Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering

Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. H...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 173; pp. 11 - 21
Main Authors Takashina, Tomoki, Koyama, Takayoshi, Nohara, Satoshi, Hasegawa, Masakatsu, Ishiguro, Akira, Iijima, Kenta, Lu, Jun, Shimura, Mari, Okamura, Tadashi, Sakuma, Tetsushi, Yamamoto, Takashi, Ishizaka, Yukihito
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide “nuclear trafficking peptide” (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.
AbstractList Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide "nuclear trafficking peptide" (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide "nuclear trafficking peptide" (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.
Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide “nuclear trafficking peptide” (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.
Author Takashina, Tomoki
Iijima, Kenta
Shimura, Mari
Ishizaka, Yukihito
Hasegawa, Masakatsu
Ishiguro, Akira
Lu, Jun
Yamamoto, Takashi
Koyama, Takayoshi
Nohara, Satoshi
Okamura, Tadashi
Sakuma, Tetsushi
Author_xml – sequence: 1
  givenname: Tomoki
  surname: Takashina
  fullname: Takashina, Tomoki
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 2
  givenname: Takayoshi
  surname: Koyama
  fullname: Koyama, Takayoshi
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 3
  givenname: Satoshi
  surname: Nohara
  fullname: Nohara, Satoshi
  organization: Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan
– sequence: 4
  givenname: Masakatsu
  surname: Hasegawa
  fullname: Hasegawa, Masakatsu
  organization: Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan
– sequence: 5
  givenname: Akira
  surname: Ishiguro
  fullname: Ishiguro, Akira
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 6
  givenname: Kenta
  surname: Iijima
  fullname: Iijima, Kenta
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 7
  givenname: Jun
  surname: Lu
  fullname: Lu, Jun
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 8
  givenname: Mari
  surname: Shimura
  fullname: Shimura, Mari
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 9
  givenname: Tadashi
  surname: Okamura
  fullname: Okamura, Tadashi
  organization: Section of Animal Models, Department of Infectious Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
– sequence: 10
  givenname: Tetsushi
  surname: Sakuma
  fullname: Sakuma, Tetsushi
  organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
– sequence: 11
  givenname: Takashi
  surname: Yamamoto
  fullname: Yamamoto, Takashi
  organization: Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
– sequence: 12
  givenname: Yukihito
  surname: Ishizaka
  fullname: Ishizaka, Yukihito
  email: zakay@ri.ncgm.go.jp
  organization: Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29734017$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1u1DAQhS1URLeFV0AWV9xksRNvfrgCyl-lStzAteXYk9VsEzvY3op9El6XSbcg1KuVLFkz-nw8c84FO_PBA2OvpFhLIes3u3WPYTIZIpoxrUsh27VQdMQTtpJt0xabTmzO2EpIVRZdLctzdpHSTlAtVPmMnZddUykhmxX7fe3AZxzQmozB8zBwwy2MYzGDhxyp67d8hjmjA27meSSyH4HnQOAcQwb0RW8SOE60TzbifK9kbMY7k0MsRrwFDsMAlioOv-YIKS1IOqQMEx-ou3zJwW_RA63lt8_Z04GWgxcP9yX78fnT96uvxc23L9dX728KuxGbXJTKdaIfTF0JKzvTWlnLxomq76uu6YTqXdW6uilLqySovhKubalTuVoNbgEv2eujLq3ycw8p6wnTMozxEPZJl6KqyWDVdIS-fED3_QROzxEnEw_6r5kEvD0CNoaUIgz_ECn0kpze6f-T00tyWig6yyDvHj22mO8zIVtxPE3i41ECyLA7hKiTRfAWHEbyXruAp8l8eCRjR_QU-3gLh1NF_gCtpdkJ
CitedBy_id crossref_primary_10_1007_s12015_018_9861_6
crossref_primary_10_1097_HC9_0000000000000051
crossref_primary_10_1021_acsomega_1c00532
crossref_primary_10_1186_s12951_022_01383_z
crossref_primary_10_1016_j_yexcr_2021_112893
crossref_primary_10_1111_cas_13832
crossref_primary_10_1038_s41416_019_0708_y
crossref_primary_10_1016_j_bbrep_2022_101386
crossref_primary_10_3390_app12094688
Cites_doi 10.1101/gr.171264.113
10.1038/nature07314
10.1073/pnas.97.2.559
10.1038/nbt.1775
10.1016/j.bbrc.2004.05.126
10.1016/0378-1119(96)00312-5
10.1038/nn.3299
10.1128/JVI.79.24.15443-15451.2005
10.1016/j.biomaterials.2012.03.061
10.1038/srep03379
10.2183/pjab.85.348
10.1111/j.1365-2958.1996.tb02464.x
10.1126/science.1178817
10.1038/nbt.1755
10.1016/j.pharmthera.2015.07.003
10.1074/jbc.M300248200
10.1016/j.stem.2009.05.005
10.1016/j.cell.2006.07.024
10.1089/scd.2012.0650
10.1074/jbc.M004044200
10.1042/BJ20041759
10.1073/pnas.92.7.2770
10.1016/j.mib.2008.12.006
10.1016/j.stem.2014.01.003
10.1126/science.1178811
10.1128/JVI.64.6.3097-3099.1990
10.1083/jcb.201010118
10.1084/jem.189.1.51
10.1128/JVI.74.12.5424-5431.2000
10.1016/j.jconrel.2012.01.023
10.1006/viro.1994.1225
10.1016/S0022-2836(03)00060-3
10.1101/gad.12.2.175
10.1016/j.stem.2014.01.008
10.1126/science.3289117
10.1038/sj.onc.1209831
10.1016/j.stem.2011.05.001
10.1101/cshperspect.a023754
10.1128/MCB.00359-08
10.1016/j.stemcr.2013.06.002
10.1016/j.stem.2009.04.005
10.1016/j.stem.2011.03.001
10.1053/j.gastro.2011.01.041
10.1101/gad.2.6.718
10.1016/j.stem.2011.09.002
10.1073/pnas.90.10.4528
10.1016/j.cell.2016.08.055
10.1161/CIRCRESAHA.112.271148
10.1038/nature11044
10.1016/j.bbrc.2005.10.112
10.1038/nature05934
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.biomaterials.2018.04.040
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 21
ExternalDocumentID 29734017
10_1016_j_biomaterials_2018_04_040
S0142961218303077
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c505t-24d90bfa630c19a8c1617d03bb397904bd38d6722c41e4b30d8838d3d64fd7d03
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 02:17:09 EDT 2025
Thu Apr 03 06:57:20 EDT 2025
Tue Jul 01 01:19:34 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Fri Feb 23 02:31:36 EST 2024
Tue Aug 26 20:00:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mouse embryonic fibroblast (MEF)
Induced pluripotent stem cell (iPSC)
Cell-penetrating peptide (CPP)
Artificial transcription factor
Transcription activator-like effector (TALE)
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-24d90bfa630c19a8c1617d03bb397904bd38d6722c41e4b30d8838d3d64fd7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29734017
PQID 2036201479
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2036201479
pubmed_primary_29734017
crossref_primary_10_1016_j_biomaterials_2018_04_040
crossref_citationtrail_10_1016_j_biomaterials_2018_04_040
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_04_040
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_04_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References De la Rossa, Bellone, Golding, Vitali, Moss, Toni, Lüscher, Jabaudon (bib7) 2013; 16
Morellet, Bouaziz, Petitjean, Proques (bib52) 2003; 327
Henklein, Bruns, Sherman, Tessmer, Licha, Kopp, de Noronha, Greene, Wray, Schubert (bib20) 2000; 275
Mizoguchi, Ooe, Hoshino, Shimura, Kasahara, Kano, Ohta, Takaku, Nakayama, Ishizaka (bib25) 2005; 338
Lai, Zimmerman, Planelles, Chen (bib46) 2005; 79
IG1, Arunagiri, Hewish, White, Azad (bib57) 1996; 19
Koyama, Sun, Tokunaga, Tatsumi, Ishizaka (bib18) 2013; 10
Moscou, Bogdanove (bib11) 2009; 326
Wang, Mukherjee, Narayan, Zhao (bib49) 1996; 178
Venkatachari, Walker, Tastan, Le, Dempsey, Li, Yanamala, Srinivasan, Klein-Seetharaman, Montelaro, Ayyavoo (bib53) 2010; 7
Card, Hebbar, Li, Trotter, Komatsu, Mishina, Archer (bib41) 2008; 28
Du, Wang, Jia, Song, Xiang, Xu, Hou, Su, Liu, Jiang, Zhao, Sun, Shu, Guo, Yin, Sun, Lu, Shi, Deng (bib4) 2014; 14
Landschulz, Johnson, McKnight (bib51) 1998; 240
Coeytaux, Coulaud, Le Cam, Danos, Kichler (bib23) 2003; 278
Taguchi, Shimura, Osawa, Suzuki, Mizoguchi, Niino, Takaku, Ishizaka (bib24) 2004; 320
Liu, Gaj, Patterson, Sirk, Barbas (bib31) 2014; 9
Zhou, Wu, Joo, Zhu, Han, Lin, Trauger, Bien, Yao, Zhu, Siuzdak, Schöler, Duan, Ding (bib27) 2009; 4
Kay, Bonas (bib12) 2009; 12
Chen, Lansford, Stewart, Young, Alt (bib44) 1993; 90
Miller, Tan, Qiao, Barlow, Wang, Xia, Meng, Paschon, Leung, Hinkley, Dulay, Hua, Ankoudinova, Cost, Urnov, Zhang, Holmes, Zhang, Gregory, Rebar (bib15) 2011; 29
Iijima, Kobayashi, Ishizaka (bib48) 2018; 15
Huang, Zhang, Gao, He, Yao, Wu, Cen, Chen, Liu, Hu, Lai, Hu, Chen, Zhang, Cheng, Ma, Pan, Wang, Hui (bib3) 2014; 14
Kim, Kim, Moon, Chung, Chang, Han, Ko, Yang, Cha, Lanza, Kim (bib28) 2009; 4
Zhou, Brown, Kanarek, Rajagopal, Melton (bib9) 2008; 455
Gaj, Sirk, Shui, Liu (bib13) 2016; 8
Ramakrishna, Kwaku Dad, Beloor, Gopalappa, Lee, Kim (bib32) 2014; 24
Wang, Mukherjee, Narayan, Zhao (bib54) 1996; 178
Balliet, Kolson, Eiger, Kim, McGann, Srinivasan, Collman (bib17) 1994; 200
Inagawa, Miyamoto, Yamakawa, Muraoka, Sadahiro, Umei, Wada, Katsumata, Kaneda, Nakade, Kurihara, Obata, Miyake, Fukuda, Ieda (bib5) 2012; 111
Triezenberg, Kingsbury, McKnight (bib33) 1982; 2
Sakuma, Ochiai, Kaneko, Mashimo, Tokumasu, Sakane, Suzuki, Miyamoto, Sakamoto, Matsuura, Yamamoto (bib42) 2013; 3
Qian, Huang, Spencer, Foley, Vedantham, Liu, Conway, Fu, Srivastava (bib6) 2012; 485
Takahashi, Yamanaka (bib2) 2006; 126
Gao, Yang, Tsang, Ooi, Wu, Liu (bib47) 2013; 1
Cohen, Dehni, Sodroski, Haseltine (bib16) 1990; 64
Zhang, Wu (bib36) 2013; 22
Vodicka, Koepp, Silver, Emerman (bib19) 1998; 12
Anokye-Danso, Trivedi, Juhr, Gupta, Cui, Tian, Zhang, Yang, Gruber, Epstein, Morrisey (bib34) 2011; 8
Kichler, Pages, Leborgne, Druillennec, Lenoir, Coulaud, Delain, Le Cam, Roques, Danos (bib22) 2000; 74
Nakai-Murakami, Shimura, Kinomoto, Takizawa, Tokunaga, Taguchi, Hoshino, Miyagawa, Sata, Kurumizaka, Yuo, Ishizaka (bib21) 2007; 26
Ru, Yao, Yu, Yin, Xu, Zhao, Qin, Chen (bib30) 2013; 2
Shimura, Toyoda, Iijima, Kinomoto, Tokunaga, Yoda, Yanagida, Sata, Ishizaka (bib39) 2011; 194
Boch, Scholze, Schornack, Landgraf, Hahn, Kay, Kay, Lahaye, Nickstadt, Bonas (bib10) 2009; 326
Bourbigot, Beltz, Denis, Morellet, Roques, Mély, Bouaziz (bib50) 2005; 387
Madin, Sawasaki, Ogasawara, Endo (bib40) 2000; 97
Koyama, Shimura, Minemoto, Nohara, Shibata, Iida, Iwashita, Hasegawa, Kurabayashi, Hamada, Kono, Honda, Aoki, Ishizaka (bib38) 2012; 159
Kino, Gragerov, Kopp, Stauber, Pavlakis, Chrousos (bib55) 1999; 189
Zhang, Cong, Lodato, Kosuri, Church, Arlotta (bib14) 2011; 29
Macreadie, Castelli, Hewish, Kirkpatrick, Ward, Azad (bib56) 1995; 92
Srivastava, DeWitt (bib1) 2016; 166
Miyoshi, Ishii, Nagano, Haraguchi, Dewi, Kano, Nishikawa, Tanemura, Mimori, Tanaka, Saito, Nishimura, Takemasa, Mizushima, Ikeda, Yamamoto, Sekimoto, Doki, Mori (bib35) 2011; 8
Fusaki, Ban, Nishiyama, Saeki, Hasegawa (bib43) 2009; 85
Sasawatari, Okamura, Kasumi, Tanaka-Furuyama, Yanobu-Takanashi, Shirasawa, Kato, Toyama-Sorimachi (bib45) 2011; 140
Marro, Pang, Yang, Tsai, Qu, Chang, Südhof, Wernig (bib8) 2011; 9
Ramsey, Flynn (bib26) 2015; 154
Zhang, Ma, Gu, Liao, Li, Wong, Jin (bib29) 2012; 33
Okita, Ichisaka, Yamanaka (bib37) 2007; 448
Ramakrishna (10.1016/j.biomaterials.2018.04.040_bib32) 2014; 24
Koyama (10.1016/j.biomaterials.2018.04.040_bib38) 2012; 159
Card (10.1016/j.biomaterials.2018.04.040_bib41) 2008; 28
Iijima (10.1016/j.biomaterials.2018.04.040_bib48) 2018; 15
Liu (10.1016/j.biomaterials.2018.04.040_bib31) 2014; 9
Gao (10.1016/j.biomaterials.2018.04.040_bib47) 2013; 1
Shimura (10.1016/j.biomaterials.2018.04.040_bib39) 2011; 194
Sasawatari (10.1016/j.biomaterials.2018.04.040_bib45) 2011; 140
De la Rossa (10.1016/j.biomaterials.2018.04.040_bib7) 2013; 16
Marro (10.1016/j.biomaterials.2018.04.040_bib8) 2011; 9
Ru (10.1016/j.biomaterials.2018.04.040_bib30) 2013; 2
Henklein (10.1016/j.biomaterials.2018.04.040_bib20) 2000; 275
IG1 (10.1016/j.biomaterials.2018.04.040_bib57) 1996; 19
Ramsey (10.1016/j.biomaterials.2018.04.040_bib26) 2015; 154
Mizoguchi (10.1016/j.biomaterials.2018.04.040_bib25) 2005; 338
Koyama (10.1016/j.biomaterials.2018.04.040_bib18) 2013; 10
Kim (10.1016/j.biomaterials.2018.04.040_bib28) 2009; 4
Gaj (10.1016/j.biomaterials.2018.04.040_bib13) 2016; 8
Coeytaux (10.1016/j.biomaterials.2018.04.040_bib23) 2003; 278
Lai (10.1016/j.biomaterials.2018.04.040_bib46) 2005; 79
Venkatachari (10.1016/j.biomaterials.2018.04.040_bib53) 2010; 7
Srivastava (10.1016/j.biomaterials.2018.04.040_bib1) 2016; 166
Okita (10.1016/j.biomaterials.2018.04.040_bib37) 2007; 448
Kino (10.1016/j.biomaterials.2018.04.040_bib55) 1999; 189
Sakuma (10.1016/j.biomaterials.2018.04.040_bib42) 2013; 3
Du (10.1016/j.biomaterials.2018.04.040_bib4) 2014; 14
Taguchi (10.1016/j.biomaterials.2018.04.040_bib24) 2004; 320
Madin (10.1016/j.biomaterials.2018.04.040_bib40) 2000; 97
Nakai-Murakami (10.1016/j.biomaterials.2018.04.040_bib21) 2007; 26
Qian (10.1016/j.biomaterials.2018.04.040_bib6) 2012; 485
Balliet (10.1016/j.biomaterials.2018.04.040_bib17) 1994; 200
Huang (10.1016/j.biomaterials.2018.04.040_bib3) 2014; 14
Fusaki (10.1016/j.biomaterials.2018.04.040_bib43) 2009; 85
Triezenberg (10.1016/j.biomaterials.2018.04.040_bib33) 1982; 2
Zhou (10.1016/j.biomaterials.2018.04.040_bib27) 2009; 4
Wang (10.1016/j.biomaterials.2018.04.040_bib54) 1996; 178
Zhang (10.1016/j.biomaterials.2018.04.040_bib14) 2011; 29
Inagawa (10.1016/j.biomaterials.2018.04.040_bib5) 2012; 111
Cohen (10.1016/j.biomaterials.2018.04.040_bib16) 1990; 64
Chen (10.1016/j.biomaterials.2018.04.040_bib44) 1993; 90
Kay (10.1016/j.biomaterials.2018.04.040_bib12) 2009; 12
Macreadie (10.1016/j.biomaterials.2018.04.040_bib56) 1995; 92
Zhang (10.1016/j.biomaterials.2018.04.040_bib36) 2013; 22
Wang (10.1016/j.biomaterials.2018.04.040_bib49) 1996; 178
Miller (10.1016/j.biomaterials.2018.04.040_bib15) 2011; 29
Anokye-Danso (10.1016/j.biomaterials.2018.04.040_bib34) 2011; 8
Moscou (10.1016/j.biomaterials.2018.04.040_bib11) 2009; 326
Morellet (10.1016/j.biomaterials.2018.04.040_bib52) 2003; 327
Landschulz (10.1016/j.biomaterials.2018.04.040_bib51) 1998; 240
Zhang (10.1016/j.biomaterials.2018.04.040_bib29) 2012; 33
Miyoshi (10.1016/j.biomaterials.2018.04.040_bib35) 2011; 8
Zhou (10.1016/j.biomaterials.2018.04.040_bib9) 2008; 455
Takahashi (10.1016/j.biomaterials.2018.04.040_bib2) 2006; 126
Bourbigot (10.1016/j.biomaterials.2018.04.040_bib50) 2005; 387
Boch (10.1016/j.biomaterials.2018.04.040_bib10) 2009; 326
Vodicka (10.1016/j.biomaterials.2018.04.040_bib19) 1998; 12
Kichler (10.1016/j.biomaterials.2018.04.040_bib22) 2000; 74
References_xml – volume: 33
  start-page: 5047
  year: 2012
  end-page: 5055
  ident: bib29
  article-title: Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors
  publication-title: Biomaterials
– volume: 97
  start-page: 559
  year: 2000
  end-page: 564
  ident: bib40
  article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 6426
  year: 2008
  end-page: 6438
  ident: bib41
  article-title: Oct4/Sox2-Regulated miR-302 targets cyclin D1 in human embryonic stem cells
  publication-title: Mol. Cell Biol.
– volume: 19
  start-page: 1185
  year: 1996
  end-page: 1192
  ident: bib57
  article-title: Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death
  publication-title: Mol. Microbiol.
– volume: 29
  start-page: 143
  year: 2011
  end-page: 148
  ident: bib15
  article-title: A TALE nuclease architecture for efficient genome editing
  publication-title: Nat. Biotechnol.
– volume: 4
  start-page: 381
  year: 2009
  end-page: 384
  ident: bib27
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
– volume: 189
  start-page: 51
  year: 1999
  end-page: 62
  ident: bib55
  article-title: The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor
  publication-title: J. Exp. Med.
– volume: 16
  start-page: 193
  year: 2013
  end-page: 200
  ident: bib7
  article-title: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons
  publication-title: Nat. Neurosci.
– volume: 111
  start-page: 1147
  year: 2012
  end-page: 1156
  ident: bib5
  article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5
  publication-title: Circ. Res.
– volume: 9
  year: 2014
  ident: bib31
  article-title: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering
  publication-title: PLoS One
– volume: 326
  start-page: 1509
  year: 2009
  end-page: 1512
  ident: bib10
  article-title: Breaking the code of DNA binding specificity of TAL-type III effectors
  publication-title: Science
– volume: 455
  start-page: 627
  year: 2008
  end-page: 632
  ident: bib9
  article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells
  publication-title: Nature
– volume: 15
  year: 2018
  ident: bib48
  article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response
  publication-title: Retrovirology
– volume: 29
  start-page: 149
  year: 2011
  end-page: 153
  ident: bib14
  article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
  publication-title: Nat. Biotechnol.
– volume: 166
  start-page: 1386
  year: 2016
  end-page: 1396
  ident: bib1
  article-title: In vivo cellular reprogramming: the next generation
  publication-title: Cell
– volume: 12
  start-page: 175
  year: 1998
  end-page: 185
  ident: bib19
  article-title: HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection
  publication-title: Genes Dev.
– volume: 178
  start-page: 7
  year: 1996
  end-page: 13
  ident: bib54
  article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1
  publication-title: Gene
– volume: 7
  year: 2010
  ident: bib53
  article-title: Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles
  publication-title: Virol. J.
– volume: 26
  start-page: 477
  year: 2007
  end-page: 486
  ident: bib21
  article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination
  publication-title: Oncogene
– volume: 24
  start-page: 1020
  year: 2014
  end-page: 1027
  ident: bib32
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
– volume: 194
  start-page: 721
  year: 2011
  end-page: 735
  ident: bib39
  article-title: Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 20
  ident: bib13
  article-title: Genome-editing technologies: principles and applications
  publication-title: Cold Spring Harb Perspect Biol.
– volume: 8
  start-page: 633
  year: 2011
  end-page: 638
  ident: bib35
  article-title: Reprogramming of mouse and human cells to pluripotency using mature microRNAs
  publication-title: Cell Stem Cell
– volume: 448
  start-page: 313
  year: 2007
  end-page: 317
  ident: bib37
  article-title: Generation of germline-competent induced pluripotent stem cells
  publication-title: Nature
– volume: 159
  start-page: 413
  year: 2012
  end-page: 418
  ident: bib38
  article-title: Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide
  publication-title: J. Control Release
– volume: 9
  start-page: 374
  year: 2011
  end-page: 382
  ident: bib8
  article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons
  publication-title: Cell Stem Cell
– volume: 14
  start-page: 370
  year: 2014
  end-page: 384
  ident: bib3
  article-title: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes
  publication-title: Cell Stem Cell
– volume: 178
  start-page: 7
  year: 1996
  end-page: 13
  ident: bib49
  article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1
  publication-title: Gene
– volume: 320
  start-page: 18
  year: 2004
  end-page: 26
  ident: bib24
  article-title: Nuclear trafficking of macromolecules by an oligopeptide derived from Vpr of human immunodeficiency virus type-1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 275
  start-page: 32016
  year: 2000
  end-page: 32026
  ident: bib20
  article-title: Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 4528
  year: 1993
  end-page: 4532
  ident: bib44
  article-title: RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 2268
  year: 2013
  end-page: 2277
  ident: bib36
  article-title: Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster
  publication-title: Stem Cell. Dev.
– volume: 85
  start-page: 348
  year: 2009
  end-page: 362
  ident: bib43
  article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib2
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 1
  start-page: 183
  year: 2013
  end-page: 197
  ident: bib47
  article-title: Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers
  publication-title: Stem Cell Rep.
– volume: 92
  start-page: 2770
  year: 1995
  end-page: 2774
  ident: bib56
  article-title: A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2
  start-page: 5
  year: 2013
  ident: bib30
  article-title: Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs
  publication-title: Cell Regen (Lond)
– volume: 8
  start-page: 376
  year: 2011
  end-page: 388
  ident: bib34
  article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
  publication-title: Cell Stem Cell
– volume: 327
  start-page: 215
  year: 2003
  end-page: 227
  ident: bib52
  article-title: NMR structure of the HIV-1 regulatory protein VPR
  publication-title: J. Mol. Biol.
– volume: 240
  start-page: 1759
  year: 1998
  end-page: 1764
  ident: bib51
  article-title: The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins
  publication-title: Science
– volume: 326
  start-page: 1501
  year: 2009
  end-page: 1511
  ident: bib11
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
– volume: 12
  start-page: 37
  year: 2009
  end-page: 43
  ident: bib12
  article-title: How Xanthomonas type III effectors manipulate the host plant
  publication-title: Curr. Opin. Microbiol.
– volume: 74
  start-page: 5424
  year: 2000
  end-page: 5431
  ident: bib22
  article-title: Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R
  publication-title: J. Virol.
– volume: 338
  start-page: 1499
  year: 2005
  end-page: 1506
  ident: bib25
  article-title: Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 79
  start-page: 15443
  year: 2005
  end-page: 15451
  ident: bib46
  article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo
  publication-title: J. Virol.
– volume: 64
  start-page: 3097
  year: 1990
  end-page: 3099
  ident: bib16
  article-title: Human immunodeficiency virus vpr product is a virion-associated regulatory protein
  publication-title: J. Virol.
– volume: 2
  start-page: 718
  year: 1982
  end-page: 729
  ident: bib33
  article-title: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression
  publication-title: Genes Dev.
– volume: 278
  start-page: 18110
  year: 2003
  end-page: 18116
  ident: bib23
  article-title: The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 472
  year: 2009
  end-page: 476
  ident: bib28
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
– volume: 485
  start-page: 593
  year: 2012
  end-page: 598
  ident: bib6
  article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
  publication-title: Nature
– volume: 14
  start-page: 394
  year: 2014
  end-page: 403
  ident: bib4
  article-title: Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming
  publication-title: Cell Stem Cell
– volume: 154
  start-page: 78
  year: 2015
  end-page: 86
  ident: bib26
  article-title: Cell-penetrating peptides transport therapeutics into cells
  publication-title: Pharmacol. Ther.
– volume: 10
  year: 2013
  ident: bib18
  article-title: DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition
  publication-title: Retrovirology
– volume: 140
  start-page: 1513
  year: 2011
  end-page: 1525
  ident: bib45
  article-title: The solute Carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice
  publication-title: Gastroenterology
– volume: 200
  start-page: 623
  year: 1994
  end-page: 631
  ident: bib17
  article-title: Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate
  publication-title: Virology
– volume: 387
  start-page: 333
  year: 2005
  end-page: 341
  ident: bib50
  article-title: The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain
  publication-title: Biochem. J.
– volume: 3
  start-page: 3379
  year: 2013
  ident: bib42
  article-title: Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity
  publication-title: Sci. Rep.
– volume: 24
  start-page: 1020
  issue: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2018.04.040_bib32
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
  doi: 10.1101/gr.171264.113
– volume: 2
  start-page: 5
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib30
  article-title: Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs
  publication-title: Cell Regen (Lond)
– volume: 455
  start-page: 627
  issue: 7213
  year: 2008
  ident: 10.1016/j.biomaterials.2018.04.040_bib9
  article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells
  publication-title: Nature
  doi: 10.1038/nature07314
– volume: 97
  start-page: 559
  issue: 2
  year: 2000
  ident: 10.1016/j.biomaterials.2018.04.040_bib40
  article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.2.559
– volume: 29
  start-page: 149
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib14
  article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1775
– volume: 320
  start-page: 18
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2018.04.040_bib24
  article-title: Nuclear trafficking of macromolecules by an oligopeptide derived from Vpr of human immunodeficiency virus type-1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.05.126
– volume: 178
  start-page: 7
  issue: 1–2
  year: 1996
  ident: 10.1016/j.biomaterials.2018.04.040_bib49
  article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1
  publication-title: Gene
  doi: 10.1016/0378-1119(96)00312-5
– volume: 10
  issue: 21
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib18
  article-title: DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition
  publication-title: Retrovirology
– volume: 16
  start-page: 193
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib7
  article-title: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3299
– volume: 79
  start-page: 15443
  issue: 24
  year: 2005
  ident: 10.1016/j.biomaterials.2018.04.040_bib46
  article-title: Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.24.15443-15451.2005
– volume: 33
  start-page: 5047
  issue: 20
  year: 2012
  ident: 10.1016/j.biomaterials.2018.04.040_bib29
  article-title: Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.061
– volume: 3
  start-page: 3379
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib42
  article-title: Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity
  publication-title: Sci. Rep.
  doi: 10.1038/srep03379
– volume: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2018.04.040_bib31
  article-title: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering
  publication-title: PLoS One
– volume: 85
  start-page: 348
  issue: 8
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib43
  article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.85.348
– volume: 19
  start-page: 1185
  issue: 6
  year: 1996
  ident: 10.1016/j.biomaterials.2018.04.040_bib57
  article-title: Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1996.tb02464.x
– volume: 326
  start-page: 1501
  issue: 5959
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib11
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
  doi: 10.1126/science.1178817
– volume: 29
  start-page: 143
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib15
  article-title: A TALE nuclease architecture for efficient genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1755
– volume: 154
  start-page: 78
  year: 2015
  ident: 10.1016/j.biomaterials.2018.04.040_bib26
  article-title: Cell-penetrating peptides transport therapeutics into cells
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2015.07.003
– volume: 278
  start-page: 18110
  issue: 20
  year: 2003
  ident: 10.1016/j.biomaterials.2018.04.040_bib23
  article-title: The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300248200
– volume: 4
  start-page: 472
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib28
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  ident: 10.1016/j.biomaterials.2018.04.040_bib2
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 22
  start-page: 2268
  issue: 16
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib36
  article-title: Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster
  publication-title: Stem Cell. Dev.
  doi: 10.1089/scd.2012.0650
– volume: 275
  start-page: 32016
  issue: 41
  year: 2000
  ident: 10.1016/j.biomaterials.2018.04.040_bib20
  article-title: Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004044200
– volume: 387
  start-page: 333
  issue: Pt2
  year: 2005
  ident: 10.1016/j.biomaterials.2018.04.040_bib50
  article-title: The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041759
– volume: 92
  start-page: 2770
  issue: 7
  year: 1995
  ident: 10.1016/j.biomaterials.2018.04.040_bib56
  article-title: A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.7.2770
– volume: 7
  issue: 119
  year: 2010
  ident: 10.1016/j.biomaterials.2018.04.040_bib53
  article-title: Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles
  publication-title: Virol. J.
– volume: 12
  start-page: 37
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib12
  article-title: How Xanthomonas type III effectors manipulate the host plant
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2008.12.006
– volume: 14
  start-page: 370
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2018.04.040_bib3
  article-title: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.003
– volume: 326
  start-page: 1509
  issue: 5959
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib10
  article-title: Breaking the code of DNA binding specificity of TAL-type III effectors
  publication-title: Science
  doi: 10.1126/science.1178811
– volume: 64
  start-page: 3097
  issue: 6
  year: 1990
  ident: 10.1016/j.biomaterials.2018.04.040_bib16
  article-title: Human immunodeficiency virus vpr product is a virion-associated regulatory protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.64.6.3097-3099.1990
– volume: 194
  start-page: 721
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib39
  article-title: Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201010118
– volume: 189
  start-page: 51
  issue: 1
  year: 1999
  ident: 10.1016/j.biomaterials.2018.04.040_bib55
  article-title: The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.189.1.51
– volume: 74
  start-page: 5424
  issue: 24
  year: 2000
  ident: 10.1016/j.biomaterials.2018.04.040_bib22
  article-title: Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.12.5424-5431.2000
– volume: 159
  start-page: 413
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2018.04.040_bib38
  article-title: Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2012.01.023
– volume: 178
  start-page: 7
  issue: 1–2
  year: 1996
  ident: 10.1016/j.biomaterials.2018.04.040_bib54
  article-title: Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1
  publication-title: Gene
  doi: 10.1016/0378-1119(96)00312-5
– volume: 200
  start-page: 623
  issue: 2
  year: 1994
  ident: 10.1016/j.biomaterials.2018.04.040_bib17
  article-title: Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate
  publication-title: Virology
  doi: 10.1006/viro.1994.1225
– volume: 327
  start-page: 215
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2018.04.040_bib52
  article-title: NMR structure of the HIV-1 regulatory protein VPR
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00060-3
– volume: 12
  start-page: 175
  issue: 2
  year: 1998
  ident: 10.1016/j.biomaterials.2018.04.040_bib19
  article-title: HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.2.175
– volume: 14
  start-page: 394
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2018.04.040_bib4
  article-title: Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.008
– volume: 240
  start-page: 1759
  issue: 4860
  year: 1998
  ident: 10.1016/j.biomaterials.2018.04.040_bib51
  article-title: The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins
  publication-title: Science
  doi: 10.1126/science.3289117
– volume: 26
  start-page: 477
  issue: 4
  year: 2007
  ident: 10.1016/j.biomaterials.2018.04.040_bib21
  article-title: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209831
– volume: 8
  start-page: 633
  issue: 6
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib35
  article-title: Reprogramming of mouse and human cells to pluripotency using mature microRNAs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.05.001
– volume: 8
  start-page: 1
  issue: 12
  year: 2016
  ident: 10.1016/j.biomaterials.2018.04.040_bib13
  article-title: Genome-editing technologies: principles and applications
  publication-title: Cold Spring Harb Perspect Biol.
  doi: 10.1101/cshperspect.a023754
– volume: 28
  start-page: 6426
  issue: 20
  year: 2008
  ident: 10.1016/j.biomaterials.2018.04.040_bib41
  article-title: Oct4/Sox2-Regulated miR-302 targets cyclin D1 in human embryonic stem cells
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00359-08
– volume: 1
  start-page: 183
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2018.04.040_bib47
  article-title: Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2013.06.002
– volume: 4
  start-page: 381
  issue: 5
  year: 2009
  ident: 10.1016/j.biomaterials.2018.04.040_bib27
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 8
  start-page: 376
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib34
  article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.03.001
– volume: 140
  start-page: 1513
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib45
  article-title: The solute Carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.01.041
– volume: 2
  start-page: 718
  issue: 6
  year: 1982
  ident: 10.1016/j.biomaterials.2018.04.040_bib33
  article-title: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.2.6.718
– volume: 9
  start-page: 374
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2018.04.040_bib8
  article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.09.002
– volume: 90
  start-page: 4528
  issue: 10
  year: 1993
  ident: 10.1016/j.biomaterials.2018.04.040_bib44
  article-title: RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.90.10.4528
– volume: 166
  start-page: 1386
  issue: 6
  year: 2016
  ident: 10.1016/j.biomaterials.2018.04.040_bib1
  article-title: In vivo cellular reprogramming: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.055
– volume: 15
  issue: 8
  year: 2018
  ident: 10.1016/j.biomaterials.2018.04.040_bib48
  article-title: Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response
  publication-title: Retrovirology
– volume: 111
  start-page: 1147
  issue: 9
  year: 2012
  ident: 10.1016/j.biomaterials.2018.04.040_bib5
  article-title: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.271148
– volume: 485
  start-page: 593
  issue: 7400
  year: 2012
  ident: 10.1016/j.biomaterials.2018.04.040_bib6
  article-title: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
  publication-title: Nature
  doi: 10.1038/nature11044
– volume: 338
  start-page: 1499
  issue: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2018.04.040_bib25
  article-title: Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.10.112
– volume: 448
  start-page: 313
  issue: 7175
  year: 2007
  ident: 10.1016/j.biomaterials.2018.04.040_bib37
  article-title: Generation of germline-competent induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature05934
SSID ssj0014042
Score 2.3425994
Snippet Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Artificial transcription factor
Cell-penetrating peptide (CPP)
Induced pluripotent stem cell (iPSC)
Mouse embryonic fibroblast (MEF)
Transcription activator-like effector (TALE)
Title Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218303077
https://dx.doi.org/10.1016/j.biomaterials.2018.04.040
https://www.ncbi.nlm.nih.gov/pubmed/29734017
https://www.proquest.com/docview/2036201479
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EodSHYm1rT62s0NftbZK9fCA-iFSuLfqk4FvYr8jpkRxHLH3qv9F_15ndzdVCCweFe7mwQ5KdyXzs_ua3AB-LSWqMLXKuRYMFSl5aXk0wkWuksqaSTWH8UvblVT69kV9vJ7cbcD70whCsMvr-4NO9t45XxnE2x4vZbEywpLQiAqwyI0uljnIpC7LyTz9XMA9ij0kDjDHlNHogHvUYL2pxV31QNcG8Sk97Sgshfw9S_0pCfTC62IFXMYtkZ-FBX8OGa3dh-xm34C68uIy75m_gV-jGbeLyHOsaphit2PMFejrPm9vesQXhW6xjcUtbzx3rOxzomRxmLad4Z1lPsW3wNIy6Ir5T2c7nswfHAjikWzL3I-JrWxaoohnmxv6WzP1-yLdwc_H5-nzK44EM3GCi1PNU2kroRuWZMEmlSkPFkRWZ1rQ7KKS2WWnzIk2NTJzUmbBliVcym8vG0sB3sNl2rXsPzGBVnirjjFQ43wnW90JPqsQqZxJrimQE1aCB2kS2cjo0Y14PsLT7-rn2atJeLST-xAiylewicHasJXUyKLoeulLRj9YYWtaSPl1J_2G_a8sfD7ZV4wdOClGt6x5pEOYYaL5FNYK9YHSrt6KDx3D2iv3_vPsBvKR_Adh4CJv98tF9wGSr10f-azqCrbMv36ZXTx42L3k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIkE5ICiPLk8jcTXrJN48hDigimqBbk-t1JvlV6qFVbKqUsSJv8HfZcZ2liKBtBJSTolHSTz2POxvPgO8rma5ta4quREtJihl7Xgzw0CuldrZRraVDUvZi5NyfiY_nc_Od-BwrIUhWGWy_dGmB2ud7kxTb07Xy-WUYEl5QwRYdUEjtboBNyVOXzrG4M2PDc6D6GPyiGPMOTUfmUcDyItq3PUQdU04rzrwntJKyN-91L-i0OCNju7B3RRGsvfxS-_Dju_24c41csF9uLVI2-YP4Gcsx23T-hzrW6YZLdnzNZq6QJzbXbA1AVycZ2lP26w8G3psGKgclh0nh-fYQM5tNDWMyiK-Ud7OV8uvnkV0SH_J_PcEsO1Y5IpmGByHVzL_-yMfwtnRh9PDOU8nMnCLkdLAc-kaYVpdFsJmja4tZUdOFMbQ9qCQxhW1K6s8tzLz0hTC1TXeKVwpW0cNH8Fu13f-AJjFtDzX1lupsb8zTPCFmTWZ095mzlbZBJpRA8omunI6NWOlRlzaF3Vde4q0p4TES0yg2MiuI2nHVlJvR0WrsSwVDalC37KV9LuN9B8DeGv5V-PYUjjDSSG68_0VNcIgA4dv1UzgcRx0m7-ik8ew96on__n2l3B7fro4VscfTz4_hT16ElGOz2B3uLzyzzHyGsyLMLN-Ab5LMQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+cell-penetrating+peptide+applicable+to+a+protein-based+transcription+activator-like+effector+expression+system+for+cell+engineering&rft.jtitle=Biomaterials&rft.au=Takashina%2C+Tomoki&rft.au=Koyama%2C+Takayoshi&rft.au=Nohara%2C+Satoshi&rft.au=Hasegawa%2C+Masakatsu&rft.date=2018-08-01&rft.eissn=1878-5905&rft.volume=173&rft.spage=11&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.04.040&rft_id=info%3Apmid%2F29734017&rft.externalDocID=29734017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon