Metabolomics-based development of bioproduction processes toward industrial-scale production
Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review hi...
Saved in:
Published in | Current opinion in biotechnology Vol. 85; p. 103057 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design–Build–Test–Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction.
[Display omitted]
•Metabolomics accelerates bioproduction via strain, culture, and model improvement.•Metabolomics is a powerful driving force for the DBTL-based strain engineering.•Metabolomics can reveal pathway bottlenecks and metabolic mechanisms.•Machine learning expedites the processing and analysis of metabolome data.•Case studies show metabolomics impact on strain engineering and process development. |
---|---|
AbstractList | Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design-Build-Test-Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction.Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design-Build-Test-Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction. Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design-Build-Test-Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction. Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design–Build–Test–Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction. [Display omitted] •Metabolomics accelerates bioproduction via strain, culture, and model improvement.•Metabolomics is a powerful driving force for the DBTL-based strain engineering.•Metabolomics can reveal pathway bottlenecks and metabolic mechanisms.•Machine learning expedites the processing and analysis of metabolome data.•Case studies show metabolomics impact on strain engineering and process development. |
ArticleNumber | 103057 |
Author | Tanaka, Kenya Kondo, Akihiko Bamba, Takahiro Hasunuma, Tomohisa |
Author_xml | – sequence: 1 givenname: Kenya orcidid: 0000-0002-6506-3788 surname: Tanaka fullname: Tanaka, Kenya organization: Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 2 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 3 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko organization: Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 4 givenname: Tomohisa orcidid: 0000-0002-8382-2362 surname: Hasunuma fullname: Hasunuma, Tomohisa email: hasunuma@port.kobe-u.ac.jp organization: Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38154323$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVxqB2nb1DKLLMZR5e5SCUESmgukNJNuwsIjXQG5GpGjqRJydtXZmIK3nijI8R_Qd85R4vRj4DQZ4I3BJPmarvRftdZv6GYsvzEcN1-QCvCW1HiiooFWmFR85I0jVii8xi3GOOatfgjWjJO6opRtkLPPyCpzjs_WB3LTkUwhYFXcH43wJgK3xe5Yxe8mXSyfizyVUOMEIvk_6pgCjuaKaZglSujVg6K_-ILdNYrF-HT-1yj33fff90-lE8_7x9vvz2VusZ1KimtGMlHT3lbMcMrIzT0HZhWkxbTpulMo3hVC6Gbtu6FqbgB2uCWcaGoYGyNLufcXP0yQUxysFGDc2oEP0VJBeaEMp571ujLu3TqBjByF-ygwps8EMmCr7NABx9jgF5qm9T-Nyko6yTBco9fbuWMX-7xyxl_NldH5kP-CdvNbIMM6dVCkFFbGDUYG0Anabw9FXB9FKCdHW1exx94O23_B_7DtaE |
CitedBy_id | crossref_primary_10_3390_molecules29081878 crossref_primary_10_1002_mas_21899 crossref_primary_10_1016_j_copbio_2024_103215 crossref_primary_10_1080_10826068_2024_2423665 crossref_primary_10_1007_s00253_025_13441_1 crossref_primary_10_1038_s41597_025_04518_7 |
Cites_doi | 10.1016/j.cbpa.2015.09.009 10.1016/j.ymben.2021.07.014 10.1093/plphys/kiac602 10.1186/s12934-021-01714-z 10.1016/j.biortech.2021.126196 10.1016/j.ymben.2021.02.002 10.1016/j.copbio.2022.102709 10.1016/j.mib.2010.04.006 10.1016/j.biotechadv.2021.107695 10.1089/ars.2017.7014 10.3389/fmicb.2022.871624 10.1016/j.biotechadv.2020.107616 10.1016/j.aca.2019.06.012 10.1186/s12934-020-01379-0 10.3390/metabo7040053 10.1186/1475-2859-11-122 10.1039/D2NP00032F 10.1016/j.mec.2022.e00209 10.1016/j.jchromb.2022.123588 10.1111/1751-7915.14072 10.1186/s12934-021-01694-0 10.1016/j.tibtech.2019.07.009 10.1016/j.biortech.2020.124495 10.1038/s41540-023-00274-9 10.1016/j.ymben.2023.05.001 10.1016/j.cels.2018.08.001 10.1007/s11306-018-1339-7 10.1016/j.cell.2016.02.004 10.1038/s41598-023-39661-x 10.1016/j.isci.2022.104503 10.1021/acssynbio.1c00364 10.3389/fbioe.2021.613307 10.1016/j.mec.2021.e00188 10.1038/s41929-019-0421-5 10.3390/metabo10060243 10.1016/j.biortech.2021.126007 10.1016/j.cell.2017.12.019 10.1073/pnas.2109633118 10.1016/j.ymben.2021.03.005 10.1038/s41587-021-01195-w 10.1007/s11306-022-01912-9 10.1038/s41588-023-01409-8 10.1016/j.ymben.2020.10.005 10.1016/j.isci.2020.100854 10.1021/acssynbio.2c00047 10.1038/s41467-023-37031-9 10.1016/j.talanta.2019.05.053 10.1016/j.jbiotec.2020.11.002 10.1038/ncomms10610 10.1016/j.ymben.2023.03.006 10.1016/j.ymben.2019.05.009 10.1016/j.tim.2019.01.006 10.1038/s41586-021-03707-9 10.1186/s12934-021-01552-z 10.1038/s41467-019-09848-w 10.1073/pnas.1900548116 10.1038/s41598-021-93720-9 10.1021/acssynbio.2c00379 10.1002/bit.28173 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.copbio.2023.103057 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0429 |
ExternalDocumentID | 38154323 10_1016_j_copbio_2023_103057 S0958166923001672 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABEFU ABFRF ABGSF ABJNI ABMAC ABNUV ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TWZ VH1 WUQ Z5R ~02 ~G- 6I. AACTN AAFTH AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG XFK AAYXX AGRNS BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c505t-22431224f28743d84d9cefbed7c170266bd6a84599c675f9d48de2607389a2933 |
