Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration

Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the contr...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 8; no. 12; p. 190
Main Authors Acevedo-Jake, Amanda, Shi, Siyu, Siddiqui, Zain, Sanyal, Sreya, Schur, Rebecca, Kaja, Simon, Yuan, Alex, Kumar, Vivek A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2021
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering8120190

Cover

Loading…
Abstract Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
AbstractList Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea ). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea ® ). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Author Sanyal, Sreya
Shi, Siyu
Kaja, Simon
Acevedo-Jake, Amanda
Schur, Rebecca
Siddiqui, Zain
Yuan, Alex
Kumar, Vivek A.
AuthorAffiliation 3 Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA; ss3742@njit.edu
4 Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; SCHURR@ccf.org (R.S.); yuana@ccf.org (A.Y.)
5 Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; kaja@experimentica.com
8 Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07102, USA
6 Department of Ophthalmology, Loyola University Chicago, Maywood, IL 60153, USA
7 Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
1 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; mauvocado@gmail.com (A.A.-J.); zs67@njit.edu (Z.S.)
2 Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; siyushi@stanford.edu
AuthorAffiliation_xml – name: 6 Department of Ophthalmology, Loyola University Chicago, Maywood, IL 60153, USA
– name: 4 Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; SCHURR@ccf.org (R.S.); yuana@ccf.org (A.Y.)
– name: 8 Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07102, USA
– name: 1 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; mauvocado@gmail.com (A.A.-J.); zs67@njit.edu (Z.S.)
– name: 5 Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; kaja@experimentica.com
– name: 3 Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA; ss3742@njit.edu
– name: 7 Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
– name: 2 Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; siyushi@stanford.edu
Author_xml – sequence: 1
  givenname: Amanda
  surname: Acevedo-Jake
  fullname: Acevedo-Jake, Amanda
– sequence: 2
  givenname: Siyu
  surname: Shi
  fullname: Shi, Siyu
– sequence: 3
  givenname: Zain
  surname: Siddiqui
  fullname: Siddiqui, Zain
– sequence: 4
  givenname: Sreya
  surname: Sanyal
  fullname: Sanyal, Sreya
– sequence: 5
  givenname: Rebecca
  surname: Schur
  fullname: Schur, Rebecca
– sequence: 6
  givenname: Simon
  surname: Kaja
  fullname: Kaja, Simon
– sequence: 7
  givenname: Alex
  surname: Yuan
  fullname: Yuan, Alex
– sequence: 8
  givenname: Vivek A.
  orcidid: 0000-0001-7536-9281
  surname: Kumar
  fullname: Kumar, Vivek A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34940343$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKxtfYnKAFffBnNx2RmB0FYarWFiovse8jHzZglm6yZjLD_3rRbS1sEH8JNbs45uTfnvkRHMUVA6DUl7zkfyAftE8TRR4Ds47igjNCBPEMnjJOuEVy0Rw_2x-hsmjaEEMqZYF37Ah3zdmgJb_kJCqsMJvjojQr4wrkazR4nh1c5NVhFi5ex-GZZX0sjVBhewa54C_hyb3NNhQmXhNcZVMHLEZofEFQBi78pMweV8WeoNMiq-BRfoedOhQnO7uIpWn-5WJ9fNtffv16dL68bI4goDbUEuFBca6pBiHroiKXGOF17apVmzlAHjAlFesdAWEaUqIt2lhkz8FN0dZC1SW3kLvutynuZlJe3iZRHqXLxJoDUQ6e5MK0momv1Qgyd4w5Mb03PHGGqan06aO1mvQVrIJaswiPRxzfR_5Rj-i0X3bAQfVcF3t0J5PRrhqnIrZ8MhKAipHmSrKu2DFQwUaFvn0A3ac6x_tQNivWimtxX1JuHFd2X8tfTChAHgMlpmjK4ewgl8mZ85D_Hp_I-PuEZX259q4358B_2H2Ti0VM
CitedBy_id crossref_primary_10_1016_j_xcrm_2023_101353
crossref_primary_10_1016_j_ijpharm_2024_124258
crossref_primary_10_3390_electronics11152294
crossref_primary_10_1021_acs_biomac_3c01345
crossref_primary_10_1021_acsami_3c15660
crossref_primary_10_1021_acsbiomaterials_3c00672
crossref_primary_10_29328_journal_abse_1001024
Cites_doi 10.1152/ajpheart.00473.2019
10.1021/bm4000019
10.1155/2014/768026
10.1016/j.biomaterials.2015.01.079
10.1039/C9TB02250C
10.1021/acsbiomaterials.5b00210
10.1016/j.ophtha.2017.07.005
10.1021/jacs.8b13363
10.1007/s12274-017-1834-6
10.1002/btm2.10128
10.1038/s41563-018-0182-6
10.1038/s41433-020-0770-y
10.1021/jacs.7b04655
10.4103/2347-9264.165438
10.1016/j.preteyeres.2010.05.003
10.1186/s40662-016-0063-5
10.1371/journal.pone.0119046
10.3233/THC-199015
10.1016/j.cej.2020.127295
10.1016/j.biomaterials.2018.01.035
10.1186/s12974-015-0235-6
10.3390/biomimetics4020036
10.1021/acsomega.8b00347
10.1016/j.biomaterials.2018.01.033
10.1016/j.biomaterials.2020.120401
10.1021/acsabm.0c01229
10.1021/acsbiomaterials.9b01447
10.1016/j.biomaterials.2019.119667
10.1021/acsbiomaterials.8b01348
10.1021/bm1010195
10.1021/acs.accounts.6b00553
10.1097/00006982-200312000-00001
10.1016/j.actbio.2021.03.001
10.1177/1535370216640941
10.1021/nn506544b
10.3390/ijms21124261
10.1039/C8SM02573H
10.1016/j.jconrel.2015.09.005
10.1021/acsbiomaterials.8b00031
10.1021/acsabm.8b00283
10.1016/j.neuron.2012.06.018
10.1007/s10439-019-02407-w
10.1186/s12931-017-0602-1
10.1002/mabi.201800221
10.1021/bm500856c
10.1021/ja072536r
10.1039/C8BM00825F
10.1021/acsbiomaterials.5b00356
10.1016/j.biomaterials.2016.04.032
10.1115/1.1865194
10.1021/bm900634x
10.1007/s00417-018-3907-y
10.1002/jbm.a.36450
10.1021/acsbiomaterials.9b00967
10.1021/acs.biomac.8b01137
10.1016/j.phrs.2015.11.027
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering8120190
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_b96b35c4b0564b8596f3fec7dc72f02a
PMC8698576
34940343
10_3390_bioengineering8120190
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institute of Health
  grantid: EY029504
– fundername: National Science Foundation
  grantid: 1903617
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c505t-1d0e35a3bb1be550e360d1ccfb2304ab2fc1fe225a07f2e5d20a520a16d2cc93
IEDL.DBID BENPR
ISSN 2306-5354
IngestDate Wed Aug 27 01:24:30 EDT 2025
Thu Aug 21 14:20:46 EDT 2025
Fri Jul 11 11:53:45 EDT 2025
Fri Jul 25 11:59:28 EDT 2025
Thu Jan 02 22:45:25 EST 2025
Tue Jul 01 03:12:11 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords tissue regeneration
anti-angiogenic
wet age-related macular degeneration
hydrogel
pro-angiogenic
biomaterials
multi-functional scaffolds
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-1d0e35a3bb1be550e360d1ccfb2304ab2fc1fe225a07f2e5d20a520a16d2cc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Signifies these authors contributed equally.
ORCID 0000-0001-7536-9281
OpenAccessLink https://www.proquest.com/docview/2612751907?pq-origsite=%requestingapplication%
PMID 34940343
PQID 2612751907
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_b96b35c4b0564b8596f3fec7dc72f02a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698576
proquest_miscellaneous_2613291525
proquest_journals_2612751907
pubmed_primary_34940343
crossref_primary_10_3390_bioengineering8120190
crossref_citationtrail_10_3390_bioengineering8120190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211123
PublicationDateYYYYMMDD 2021-11-23
PublicationDate_xml – month: 11
  year: 2021
  text: 20211123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yu (ref_14) 2019; 4
Moore (ref_28) 2018; 161
Dong (ref_30) 2007; 129
Wickremasinghe (ref_50) 2015; 1
Leach (ref_24) 2020; 231
ref_57
Chen (ref_59) 2020; 318
Tang (ref_10) 2019; 141
Daien (ref_5) 2018; 125
ref_52
Amadio (ref_4) 2016; 103
Hammer (ref_12) 2020; 48
ref_17
Sarkar (ref_42) 2019; 9
Nguyen (ref_48) 2018; 3
Burke (ref_11) 2015; 217
Kumar (ref_45) 2015; 5
Pugliese (ref_19) 2017; 11
Leach (ref_37) 2019; 12
ref_21
Grossniklaus (ref_54) 2010; 29
Garweg (ref_55) 2018; 256
Sarkar (ref_49) 2018; 19
Chen (ref_53) 2015; 12
Grzybowski (ref_56) 2018; 239
Sarkar (ref_44) 2021; 408
Li (ref_20) 2017; 139
Pugliese (ref_18) 2018; 7
Kumar (ref_34) 2015; 12
Leach (ref_31) 2019; 5
Ourradi (ref_58) 2017; 18
Gass (ref_3) 2003; 23
Ragauskas (ref_51) 2018; 131
Kumar (ref_22) 2016; 241
Wickremasinghe (ref_36) 2014; 15
Hu (ref_9) 2019; 27
Cristobal (ref_38) 2021; 265
Wang (ref_13) 2018; 106
Leach (ref_32) 2018; 163
Li (ref_7) 2019; 15
Roberts (ref_25) 2018; 17
Ma (ref_40) 2020; 5
Kumar (ref_46) 2016; 98
Bakota (ref_23) 2013; 14
Aulisa (ref_29) 2009; 10
Kumar (ref_35) 2015; 52
Seah (ref_6) 2020; 34
Drury (ref_16) 2005; 127
Moore (ref_27) 2017; 50
Siddiqui (ref_43) 2021; 126
Bakota (ref_15) 2011; 12
Pennington (ref_1) 2016; 3
Kumar (ref_47) 2015; 9
Harbour (ref_39) 2020; 12
Kim (ref_33) 2020; 8
Radvar (ref_8) 2019; 19
Ambati (ref_2) 2012; 75
Carrejo (ref_26) 2018; 4
Nguyen (ref_41) 2018; 6
References_xml – volume: 318
  start-page: H519
  year: 2020
  ident: ref_59
  article-title: Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.00473.2019
– volume: 14
  start-page: 1370
  year: 2013
  ident: ref_23
  article-title: Self-assembling multidomain peptide fibers with aromatic cores
  publication-title: Biomacromolecules
  doi: 10.1021/bm4000019
– ident: ref_57
  doi: 10.1155/2014/768026
– volume: 52
  start-page: 71
  year: 2015
  ident: ref_35
  article-title: Self-assembling multidomain peptides tailor biological responses through biphasic release
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.079
– volume: 8
  start-page: 945
  year: 2020
  ident: ref_33
  article-title: A self-assembled peptide hydrogel for cytokine sequestration
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02250C
– volume: 131
  start-page: e56173
  year: 2018
  ident: ref_51
  article-title: In Vivo Multimodal Imaging and Analysis of Mouse Laser-Induced Choroidal Neovascularization Model
  publication-title: J. Vis. Exp.
– volume: 1
  start-page: 845
  year: 2015
  ident: ref_50
  article-title: Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00210
– volume: 125
  start-page: 66
  year: 2018
  ident: ref_5
  article-title: Incidence and outcomes of infectious and noninfectious endophthalmitis after intravitreal injections for age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.07.005
– volume: 141
  start-page: 4886
  year: 2019
  ident: ref_10
  article-title: Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13363
– volume: 11
  start-page: 586
  year: 2017
  ident: ref_19
  article-title: Cross-linked self-assembling peptide scaffolds
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1834-6
– volume: 4
  start-page: e10128
  year: 2019
  ident: ref_14
  article-title: Long-term therapeutic effect in nonhuman primate eye from a single injection of anti-VEGF controlled release hydrogel
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10128
– volume: 17
  start-page: 1154
  year: 2018
  ident: ref_25
  article-title: Injectable tissue integrating networks from recombinant polypeptides with tunable order
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0182-6
– volume: 34
  start-page: 1341
  year: 2020
  ident: ref_6
  article-title: Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases
  publication-title: Eye
  doi: 10.1038/s41433-020-0770-y
– volume: 139
  start-page: 8044
  year: 2017
  ident: ref_20
  article-title: Covalent Capture of Aligned Self-Assembling Nanofibers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04655
– volume: 5
  start-page: 243
  year: 2015
  ident: ref_45
  article-title: Role of angiogenesis and angiogenic factors in acute and chronic wound healing
  publication-title: Plast. Aesthetic Res.
  doi: 10.4103/2347-9264.165438
– volume: 29
  start-page: 500
  year: 2010
  ident: ref_54
  article-title: Animal Models of Choroidal and Retinal Neovascularization
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2010.05.003
– volume: 3
  start-page: 34
  year: 2016
  ident: ref_1
  article-title: Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors
  publication-title: Eye Vis.
  doi: 10.1186/s40662-016-0063-5
– ident: ref_52
  doi: 10.1371/journal.pone.0119046
– volume: 27
  start-page: 153
  year: 2019
  ident: ref_9
  article-title: Thermo-responsive hydrogel as an anti-VEGF drug delivery system to inhibit retinal angiogenesis in Rex rabbits
  publication-title: Technol. Health Care
  doi: 10.3233/THC-199015
– volume: 408
  start-page: 127295
  year: 2021
  ident: ref_44
  article-title: In vivo neuroprotective effect of a self-assembled peptide hydrogel
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127295
– volume: 163
  start-page: 67
  year: 2018
  ident: ref_32
  article-title: STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.035
– volume: 12
  start-page: 17
  year: 2015
  ident: ref_53
  article-title: In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-015-0235-6
– ident: ref_21
  doi: 10.3390/biomimetics4020036
– volume: 6
  start-page: 5980
  year: 2018
  ident: ref_41
  article-title: Self-Assembly of a Dentinogenic Peptide Hydrogel
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00347
– volume: 161
  start-page: 154
  year: 2018
  ident: ref_28
  article-title: Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.033
– volume: 265
  start-page: 120401
  year: 2021
  ident: ref_38
  article-title: Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120401
– volume: 12
  start-page: 8978
  year: 2020
  ident: ref_39
  article-title: Regulation of Lipoprotein Homeostasis by Self-Assembling Peptides
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01229
– volume: 12
  start-page: 6755
  year: 2019
  ident: ref_37
  article-title: Drug-Mimicking Nanofibrous Peptide Hydrogel for Inhibition of Inducible Nitric Oxide Synthase
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01447
– volume: 231
  start-page: 119667
  year: 2020
  ident: ref_24
  article-title: Chemical functionality of multidomain peptide hydrogels governs early host immune response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119667
– volume: 5
  start-page: 977
  year: 2019
  ident: ref_31
  article-title: Self-Assembling Multidomain Peptides: Design and Characterization of Neutral Peptide-Based Materials with pH and Ionic Strength Independent Self-Assembly
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b01348
– volume: 12
  start-page: 82
  year: 2011
  ident: ref_15
  article-title: Enzymatic Cross-Linking of a Nanofibrous Peptide Hydrogel
  publication-title: Biomacromolecules
  doi: 10.1021/bm1010195
– volume: 50
  start-page: 714
  year: 2017
  ident: ref_27
  article-title: Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00553
– volume: 23
  start-page: 741
  year: 2003
  ident: ref_3
  article-title: Focal inner retinal hemorrhages in patients with drusen: An early sign of occult choroidal neovascularization and chorioretinal anastomosis
  publication-title: Retina
  doi: 10.1097/00006982-200312000-00001
– volume: 126
  start-page: 109
  year: 2021
  ident: ref_43
  article-title: Angiogenic hydrogels for dental pulp revascularization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.03.001
– volume: 241
  start-page: 899
  year: 2016
  ident: ref_22
  article-title: Rational design of fiber forming supramolecular structures
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370216640941
– volume: 9
  start-page: 860
  year: 2015
  ident: ref_47
  article-title: Highly angiogenic peptide nanofibers
  publication-title: ACS Nano
  doi: 10.1021/nn506544b
– ident: ref_17
  doi: 10.3390/ijms21124261
– volume: 15
  start-page: 1704
  year: 2019
  ident: ref_7
  article-title: Recent advances of self-assembling peptide-based hydrogels for biomedical applications
  publication-title: Soft Matter
  doi: 10.1039/C8SM02573H
– volume: 217
  start-page: 191
  year: 2015
  ident: ref_11
  article-title: Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2015.09.005
– volume: 4
  start-page: 1386
  year: 2018
  ident: ref_26
  article-title: Multidomain Peptide Hydrogel Accelerates Healing of Full-Thickness Wounds in Diabetic Mice
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00031
– volume: 3
  start-page: 865
  year: 2018
  ident: ref_48
  article-title: Self-Assembly of an Antiangiogenic Nanofibrous Peptide Hydrogel
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00283
– volume: 5
  start-page: 124
  year: 2020
  ident: ref_40
  article-title: Angiogenic peptide hydrogels for treatment of traumatic brain injury
  publication-title: Bioact. Mater.
– volume: 75
  start-page: 26
  year: 2012
  ident: ref_2
  article-title: Mechanisms of age-related macular degeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.018
– volume: 48
  start-page: 1885
  year: 2020
  ident: ref_12
  article-title: Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02407-w
– volume: 18
  start-page: 116
  year: 2017
  ident: ref_58
  article-title: VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells
  publication-title: Respirat. Res.
  doi: 10.1186/s12931-017-0602-1
– volume: 19
  start-page: e1800221
  year: 2019
  ident: ref_8
  article-title: Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800221
– volume: 15
  start-page: 3587
  year: 2014
  ident: ref_36
  article-title: Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release
  publication-title: Biomacromolecules
  doi: 10.1021/bm500856c
– volume: 129
  start-page: 12468
  year: 2007
  ident: ref_30
  article-title: Self-Assembly of Multidomain Peptides: Balancing Molecular Frustration Controls Conformation and Nanostructure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072536r
– volume: 7
  start-page: 76
  year: 2018
  ident: ref_18
  article-title: Self-assembling peptides cross-linked with genipin: Resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM00825F
– volume: 239
  start-page: 181
  year: 2018
  ident: ref_56
  article-title: Update on Intravitreal Injections: Euretina Expert Consensus Recommendations
  publication-title: OPH
– volume: 12
  start-page: 1300
  year: 2015
  ident: ref_34
  article-title: Nanofibrous Snake Venom Hemostat
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00356
– volume: 98
  start-page: 113
  year: 2016
  ident: ref_46
  article-title: Treatment of hind limb ischemia using angiogenic peptide nanofibers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.04.032
– volume: 127
  start-page: 220
  year: 2005
  ident: ref_16
  article-title: Cellular cross-linking of peptide modified hydrogels
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1865194
– volume: 10
  start-page: 2694
  year: 2009
  ident: ref_29
  article-title: Self-Assembly of Multidomain Peptides: Sequence Variation Allows Control over Cross-Linking and Viscoelasticity
  publication-title: Biomacromolecules
  doi: 10.1021/bm900634x
– volume: 256
  start-page: 823
  year: 2018
  ident: ref_55
  article-title: The fate of eyes with wet AMD beyond four years of anti-VEGF therapy
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
  doi: 10.1007/s00417-018-3907-y
– volume: 106
  start-page: 2795
  year: 2018
  ident: ref_13
  article-title: Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.36450
– volume: 9
  start-page: 4657
  year: 2019
  ident: ref_42
  article-title: Membrane-Disrupting Nanofibrous Peptide Hydrogels
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00967
– volume: 19
  start-page: 3597
  year: 2018
  ident: ref_49
  article-title: Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01137
– volume: 103
  start-page: 253
  year: 2016
  ident: ref_4
  article-title: Targeting VEGF in eye neovascularization: What’s new?: A comprehensive review on current therapies and oligonucleotide-based interventions under development
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.11.027
SSID ssj0001325264
Score 2.2138977
Snippet Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 190
SubjectTerms Age
Age related diseases
Amino acids
Angiogenesis
Angiography
anti-angiogenic
Antiangiogenics
Biocompatibility
Bioengineering
biomaterials
Biomedical materials
Blood vessels
Design
Diabetic retinopathy
Eye diseases
Fluorescein
hydrogel
Hydrogels
Lasers
Macular degeneration
Medical imaging
Peptides
Permeability
pro-angiogenic
Sucrose
Tissue engineering
tissue regeneration
Tomography
Vascularization
wet age-related macular degeneration
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQ-q7btCjQqxrr4ddx2yQshYQ9bCE3o8coXVjssHEO-fedkZ3tbgnk0oMveoCsGXm-kWe-YeyrN9qW1tC9m4vC2FAIFz2ISnoHtiRITbnDF5fl_Jf5eVVc7ZT6opiwkR543LgT15ROF944tNTG1UVTRh3BV8FXKuYqQSO0eTvOVLpd0apAUz-m7Gj060_cqoe_DH9o1iiJes8YJc7-x4Dmv_GSOwbo_CV7MSFHPhtX_Io9g-41e77DJ_iGrRf4_ZpSHfkZkUNYf8_7yBebXnDbBT7rhpWY4ZweFWfl-YKCWgLw-X3YYNP6lg89XxKQ5LNrEClUDgK_sClclZ_CdaKpJmm-Zcvzs-WPuZjKKQiPMGcQMuSgC6udkw7QMQFd5kF6Hx1dDFunopcR8HzbvIoKiqByW-Ajy6C8b_Q7dtD1HXxgXDeydtLXvi4rk1uEmDHqurJKgQVTq4yZh21t_UQ1ThUv1i26HCSN9lFpZOzbdtrNyLXx1ITvJLPtYKLKTg2oQO2kQO1TCpSxoweJt9P5vW2JWK1CcJtXGTveduPJo98ptoP-Lo3RqqH6URl7PyrIdiVE-pNrozNW7anO3lL3e7rV78TuXZdNjU7gx__xbp_YoaIYHCmF0kfsYNjcwWcEUYP7ks7LHzO_H9c
  priority: 102
  providerName: Directory of Open Access Journals
Title Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/34940343
https://www.proquest.com/docview/2612751907
https://www.proquest.com/docview/2613291525
https://pubmed.ncbi.nlm.nih.gov/PMC8698576
https://doaj.org/article/b96b35c4b0564b8596f3fec7dc72f02a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELbY7QUOiDeBpTISV7PxI4lzQinbUiHtqkJF2lvkZ6lUJUubPey_x5O67Rat4JCLH5KV8djfjGe-QeiTEVzlSoDfTXsilM2I9saRghrtVA6QGnKHL6_y6U_x_Tq7jg63TQyr3J2J_UFtWwM-8nOguioC3EiLLze_CVSNgtfVWELjBA3CESyD8TUYja9mPw5eFs6ycOVvU3d4sO_P9bJ1B6a_cL1BMvXRpdRz9z8EOP-Om7x3EU2eoacRQeJqK_Ln6JFrXqAn93gFX6LVLJxjMeURj4EkQpk73Ho8W7cEq8biqumWpApz2rCBlgbPILjFOjy9s-vQtNrgrsVzAJS4WjjSh8w5iy9VH7aKL9yip6sGqb5C88l4_nVKYlkFYgLc6Qi1qeOZ4lpT7YKB4nieWmqM1-AgVpp5Q70Leq7SwjOXWZaqLHw0t8yYkr9Gp03buLcI85JKTY00Mi9EqgLU9J7LQjHmlBOSJUjsfmttIuU4VL5Y1cH0AGnUD0ojQZ_30262nBv_mzACme0HA2V239CuF3XUwFqXueaZETpAPqFlVuaee2cKawrmU6YSdLaTeB31eFMfdl2CPu67gwbCs4pqXHvbj-GshDpSCXqz3SD7lQD5T8oFT1BxtHWOlnrc0yx_9SzfMi9lMAbf_XtZ79FjBlE2lBLGz9Bpt751HwJM6vQQncjJtyEaVKOL0WQYNWPYOx3-AFvdG4E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLaqcgAOqKwdWsBIcDSdsT3bAaFAG1LaVDkEqbeR1xApmilJKpQfxX_kvVmSBlVw6mEuXiRr3uLP9nvfI-SdkUIlSuK9m_ZMKhsz7Y1jaWS0UwlCaswdHl4kg-_y22V8uUN-d7kwGFbZ-cTaUdvK4B35EVJdpQA3wvTT1U-GVaPwdbUrodGoxZlb_YIj2-Lj6THI9z3n_ZPxlwFrqwowA7v9kkU2dCJWQutIO8DnTiShjYzxGu9HlebeRN6Bmqsw9dzFlocqhi9KLDcGuZfA49-TQuRoUFn_6-ZKR_AY8EWTJwT94ZGeVm5DKwh7KWZub-2AdaGA29Dt30GaN3a9_h551MJV2mv06zHZceUT8vAGieFTMhuB02zzK-kJMlIos6KVp6N5xagqLe2VyynrwZwKtHVq6Agjaayjg5WdQ9NsQZcVHSN6pb2JY3V8nrN0qOoYWXrsJjU3NqrQMzK-i7_9nOyWVen2CRV5lOnIZCZLUhkqwLXeiyxVnDvlZMYDIrvfWpiW3xzLbMwKOOegNIpbpRGQD-tpVw3Bx_8mfEaZrQcjP3fdUM0nRWvuhc4TLWIjNeBLqbM4T7zwzqTWpNyHXAXksJN40TqNRbFR8YC8XXeDueMbjipddV2PETzHolUBedEoyHolyDQUCikCkm6pztZSt3vK6Y-aUjxL8gxOni__vaw35P5gPDwvzk8vzg7IA47hPVHEuDgku8v5tXsF-GypX9dWQUlxx1b4B0yzVAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQLzZtoCR4Giya-_zgFBKEqWURhEKUm8rP0OkaLckqVB-Gv-OmX0kDarg1MNevLZkeR7-bM98Q8g7HQoZyxDv3ZRjoTQRU05blgRaWRkjpMbc4YtxPPoefrmMLg_I7zYXBsMqW59YOWpTarwj7yLVVQJww0-6rgmLmPSHn65-MqwghS-tbTmNWkXO7eYXHN9WH8_6IOv3nA8H088j1lQYYBp2_jULjG9FJIVSgbKA1a2IfRNo7RTelUrFnQ6cBZWXfuK4jQz3ZQRfEBuuNfIwgfc_TOBQ5HfI4elgPPm2u-ARPAK0UWcNCZH5XTUv7Y5kEHZWzOPe2w-rsgG3Yd2_QzZv7IHDR-RhA15pr9a2x-TAFk_IgxuUhk_JYgIutMm2pAPkp5B6Q0tHJ8uSUVkY2ivWc9aDMSXo7lzTCcbVGEtHG7OEpsWKrks6RSxLezPLqmg9a-iFrCJmad_OKqZsVKhnZHoX6_2cdIqysC8JFVmQqkCnOo1h-SWgXOdEmkjOrbRhyj0Stsua64btHItuLHI49aA08lul4ZEP22FXNd3H_wacosy2nZGtu2ool7O8Mf5cZbESkQ4VoM1QpVEWO-GsToxOuPO59MhJK_G8cSGrfKfwHnm7_Q3Gjy86srDlddVH8AxLWHnkRa0g25kg75AvQuGRZE919qa6_6eY_6gIxtM4S-EcevTvab0h98AC869n4_Njcp9jrE8QMC5OSGe9vLavAKyt1evGLCjJ79gQ_wBlyVmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preclinical+Efficacy+of+Pro-+and+Anti-Angiogenic+Peptide+Hydrogels+to+Treat+Age-Related+Macular+Degeneration&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Acevedo-Jake%2C+Amanda&rft.au=Shi%2C+Siyu&rft.au=Siddiqui%2C+Zain&rft.au=Sanyal%2C+Sreya&rft.date=2021-11-23&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=8&rft.issue=12&rft.spage=190&rft_id=info:doi/10.3390%2Fbioengineering8120190&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering8120190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon