018.04.040_bib20) 2000; 275 IG1 (10.1016/j.biomaterials.2018.04.040_bib57) 1996; 19 Ramsey (10.1016/j.biomaterials.2018.04.040_bib26) 2015; 154 Mizoguchi (10.1016/j.biomaterials.2018.04.040_bib25) 2005; 338 Koyama (10.1016/j.biomaterials.2018.04.040_bib18) 2013; 10 Kim (10.1016/j.biomaterials.2018.04.040_bib28) 2009; 4 Gaj (10.1016/j.biomaterials.2018.04.040_bib13) 2016; 8 Coeytaux (10.1016/j.biomaterials.2018.04.040_bib23) 2003; 278 Lai (10.1016/j.biomaterials.2018.04.040_bib46) 2005; 79 Venkatachari (10.1016/j.biomaterials.2018.04.040_bib53) 2010; 7 Srivastava (10.1016/j.biomaterials.2018.04.040_bib1) 2016; 166 Okita (10.1016/j.biomaterials.2018.04.040_bib37) 2007; 448 Kino (10.1016/j.biomaterials.2018.04.040_bib55) 1999; 189 Sakuma (10.1016/j.biomaterials.2018.04.040_bib42) 2013; 3 Du (10.1016/j.biomaterials.2018.04.040_bib4) 2014; 14 Taguchi (10.1016/j.biomaterials.2018.04.040_bib24) 2004; 320 Madin (10.1016/j.biomaterials.2018.04.040_bib40) 2000; 97 Nakai-Murakami (10.1016/j.biomaterials.2018.04.040_bib21) 2007; 26 Qian (10.1016/j.biomaterials.2018.04.040_bib6) 2012; 485 Balliet (10.1016/j.biomaterials.2018.04.040_bib17) 1994; 200 Huang (10.1016/j.biomaterials.2018.04.040_bib3) 2014; 14 Fusaki (10.1016/j.biomaterials.2018.04.040_bib43) 2009; 85 Triezenberg (10.1016/j.biomaterials.2018.04.040_bib33) 1982; 2 Zhou (10.1016/j.biomaterials.2018.04.040_bib27) 2009; 4 Wang (10.1016/j.biomaterials.2018.04.040_bib54) 1996; 178 Zhang (10.1016/j.biomaterials.2018.04.040_bib14) 2011; 29 Inagawa (10.1016/j.biomaterials.2018.04.040_bib5) 2012; 111 Cohen (10.1016/j.biomaterials.2018.04.040_bib16) 1990; 64 Chen (10.1016/j.biomaterials.2018.04.040_bib44) 1993; 90 Kay (10.1016/j.biomaterials.2018.04.040_bib12) 2009; 12 Macreadie (10.1016/j.biomaterials.2018.04.040_bib56) 1995; 92 Zhang (10.1016/j.biomaterials.2018.04.040_bib36) 2013; 22 Wang (10.1016/j.biomaterials.2018.04.040_bib49) 1996; 178 Miller (10.1016/j.biomaterials.2018.04.040_bib15) 2011; 29 Anokye-Danso (10.1016/j.biomaterials.2018.04.040_bib34) 2011; 8 Moscou (10.1016/j.biomaterials.2018.04.040_bib11) 2009; 326 Morellet (10.1016/j.biomaterials.2018.04.040_bib52) 2003; 327 Landschulz (10.1016/j.biomaterials.2018.04.040_bib51) 1998; 240 Zhang (10.1016/j.biomaterials.2018.04.040_bib29) 2012; 33 Miyoshi (10.1016/j.biomaterials.2018.04.040_bib35) 2011; 8 Zhou (10.1016/j.biomaterials.2018.04.040_bib9) 2008; 455 Takahashi (10.1016/j.biomaterials.2018.04.040_bib2) 2006; 126 Bourbigot (10.1016/j.biomaterials.2018.04.040_bib50) 2005; 387 Boch (10.1016/j.biomaterials.2018.04.040_bib10) 2009; 326 Vodicka (10.1016/j.biomaterials.2018.04.040_bib19) 1998; 12 Kichler (10.1016/j.biomaterials.2018.04.040_bib22) 2000; 74 |
References_xml | – volume: 33 start-page: 5047 year: 2012 end-page: 5055 ident: bib29 article-title: Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors publication-title: Biomaterials – volume: 97 start-page: 559 year: 2000 end-page: 564 ident: bib40 article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 6426 year: 2008 end-page: 6438 ident: bib41 article-title: Oct4/Sox2-Regulated miR-302 targets cyclin D1 in human embryonic stem cells publication-title: Mol. Cell Biol. – volume: 19 start-page: 1185 year: 1996 end-page: 1192 ident: bib57 article-title: Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death publication-title: Mol. Microbiol. – volume: 29 start-page: 143 year: 2011 end-page: 148 ident: bib15 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. – volume: 4 start-page: 381 year: 2009 end-page: 384 ident: bib27 article-title: Generation of induced pluripotent stem cells using recombinant proteins publication-title: Cell Stem Cell – volume: 189 start-page: 51 year: 1999 end-page: 62 ident: bib55 article-title: The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor publication-title: J. Exp. Med. – volume: 16 start-page: 193 year: 2013 end-page: 200 ident: bib7 article-title: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons publication-title: Nat. Neurosci. – volume: 111 start-page: 1147 year: 2012 end-page: 1156 ident: bib5 article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5 publication-title: Circ. Res. – volume: 9 year: 2014 ident: bib31 article-title: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering publication-title: PLoS One – volume: 326 start-page: 1509 year: 2009 end-page: 1512 ident: bib10 article-title: Breaking the code of DNA binding specificity of TAL-type III effectors publication-title: Science – volume: 455 start-page: 627 year: 2008 end-page: 632 ident: bib9 article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells publication-title: Nature – volume: 15 year: 2018 ident: bib48 article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response publication-title: Retrovirology – volume: 29 start-page: 149 year: 2011 end-page: 153 ident: bib14 article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription publication-title: Nat. Biotechnol. – volume: 166 start-page: 1386 year: 2016 end-page: 1396 ident: bib1 article-title: In vivo cellular reprogramming: the next generation publication-title: Cell – volume: 12 start-page: 175 year: 1998 end-page: 185 ident: bib19 article-title: HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection publication-title: Genes Dev. – volume: 178 start-page: 7 year: 1996 end-page: 13 ident: bib54 article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1 publication-title: Gene – volume: 7 year: 2010 ident: bib53 article-title: Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles publication-title: Virol. J. – volume: 26 start-page: 477 year: 2007 end-page: 486 ident: bib21 article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination publication-title: Oncogene – volume: 24 start-page: 1020 year: 2014 end-page: 1027 ident: bib32 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. – volume: 194 start-page: 721 year: 2011 end-page: 735 ident: bib39 article-title: Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation publication-title: J. Cell Biol. – volume: 8 start-page: 1 year: 2016 end-page: 20 ident: bib13 article-title: Genome-editing technologies: principles and applications publication-title: Cold Spring Harb Perspect Biol. – volume: 8 start-page: 633 year: 2011 end-page: 638 ident: bib35 article-title: Reprogramming of mouse and human cells to pluripotency using mature microRNAs publication-title: Cell Stem Cell – volume: 448 start-page: 313 year: 2007 end-page: 317 ident: bib37 article-title: Generation of germline-competent induced pluripotent stem cells publication-title: Nature – volume: 159 start-page: 413 year: 2012 end-page: 418 ident: bib38 article-title: Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide publication-title: J. Control Release – volume: 9 start-page: 374 year: 2011 end-page: 382 ident: bib8 article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons publication-title: Cell Stem Cell – volume: 14 start-page: 370 year: 2014 end-page: 384 ident: bib3 article-title: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes publication-title: Cell Stem Cell – volume: 178 start-page: 7 year: 1996 end-page: 13 ident: bib49 article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1 publication-title: Gene – volume: 320 start-page: 18 year: 2004 end-page: 26 ident: bib24 article-title: Nuclear trafficking of macromolecules by an oligopeptide derived from Vpr of human immunodeficiency virus type-1 publication-title: Biochem. Biophys. Res. Commun. – volume: 275 start-page: 32016 year: 2000 end-page: 32026 ident: bib20 article-title: Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest publication-title: J. Biol. Chem. – volume: 90 start-page: 4528 year: 1993 end-page: 4532 ident: bib44 article-title: RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 2268 year: 2013 end-page: 2277 ident: bib36 article-title: Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster publication-title: Stem Cell. Dev. – volume: 85 start-page: 348 year: 2009 end-page: 362 ident: bib43 article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib2 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 1 start-page: 183 year: 2013 end-page: 197 ident: bib47 article-title: Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers publication-title: Stem Cell Rep. – volume: 92 start-page: 2770 year: 1995 end-page: 2774 ident: bib56 article-title: A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 5 year: 2013 ident: bib30 article-title: Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs publication-title: Cell Regen (Lond) – volume: 8 start-page: 376 year: 2011 end-page: 388 ident: bib34 article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency publication-title: Cell Stem Cell – volume: 327 start-page: 215 year: 2003 end-page: 227 ident: bib52 article-title: NMR structure of the HIV-1 regulatory protein VPR publication-title: J. Mol. Biol. – volume: 240 start-page: 1759 year: 1998 end-page: 1764 ident: bib51 article-title: The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins publication-title: Science – volume: 326 start-page: 1501 year: 2009 end-page: 1511 ident: bib11 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science – volume: 12 start-page: 37 year: 2009 end-page: 43 ident: bib12 article-title: How Xanthomonas type III effectors manipulate the host plant publication-title: Curr. Opin. Microbiol. – volume: 74 start-page: 5424 year: 2000 end-page: 5431 ident: bib22 article-title: Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R publication-title: J. Virol. – volume: 338 start-page: 1499 year: 2005 end-page: 1506 ident: bib25 article-title: Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1 publication-title: Biochem. Biophys. Res. Commun. – volume: 79 start-page: 15443 year: 2005 end-page: 15451 ident: bib46 article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo publication-title: J. Virol. – volume: 64 start-page: 3097 year: 1990 end-page: 3099 ident: bib16 article-title: Human immunodeficiency virus vpr product is a virion-associated regulatory protein publication-title: J. Virol. – volume: 2 start-page: 718 year: 1982 end-page: 729 ident: bib33 article-title: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression publication-title: Genes Dev. – volume: 278 start-page: 18110 year: 2003 end-page: 18116 ident: bib23 article-title: The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells publication-title: J. Biol. Chem. – volume: 4 start-page: 472 year: 2009 end-page: 476 ident: bib28 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell – volume: 485 start-page: 593 year: 2012 end-page: 598 ident: bib6 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature – volume: 14 start-page: 394 year: 2014 end-page: 403 ident: bib4 article-title: Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming publication-title: Cell Stem Cell – volume: 154 start-page: 78 year: 2015 end-page: 86 ident: bib26 article-title: Cell-penetrating peptides transport therapeutics into cells publication-title: Pharmacol. Ther. – volume: 10 year: 2013 ident: bib18 article-title: DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition publication-title: Retrovirology – volume: 140 start-page: 1513 year: 2011 end-page: 1525 ident: bib45 article-title: The solute Carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice publication-title: Gastroenterology – volume: 200 start-page: 623 year: 1994 end-page: 631 ident: bib17 article-title: Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate publication-title: Virology – volume: 387 start-page: 333 year: 2005 end-page: 341 ident: bib50 article-title: The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain publication-title: Biochem. J. – volume: 3 start-page: 3379 year: 2013 ident: bib42 article-title: Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity publication-title: Sci. Rep. – volume: 24 start-page: 1020 issue: 6 year: 2014 ident: 10.1016/j.biomaterials.2018.04.040_bib32 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. doi: 10.1101/gr.171264.113 – volume: 2 start-page: 5 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib30 article-title: Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs publication-title: Cell Regen (Lond) – volume: 455 start-page: 627 issue: 7213 year: 2008 ident: 10.1016/j.biomaterials.2018.04.040_bib9 article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells publication-title: Nature doi: 10.1038/nature07314 – volume: 97 start-page: 559 issue: 2 year: 2000 ident: 10.1016/j.biomaterials.2018.04.040_bib40 article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.2.559 – volume: 29 start-page: 149 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib14 article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1775 – volume: 320 start-page: 18 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2018.04.040_bib24 article-title: Nuclear trafficking of macromolecules by an oligopeptide derived from Vpr of human immunodeficiency virus type-1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.05.126 – volume: 178 start-page: 7 issue: 1–2 year: 1996 ident: 10.1016/j.biomaterials.2018.04.040_bib49 article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1 publication-title: Gene doi: 10.1016/0378-1119(96)00312-5 – volume: 10 issue: 21 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib18 article-title: DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition publication-title: Retrovirology – volume: 16 start-page: 193 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib7 article-title: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons publication-title: Nat. Neurosci. doi: 10.1038/nn.3299 – volume: 79 start-page: 15443 issue: 24 year: 2005 ident: 10.1016/j.biomaterials.2018.04.040_bib46 article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo publication-title: J. Virol. doi: 10.1128/JVI.79.24.15443-15451.2005 – volume: 33 start-page: 5047 issue: 20 year: 2012 ident: 10.1016/j.biomaterials.2018.04.040_bib29 article-title: Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.061 – volume: 3 start-page: 3379 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib42 article-title: Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity publication-title: Sci. Rep. doi: 10.1038/srep03379 – volume: 9 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2018.04.040_bib31 article-title: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering publication-title: PLoS One – volume: 85 start-page: 348 issue: 8 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib43 article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.85.348 – volume: 19 start-page: 1185 issue: 6 year: 1996 ident: 10.1016/j.biomaterials.2018.04.040_bib57 article-title: Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1996.tb02464.x – volume: 326 start-page: 1501 issue: 5959 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib11 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science doi: 10.1126/science.1178817 – volume: 29 start-page: 143 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib15 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1755 – volume: 154 start-page: 78 year: 2015 ident: 10.1016/j.biomaterials.2018.04.040_bib26 article-title: Cell-penetrating peptides transport therapeutics into cells publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2015.07.003 – volume: 278 start-page: 18110 issue: 20 year: 2003 ident: 10.1016/j.biomaterials.2018.04.040_bib23 article-title: The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300248200 – volume: 4 start-page: 472 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib28 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.005 – volume: 126 start-page: 663 issue: 4 year: 2006 ident: 10.1016/j.biomaterials.2018.04.040_bib2 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 22 start-page: 2268 issue: 16 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib36 article-title: Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster publication-title: Stem Cell. Dev. doi: 10.1089/scd.2012.0650 – volume: 275 start-page: 32016 issue: 41 year: 2000 ident: 10.1016/j.biomaterials.2018.04.040_bib20 article-title: Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004044200 – volume: 387 start-page: 333 issue: Pt2 year: 2005 ident: 10.1016/j.biomaterials.2018.04.040_bib50 article-title: The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain publication-title: Biochem. J. doi: 10.1042/BJ20041759 – volume: 92 start-page: 2770 issue: 7 year: 1995 ident: 10.1016/j.biomaterials.2018.04.040_bib56 article-title: A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.7.2770 – volume: 7 issue: 119 year: 2010 ident: 10.1016/j.biomaterials.2018.04.040_bib53 article-title: Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles publication-title: Virol. J. – volume: 12 start-page: 37 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib12 article-title: How Xanthomonas type III effectors manipulate the host plant publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2008.12.006 – volume: 14 start-page: 370 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2018.04.040_bib3 article-title: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.003 – volume: 326 start-page: 1509 issue: 5959 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib10 article-title: Breaking the code of DNA binding specificity of TAL-type III effectors publication-title: Science doi: 10.1126/science.1178811 – volume: 64 start-page: 3097 issue: 6 year: 1990 ident: 10.1016/j.biomaterials.2018.04.040_bib16 article-title: Human immunodeficiency virus vpr product is a virion-associated regulatory protein publication-title: J. Virol. doi: 10.1128/JVI.64.6.3097-3099.1990 – volume: 194 start-page: 721 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib39 article-title: Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation publication-title: J. Cell Biol. doi: 10.1083/jcb.201010118 – volume: 189 start-page: 51 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2018.04.040_bib55 article-title: The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor publication-title: J. Exp. Med. doi: 10.1084/jem.189.1.51 – volume: 74 start-page: 5424 issue: 24 year: 2000 ident: 10.1016/j.biomaterials.2018.04.040_bib22 article-title: Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R publication-title: J. Virol. doi: 10.1128/JVI.74.12.5424-5431.2000 – volume: 159 start-page: 413 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2018.04.040_bib38 article-title: Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide publication-title: J. Control Release doi: 10.1016/j.jconrel.2012.01.023 – volume: 178 start-page: 7 issue: 1–2 year: 1996 ident: 10.1016/j.biomaterials.2018.04.040_bib54 article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1 publication-title: Gene doi: 10.1016/0378-1119(96)00312-5 – volume: 200 start-page: 623 issue: 2 year: 1994 ident: 10.1016/j.biomaterials.2018.04.040_bib17 article-title: Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate publication-title: Virology doi: 10.1006/viro.1994.1225 – volume: 327 start-page: 215 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2018.04.040_bib52 article-title: NMR structure of the HIV-1 regulatory protein VPR publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00060-3 – volume: 12 start-page: 175 issue: 2 year: 1998 ident: 10.1016/j.biomaterials.2018.04.040_bib19 article-title: HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection publication-title: Genes Dev. doi: 10.1101/gad.12.2.175 – volume: 14 start-page: 394 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2018.04.040_bib4 article-title: Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.008 – volume: 240 start-page: 1759 issue: 4860 year: 1998 ident: 10.1016/j.biomaterials.2018.04.040_bib51 article-title: The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins publication-title: Science doi: 10.1126/science.3289117 – volume: 26 start-page: 477 issue: 4 year: 2007 ident: 10.1016/j.biomaterials.2018.04.040_bib21 article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination publication-title: Oncogene doi: 10.1038/sj.onc.1209831 – volume: 8 start-page: 633 issue: 6 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib35 article-title: Reprogramming of mouse and human cells to pluripotency using mature microRNAs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.05.001 – volume: 8 start-page: 1 issue: 12 year: 2016 ident: 10.1016/j.biomaterials.2018.04.040_bib13 article-title: Genome-editing technologies: principles and applications publication-title: Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a023754 – volume: 28 start-page: 6426 issue: 20 year: 2008 ident: 10.1016/j.biomaterials.2018.04.040_bib41 article-title: Oct4/Sox2-Regulated miR-302 targets cyclin D1 in human embryonic stem cells publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00359-08 – volume: 1 start-page: 183 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2018.04.040_bib47 article-title: Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2013.06.002 – volume: 4 start-page: 381 issue: 5 year: 2009 ident: 10.1016/j.biomaterials.2018.04.040_bib27 article-title: Generation of induced pluripotent stem cells using recombinant proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.005 – volume: 8 start-page: 376 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib34 article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.03.001 – volume: 140 start-page: 1513 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib45 article-title: The solute Carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.01.041 – volume: 2 start-page: 718 issue: 6 year: 1982 ident: 10.1016/j.biomaterials.2018.04.040_bib33 article-title: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression publication-title: Genes Dev. doi: 10.1101/gad.2.6.718 – volume: 9 start-page: 374 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2018.04.040_bib8 article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.09.002 – volume: 90 start-page: 4528 issue: 10 year: 1993 ident: 10.1016/j.biomaterials.2018.04.040_bib44 article-title: RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.90.10.4528 – volume: 166 start-page: 1386 issue: 6 year: 2016 ident: 10.1016/j.biomaterials.2018.04.040_bib1 article-title: In vivo cellular reprogramming: the next generation publication-title: Cell doi: 10.1016/j.cell.2016.08.055 – volume: 15 issue: 8 year: 2018 ident: 10.1016/j.biomaterials.2018.04.040_bib48 article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response publication-title: Retrovirology – volume: 111 start-page: 1147 issue: 9 year: 2012 ident: 10.1016/j.biomaterials.2018.04.040_bib5 article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.271148 – volume: 485 start-page: 593 issue: 7400 year: 2012 ident: 10.1016/j.biomaterials.2018.04.040_bib6 article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes publication-title: Nature doi: 10.1038/nature11044 – volume: 338 start-page: 1499 issue: 3 year: 2005 ident: 10.1016/j.biomaterials.2018.04.040_bib25 article-title: Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.10.112 – volume: 448 start-page: 313 issue: 7175 year: 2007 ident: 10.1016/j.biomaterials.2018.04.040_bib37 article-title: Generation of germline-competent induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature05934 |
SSID | ssj0014042 |
Score | 2.3425994 |
Snippet | Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Artificial transcription factor Cell-penetrating peptide (CPP) Induced pluripotent stem cell (iPSC) Mouse embryonic fibroblast (MEF) Transcription activator-like effector (TALE) |
Title | Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218303077 https://dx.doi.org/10.1016/j.biomaterials.2018.04.040 https://www.ncbi.nlm.nih.gov/pubmed/29734017 https://www.proquest.com/docview/2036201479 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EodSHYm1rT62s0NftbZK9fCA-iFSuLfqk4FvYr8jpkRxHLH3qv9F_15ndzdVCCweFe7mwQ5KdyXzs_ua3AB-LSWqMLXKuRYMFSl5aXk0wkWuksqaSTWH8UvblVT69kV9vJ7cbcD70whCsMvr-4NO9t45XxnE2x4vZbEywpLQiAqwyI0uljnIpC7LyTz9XMA9ij0kDjDHlNHogHvUYL2pxV31QNcG8Sk97Sgshfw9S_0pCfTC62IFXMYtkZ-FBX8OGa3dh-xm34C68uIy75m_gV-jGbeLyHOsaphit2PMFejrPm9vesQXhW6xjcUtbzx3rOxzomRxmLad4Z1lPsW3wNIy6Ir5T2c7nswfHAjikWzL3I-JrWxaoohnmxv6WzP1-yLdwc_H5-nzK44EM3GCi1PNU2kroRuWZMEmlSkPFkRWZ1rQ7KKS2WWnzIk2NTJzUmbBliVcym8vG0sB3sNl2rXsPzGBVnirjjFQ43wnW90JPqsQqZxJrimQE1aCB2kS2cjo0Y14PsLT7-rn2atJeLST-xAiylewicHasJXUyKLoeulLRj9YYWtaSPl1J_2G_a8sfD7ZV4wdOClGt6x5pEOYYaL5FNYK9YHSrt6KDx3D2iv3_vPsBvKR_Adh4CJv98tF9wGSr10f-azqCrbMv36ZXTx42L3k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIkE5ICiPLk8jcTXrJN48hDigimqBbk-t1JvlV6qFVbKqUsSJv8HfZcZ2liKBtBJSTolHSTz2POxvPgO8rma5ta4quREtJihl7Xgzw0CuldrZRraVDUvZi5NyfiY_nc_Od-BwrIUhWGWy_dGmB2ud7kxTb07Xy-WUYEl5QwRYdUEjtboBNyVOXzrG4M2PDc6D6GPyiGPMOTUfmUcDyItq3PUQdU04rzrwntJKyN-91L-i0OCNju7B3RRGsvfxS-_Dju_24c41csF9uLVI2-YP4Gcsx23T-hzrW6YZLdnzNZq6QJzbXbA1AVycZ2lP26w8G3psGKgclh0nh-fYQM5tNDWMyiK-Ud7OV8uvnkV0SH_J_PcEsO1Y5IpmGByHVzL_-yMfwtnRh9PDOU8nMnCLkdLAc-kaYVpdFsJmja4tZUdOFMbQ9qCQxhW1K6s8tzLz0hTC1TXeKVwpW0cNH8Fu13f-AJjFtDzX1lupsb8zTPCFmTWZ095mzlbZBJpRA8omunI6NWOlRlzaF3Vde4q0p4TES0yg2MiuI2nHVlJvR0WrsSwVDalC37KV9LuN9B8DeGv5V-PYUjjDSSG68_0VNcIgA4dv1UzgcRx0m7-ik8ew96on__n2l3B7fro4VscfTz4_hT16ElGOz2B3uLzyzzHyGsyLMLN-Ab5LMQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+cell-penetrating+peptide+applicable+to+a+protein-based+transcription+activator-like+effector+expression+system+for+cell+engineering&rft.jtitle=Biomaterials&rft.au=Takashina%2C+Tomoki&rft.au=Koyama%2C+Takayoshi&rft.au=Nohara%2C+Satoshi&rft.au=Hasegawa%2C+Masakatsu&rft.date=2018-08-01&rft.eissn=1878-5905&rft.volume=173&rft.spage=11&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.04.040&rft_id=info%3Apmid%2F29734017&rft.externalDocID=29734017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |