Parent-Metabolite Pharmacokinetic Modeling of Formononetin and Its Active Metabolites in Rats after Oral Administration of Formononetin Formulations

Formononetin is a major isoflavone contained in propolis and is reported to exhibit various pharmacological effects. However, the use of formononetin in pharmaceutical industry is limited due to its low bioavailability and solubility. There had been several efforts on formononetin formulation develo...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 15; no. 1; p. 45
Main Authors Kim, Ju Hee, Kang, Dong Wook, Cho, Seok-Jin, Cho, Hea-Young
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Formononetin is a major isoflavone contained in propolis and is reported to exhibit various pharmacological effects. However, the use of formononetin in pharmaceutical industry is limited due to its low bioavailability and solubility. There had been several efforts on formononetin formulation development, but further study is required to acquire optimal formulation. The aim of this study is to conduct pharmacokinetic (PK) evaluations after the oral administration of three formononetin formulations (20 mg/kg) in male Sprague Dawley rats. Then, a parent-metabolite PK model for formononetin was developed and evaluated for the first time. To do this, a simultaneous analysis method for formononetin and its active metabolites, daidzein, dihydrodaidzein and equol in rat plasma was developed using ultra-performance liquid chromatography tandem mass spectrometry. The separation was performed using a gradient elution of water and acetonitrile and a Kinetex C column (2.1 mm × 100 mm, 1.7 µm particle size) at a temperature of 30 ± 5 °C. The simultaneous analytical method developed in this study was validated according to international guidance and was successfully applied for the pharmacokinetic study. The time-plasma concentrations of formononetin and daidzein were well described by a two-compartment model combined with a metabolite compartment. Additionally, plasma protein binding assay was conducted in male rat plasma. The findings from the study could be used as a fundamental for the future development of formononetin as a pharmaceutical product.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics15010045