IEDL.DBID | .~1 |
ISSN | 0958-1669 1879-0429 |
IngestDate | Thu Jul 10 19:22:42 EDT 2025 Mon Jul 21 05:56:19 EDT 2025 Tue Jul 01 01:00:15 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Fri Feb 23 02:36:11 EST 2024 Tue Aug 26 16:32:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-22431224f28743d84d9cefbed7c170266bd6a84599c675f9d48de2607389a2933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8382-2362 0000-0002-6506-3788 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0958166923001672 |
PMID | 38154323 |
PQID | 2908123824 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2908123824 pubmed_primary_38154323 crossref_citationtrail_10_1016_j_copbio_2023_103057 crossref_primary_10_1016_j_copbio_2023_103057 elsevier_sciencedirect_doi_10_1016_j_copbio_2023_103057 elsevier_clinicalkey_doi_10_1016_j_copbio_2023_103057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 2024-Feb 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in biotechnology |
PublicationTitleAlternate | Curr Opin Biotechnol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, Van Treuren, Fischer, Merrill, DeFelice, Sanchez, Higginbottom, Guthrie, Fall, Dodd, Fischbach, Sonnenburg (bib14) 2021; 595 Valle, Soto, Muhamadali, Hollywood, Xu, Lloyd, Goodacre, Cantero, Cabrera, Bolivar (bib39) 2022; 18 Liu, Liu, Zhu, Zhang, Liu, Zheng (bib32) 2021; 325 Cortada-Garcia, Daly, Arnold, Burgess (bib56) 2023; 13 Nielsen, Keasling (bib5) 2016; 164 Choi, Rhie, Kim, Joo, Cho, Son, Jo, Sohn, Baritugo, Pyo (bib3) 2020; 58 Sailwal, Das, Gazara, Dasgupta, Bhaskar, Hazra, Ghosh (bib27) 2020; 44 Zhang, Sun, Feng, Sun, Cui, Zeng, Wu, Luan, Lu (bib31) 2023; 14 Kawaguchi, Hasunuma, Ohnishi, Sazuka, Kondo, Ogino (bib38) 2021; 20 Hidese, Matsuda, Kajikawa, Osanai, Kondo, Hasunuma (bib30) 2022; 11 Liebal, Phan, Sudhakar, Raman, Blank (bib61) 2020; 10 Zhu, Wang, Huang, Zhang, Liao, Zhang, Lin, Qin, Peng, Yang, Cao, Han, Wang, van der Knaap, Zhang, Cui, Klee, Fernie, Luo, Huang (bib12) 2018; 172 Liebal, Phan, Sudhakar, Raman, Blank (bib20) 2020; 10 Zhang, Chen, Jiang, Cai, Huang, Liu, Zheng (bib41) 2021; 20 Singh, van der Hooft, van Wees, Medema (bib13) 2022; 39 Patra, Das, Kundu, Ghosh (bib19) 2021; 47 Lawson, Martí, Radivojevic, Jonnalagadda, Gentz, Hillson, Peisert, Kim, Simmons, Petzold (bib21) 2021; 63 Liu, Hwang, Otoupal, Geiselman, Kim, Pomraning, Kim, Munoz, Nicora, Gao (bib36) 2023; 78 Gutschmann, Bock, Jahns, Neubauer, Brigham, Riedel (bib51) 2021; 11 Scott, Smid, Block, Notebaart (bib47) 2021; 20 Zelezniak, Vowinckel, Capuano, Messner, Demichev, Polowsky, Mülleder, Kamrad, Klaus, Keller, Ralser (bib23) 2018; 7 Vavricka, Hasunuma, Kondo (bib7) 2020; 38 Lu, Zhou, Guo, Du, Cheng, Wang, He (bib42) 2022; 15 Amer, Baidoo (bib8) 2021; 9 Tanaka, Shirai, Vavricka, Matsuda, Kondo, Hasunuma (bib26) 2023; 191 Wehrs, Tanjore, Eng, Lievense, Pray, Mukhopadhyay (bib18) 2019; 27 Chen, Xie, Li, Zhuang, Xia, Nielsen (bib46) 2023; 120 Yang, Xu, Zhang, Wu, Lin, Ying (bib53) 2019; 1081 Kobayashi, Inokuma, Matsuda, Kondo, Hasunuma (bib57) 2021; 13 Cravens, Payne, Smolke (bib2) 2019; 10 Ellis, Babele, May, Johnson, Pfleger, Young, McLean (bib28) 2021; 118 Radoš, Donati, Lempp, Rapp, Link (bib50) 2022; 25 Paczia, Nilgen, Lehmann, Gätgens, Wiechert, Noack (bib44) 2012; 11 Khanijou, Kulyk, Bergès, Khoo, Ng, Yeo, Helmy, Bellvert, Chew, Selvarajoo (bib22) 2022; 15 Barkal, Theberge, Guo, Spraker, Rappert, Berthier, Brakke, Wang, Beebe, Keller, Berthier (bib58) 2016; 7 Cortada-Garcia, Haggarty, Moses, Daly, Arnold, Burgess (bib52) 2022; 119 Brunnsåker, Reder, Soni, Savolainen, Gower, Tiukova, King (bib48) 2023; 9 John, Strutz, Broadbelt, Tyo, Bomble (bib6) 2019; 15 Kumokita, Bamba, Inokuma, Yoshida, Ito, Kondo, Hasunuma (bib34) 2022; 11 Saito, Ohashi, Soga, Tomita (bib11) 2010; 13 Pauli, Kohlstedt, Lamber, Weiland, Becker, Wittmann (bib33) 2023; 77 Pinu, Villas-Boas, Aggio (bib24) 2017; 7 d'Espaux, Mendez-Perez, Li, Keasling (bib1) 2015; 29 Dong, Schultz, Liu, Lian, Huang, Xu, Zhao (bib35) 2021; 66 Liew, Nogle, Abdalla, Rasor, Canter, Jensen, Wang, Strutz, Chirania, De Tissera (bib64) 2022; 40 Chakdar, Hasan, Pabbi, Nevalainen, Shukla (bib16) 2021; 321 Coutant, Roper, Trejo-Banos, Bouthinon, Carpenter, Grzebyta, Santini, Soldano, Elati, Ramon (bib62) 2019; 116 Vasilakou, van Loosdrecht, Wahl (bib59) 2020; 19 Takekana, Yoshida, Yoshida, Ono, Horie, Vavricka, Hiratani, Tsuge, Ishii, Hayakawa, Kondo, Hasunuma (bib29) 2023; 1215 Kato, Inabe, Hidese, Kondo, Hasunuma (bib10) 2022; 344 Schlosser, Scherer, Grundner-Culemann, Monteiro-Martins, Haug, Steinbrenner, Uluvar, Wuttke, Cheng, Ekici, Gyimesi, Karoly, Kotsis, Mielke, Gomez, Yu, Grams, Coresh, Boerwinkle, Köttgen, Kronenberg, Meiselbach, Mohney, Akilesh, Investigators, Schmidts, Hediger, Schultheiss, Eckardt, Oefner, Sekula, Li, Köttgen (bib15) 2023; 55 Yao, Wang, Ju, Dong, Song, Chen, Zhang (bib40) 2022; 11 Risum, Bro (bib54) 2019; 204 Kozaeva, Volkova, Matos, Mezzina, Wulff, Volke, Nielsen, Nikel (bib63) 2021; 67 Pinu, Granucci, Daniell, Han, Carneiro, Rocha, Nielsen, Villas-Boas (bib45) 2018; 14 Ohtake, Kawase, Pontrelli, Nitta, Laviña, Shen, Putri, Liao, Fukusaki (bib43) 2022; 13 Yunus, Lee (bib17) 2022; 75 Bilbao, Munoz, Kim, Orton, Gao, Poorey, Pomraning, Weitz, Burnet, Nicora (bib55) 2023; 14 Kim, Baidoo, Amer, Mukhopadhyay, Adams, Simmons, Lee (bib37) 2021; 64 Liu, Wang, Chen (bib4) 2020; 3 Wang, Lempp, Farke, Donati, Glatter, Link (bib49) 2021; 12 Czajka, Kambhampati, Tang, Wang, Allen (bib60) 2020; 23 Lu, Wang, Chen, Hui, Rabinowitz (bib25) 2018; 28 Pathania, Srivastava, Srivastava, Shukla (bib9) 2022; 343 Yunus (10.1016/j.copbio.2023.103057_bib17) 2022; 75 Bilbao (10.1016/j.copbio.2023.103057_sbref55) 2023; 14 Valle (10.1016/j.copbio.2023.103057_bib39) 2022; 18 Kim (10.1016/j.copbio.2023.103057_bib37) 2021; 64 Cortada-Garcia (10.1016/j.copbio.2023.103057_bib52) 2022; 119 Choi (10.1016/j.copbio.2023.103057_bib3) 2020; 58 Kumokita (10.1016/j.copbio.2023.103057_bib34) 2022; 11 Dong (10.1016/j.copbio.2023.103057_bib35) 2021; 66 Gutschmann (10.1016/j.copbio.2023.103057_bib51) 2021; 11 Pathania (10.1016/j.copbio.2023.103057_bib9) 2022; 343 Chakdar (10.1016/j.copbio.2023.103057_bib16) 2021; 321 Cortada-Garcia (10.1016/j.copbio.2023.103057_bib56) 2023; 13 Amer (10.1016/j.copbio.2023.103057_bib8) 2021; 9 Sailwal (10.1016/j.copbio.2023.103057_bib27) 2020; 44 Pinu (10.1016/j.copbio.2023.103057_bib24) 2017; 7 Yao (10.1016/j.copbio.2023.103057_bib40) 2022; 11 Risum (10.1016/j.copbio.2023.103057_bib54) 2019; 204 John (10.1016/j.copbio.2023.103057_bib6) 2019; 15 Wang (10.1016/j.copbio.2023.103057_sbref49) 2021; 12 Lawson (10.1016/j.copbio.2023.103057_bib21) 2021; 63 Zhu (10.1016/j.copbio.2023.103057_bib12) 2018; 172 Patra (10.1016/j.copbio.2023.103057_bib19) 2021; 47 Vasilakou (10.1016/j.copbio.2023.103057_bib59) 2020; 19 Liew (10.1016/j.copbio.2023.103057_bib64) 2022; 40 Schlosser (10.1016/j.copbio.2023.103057_bib15) 2023; 55 Liebal (10.1016/j.copbio.2023.103057_bib20) 2020; 10 Kobayashi (10.1016/j.copbio.2023.103057_bib57) 2021; 13 Chen (10.1016/j.copbio.2023.103057_sbref46) 2023; 120 Kawaguchi (10.1016/j.copbio.2023.103057_bib38) 2021; 20 Takekana (10.1016/j.copbio.2023.103057_bib29) 2023; 1215 Lu (10.1016/j.copbio.2023.103057_bib25) 2018; 28 Zelezniak (10.1016/j.copbio.2023.103057_bib23) 2018; 7 Tanaka (10.1016/j.copbio.2023.103057_bib26) 2023; 191 Hidese (10.1016/j.copbio.2023.103057_bib30) 2022; 11 Liu (10.1016/j.copbio.2023.103057_bib32) 2021; 325 Ellis (10.1016/j.copbio.2023.103057_bib28) 2021; 118 Coutant (10.1016/j.copbio.2023.103057_bib62) 2019; 116 Nielsen (10.1016/j.copbio.2023.103057_bib5) 2016; 164 Liu (10.1016/j.copbio.2023.103057_bib36) 2023; 78 Vavricka (10.1016/j.copbio.2023.103057_bib7) 2020; 38 Cravens (10.1016/j.copbio.2023.103057_bib2) 2019; 10 Zhang (10.1016/j.copbio.2023.103057_bib31) 2023; 14 Kato (10.1016/j.copbio.2023.103057_bib10) 2022; 344 Singh (10.1016/j.copbio.2023.103057_bib13) 2022; 39 Khanijou (10.1016/j.copbio.2023.103057_bib22) 2022; 15 Radoš (10.1016/j.copbio.2023.103057_bib50) 2022; 25 Brunnsåker (10.1016/j.copbio.2023.103057_sbref48) 2023; 9 Saito (10.1016/j.copbio.2023.103057_bib11) 2010; 13 Yang (10.1016/j.copbio.2023.103057_bib53) 2019; 1081 Kozaeva (10.1016/j.copbio.2023.103057_sbref63) 2021; 67 Paczia (10.1016/j.copbio.2023.103057_bib44) 2012; 11 Liebal (10.1016/j.copbio.2023.103057_bib61) 2020; 10 Lu (10.1016/j.copbio.2023.103057_bib42) 2022; 15 Scott (10.1016/j.copbio.2023.103057_bib47) 2021; 20 Zhang (10.1016/j.copbio.2023.103057_bib41) 2021; 20 Han (10.1016/j.copbio.2023.103057_bib14) 2021; 595 Barkal (10.1016/j.copbio.2023.103057_bib58) 2016; 7 Pauli (10.1016/j.copbio.2023.103057_bib33) 2023; 77 Liu (10.1016/j.copbio.2023.103057_bib4) 2020; 3 Wehrs (10.1016/j.copbio.2023.103057_bib18) 2019; 27 Pinu (10.1016/j.copbio.2023.103057_bib45) 2018; 14 Czajka (10.1016/j.copbio.2023.103057_bib60) 2020; 23 Ohtake (10.1016/j.copbio.2023.103057_bib43) 2022; 13 d'Espaux (10.1016/j.copbio.2023.103057_bib1) 2015; 29 |
References_xml | – volume: 11 start-page: 4054 year: 2022 end-page: 4064 ident: bib30 article-title: Metabolic and microbial community engineering for four-carbon dicarboxylic acid production from CO publication-title: ACS Synth Biol – volume: 7 start-page: 269 year: 2018 end-page: 283 ident: bib23 article-title: Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts publication-title: Cell Syst – volume: 13 start-page: 358 year: 2010 end-page: 362 ident: bib11 article-title: Unveiling cellular biochemical reactions via metabolomics-driven approaches publication-title: Curr Opin Microbiol – volume: 67 start-page: 373 year: 2021 end-page: 386 ident: bib63 article-title: Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired publication-title: Metab Eng – volume: 321 year: 2021 ident: bib16 article-title: High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: a review publication-title: Bioresour Technol – volume: 40 start-page: 335 year: 2022 end-page: 344 ident: bib64 article-title: Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale publication-title: Nat Biotechnol – volume: 20 year: 2021 ident: bib47 article-title: Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts publication-title: Micro Cell Fact – volume: 13 year: 2023 ident: bib56 article-title: Streamlined identification of strain engineering targets for bioprocess improvement using metabolic pathway enrichment analysis publication-title: Sci Rep – volume: 39 start-page: 1876 year: 2022 end-page: 1896 ident: bib13 article-title: Integrative omics approaches for biosynthetic pathway discovery in plants publication-title: Nat Prod Rep – volume: 64 start-page: 154 year: 2021 end-page: 166 ident: bib37 article-title: Engineering publication-title: Metab Eng – volume: 15 start-page: 2292 year: 2022 end-page: 2306 ident: bib42 article-title: Enhancing fluxes through the mevalonate pathway in publication-title: Micro Biotechnol – volume: 13 year: 2022 ident: bib43 article-title: Metabolomics-driven identification of the rate-limiting steps in 1-propanol production publication-title: Front Microbiol – volume: 29 start-page: 58 year: 2015 end-page: 65 ident: bib1 article-title: Synthetic biology for microbial production of lipid-based biofuels publication-title: Curr Opin Chem Biol – volume: 14 year: 2023 ident: bib31 article-title: Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose publication-title: Nat Commun – volume: 11 year: 2012 ident: bib44 article-title: Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms publication-title: Micro Cell Fact – volume: 3 start-page: 274 year: 2020 end-page: 288 ident: bib4 article-title: Third-generation biorefineries as the means to produce fuels and chemicals from CO publication-title: Nat Catal – volume: 15 year: 2022 ident: bib22 article-title: Metabolomics and modelling approaches for systems metabolic engineering publication-title: Metab Eng Commun – volume: 116 start-page: 18142 year: 2019 end-page: 18147 ident: bib62 article-title: Closed-loop cycles of experiment design, execution, and learning accelerate systems biology model development in yeast publication-title: Proc Natl Acad Sci USA – volume: 13 year: 2021 ident: bib57 article-title: Resveratrol production from several types of saccharide sources by a recombinant publication-title: Metab Eng Commun – volume: 164 start-page: 1185 year: 2016 end-page: 1197 ident: bib5 article-title: Engineering cellular metabolism publication-title: Cell – volume: 120 year: 2023 ident: bib46 article-title: Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation publication-title: Proc Natl Acad Sci USA – volume: 7 year: 2017 ident: bib24 article-title: Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols publication-title: Metabolites – volume: 27 start-page: 524 year: 2019 end-page: 537 ident: bib18 article-title: Engineering robust production microbes for large-scale cultivation publication-title: Trends Microbiol – volume: 20 year: 2021 ident: bib38 article-title: Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant publication-title: Micro Cell Fact – volume: 9 year: 2021 ident: bib8 article-title: Omics-driven biotechnology for industrial applications publication-title: Front Bioeng Biotechnol – volume: 14 year: 2018 ident: bib45 article-title: Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test publication-title: Metabolomics – volume: 38 start-page: 68 year: 2020 end-page: 82 ident: bib7 article-title: Dynamic metabolomics for engineering biology: accelerating learning cycles for bioproduction publication-title: Trends Biotechnol – volume: 44 year: 2020 ident: bib27 article-title: Connecting the dots: advances in modern metabolomics and its application in yeast system publication-title: Biotechnol Adv – volume: 63 start-page: 34 year: 2021 end-page: 60 ident: bib21 article-title: Machine learning for metabolic engineering: a review publication-title: Metab Eng – volume: 344 year: 2022 ident: bib10 article-title: Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review publication-title: Bioresour Technol – volume: 10 start-page: 1 year: 2020 end-page: 23 ident: bib20 article-title: Machine learning applications for mass spectrometry-based metabolomics publication-title: Metabolites – volume: 1215 year: 2023 ident: bib29 article-title: Online SFE-SFC-MS/MS colony screening: a high-throughput approach for optimizing (-)-limonene production publication-title: J Chromatogr B Anal Technol Biomed Life Sci – volume: 118 year: 2021 ident: bib28 article-title: Accelerating strain phenotyping with desorption electrospray ionization-imaging mass spectrometry and untargeted analysis of intact microbial colonies publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1 year: 2020 end-page: 23 ident: bib61 article-title: Machine learning applications for mass spectrometry-based metabolomics publication-title: Metabolites – volume: 191 start-page: 2400 year: 2023 end-page: 2413 ident: bib26 article-title: Dark accumulation of downstream glycolytic intermediates initiates robust photosynthesis in cyanobacteria publication-title: Plant Physiol – volume: 204 start-page: 255 year: 2019 end-page: 260 ident: bib54 article-title: Using deep learning to evaluate peaks in chromatographic data publication-title: Talanta – volume: 595 start-page: 415 year: 2021 end-page: 420 ident: bib14 article-title: A metabolomics pipeline for the mechanistic interrogation of the gut microbiome publication-title: Nature – volume: 172 start-page: 249 year: 2018 end-page: 261 ident: bib12 article-title: Rewiring of the fruit metabolome in tomato breeding publication-title: Cell – volume: 75 year: 2022 ident: bib17 article-title: Applications of targeted proteomics in metabolic engineering: advances and opportunities publication-title: Curr Opin Biotechnol – volume: 11 start-page: 678 year: 2022 end-page: 688 ident: bib40 article-title: Engineering a xylose-utilizing publication-title: ACS Synth Biol – volume: 12 year: 2021 ident: bib49 article-title: Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered publication-title: Nat Commun – volume: 19 year: 2020 ident: bib59 article-title: metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs publication-title: Micro Cell Fact – volume: 15 start-page: 1 year: 2019 end-page: 23 ident: bib6 article-title: Bayesian inference of metabolic kinetics from genome-scale multiomics data publication-title: PLoS Comput Biol – volume: 14 year: 2023 ident: bib55 article-title: PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements publication-title: Nat Commun – volume: 7 year: 2016 ident: bib58 article-title: Microbial metabolomics in open microscale platforms publication-title: Nat Commun – volume: 343 year: 2022 ident: bib9 article-title: Metabolic systems biology and multi-omics of cyanobacteria: perspectives and future directions publication-title: Bioresour Technol – volume: 28 start-page: 167 year: 2018 end-page: 179 ident: bib25 article-title: Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors publication-title: Antioxid Redox Signal – volume: 1081 start-page: 6 year: 2019 end-page: 17 ident: bib53 article-title: Deep learning for vibrational spectral analysis: recent progress and a practical guide publication-title: Anal Chim Acta – volume: 9 year: 2023 ident: bib48 article-title: High-throughput metabolomics for the design and validation of a diauxic shift model publication-title: NPJ Syst Biol Appl – volume: 55 start-page: 995 year: 2023 end-page: 1008 ident: bib15 article-title: Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine publication-title: Nat Genet – volume: 18 year: 2022 ident: bib39 article-title: Metabolomics for the design of new metabolic engineering strategies for improving aerobic succinic acid production in publication-title: Metabolomics – volume: 77 start-page: 100 year: 2023 end-page: 117 ident: bib33 article-title: Systems metabolic engineering upgrades publication-title: Metab Eng – volume: 11 start-page: 2098 year: 2022 end-page: 2107 ident: bib34 article-title: Construction of an l-tyrosine chassis in publication-title: ACS Synth Biol – volume: 119 start-page: 2757 year: 2022 end-page: 2769 ident: bib52 article-title: On-line untargeted metabolomics monitoring of an publication-title: Biotechnol Bioeng – volume: 66 start-page: 319 year: 2021 end-page: 327 ident: bib35 article-title: Identification of novel metabolic engineering targets for S-adenosyl- publication-title: Metab Eng – volume: 25 year: 2022 ident: bib50 article-title: Homeostasis of the biosynthetic publication-title: iScience – volume: 11 year: 2021 ident: bib51 article-title: Untargeted metabolomics analysis of publication-title: Sci Rep – volume: 58 start-page: 47 year: 2020 end-page: 81 ident: bib3 article-title: Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters publication-title: Metab Eng – volume: 10 year: 2019 ident: bib2 article-title: Synthetic biology strategies for microbial biosynthesis of plant natural products publication-title: Nat Commun – volume: 47 year: 2021 ident: bib19 article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts publication-title: Biotechnol Adv – volume: 325 start-page: 164 year: 2021 end-page: 172 ident: bib32 article-title: O-succinyl-l-homoserine overproduction with enhancement of the precursor succinyl-CoA supply by engineered publication-title: J Biotechnol – volume: 20 year: 2021 ident: bib41 article-title: Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering publication-title: Micro Cell Fact – volume: 78 start-page: 72 year: 2023 end-page: 83 ident: bib36 article-title: Engineering publication-title: Metab Eng – volume: 23 year: 2020 ident: bib60 article-title: Application of stable isotope tracing to elucidate metabolic dynamics during publication-title: iScience – volume: 29 start-page: 58 year: 2015 ident: 10.1016/j.copbio.2023.103057_bib1 article-title: Synthetic biology for microbial production of lipid-based biofuels publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2015.09.009 – volume: 67 start-page: 373 year: 2021 ident: 10.1016/j.copbio.2023.103057_sbref63 article-title: Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida publication-title: Metab Eng doi: 10.1016/j.ymben.2021.07.014 – volume: 191 start-page: 2400 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib26 article-title: Dark accumulation of downstream glycolytic intermediates initiates robust photosynthesis in cyanobacteria publication-title: Plant Physiol doi: 10.1093/plphys/kiac602 – volume: 20 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib38 article-title: Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation publication-title: Micro Cell Fact doi: 10.1186/s12934-021-01714-z – volume: 344 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib10 article-title: Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126196 – volume: 64 start-page: 154 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib37 article-title: Engineering Saccharomyces cerevisiae for isoprenol production publication-title: Metab Eng doi: 10.1016/j.ymben.2021.02.002 – volume: 12 year: 2021 ident: 10.1016/j.copbio.2023.103057_sbref49 article-title: Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli publication-title: Nat Commun – volume: 75 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib17 article-title: Applications of targeted proteomics in metabolic engineering: advances and opportunities publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2022.102709 – volume: 13 start-page: 358 year: 2010 ident: 10.1016/j.copbio.2023.103057_bib11 article-title: Unveiling cellular biochemical reactions via metabolomics-driven approaches publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.04.006 – volume: 47 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib19 article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2021.107695 – volume: 28 start-page: 167 year: 2018 ident: 10.1016/j.copbio.2023.103057_bib25 article-title: Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7014 – volume: 13 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib43 article-title: Metabolomics-driven identification of the rate-limiting steps in 1-propanol production publication-title: Front Microbiol doi: 10.3389/fmicb.2022.871624 – volume: 44 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib27 article-title: Connecting the dots: advances in modern metabolomics and its application in yeast system publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2020.107616 – volume: 1081 start-page: 6 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib53 article-title: Deep learning for vibrational spectral analysis: recent progress and a practical guide publication-title: Anal Chim Acta doi: 10.1016/j.aca.2019.06.012 – volume: 19 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib59 article-title: Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs publication-title: Micro Cell Fact doi: 10.1186/s12934-020-01379-0 – volume: 7 year: 2017 ident: 10.1016/j.copbio.2023.103057_bib24 article-title: Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols publication-title: Metabolites doi: 10.3390/metabo7040053 – volume: 11 year: 2012 ident: 10.1016/j.copbio.2023.103057_bib44 article-title: Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms publication-title: Micro Cell Fact doi: 10.1186/1475-2859-11-122 – volume: 39 start-page: 1876 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib13 article-title: Integrative omics approaches for biosynthetic pathway discovery in plants publication-title: Nat Prod Rep doi: 10.1039/D2NP00032F – volume: 15 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib22 article-title: Metabolomics and modelling approaches for systems metabolic engineering publication-title: Metab Eng Commun doi: 10.1016/j.mec.2022.e00209 – volume: 1215 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib29 article-title: Online SFE-SFC-MS/MS colony screening: a high-throughput approach for optimizing (-)-limonene production publication-title: J Chromatogr B Anal Technol Biomed Life Sci doi: 10.1016/j.jchromb.2022.123588 – volume: 15 start-page: 2292 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib42 article-title: Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism publication-title: Micro Biotechnol doi: 10.1111/1751-7915.14072 – volume: 20 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib47 article-title: Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts publication-title: Micro Cell Fact doi: 10.1186/s12934-021-01694-0 – volume: 38 start-page: 68 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib7 article-title: Dynamic metabolomics for engineering biology: accelerating learning cycles for bioproduction publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2019.07.009 – volume: 321 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib16 article-title: High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: a review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124495 – volume: 9 year: 2023 ident: 10.1016/j.copbio.2023.103057_sbref48 article-title: High-throughput metabolomics for the design and validation of a diauxic shift model publication-title: NPJ Syst Biol Appl doi: 10.1038/s41540-023-00274-9 – volume: 78 start-page: 72 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib36 article-title: Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate publication-title: Metab Eng doi: 10.1016/j.ymben.2023.05.001 – volume: 7 start-page: 269 year: 2018 ident: 10.1016/j.copbio.2023.103057_bib23 article-title: Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts publication-title: Cell Syst doi: 10.1016/j.cels.2018.08.001 – volume: 14 year: 2018 ident: 10.1016/j.copbio.2023.103057_bib45 article-title: Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test publication-title: Metabolomics doi: 10.1007/s11306-018-1339-7 – volume: 164 start-page: 1185 year: 2016 ident: 10.1016/j.copbio.2023.103057_bib5 article-title: Engineering cellular metabolism publication-title: Cell doi: 10.1016/j.cell.2016.02.004 – volume: 13 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib56 article-title: Streamlined identification of strain engineering targets for bioprocess improvement using metabolic pathway enrichment analysis publication-title: Sci Rep doi: 10.1038/s41598-023-39661-x – volume: 25 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib50 article-title: Homeostasis of the biosynthetic E. coli metabolome publication-title: iScience doi: 10.1016/j.isci.2022.104503 – volume: 11 start-page: 678 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib40 article-title: Engineering a xylose-utilizing Synechococcus elongatus UTEX 2973 chassis for 3-hydroxypropionic acid biosynthesis under photomixotrophic conditions publication-title: ACS Synth Biol doi: 10.1021/acssynbio.1c00364 – volume: 9 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib8 article-title: Omics-driven biotechnology for industrial applications publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.613307 – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib6 article-title: Bayesian inference of metabolic kinetics from genome-scale multiomics data publication-title: PLoS Comput Biol – volume: 120 year: 2023 ident: 10.1016/j.copbio.2023.103057_sbref46 article-title: Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation publication-title: Proc Natl Acad Sci USA – volume: 13 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib57 article-title: Resveratrol production from several types of saccharide sources by a recombinant Scheffersomyces stipitis strain publication-title: Metab Eng Commun doi: 10.1016/j.mec.2021.e00188 – volume: 3 start-page: 274 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib4 article-title: Third-generation biorefineries as the means to produce fuels and chemicals from CO2 publication-title: Nat Catal doi: 10.1038/s41929-019-0421-5 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib61 article-title: Machine learning applications for mass spectrometry-based metabolomics publication-title: Metabolites doi: 10.3390/metabo10060243 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib20 article-title: Machine learning applications for mass spectrometry-based metabolomics publication-title: Metabolites doi: 10.3390/metabo10060243 – volume: 343 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib9 article-title: Metabolic systems biology and multi-omics of cyanobacteria: perspectives and future directions publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126007 – volume: 172 start-page: 249 year: 2018 ident: 10.1016/j.copbio.2023.103057_bib12 article-title: Rewiring of the fruit metabolome in tomato breeding publication-title: Cell doi: 10.1016/j.cell.2017.12.019 – volume: 118 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib28 article-title: Accelerating strain phenotyping with desorption electrospray ionization-imaging mass spectrometry and untargeted analysis of intact microbial colonies publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2109633118 – volume: 66 start-page: 319 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib35 article-title: Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering publication-title: Metab Eng doi: 10.1016/j.ymben.2021.03.005 – volume: 14 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib31 article-title: Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose publication-title: Nat Commun – volume: 40 start-page: 335 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib64 article-title: Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale publication-title: Nat Biotechnol doi: 10.1038/s41587-021-01195-w – volume: 18 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib39 article-title: Metabolomics for the design of new metabolic engineering strategies for improving aerobic succinic acid production in Escherichia coli publication-title: Metabolomics doi: 10.1007/s11306-022-01912-9 – volume: 55 start-page: 995 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib15 article-title: Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine publication-title: Nat Genet doi: 10.1038/s41588-023-01409-8 – volume: 63 start-page: 34 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib21 article-title: Machine learning for metabolic engineering: a review publication-title: Metab Eng doi: 10.1016/j.ymben.2020.10.005 – volume: 23 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib60 article-title: Application of stable isotope tracing to elucidate metabolic dynamics during Yarrowia lipolytica α-Ionone fermentation publication-title: iScience doi: 10.1016/j.isci.2020.100854 – volume: 11 start-page: 2098 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib34 article-title: Construction of an l-tyrosine chassis in Pichia pastoris enhances aromatic secondary metabolite production from glycerol publication-title: ACS Synth Biol doi: 10.1021/acssynbio.2c00047 – volume: 14 year: 2023 ident: 10.1016/j.copbio.2023.103057_sbref55 article-title: PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements publication-title: Nat Commun doi: 10.1038/s41467-023-37031-9 – volume: 204 start-page: 255 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib54 article-title: Using deep learning to evaluate peaks in chromatographic data publication-title: Talanta doi: 10.1016/j.talanta.2019.05.053 – volume: 325 start-page: 164 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib32 article-title: O-succinyl-l-homoserine overproduction with enhancement of the precursor succinyl-CoA supply by engineered Escherichia coli publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2020.11.002 – volume: 7 year: 2016 ident: 10.1016/j.copbio.2023.103057_bib58 article-title: Microbial metabolomics in open microscale platforms publication-title: Nat Commun doi: 10.1038/ncomms10610 – volume: 77 start-page: 100 year: 2023 ident: 10.1016/j.copbio.2023.103057_bib33 article-title: Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid publication-title: Metab Eng doi: 10.1016/j.ymben.2023.03.006 – volume: 58 start-page: 47 year: 2020 ident: 10.1016/j.copbio.2023.103057_bib3 article-title: Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters publication-title: Metab Eng doi: 10.1016/j.ymben.2019.05.009 – volume: 27 start-page: 524 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib18 article-title: Engineering robust production microbes for large-scale cultivation publication-title: Trends Microbiol doi: 10.1016/j.tim.2019.01.006 – volume: 595 start-page: 415 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib14 article-title: A metabolomics pipeline for the mechanistic interrogation of the gut microbiome publication-title: Nature doi: 10.1038/s41586-021-03707-9 – volume: 20 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib41 article-title: Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering publication-title: Micro Cell Fact doi: 10.1186/s12934-021-01552-z – volume: 10 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib2 article-title: Synthetic biology strategies for microbial biosynthesis of plant natural products publication-title: Nat Commun doi: 10.1038/s41467-019-09848-w – volume: 116 start-page: 18142 year: 2019 ident: 10.1016/j.copbio.2023.103057_bib62 article-title: Closed-loop cycles of experiment design, execution, and learning accelerate systems biology model development in yeast publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1900548116 – volume: 11 year: 2021 ident: 10.1016/j.copbio.2023.103057_bib51 article-title: Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway publication-title: Sci Rep doi: 10.1038/s41598-021-93720-9 – volume: 11 start-page: 4054 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib30 article-title: Metabolic and microbial community engineering for four-carbon dicarboxylic acid production from CO2-derived glycogen in the cyanobacterium Synechocystis sp. PCC6803 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.2c00379 – volume: 119 start-page: 2757 year: 2022 ident: 10.1016/j.copbio.2023.103057_bib52 article-title: On-line untargeted metabolomics monitoring of an Escherichia coli succinate fermentation process publication-title: Biotechnol Bioeng doi: 10.1002/bit.28173 |
SSID | ssj0005370 |
Score | 2.4795048 |
SecondaryResourceType | review_article |
Snippet | Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103057 |
Title | Metabolomics-based development of bioproduction processes toward industrial-scale production |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0958166923001672 https://dx.doi.org/10.1016/j.copbio.2023.103057 https://www.ncbi.nlm.nih.gov/pubmed/38154323 https://www.proquest.com/docview/2908123824 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-O38IoKvcbVJm-VxDGUq7kUFH4TQNglMxlpc9-rf7l3TVgVF8bElR9O7693vmvsg5EwqF-AAc5bGNmQi5QFTzjpmFBDwIEkTi_8h7ybx-FHcPEVPHTJqamEwrbK2_d6mV9a6vtOvudkvptP-PYADPPQChFLl0qMdFkKilp-_fUrz4NXAOFzMcHVTPlfleGV5kU6xBDDkWH0eoJP63j39BD8rN3S1QdZr_EiHfoubpGPnW2TtU1fBbfJ8Z0sQ7QzrjRcM3ZSh5iM3iOaOwnYK3-oVxEILXyxgF7SskmjptJ3nwRYgQ0s_Fu-Qx6vLh9GY1UMUWAbgpmTgojmenjlsbM_NQBiVWZdaI7MLCQFYnJo4GYhIqQxiB6eMGBgLQY4EJJMAFuC7pDvP53af0IvYOBsNnDSJhKguUZkDcJlJiKBkmHDTI7zhnc7qDuM46GKmm1SyF-05rpHj2nO8R1hLVfgOG7-sjxqx6KZ6FOydBhfwC51s6b5o2B8oTxvpa_j48EQlmdt8udChAkQFoCcUPbLn1aJ9B4BCkeAhP_j3cw_JKlwJnyN-RLrl69IeAwQq05NKx0_IyvD6djx5B0OzBlQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB0t5QA9IKClLFAwEhzNbm0nXh84oH5oS7u90Eo9VDJJbEuLqt2oSVX1wp_iDzITJ9tFKipC6jXJJM54MvMcv5kB-KBNGFIDc56nXnCVyyE3wQfuDArIYZZnnv5DTo7S8Yn6epqc9uBXlwtDtMrW90ef3njr9sig1eagnE4H3xAc0KYXIpSGSy9aZuWBv77CdVv1eX8HJ_mjEHu7x9tj3rYW4AWG_Jpj4JK0pxSo3Lt0I-VM4UPunS62NC5L0tyl2UglxhSIqINxauQ8Qn-N8T3DCCnxvg_goUJ3QW0TPv1c4pXIpkMdjY7T8Lp8vYZUVszLfEo5h0JSuvuQouLt8fBveLeJe3tP4UkLWNmXqJNn0POz57C6VMZwDc4mvkZbOqcE54pTXHTM3ZCR2DwwHE4Za8uiHbAyZif4itUNa5dNFw1EeIVG49nNxetwci-qfQErs_nMvwS2lbrgk1HQLtO4jMxMERDNFhqXbFpk0vVBdrqzRVvSnDprnNuOu_bDRo1b0riNGu8DX0iVsaTHHdcn3bTYLl0VHazFmHOHnF7I_WHS_yD5vpt9i187beFkMz-_rKwwCOEQZQnVh41oFot3QOyVKCnkq_9-7jt4ND6eHNrD_aOD1_AYz6hIUH8DK_XFpd9E_FXnbxt7Z_D9vj-w37RiQBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics-based+development+of+bioproduction+processes+toward+industrial-scale+production&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Tanaka%2C+Kenya&rft.au=Bamba%2C+Takahiro&rft.au=Kondo%2C+Akihiko&rft.au=Hasunuma%2C+Tomohisa&rft.date=2024-02-01&rft.issn=0958-1669&rft.volume=85&rft.spage=103057&rft_id=info:doi/10.1016%2Fj.copbio.2023.103057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_copbio_2023_103057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-1669&client=summon |