Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK

A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 18; no. 2; pp. 705 - 733
Main Authors Tang, Yuk S., Braban, Christine F., Dragosits, Ulrike, Dore, Anthony J., Simmons, Ivan, van Dijk, Netty, Poskitt, Janet, Dos Santos Pereira, Gloria, Keenan, Patrick O., Conolly, Christopher, Vincent, Keith, Smith, Rognvald I., Heal, Mathew R., Sutton, Mark A.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 22.01.2018
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m−3) and highest in the areas with intensive agriculture (up to 22 µg m−3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m−3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha−1 yr−1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n =  59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR), −3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: −22 %; LR: −21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (−39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (−11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: −47 %; LR: −49 %, p < 0.01, n =  23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.
AbstractList A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m−3) and highest in the areas with intensive agriculture (up to 22 µg m−3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m−3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha−1 yr−1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n =  59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR), −3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: −22 %; LR: −21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (−39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (−11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: −47 %; LR: −49 %, p < 0.01, n =  23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.
A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH.sub.3 : 1998-2014) and particulate ammonium (NH.sub.4 .sup.+ : 1999-2014) across the UK. Extensive spatial heterogeneity in NH.sub.3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m.sup.-3) and highest in the areas with intensive agriculture (up to 22 µg m.sup.-3 ), while NH.sub.4 .sup.+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m.sup.-3 annual mean in 2005). Temporally, NH.sub.3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH.sub.3 concentrations are observed in summer at background sites (defined by 5 km grid average NH.sub.3 emissions < 1 kg N ha.sup.-1 yr.sup.-1) and in areas dominated by sheep farming, driven by increased volatilization of NH.sub.3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH.sub.3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH.sub.4 .sup.+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH.sub.3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH.sub.3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH.sub.3 concentrations is smaller and non-significant: Mann-Kendall (MK), -6.3 %; linear regression (LR), -3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH.sub.3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH.sub.3) is consistent with, but not as large as the decrease in estimated NH.sub.3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH.sub.3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH.sub.3 ), despite the estimated decline in NH.sub.3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH.sub.3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO.sub.2 emissions over the same period, leading to a longer atmospheric lifetime of NH.sub.3, thereby increasing NH.sub.3 concentrations in remote areas. The observations for NH.sub.3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH.sub.4 .sup.+ concentrations (1999-2014: MK: -47 %; LR: -49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH.sub.4 .sup.+ in the atmosphere from gas phase NH.sub.3.
A unique long-term dataset from the UK National Ammonia Monitoring Network(NAMN) is used here to assess spatial, seasonal and long-term variability inatmospheric ammonia (NH3: 1998–2014) and particulate ammonium(NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity inNH3 concentrations is observed, with lowest annual mean concentrationsat remote sites (< 0.2 µg m−3) and highest in theareas with intensive agriculture (up to 22 µg m−3), whileNH4+ concentrations show less spatial variability (e.g. range of 0.14to 1.8 µg m−3 annual mean in 2005). Temporally, NH3concentrations are influenced by environmental conditions and local emissionsources. In particular, peak NH3 concentrations are observed in summerat background sites (defined by 5 km grid average NH3 emissions< 1 kg N ha−1 yr−1) and in areas dominated by sheepfarming, driven by increased volatilization of NH3 in warmer summertemperatures. In areas where cattle, pig and poultry farming is dominant, thelargest NH3 concentrations are in spring and autumn, matching periods ofmanure application to fields. By contrast, peak concentrations ofNH4+ aerosol occur in spring, associated with long-rangetransboundary sources. An estimated decrease in NH3 emissions by16 % between 1998 and 2014 was reported by the UK National AtmosphericEmissions Inventory. Annually averaged NH3 data from NAMN sitesoperational over the same period (n =  59) show an indicative downwardtrend, although the reduction in NH3 concentrations is smaller andnon-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR),−3.1 %. In areas dominated by pig and poultry farming, a significantreduction in NH3 concentrations between 1998 and 2014 (MK: −22 %;LR: −21 %, annually averaged NH3) is consistent with, but not aslarge as the decrease in estimated NH3 emissions from this sector overthe same period (−39 %). By contrast, in cattle-dominated areas thereis a slight upward trend (non-significant) in NH3 concentrations (MK:+12 %; LR: +3.6 %, annually averaged NH3), despite theestimated decline in NH3 emissions from this sector since 1998(−11 %). At background and sheep-dominated sites, NH3concentrations increased over the monitoring period. These increases(non-significant) at background (MK: +17 %; LR: +13 %, annuallyaveraged data) and sheep-dominated sites (MK: +15 %; LR: +19 %,annually averaged data) would be consistent with the concomitant reduction inSO2 emissions over the same period, leading to a longer atmosphericlifetime of NH3, thereby increasing NH3 concentrations in remoteareas. The observations for NH3 concentrations not decreasing as fast asestimated emission trends are consistent with a larger downward trend inannual particulate NH4+ concentrations (1999–2014: MK: −47 %;LR: −49 %, p < 0.01, n =  23), associated with alower formation of particulateNH4+ in the atmosphere from gas phase NH3.
A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m-3) and highest in the areas with intensive agriculture (up to 22 µg m-3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m-3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha-1 yr-1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n= 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), -6.3 %; linear regression (LR),-3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK:+12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: -47 %; LR: -49 %, p < 0.01, n= 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.
Audience Academic
Author Vincent, Keith
Tang, Yuk S.
van Dijk, Netty
Heal, Mathew R.
Keenan, Patrick O.
Dos Santos Pereira, Gloria
Braban, Christine F.
Sutton, Mark A.
Conolly, Christopher
Poskitt, Janet
Smith, Rognvald I.
Dragosits, Ulrike
Dore, Anthony J.
Simmons, Ivan
Author_xml – sequence: 1
  givenname: Yuk S.
  orcidid: 0000-0002-7814-3998
  surname: Tang
  fullname: Tang, Yuk S.
– sequence: 2
  givenname: Christine F.
  orcidid: 0000-0003-4275-0152
  surname: Braban
  fullname: Braban, Christine F.
– sequence: 3
  givenname: Ulrike
  surname: Dragosits
  fullname: Dragosits, Ulrike
– sequence: 4
  givenname: Anthony J.
  surname: Dore
  fullname: Dore, Anthony J.
– sequence: 5
  givenname: Ivan
  surname: Simmons
  fullname: Simmons, Ivan
– sequence: 6
  givenname: Netty
  surname: van Dijk
  fullname: van Dijk, Netty
– sequence: 7
  givenname: Janet
  surname: Poskitt
  fullname: Poskitt, Janet
– sequence: 8
  givenname: Gloria
  orcidid: 0000-0003-3740-0019
  surname: Dos Santos Pereira
  fullname: Dos Santos Pereira, Gloria
– sequence: 9
  givenname: Patrick O.
  surname: Keenan
  fullname: Keenan, Patrick O.
– sequence: 10
  givenname: Christopher
  surname: Conolly
  fullname: Conolly, Christopher
– sequence: 11
  givenname: Keith
  surname: Vincent
  fullname: Vincent, Keith
– sequence: 12
  givenname: Rognvald I.
  surname: Smith
  fullname: Smith, Rognvald I.
– sequence: 13
  givenname: Mathew R.
  orcidid: 0000-0001-5539-7293
  surname: Heal
  fullname: Heal, Mathew R.
– sequence: 14
  givenname: Mark A.
  surname: Sutton
  fullname: Sutton, Mark A.
BookMark eNp9kt9rFDEQxxepYFt99jXgk-C2-bmbPJZa9bAgqH2Oc9nJNcfuZk1yov-9aU-kJyp5yDB8vjPDzPekOZrjjE3znNEzxYw8B7e0TLc9VS2nTD9qjlmnadsLLo8exE-ak5y3lHJFmTxuvrxO4RumTHxMJC9QAoyvSMFpiQlGAvNAxjhv2oJpIiXhPGQSZgJlinm5xRQcgWmKc4B7dh_vpjum3CK5ef-0eexhzPjs13_a3Ly5-nz5rr3-8HZ1eXHdOkVVqSODM974NTLnmO46Jzqv0WsP3QBa9j3na1TUC2SdMMiE7GCgFLw3PXVKnDarfd0hwtYuKUyQftgIwd4nYtpYSCW4Ea2UXDrPtRCMybUXpq7CMK69MSh7z2utF_taS4pfd5iL3cZdmuv4lksmlemElv-jmNFG9kKJB9QGausw-1gSuClkZy8Ul4J3htNKnf2Fqm_AKbh6aB9q_kDw8kBQmYLfywZ2OdvVp4-H7PmedSnmnND_Xg-j9s47tnrHMm2rd-ydd6pC_aFwoVRv1CYJwvhP3U_xS8aV
CitedBy_id crossref_primary_10_3390_atmos12121607
crossref_primary_10_1088_1748_9326_abd5e0
crossref_primary_10_5194_acp_21_875_2021
crossref_primary_10_1007_s40726_023_00291_6
crossref_primary_10_1016_j_atmosenv_2023_120325
crossref_primary_10_1016_j_atmosenv_2018_11_038
crossref_primary_10_1016_j_scitotenv_2023_165844
crossref_primary_10_1007_s11270_024_07709_x
crossref_primary_10_1016_j_atmosenv_2023_119848
crossref_primary_10_1021_acs_est_2c01579
crossref_primary_10_5194_acp_23_9473_2023
crossref_primary_10_1007_s11356_019_04275_2
crossref_primary_10_3390_ma15093182
crossref_primary_10_3390_air1010003
crossref_primary_10_3390_f11121321
crossref_primary_10_1016_j_atmosenv_2023_120107
crossref_primary_10_1089_ees_2021_0371
crossref_primary_10_1007_s10661_022_10777_3
crossref_primary_10_5194_gmd_14_7021_2021
crossref_primary_10_1016_j_atmosenv_2020_117630
crossref_primary_10_5194_acp_21_6275_2021
crossref_primary_10_1016_j_envpol_2018_04_132
crossref_primary_10_1016_j_scitotenv_2020_139986
crossref_primary_10_1098_rsta_2019_0315
crossref_primary_10_1029_2021JD035687
crossref_primary_10_5194_acp_19_9309_2019
crossref_primary_10_1016_j_envint_2024_108519
crossref_primary_10_1021_acs_est_0c05149
crossref_primary_10_1021_acsomega_9b03284
crossref_primary_10_5194_acp_21_7187_2021
crossref_primary_10_5194_acp_18_16293_2018
crossref_primary_10_3390_agronomy14010067
crossref_primary_10_1071_EN23010
crossref_primary_10_1016_j_envpol_2020_115368
crossref_primary_10_1016_j_atmosenv_2021_118611
crossref_primary_10_1016_j_atmosenv_2021_118214
crossref_primary_10_1021_acs_est_1c08713
crossref_primary_10_3390_agronomy8110245
crossref_primary_10_5194_acp_24_9355_2024
crossref_primary_10_3390_atmos15020176
crossref_primary_10_1007_s10661_023_12288_1
crossref_primary_10_1029_2018JD028412
crossref_primary_10_1021_acsestair_4c00018
crossref_primary_10_1088_2515_7620_ab1a6f
crossref_primary_10_3390_atmos11101092
crossref_primary_10_1039_D2EA00012A
crossref_primary_10_1016_j_scitotenv_2020_141361
crossref_primary_10_1016_j_envpol_2019_07_088
crossref_primary_10_1007_s44273_024_00042_z
crossref_primary_10_3390_atmos14081248
crossref_primary_10_3390_w14040539
Cites_doi 10.1007/978-1-4020-8453-9_14
10.5194/acp-10-10359-2010
10.1088/1748-9326/11/12/124004
10.5194/acp-12-5447-2012
10.1016/j.envpol.2015.09.014
10.1016/j.atmosenv.2014.02.012
10.1016/S0269-7491(98)80054-7
10.1100/2011/897308
10.1016/S1352-2310(97)83467-X
10.1046/j.1469-8137.1998.00180.x
10.1016/S1352-2310(99)00362-3
10.1016/S0269-7491(98)80013-4
10.1016/j.atmosenv.2004.03.051
10.1007/978-1-4020-9121-6_21
10.1016/S1352-2310(99)00517-8
10.1007/978-94-010-9026-1_15
10.1016/j.envpol.2008.09.049
10.1016/B978-0-08-043201-4.50031-9
10.1016/j.atmosenv.2015.08.008
10.1100/tsw.2001.313
10.1007/978-1-4020-5885-1_1
10.1016/j.envsci.2010.09.010
10.1016/j.atmosenv.2016.03.050
10.1098/rstb.2013.0166
10.1100/tsw.2001.82
10.1126/science.1226514
10.1016/j.atmosenv.2016.11.007
10.1016/S0269-7491(01)00146-4
10.1007/978-94-010-9026-1_5
10.1016/S0065-2504(08)60045-8
10.1016/j.atmosenv.2009.12.011
10.1023/A:1021834132138
10.1016/S1352-2310(97)00278-1
10.5194/bg-10-5183-2013
10.5194/bg-9-5261-2012
10.1007/BF01186137
10.1016/S0269-7491(01)00147-6
10.1016/0004-6981(82)90184-6
10.1016/j.envpol.2008.02.017
10.1007/s11356-015-5648-3
10.1016/j.atmosenv.2009.07.068
10.1016/S1352-2310(97)00046-0
10.1016/j.atmosenv.2006.11.013
10.1039/c1em10553a
10.1016/B978-0-08-043201-4.50050-2
10.1016/S2213-2600(15)00413-0
10.1016/S0269-7491(01)00145-2
10.1023/B:EMAS.0000038181.99603.6e
10.1016/j.envsci.2006.04.001
10.1016/S1464-1909(98)00016-1
10.1111/j.1365-2486.2011.02478.x
10.1016/j.envint.2014.10.005
10.1029/WR020i006p00727
10.5194/acp-14-8435-2014
10.32614/CRAN.package.trend
10.5194/bg-12-5133-2015
10.1039/b102303a
10.1016/S1462-9011(00)00115-5
10.1007/978-1-4020-9121-6_12
10.1007/978-1-4020-9121-6_2
10.1016/0960-1686(93)90280-C
10.1007/978-1-4020-9121-6_11
10.1016/j.envpol.2013.04.014
10.1007/s11270-005-7249-0
10.1016/j.atmosenv.2004.01.023
ContentType Journal Article
Copyright COPYRIGHT 2018 Copernicus GmbH
Copyright Copernicus GmbH 2018
2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2018
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-18-705-2018
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1680-7324
EndPage 733
ExternalDocumentID oai_doaj_org_article_4424cf2833114bf395019128f99e47f2
A524326920
10_5194_acp_18_705_2018
GeographicLocations United Kingdom
United Kingdom--UK
Netherlands
Europe
GeographicLocations_xml – name: United Kingdom
– name: Netherlands
– name: United Kingdom--UK
– name: Europe
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c505t-20ac9f9fbe1cc1866c36f8ef8fa6da847722be50f3e1639e1346ad00aff970c53
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Mon Sep 01 19:38:14 EDT 2025
Fri Jul 25 22:35:59 EDT 2025
Fri Jul 25 22:35:39 EDT 2025
Tue Jun 17 21:32:18 EDT 2025
Tue Jun 10 20:22:21 EDT 2025
Fri Jun 27 04:40:27 EDT 2025
Tue Jul 01 03:42:36 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-20ac9f9fbe1cc1866c36f8ef8fa6da847722be50f3e1639e1346ad00aff970c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7814-3998
0000-0003-3740-0019
0000-0003-4275-0152
0000-0001-5539-7293
OpenAccessLink https://doaj.org/article/4424cf2833114bf395019128f99e47f2
PQID 1989473534
PQPubID 105744
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_4424cf2833114bf395019128f99e47f2
proquest_journals_2414596384
proquest_journals_1989473534
gale_infotracmisc_A524326920
gale_infotracacademiconefile_A524326920
gale_incontextgauss_ISR_A524326920
crossref_primary_10_5194_acp_18_705_2018
crossref_citationtrail_10_5194_acp_18_705_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-22
PublicationDateYYYYMMDD 2018-01-22
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-22
  day: 22
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2018
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref85
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref13
  doi: 10.1007/978-1-4020-8453-9_14
– ident: ref38
  doi: 10.5194/acp-10-10359-2010
– ident: ref44
  doi: 10.1088/1748-9326/11/12/124004
– ident: ref66
– ident: ref73
  doi: 10.5194/acp-12-5447-2012
– ident: ref28
  doi: 10.1016/j.envpol.2015.09.014
– ident: ref48
  doi: 10.1016/j.atmosenv.2014.02.012
– ident: ref20
– ident: ref57
  doi: 10.1016/S0269-7491(98)80054-7
– ident: ref11
  doi: 10.1100/2011/897308
– ident: ref51
  doi: 10.1016/S1352-2310(97)83467-X
– ident: ref2
  doi: 10.1046/j.1469-8137.1998.00180.x
– ident: ref58
  doi: 10.1016/S1352-2310(99)00362-3
– ident: ref42
  doi: 10.1016/S0269-7491(98)80013-4
– ident: ref77
  doi: 10.1016/j.atmosenv.2004.03.051
– ident: ref79
  doi: 10.1007/978-1-4020-9121-6_21
– ident: ref69
– ident: ref76
– ident: ref9
– ident: ref52
  doi: 10.1016/S1352-2310(99)00517-8
– ident: ref61
  doi: 10.1007/978-94-010-9026-1_15
– ident: ref7
  doi: 10.1016/j.envpol.2008.09.049
– ident: ref16
  doi: 10.1016/B978-0-08-043201-4.50031-9
– ident: ref14
  doi: 10.1016/j.atmosenv.2015.08.008
– ident: ref60
  doi: 10.1100/tsw.2001.313
– ident: ref6
– ident: ref31
  doi: 10.1007/978-1-4020-5885-1_1
– ident: ref30
  doi: 10.1016/j.envsci.2010.09.010
– ident: ref1
  doi: 10.1016/j.atmosenv.2016.03.050
– ident: ref64
  doi: 10.1098/rstb.2013.0166
– ident: ref40
– ident: ref75
– ident: ref65
  doi: 10.1100/tsw.2001.82
– ident: ref47
  doi: 10.1126/science.1226514
– ident: ref78
  doi: 10.1016/j.atmosenv.2016.11.007
– ident: ref23
  doi: 10.1016/S0269-7491(01)00146-4
– ident: ref26
  doi: 10.1007/978-94-010-9026-1_5
– ident: ref39
– ident: ref3
– ident: ref55
  doi: 10.1016/S0065-2504(08)60045-8
– ident: ref46
  doi: 10.1016/j.atmosenv.2009.12.011
– ident: ref62
  doi: 10.1023/A:1021834132138
– ident: ref71
  doi: 10.1016/S1352-2310(97)00278-1
– ident: ref68
– ident: ref22
  doi: 10.5194/bg-10-5183-2013
– ident: ref29
– ident: ref41
– ident: ref83
  doi: 10.5194/bg-9-5261-2012
– ident: ref56
  doi: 10.1007/BF01186137
– ident: ref17
  doi: 10.1016/S0269-7491(01)00147-6
– ident: ref53
  doi: 10.1016/0004-6981(82)90184-6
– ident: ref74
– ident: ref32
  doi: 10.1016/j.envpol.2008.02.017
– ident: ref85
  doi: 10.1007/s11356-015-5648-3
– ident: ref19
– ident: ref27
  doi: 10.1016/j.atmosenv.2009.07.068
– ident: ref34
  doi: 10.1016/S1352-2310(97)00046-0
– ident: ref70
– ident: ref12
  doi: 10.1016/j.atmosenv.2006.11.013
– ident: ref45
  doi: 10.1039/c1em10553a
– ident: ref15
– ident: ref25
  doi: 10.1016/B978-0-08-043201-4.50050-2
– ident: ref5
  doi: 10.1016/S2213-2600(15)00413-0
– ident: ref54
  doi: 10.1016/S0269-7491(01)00145-2
– ident: ref72
  doi: 10.1023/B:EMAS.0000038181.99603.6e
– ident: ref63
  doi: 10.1016/j.envsci.2006.04.001
– ident: ref49
  doi: 10.1016/S1464-1909(98)00016-1
– ident: ref50
  doi: 10.1111/j.1365-2486.2011.02478.x
– ident: ref67
– ident: ref36
  doi: 10.1016/j.envint.2014.10.005
– ident: ref21
– ident: ref33
  doi: 10.1029/WR020i006p00727
– ident: ref80
  doi: 10.5194/acp-14-8435-2014
– ident: ref43
  doi: 10.32614/CRAN.package.trend
– ident: ref37
  doi: 10.5194/bg-12-5133-2015
– ident: ref59
  doi: 10.1039/b102303a
– ident: ref18
  doi: 10.1016/S1462-9011(00)00115-5
– ident: ref35
  doi: 10.1007/978-1-4020-9121-6_12
– ident: ref8
  doi: 10.1007/978-1-4020-9121-6_2
– ident: ref84
  doi: 10.1016/0960-1686(93)90280-C
– ident: ref4
  doi: 10.1007/978-1-4020-9121-6_11
– ident: ref81
  doi: 10.1016/j.envpol.2013.04.014
– ident: ref10
– ident: ref24
  doi: 10.1007/s11270-005-7249-0
– ident: ref82
  doi: 10.1016/j.atmosenv.2004.01.023
SSID ssj0025014
Score 2.4582973
Snippet A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in...
A unique long-term dataset from the UK National Ammonia Monitoring Network(NAMN) is used here to assess spatial, seasonal and long-term variability...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 705
SubjectTerms Acidification
Agriculture
Air pollution
Ammonia
Ammonium
Ammonium compounds
Animal manures
Atmospheric composition
Atmospheric research
Cattle
Chemical properties
Data
Data processing
Emission inventories
Emissions
Environmental aspects
Environmental conditions
Environmental monitoring
Eutrophication
Farming
Gases
Heterogeneity
Intensive farming
Livestock farming
Monitoring
Nitrogen compounds
open climate campaign
Patchiness
Poultry
Poultry farming
Reduction
Seasonal variability
Sheep
Spatial heterogeneity
Spatial variability
Spatial variations
Spring
Spring (season)
Sulfur dioxide
Summer
Summer temperatures
Trends
Vapor phases
Vegetation
Volatilization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcABlQIipSALIeCAaWI7Hz6hbWlVQK1QYaXejOPYq5XSZJtk_z8zWe_CShQphySeRIlnPH7jTN4Q8oar1KU2h_Fdec6kqhwzuVfMirzKYFN5hT8nX1xm51P59Tq9DgtufUirXPvE0VFXrcU18iOYaWSK1iI_LW4ZVo3Cr6uhhMZ9sgsuuIDga_f49PL71Sbkwq9mGHJlRcywRtOK3AdQizwydsGSguVxCpaCNT_-mpdG-v67nPQ485ztkUcBMtLJSsePyT3X7JOHk1kXaDPcPokuAPu23bhETt_Sk3oOQHQ8ekJ-fe7G3AsK8JT2mEBt6g80UFLV1DQVrdtmxtBH02FMkaXzhprhpu2Rc2BuqcG3n5tRdrW_vEEZAI90-u0pmZ6d_jw5Z6GuArOAdwZ4XWOVV750ibVIeGdF5gvnC2-yysB0lXNeujT2wgFaUy4RMjNVHBvvVR7bVDwjO03buOeEmtg5w4uytNxLn2QqzQXoWsCdbKlMGZGP617VNpCOY-2LWkPwgWrQoAadFBrUoFENEXm_uWCx4tu4W_QY1bQRQ6Ls8UTbzXQYd1pKLq0HDCUg8Cu9UGARCkzFK-Vk7nlEXqOSNVJhNJhrMzPLvtdfflzpScolgFvF44i8C0K-hae3Jvy6AH2A7FlbkodbkjBW7Xbz2pZ08BW9xqw1LAAt5D-b_xj-wf-bX5AH2C24PsT5IdkZuqV7CYhpKF-FYfEbBsMTiQ
  priority: 102
  providerName: ProQuest
Title Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK
URI https://www.proquest.com/docview/1989473534
https://www.proquest.com/docview/2414596384
https://doaj.org/article/4424cf2833114bf395019128f99e47f2
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8hJpy8qqEHAgNPEjiY9t6VJAW0FhRW_GcexqpTSpNtn_z4yTrboSVS9IkfKaRMl4PPPZmXxDyBumpJM2h_5deRYLVbnY5F7FludVBovKK_w5eXaWnc7F1wt5cavUF-aEDfTAg-IOhGDCegiCHJB76bmSAErAqXqlnMh98L4Q89aDqXGohV_LcKiVFUmMtZkGUh9AK-LA2Os4LeI8kWAhWOvjVjwKtP13OecQcabb5MkIFenh8IhPyQPXPCPRDFBuuwyT4fQtPa4XADnD3nPy59MyZFlQAKK0w1RpU3-gI_lUTU1T0bptLmP0xrQPybB00VDTX7UdsgssLDVolgsTZIft1RXKAEyk828vyHx68uv4NB4rKMQWkE0PL2is8sqXLrUWqe0sz3zhfOFNVhkITDljpZOJ5w5wmXIpF5mpksR4r_LESv6SbDVt414RahLnDCvK0jIvfJopmXNoVQ53sqUyZUQ-rvWo7UgvjlUuag3DDFS8BsXrtNCgeI2Kj8j7mwuuB2aNu0WPsGFuxJASOxwAQ9Gjoej7DCUi-9isGkkvGsyquTSrrtNffp7rQ8kEwFjFkoi8G4V8C09vzfiTAugAebI2JPc2JKFX2s3Ta-vRo1foNOanYalnLv55GsCUkOgQxc7_eOFd8hiVh_NFjO2RrX65cq8BQfXlhDwspp8n5NHRydn3c1xPZz9-T0IX-gv_Yhhh
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcQAOCAaIwAAL8XUgW2I7Hz4gVDZKS9cdYJV28xzHrip1SWlaIf4p_kbec9NCJcZtUg9p_VJF7_P3nOf3CHnJZGITk4F9l46FQpY21JmToeFZmcJHZiUeTh6epr2R-HKenO-QX-uzMFhWufaJ3lGXtcE98kOINCJBbREfZt9DnBqFb1fXIzRWajGwP39Ayta87x-DfF8x1v10dtQL26kCoYFovwC10EY66QobG4Pt3gxPXW5d7nRaanDWGWOFTSLHLWAVaWMuUl1GkXZOZpHBKRHg8m8IziVaVN79vEnw8B0dJnhpHoU4EWrVSggwkjjUZhbGeZhFCTwAThj5Kwr6YQFXhQQf57p3yZ0WoNLOSqPukR1b7ZHbnfG8bdJh90gwBKRdz_2GPH1Nj6YTgL3-231ycTz3lR4UwDBtsFxbT9_RtgHWlOqqpNO6GocYEejCF-TSSUX14rJusMPBxFCNvJ5oT7u6Xl4iDUBVOho8IKNr4fdDslvVlX1EqI6s1SwvCsOccHEqk4yDZnH4J1NIXQTkYM1VZdoW5zhpY6og1UExKBCDinMFYlAohoC83dwwW3X3uJr0I4ppQ4Ztuf0P9XysWitXQjBhHCA2Dmlm4bgEjZCAAJyUVmSOBeQFCllh440KK3vGetk0qv_tq-okTACUliwKyJuWyNXw9Ea3ByWAB9ira4tyf4sSPIPZXl7rkmo9U6OwRg7HTXPxz-U_Zvb4_8vPyc3e2fBEnfRPB0_ILWQR7kwxtk92F_OlfQpYbVE88wZCycV1W-Rv_rVP_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamTULwwGWAKAywELcH0qaOc_EDQt1KtVI6cavYm-c4dlXRJaVJheCn8Vf4M5yTS6GI8bYHpD609UmUON-5xcffIeQhE77xdQj6nVjmcJEYR4VWONoLkwA-Ikxwc_L4KDic8FfH_vEW-d7shcGyysYmloY6yTS-I--Ap-E-ooV3bF0W8aY_eLH47GAHKVxpbdppVBAZma9fIH3Lnw_78KwfMTZ4-eHg0Kk7DDgaPH8BEFFaWGFj09Uaqd-0F9jI2MiqIFFguEPGYuO71jMQtwjT9XigEtdV1orQ1dgxAsz_ThREPtsmO_uD8duP63QPV-ww3Qsi18H-UBWxEERMvKP0wulGTuj6cAnYb-Q3n1i2DjjLQZReb3CF_Gjmqyp2-dReFXFbf_uDSvL_nNCr5HIdjNNepT3XyJZJd8ml3nRZE5KYXdIaQ1aRLcvFB_qYHsxnEOKXv66Tk_6yrGqhEPjTHEvT1fwZrcm-5lSlCZ1n6dRB70eLsviYzlKqitMsRzaHmaYKb32mStnq--oUZSAsp5PRDTI5l9u_SbbTLDW3CFWuMYpFcayZ5bYbCD_0QIs8OJOOhYpbpN1gRuqazh27iswlpHUIMgkgk91IAsgkgqxFnq4PWFRMJmeL7iMI12JIQV7-kS2nsrZoknPGtYXo1IOUOraeALwLiHasEIaHlrXIA4SwRJKRFNE1Vas8l8P372TPZxzSBsHcFnlSC9kMrl6relMIzAHykm1I7m1IghXUm8MNymVthXOJ9YDYWtvjfx3-pQG3_z18n1wA1ZCvh0ejO-QizhC-hGNsj2wXy5W5C2FpEd-r9Z-Sk_PWkJ_rHJ2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+for+spatial%2C+temporal+and+long-term+trends+in+atmospheric+ammonia+and+ammonium+in+the+UK&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Y.+S.+Tang&rft.au=C.+F.+Braban&rft.au=U.+Dragosits&rft.au=A.+J.+Dore&rft.date=2018-01-22&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=18&rft.spage=705&rft.epage=733&rft_id=info:doi/10.5194%2Facp-18-705-2018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4424cf2833114bf395019128f99e47f2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon