Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK
A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 18; no. 2; pp. 705 - 733 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
22.01.2018
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m−3) and highest in the areas with intensive agriculture (up to 22 µg m−3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m−3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha−1 yr−1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR), −3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: −22 %; LR: −21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (−39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (−11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: −47 %; LR: −49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3. |
---|---|
AbstractList | A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m−3) and highest in the areas with intensive agriculture (up to 22 µg m−3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m−3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha−1 yr−1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR), −3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: −22 %; LR: −21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (−39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (−11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: −47 %; LR: −49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3. A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH.sub.3 : 1998-2014) and particulate ammonium (NH.sub.4 .sup.+ : 1999-2014) across the UK. Extensive spatial heterogeneity in NH.sub.3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m.sup.-3) and highest in the areas with intensive agriculture (up to 22 µg m.sup.-3 ), while NH.sub.4 .sup.+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m.sup.-3 annual mean in 2005). Temporally, NH.sub.3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH.sub.3 concentrations are observed in summer at background sites (defined by 5 km grid average NH.sub.3 emissions < 1 kg N ha.sup.-1 yr.sup.-1) and in areas dominated by sheep farming, driven by increased volatilization of NH.sub.3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH.sub.3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH.sub.4 .sup.+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH.sub.3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH.sub.3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH.sub.3 concentrations is smaller and non-significant: Mann-Kendall (MK), -6.3 %; linear regression (LR), -3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH.sub.3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH.sub.3) is consistent with, but not as large as the decrease in estimated NH.sub.3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH.sub.3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH.sub.3 ), despite the estimated decline in NH.sub.3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH.sub.3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO.sub.2 emissions over the same period, leading to a longer atmospheric lifetime of NH.sub.3, thereby increasing NH.sub.3 concentrations in remote areas. The observations for NH.sub.3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH.sub.4 .sup.+ concentrations (1999-2014: MK: -47 %; LR: -49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH.sub.4 .sup.+ in the atmosphere from gas phase NH.sub.3. A unique long-term dataset from the UK National Ammonia Monitoring Network(NAMN) is used here to assess spatial, seasonal and long-term variability inatmospheric ammonia (NH3: 1998–2014) and particulate ammonium(NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity inNH3 concentrations is observed, with lowest annual mean concentrationsat remote sites (< 0.2 µg m−3) and highest in theareas with intensive agriculture (up to 22 µg m−3), whileNH4+ concentrations show less spatial variability (e.g. range of 0.14to 1.8 µg m−3 annual mean in 2005). Temporally, NH3concentrations are influenced by environmental conditions and local emissionsources. In particular, peak NH3 concentrations are observed in summerat background sites (defined by 5 km grid average NH3 emissions< 1 kg N ha−1 yr−1) and in areas dominated by sheepfarming, driven by increased volatilization of NH3 in warmer summertemperatures. In areas where cattle, pig and poultry farming is dominant, thelargest NH3 concentrations are in spring and autumn, matching periods ofmanure application to fields. By contrast, peak concentrations ofNH4+ aerosol occur in spring, associated with long-rangetransboundary sources. An estimated decrease in NH3 emissions by16 % between 1998 and 2014 was reported by the UK National AtmosphericEmissions Inventory. Annually averaged NH3 data from NAMN sitesoperational over the same period (n = 59) show an indicative downwardtrend, although the reduction in NH3 concentrations is smaller andnon-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR),−3.1 %. In areas dominated by pig and poultry farming, a significantreduction in NH3 concentrations between 1998 and 2014 (MK: −22 %;LR: −21 %, annually averaged NH3) is consistent with, but not aslarge as the decrease in estimated NH3 emissions from this sector overthe same period (−39 %). By contrast, in cattle-dominated areas thereis a slight upward trend (non-significant) in NH3 concentrations (MK:+12 %; LR: +3.6 %, annually averaged NH3), despite theestimated decline in NH3 emissions from this sector since 1998(−11 %). At background and sheep-dominated sites, NH3concentrations increased over the monitoring period. These increases(non-significant) at background (MK: +17 %; LR: +13 %, annuallyaveraged data) and sheep-dominated sites (MK: +15 %; LR: +19 %,annually averaged data) would be consistent with the concomitant reduction inSO2 emissions over the same period, leading to a longer atmosphericlifetime of NH3, thereby increasing NH3 concentrations in remoteareas. The observations for NH3 concentrations not decreasing as fast asestimated emission trends are consistent with a larger downward trend inannual particulate NH4+ concentrations (1999–2014: MK: −47 %;LR: −49 %, p < 0.01, n = 23), associated with alower formation of particulateNH4+ in the atmosphere from gas phase NH3. A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m-3) and highest in the areas with intensive agriculture (up to 22 µg m-3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m-3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha-1 yr-1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n= 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), -6.3 %; linear regression (LR),-3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK:+12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: -47 %; LR: -49 %, p < 0.01, n= 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3. |
Audience | Academic |
Author | Vincent, Keith Tang, Yuk S. van Dijk, Netty Heal, Mathew R. Keenan, Patrick O. Dos Santos Pereira, Gloria Braban, Christine F. Sutton, Mark A. Conolly, Christopher Poskitt, Janet Smith, Rognvald I. Dragosits, Ulrike Dore, Anthony J. Simmons, Ivan |
Author_xml | – sequence: 1 givenname: Yuk S. orcidid: 0000-0002-7814-3998 surname: Tang fullname: Tang, Yuk S. – sequence: 2 givenname: Christine F. orcidid: 0000-0003-4275-0152 surname: Braban fullname: Braban, Christine F. – sequence: 3 givenname: Ulrike surname: Dragosits fullname: Dragosits, Ulrike – sequence: 4 givenname: Anthony J. surname: Dore fullname: Dore, Anthony J. – sequence: 5 givenname: Ivan surname: Simmons fullname: Simmons, Ivan – sequence: 6 givenname: Netty surname: van Dijk fullname: van Dijk, Netty – sequence: 7 givenname: Janet surname: Poskitt fullname: Poskitt, Janet – sequence: 8 givenname: Gloria orcidid: 0000-0003-3740-0019 surname: Dos Santos Pereira fullname: Dos Santos Pereira, Gloria – sequence: 9 givenname: Patrick O. surname: Keenan fullname: Keenan, Patrick O. – sequence: 10 givenname: Christopher surname: Conolly fullname: Conolly, Christopher – sequence: 11 givenname: Keith surname: Vincent fullname: Vincent, Keith – sequence: 12 givenname: Rognvald I. surname: Smith fullname: Smith, Rognvald I. – sequence: 13 givenname: Mathew R. orcidid: 0000-0001-5539-7293 surname: Heal fullname: Heal, Mathew R. – sequence: 14 givenname: Mark A. surname: Sutton fullname: Sutton, Mark A. |
BookMark | eNp9kt9rFDEQxxepYFt99jXgk-C2-bmbPJZa9bAgqH2Oc9nJNcfuZk1yov-9aU-kJyp5yDB8vjPDzPekOZrjjE3znNEzxYw8B7e0TLc9VS2nTD9qjlmnadsLLo8exE-ak5y3lHJFmTxuvrxO4RumTHxMJC9QAoyvSMFpiQlGAvNAxjhv2oJpIiXhPGQSZgJlinm5xRQcgWmKc4B7dh_vpjum3CK5ef-0eexhzPjs13_a3Ly5-nz5rr3-8HZ1eXHdOkVVqSODM974NTLnmO46Jzqv0WsP3QBa9j3na1TUC2SdMMiE7GCgFLw3PXVKnDarfd0hwtYuKUyQftgIwd4nYtpYSCW4Ea2UXDrPtRCMybUXpq7CMK69MSh7z2utF_taS4pfd5iL3cZdmuv4lksmlemElv-jmNFG9kKJB9QGausw-1gSuClkZy8Ul4J3htNKnf2Fqm_AKbh6aB9q_kDw8kBQmYLfywZ2OdvVp4-H7PmedSnmnND_Xg-j9s47tnrHMm2rd-ydd6pC_aFwoVRv1CYJwvhP3U_xS8aV |
CitedBy_id | crossref_primary_10_3390_atmos12121607 crossref_primary_10_1088_1748_9326_abd5e0 crossref_primary_10_5194_acp_21_875_2021 crossref_primary_10_1007_s40726_023_00291_6 crossref_primary_10_1016_j_atmosenv_2023_120325 crossref_primary_10_1016_j_atmosenv_2018_11_038 crossref_primary_10_1016_j_scitotenv_2023_165844 crossref_primary_10_1007_s11270_024_07709_x crossref_primary_10_1016_j_atmosenv_2023_119848 crossref_primary_10_1021_acs_est_2c01579 crossref_primary_10_5194_acp_23_9473_2023 crossref_primary_10_1007_s11356_019_04275_2 crossref_primary_10_3390_ma15093182 crossref_primary_10_3390_air1010003 crossref_primary_10_3390_f11121321 crossref_primary_10_1016_j_atmosenv_2023_120107 crossref_primary_10_1089_ees_2021_0371 crossref_primary_10_1007_s10661_022_10777_3 crossref_primary_10_5194_gmd_14_7021_2021 crossref_primary_10_1016_j_atmosenv_2020_117630 crossref_primary_10_5194_acp_21_6275_2021 crossref_primary_10_1016_j_envpol_2018_04_132 crossref_primary_10_1016_j_scitotenv_2020_139986 crossref_primary_10_1098_rsta_2019_0315 crossref_primary_10_1029_2021JD035687 crossref_primary_10_5194_acp_19_9309_2019 crossref_primary_10_1016_j_envint_2024_108519 crossref_primary_10_1021_acs_est_0c05149 crossref_primary_10_1021_acsomega_9b03284 crossref_primary_10_5194_acp_21_7187_2021 crossref_primary_10_5194_acp_18_16293_2018 crossref_primary_10_3390_agronomy14010067 crossref_primary_10_1071_EN23010 crossref_primary_10_1016_j_envpol_2020_115368 crossref_primary_10_1016_j_atmosenv_2021_118611 crossref_primary_10_1016_j_atmosenv_2021_118214 crossref_primary_10_1021_acs_est_1c08713 crossref_primary_10_3390_agronomy8110245 crossref_primary_10_5194_acp_24_9355_2024 crossref_primary_10_3390_atmos15020176 crossref_primary_10_1007_s10661_023_12288_1 crossref_primary_10_1029_2018JD028412 crossref_primary_10_1021_acsestair_4c00018 crossref_primary_10_1088_2515_7620_ab1a6f crossref_primary_10_3390_atmos11101092 crossref_primary_10_1039_D2EA00012A crossref_primary_10_1016_j_scitotenv_2020_141361 crossref_primary_10_1016_j_envpol_2019_07_088 crossref_primary_10_1007_s44273_024_00042_z crossref_primary_10_3390_atmos14081248 crossref_primary_10_3390_w14040539 |
Cites_doi | 10.1007/978-1-4020-8453-9_14 10.5194/acp-10-10359-2010 10.1088/1748-9326/11/12/124004 10.5194/acp-12-5447-2012 10.1016/j.envpol.2015.09.014 10.1016/j.atmosenv.2014.02.012 10.1016/S0269-7491(98)80054-7 10.1100/2011/897308 10.1016/S1352-2310(97)83467-X 10.1046/j.1469-8137.1998.00180.x 10.1016/S1352-2310(99)00362-3 10.1016/S0269-7491(98)80013-4 10.1016/j.atmosenv.2004.03.051 10.1007/978-1-4020-9121-6_21 10.1016/S1352-2310(99)00517-8 10.1007/978-94-010-9026-1_15 10.1016/j.envpol.2008.09.049 10.1016/B978-0-08-043201-4.50031-9 10.1016/j.atmosenv.2015.08.008 10.1100/tsw.2001.313 10.1007/978-1-4020-5885-1_1 10.1016/j.envsci.2010.09.010 10.1016/j.atmosenv.2016.03.050 10.1098/rstb.2013.0166 10.1100/tsw.2001.82 10.1126/science.1226514 10.1016/j.atmosenv.2016.11.007 10.1016/S0269-7491(01)00146-4 10.1007/978-94-010-9026-1_5 10.1016/S0065-2504(08)60045-8 10.1016/j.atmosenv.2009.12.011 10.1023/A:1021834132138 10.1016/S1352-2310(97)00278-1 10.5194/bg-10-5183-2013 10.5194/bg-9-5261-2012 10.1007/BF01186137 10.1016/S0269-7491(01)00147-6 10.1016/0004-6981(82)90184-6 10.1016/j.envpol.2008.02.017 10.1007/s11356-015-5648-3 10.1016/j.atmosenv.2009.07.068 10.1016/S1352-2310(97)00046-0 10.1016/j.atmosenv.2006.11.013 10.1039/c1em10553a 10.1016/B978-0-08-043201-4.50050-2 10.1016/S2213-2600(15)00413-0 10.1016/S0269-7491(01)00145-2 10.1023/B:EMAS.0000038181.99603.6e 10.1016/j.envsci.2006.04.001 10.1016/S1464-1909(98)00016-1 10.1111/j.1365-2486.2011.02478.x 10.1016/j.envint.2014.10.005 10.1029/WR020i006p00727 10.5194/acp-14-8435-2014 10.32614/CRAN.package.trend 10.5194/bg-12-5133-2015 10.1039/b102303a 10.1016/S1462-9011(00)00115-5 10.1007/978-1-4020-9121-6_12 10.1007/978-1-4020-9121-6_2 10.1016/0960-1686(93)90280-C 10.1007/978-1-4020-9121-6_11 10.1016/j.envpol.2013.04.014 10.1007/s11270-005-7249-0 10.1016/j.atmosenv.2004.01.023 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Copernicus GmbH Copyright Copernicus GmbH 2018 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: Copyright Copernicus GmbH 2018 – notice: 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-18-705-2018 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1680-7324 |
EndPage | 733 |
ExternalDocumentID | oai_doaj_org_article_4424cf2833114bf395019128f99e47f2 A524326920 10_5194_acp_18_705_2018 |
GeographicLocations | United Kingdom United Kingdom--UK Netherlands Europe |
GeographicLocations_xml | – name: United Kingdom – name: Netherlands – name: United Kingdom--UK – name: Europe |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c505t-20ac9f9fbe1cc1866c36f8ef8fa6da847722be50f3e1639e1346ad00aff970c53 |
IEDL.DBID | DOA |
ISSN | 1680-7324 1680-7316 |
IngestDate | Mon Sep 01 19:38:14 EDT 2025 Fri Jul 25 22:35:59 EDT 2025 Fri Jul 25 22:35:39 EDT 2025 Tue Jun 17 21:32:18 EDT 2025 Tue Jun 10 20:22:21 EDT 2025 Fri Jun 27 04:40:27 EDT 2025 Tue Jul 01 03:42:36 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c505t-20ac9f9fbe1cc1866c36f8ef8fa6da847722be50f3e1639e1346ad00aff970c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7814-3998 0000-0003-3740-0019 0000-0003-4275-0152 0000-0001-5539-7293 |
OpenAccessLink | https://doaj.org/article/4424cf2833114bf395019128f99e47f2 |
PQID | 1989473534 |
PQPubID | 105744 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4424cf2833114bf395019128f99e47f2 proquest_journals_2414596384 proquest_journals_1989473534 gale_infotracmisc_A524326920 gale_infotracacademiconefile_A524326920 gale_incontextgauss_ISR_A524326920 crossref_primary_10_5194_acp_18_705_2018 crossref_citationtrail_10_5194_acp_18_705_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-22 |
PublicationDateYYYYMMDD | 2018-01-22 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2018 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref85 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref13 doi: 10.1007/978-1-4020-8453-9_14 – ident: ref38 doi: 10.5194/acp-10-10359-2010 – ident: ref44 doi: 10.1088/1748-9326/11/12/124004 – ident: ref66 – ident: ref73 doi: 10.5194/acp-12-5447-2012 – ident: ref28 doi: 10.1016/j.envpol.2015.09.014 – ident: ref48 doi: 10.1016/j.atmosenv.2014.02.012 – ident: ref20 – ident: ref57 doi: 10.1016/S0269-7491(98)80054-7 – ident: ref11 doi: 10.1100/2011/897308 – ident: ref51 doi: 10.1016/S1352-2310(97)83467-X – ident: ref2 doi: 10.1046/j.1469-8137.1998.00180.x – ident: ref58 doi: 10.1016/S1352-2310(99)00362-3 – ident: ref42 doi: 10.1016/S0269-7491(98)80013-4 – ident: ref77 doi: 10.1016/j.atmosenv.2004.03.051 – ident: ref79 doi: 10.1007/978-1-4020-9121-6_21 – ident: ref69 – ident: ref76 – ident: ref9 – ident: ref52 doi: 10.1016/S1352-2310(99)00517-8 – ident: ref61 doi: 10.1007/978-94-010-9026-1_15 – ident: ref7 doi: 10.1016/j.envpol.2008.09.049 – ident: ref16 doi: 10.1016/B978-0-08-043201-4.50031-9 – ident: ref14 doi: 10.1016/j.atmosenv.2015.08.008 – ident: ref60 doi: 10.1100/tsw.2001.313 – ident: ref6 – ident: ref31 doi: 10.1007/978-1-4020-5885-1_1 – ident: ref30 doi: 10.1016/j.envsci.2010.09.010 – ident: ref1 doi: 10.1016/j.atmosenv.2016.03.050 – ident: ref64 doi: 10.1098/rstb.2013.0166 – ident: ref40 – ident: ref75 – ident: ref65 doi: 10.1100/tsw.2001.82 – ident: ref47 doi: 10.1126/science.1226514 – ident: ref78 doi: 10.1016/j.atmosenv.2016.11.007 – ident: ref23 doi: 10.1016/S0269-7491(01)00146-4 – ident: ref26 doi: 10.1007/978-94-010-9026-1_5 – ident: ref39 – ident: ref3 – ident: ref55 doi: 10.1016/S0065-2504(08)60045-8 – ident: ref46 doi: 10.1016/j.atmosenv.2009.12.011 – ident: ref62 doi: 10.1023/A:1021834132138 – ident: ref71 doi: 10.1016/S1352-2310(97)00278-1 – ident: ref68 – ident: ref22 doi: 10.5194/bg-10-5183-2013 – ident: ref29 – ident: ref41 – ident: ref83 doi: 10.5194/bg-9-5261-2012 – ident: ref56 doi: 10.1007/BF01186137 – ident: ref17 doi: 10.1016/S0269-7491(01)00147-6 – ident: ref53 doi: 10.1016/0004-6981(82)90184-6 – ident: ref74 – ident: ref32 doi: 10.1016/j.envpol.2008.02.017 – ident: ref85 doi: 10.1007/s11356-015-5648-3 – ident: ref19 – ident: ref27 doi: 10.1016/j.atmosenv.2009.07.068 – ident: ref34 doi: 10.1016/S1352-2310(97)00046-0 – ident: ref70 – ident: ref12 doi: 10.1016/j.atmosenv.2006.11.013 – ident: ref45 doi: 10.1039/c1em10553a – ident: ref15 – ident: ref25 doi: 10.1016/B978-0-08-043201-4.50050-2 – ident: ref5 doi: 10.1016/S2213-2600(15)00413-0 – ident: ref54 doi: 10.1016/S0269-7491(01)00145-2 – ident: ref72 doi: 10.1023/B:EMAS.0000038181.99603.6e – ident: ref63 doi: 10.1016/j.envsci.2006.04.001 – ident: ref49 doi: 10.1016/S1464-1909(98)00016-1 – ident: ref50 doi: 10.1111/j.1365-2486.2011.02478.x – ident: ref67 – ident: ref36 doi: 10.1016/j.envint.2014.10.005 – ident: ref21 – ident: ref33 doi: 10.1029/WR020i006p00727 – ident: ref80 doi: 10.5194/acp-14-8435-2014 – ident: ref43 doi: 10.32614/CRAN.package.trend – ident: ref37 doi: 10.5194/bg-12-5133-2015 – ident: ref59 doi: 10.1039/b102303a – ident: ref18 doi: 10.1016/S1462-9011(00)00115-5 – ident: ref35 doi: 10.1007/978-1-4020-9121-6_12 – ident: ref8 doi: 10.1007/978-1-4020-9121-6_2 – ident: ref84 doi: 10.1016/0960-1686(93)90280-C – ident: ref4 doi: 10.1007/978-1-4020-9121-6_11 – ident: ref81 doi: 10.1016/j.envpol.2013.04.014 – ident: ref10 – ident: ref24 doi: 10.1007/s11270-005-7249-0 – ident: ref82 doi: 10.1016/j.atmosenv.2004.01.023 |
SSID | ssj0025014 |
Score | 2.4582973 |
Snippet | A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in... A unique long-term dataset from the UK National Ammonia Monitoring Network(NAMN) is used here to assess spatial, seasonal and long-term variability... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 705 |
SubjectTerms | Acidification Agriculture Air pollution Ammonia Ammonium Ammonium compounds Animal manures Atmospheric composition Atmospheric research Cattle Chemical properties Data Data processing Emission inventories Emissions Environmental aspects Environmental conditions Environmental monitoring Eutrophication Farming Gases Heterogeneity Intensive farming Livestock farming Monitoring Nitrogen compounds open climate campaign Patchiness Poultry Poultry farming Reduction Seasonal variability Sheep Spatial heterogeneity Spatial variability Spatial variations Spring Spring (season) Sulfur dioxide Summer Summer temperatures Trends Vapor phases Vegetation Volatilization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcABlQIipSALIeCAaWI7Hz6hbWlVQK1QYaXejOPYq5XSZJtk_z8zWe_CShQphySeRIlnPH7jTN4Q8oar1KU2h_Fdec6kqhwzuVfMirzKYFN5hT8nX1xm51P59Tq9DgtufUirXPvE0VFXrcU18iOYaWSK1iI_LW4ZVo3Cr6uhhMZ9sgsuuIDga_f49PL71Sbkwq9mGHJlRcywRtOK3AdQizwydsGSguVxCpaCNT_-mpdG-v67nPQ485ztkUcBMtLJSsePyT3X7JOHk1kXaDPcPokuAPu23bhETt_Sk3oOQHQ8ekJ-fe7G3AsK8JT2mEBt6g80UFLV1DQVrdtmxtBH02FMkaXzhprhpu2Rc2BuqcG3n5tRdrW_vEEZAI90-u0pmZ6d_jw5Z6GuArOAdwZ4XWOVV750ibVIeGdF5gvnC2-yysB0lXNeujT2wgFaUy4RMjNVHBvvVR7bVDwjO03buOeEmtg5w4uytNxLn2QqzQXoWsCdbKlMGZGP617VNpCOY-2LWkPwgWrQoAadFBrUoFENEXm_uWCx4tu4W_QY1bQRQ6Ls8UTbzXQYd1pKLq0HDCUg8Cu9UGARCkzFK-Vk7nlEXqOSNVJhNJhrMzPLvtdfflzpScolgFvF44i8C0K-hae3Jvy6AH2A7FlbkodbkjBW7Xbz2pZ08BW9xqw1LAAt5D-b_xj-wf-bX5AH2C24PsT5IdkZuqV7CYhpKF-FYfEbBsMTiQ priority: 102 providerName: ProQuest |
Title | Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK |
URI | https://www.proquest.com/docview/1989473534 https://www.proquest.com/docview/2414596384 https://doaj.org/article/4424cf2833114bf395019128f99e47f2 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8hJpy8qqEHAgNPEjiY9t6VJAW0FhRW_GcexqpTSpNtn_z4yTrboSVS9IkfKaRMl4PPPZmXxDyBumpJM2h_5deRYLVbnY5F7FludVBovKK_w5eXaWnc7F1wt5cavUF-aEDfTAg-IOhGDCegiCHJB76bmSAErAqXqlnMh98L4Q89aDqXGohV_LcKiVFUmMtZkGUh9AK-LA2Os4LeI8kWAhWOvjVjwKtP13OecQcabb5MkIFenh8IhPyQPXPCPRDFBuuwyT4fQtPa4XADnD3nPy59MyZFlQAKK0w1RpU3-gI_lUTU1T0bptLmP0xrQPybB00VDTX7UdsgssLDVolgsTZIft1RXKAEyk828vyHx68uv4NB4rKMQWkE0PL2is8sqXLrUWqe0sz3zhfOFNVhkITDljpZOJ5w5wmXIpF5mpksR4r_LESv6SbDVt414RahLnDCvK0jIvfJopmXNoVQ53sqUyZUQ-rvWo7UgvjlUuag3DDFS8BsXrtNCgeI2Kj8j7mwuuB2aNu0WPsGFuxJASOxwAQ9Gjoej7DCUi-9isGkkvGsyquTSrrtNffp7rQ8kEwFjFkoi8G4V8C09vzfiTAugAebI2JPc2JKFX2s3Ta-vRo1foNOanYalnLv55GsCUkOgQxc7_eOFd8hiVh_NFjO2RrX65cq8BQfXlhDwspp8n5NHRydn3c1xPZz9-T0IX-gv_Yhhh |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcQAOCAaIwAAL8XUgW2I7Hz4gVDZKS9cdYJV28xzHrip1SWlaIf4p_kbec9NCJcZtUg9p_VJF7_P3nOf3CHnJZGITk4F9l46FQpY21JmToeFZmcJHZiUeTh6epr2R-HKenO-QX-uzMFhWufaJ3lGXtcE98kOINCJBbREfZt9DnBqFb1fXIzRWajGwP39Ayta87x-DfF8x1v10dtQL26kCoYFovwC10EY66QobG4Pt3gxPXW5d7nRaanDWGWOFTSLHLWAVaWMuUl1GkXZOZpHBKRHg8m8IziVaVN79vEnw8B0dJnhpHoU4EWrVSggwkjjUZhbGeZhFCTwAThj5Kwr6YQFXhQQf57p3yZ0WoNLOSqPukR1b7ZHbnfG8bdJh90gwBKRdz_2GPH1Nj6YTgL3-231ycTz3lR4UwDBtsFxbT9_RtgHWlOqqpNO6GocYEejCF-TSSUX14rJusMPBxFCNvJ5oT7u6Xl4iDUBVOho8IKNr4fdDslvVlX1EqI6s1SwvCsOccHEqk4yDZnH4J1NIXQTkYM1VZdoW5zhpY6og1UExKBCDinMFYlAohoC83dwwW3X3uJr0I4ppQ4Ztuf0P9XysWitXQjBhHCA2Dmlm4bgEjZCAAJyUVmSOBeQFCllh440KK3vGetk0qv_tq-okTACUliwKyJuWyNXw9Ea3ByWAB9ira4tyf4sSPIPZXl7rkmo9U6OwRg7HTXPxz-U_Zvb4_8vPyc3e2fBEnfRPB0_ILWQR7kwxtk92F_OlfQpYbVE88wZCycV1W-Rv_rVP_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamTULwwGWAKAywELcH0qaOc_EDQt1KtVI6cavYm-c4dlXRJaVJheCn8Vf4M5yTS6GI8bYHpD609UmUON-5xcffIeQhE77xdQj6nVjmcJEYR4VWONoLkwA-Ikxwc_L4KDic8FfH_vEW-d7shcGyysYmloY6yTS-I--Ap-E-ooV3bF0W8aY_eLH47GAHKVxpbdppVBAZma9fIH3Lnw_78KwfMTZ4-eHg0Kk7DDgaPH8BEFFaWGFj09Uaqd-0F9jI2MiqIFFguEPGYuO71jMQtwjT9XigEtdV1orQ1dgxAsz_ThREPtsmO_uD8duP63QPV-ww3Qsi18H-UBWxEERMvKP0wulGTuj6cAnYb-Q3n1i2DjjLQZReb3CF_Gjmqyp2-dReFXFbf_uDSvL_nNCr5HIdjNNepT3XyJZJd8ml3nRZE5KYXdIaQ1aRLcvFB_qYHsxnEOKXv66Tk_6yrGqhEPjTHEvT1fwZrcm-5lSlCZ1n6dRB70eLsviYzlKqitMsRzaHmaYKb32mStnq--oUZSAsp5PRDTI5l9u_SbbTLDW3CFWuMYpFcayZ5bYbCD_0QIs8OJOOhYpbpN1gRuqazh27iswlpHUIMgkgk91IAsgkgqxFnq4PWFRMJmeL7iMI12JIQV7-kS2nsrZoknPGtYXo1IOUOraeALwLiHasEIaHlrXIA4SwRJKRFNE1Vas8l8P372TPZxzSBsHcFnlSC9kMrl6relMIzAHykm1I7m1IghXUm8MNymVthXOJ9YDYWtvjfx3-pQG3_z18n1wA1ZCvh0ejO-QizhC-hGNsj2wXy5W5C2FpEd-r9Z-Sk_PWkJ_rHJ2k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+for+spatial%2C+temporal+and+long-term+trends+in+atmospheric+ammonia+and+ammonium+in+the+UK&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Y.+S.+Tang&rft.au=C.+F.+Braban&rft.au=U.+Dragosits&rft.au=A.+J.+Dore&rft.date=2018-01-22&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=18&rft.spage=705&rft.epage=733&rft_id=info:doi/10.5194%2Facp-18-705-2018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4424cf2833114bf395019128f99e47f2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |