Identification of the main arterial branches by whole-body contrast-enhanced MRA in elderly subjects using limited user interaction and fast marching
Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group. Materials and Methods Maximum intensity projections (MIPs) were used a...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 25; no. 4; pp. 806 - 814 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group.
Materials and Methods
Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three‐dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified.
Results
We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%.
Conclusion
We were able to extract chosen arterial branches in 3D whole‐body CE‐MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc. |
---|---|
AbstractList | To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE- MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007. Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group. Materials and Methods Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three‐dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. Results We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. Conclusion We were able to extract chosen arterial branches in 3D whole‐body CE‐MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc. To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group.PURPOSETo extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group.Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified.MATERIALS AND METHODSMaximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified.We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%.RESULTSWe tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%.We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection.CONCLUSIONWe were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. Purpose: To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Materials and Methods: Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. Results: We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. Conclusion: We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. © 2007 Wiley-Liss, Inc. |
Author | Frimmel, Hans Hansen, Tomas Johansson, Lars Tizon, Xavier Lin, Qingfen Borgefors, Gunilla Ahlström, Håkan |
Author_xml | – sequence: 1 givenname: Xavier surname: Tizon fullname: Tizon, Xavier organization: Centre for Image Analysis, SLU/Uppsala University, Uppsala, Sweden – sequence: 2 givenname: Qingfen surname: Lin fullname: Lin, Qingfen organization: Computer Vision Laboratory, Linköping University, Linköping, Sweden – sequence: 3 givenname: Tomas surname: Hansen fullname: Hansen, Tomas organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden – sequence: 4 givenname: Gunilla surname: Borgefors fullname: Borgefors, Gunilla organization: Centre for Image Analysis, SLU/Uppsala University, Uppsala, Sweden – sequence: 5 givenname: Lars surname: Johansson fullname: Johansson, Lars organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden – sequence: 6 givenname: Håkan surname: Ahlström fullname: Ahlström, Håkan organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden – sequence: 7 givenname: Hans surname: Frimmel fullname: Frimmel, Hans email: frimmel@it.uu.se organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17348000$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-49944$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-11223$$DView record from Swedish Publication Index |
BookMark | eNqF0s9v0zAUB3ALDbGtcOEPQD5xADLs2K6TY1VgK2oBjV9Hy3FeVo_ULraj0j-E_xev3XpAiJ2SyJ_v81PeO0VHzjtA6CklZ5SQ8vX1KtizklS8eoBOqCjLohTV-Ci_E8EKWhF5jE5jvCaE1DUXj9AxlYxX-fME_Z614JLtrNHJeod9h9MS8Epbh3VIEKzucRO0M0uIuNnizdL3UDS-3WLjXQo6pgLcMgNo8eJygnMQ-hZCv8VxaK7BpIiHaN0V7u3KpqyGCCGzXFyb3aXatbjLhfK1wSwzfYwedrqP8OT2OUJf3739Mr0o5h_PZ9PJvDCCiKpgZVMD4a3sdN21wGVH6qqsxqTlpC0lFQ1n-bxumWkaYaTm0nSsA8OpELUhbIRe7uvGDayHRq2DzS1slddWvbHfJsqHKzUMitKyZFm_ul_3dlA8_2ae-fM9Xwf_c4CY1MpGA32vHfghKkkYHdeS3AtpRoTnDkbo2S0cmhW0hwbuxpkB2QMTfIwBOmVs2g02D8r2ihJ1szHqZmPUbmNy5MVfkUPVf2G6xxvbw_Y_Ur1fXM7uMsU-Y2OCX4eMDj_UWDIp1PcP52r-aTGdXlRSfWZ_ALCQ42o |
CitedBy_id | crossref_primary_10_3892_etm_2016_3387 crossref_primary_10_1002_mrm_26098 crossref_primary_10_1016_j_media_2015_05_008 |
Cites_doi | 10.1007/3-540-45468-3_102 10.1109/42.993126 10.1016/S1361-8415(01)00040-8 10.1016/S0730-725X(99)00099-5 10.1006/cviu.2000.0866 10.1109/42.811279 10.1002/mrm.10617 10.1109/TITB.2002.804136 10.1109/TMI.2003.817756 10.1016/S0090-3019(01)00452-9 10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-# 10.1002/mrm.10722 10.1007/s00330-005-2681-5 10.1023/A:1011234012449 10.1016/0167-8655(93)90152-4 10.1016/S1361-8415(00)00040-2 10.1016/S1361-8415(01)00046-9 10.1016/0021-9991(88)90002-2 10.1007/3-540-45468-3_124 10.1016/S0720-048X(01)00386-2 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2 10.1007/BFb0056195 10.1016/S0140-6736(00)04261-6 10.1109/TMI.2003.819920 10.1137/S0036144598347059 10.1016/S1361-8415(01)00038-X 10.1109/TMI.2002.806409 10.1016/S0967-2109(03)00124-8 10.1007/978-3-662-03939-7 10.1007/3-540-45468-3_101 10.1016/S1361-8415(00)00041-4 10.1109/TITB.2002.804139 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley‐Liss, Inc. Copyright (c) 2007 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2007 Wiley‐Liss, Inc. – notice: Copyright (c) 2007 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 ADTPV AOWAS DG8 DF2 |
DOI | 10.1002/jmri.20848 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Linköpings universitet SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 814 |
ExternalDocumentID | oai_DiVA_org_uu_11223 oai_DiVA_org_liu_49944 17348000 10_1002_jmri_20848 JMRI20848 ark_67375_WNG_LPMCCH87_S |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swedish Foundation for Strategic Research – fundername: Swedish Research Council funderid: K2006‐71x‐06676‐24‐3 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 ADTPV AOWAS DG8 DF2 |
ID | FETCH-LOGICAL-c5058-32b9e04d7fa9fde47f0982860d40d2715b43e049d3cbb5c7a47cf3fec41559c03 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 06:37:01 EDT 2025 Thu Aug 21 06:39:57 EDT 2025 Fri Jul 11 03:00:22 EDT 2025 Fri Jul 11 15:47:32 EDT 2025 Wed Feb 12 01:05:33 EST 2025 Tue Jul 01 01:41:13 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Wed Jan 22 17:04:13 EST 2025 Wed Oct 30 09:52:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright (c) 2007 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5058-32b9e04d7fa9fde47f0982860d40d2715b43e049d3cbb5c7a47cf3fec41559c03 |
Notes | Swedish Foundation for Strategic Research Swedish Research Council - No. K2006-71x-06676-24-3 ArticleID:JMRI20848 ark:/67375/WNG-LPMCCH87-S istex:74C483047267C281C844664AAD3B50B4FFC1FE10 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.20848 |
PMID | 17348000 |
PQID | 19700422 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_11223 swepub_primary_oai_DiVA_org_liu_49944 proquest_miscellaneous_70316970 proquest_miscellaneous_19700422 pubmed_primary_17348000 crossref_citationtrail_10_1002_jmri_20848 crossref_primary_10_1002_jmri_20848 wiley_primary_10_1002_jmri_20848_JMRI20848 istex_primary_ark_67375_WNG_LPMCCH87_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2007 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: April 2007 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Ragnemalm I. The Euclidean distance transform in arbitrary dimensions. Patt Recognit Lett 1993; 14: 883-888. Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed 2002; 6: 338-350. Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International 2004; 11: 36-42. Flasque N, Desvignes M, Constans J, Revenu M. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med Image Anal 2001; 5: 173-183. Watanabe Z, Kikuchi Y, Izaki KJ, et al. The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms. Surg Neurol 2001; 55: 359-364. Langlois S, Desvignes M, Constans J, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831. Meijering EHW, Niessen WJ, Viergever MA. Quantitative evaluation of convolution-based methods for medical image interpolation. Med Image Anal 2001; 5: 111-126. Kimmel R, Sethian JA. Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 2001; 14: 237-244. Sethian J. Fast marching methods. SIAM Rev 1999; 41: 199-235. Winterer JT, Schaefer O, Uhrmeister P, et al. Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 2002; 41: 153-60. Lorigo L, Faugeras O, Grimson W, et al. CURVES: curve evolution for vessel segmentation. Med Image Anal 2001; 5: 195-206. Aylward SR, Bullit E. Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction. IEEE Trans Med Imaging 2002; 21: 61-75. de Koning P, Schaap J, Janssen J, Westenberg J, van der Geest R, Reiber J. Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images. Magn Reson Med 2003; 50: 1189-1198. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988; 79: 12-49. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular structures in 3D images. Comput Vis Image Understand 2000; 80: 130-171. Sethian JA. Level set methods and fast marching methods. Cambridge: Cambridge University Press, 1999. 378 p. Wan M, Liang, Z, Ke Q, Hong L, Bitter I, Kaufman A. Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 2002; 21: 1450-1460. Westenberg J, van der Geest R, Wasser M, et al. Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries. Magn Reson Imaging 2000; 18: 13-22. Ruehm S, Goyen M, Barkhausen J, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001; 357: 1086-1091. van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ. Level-set-based artery-vein separation in blood-pool agent CE-MR angiograms. IEEE Trans Med Imaging 2003; 22: 1224-1234. Rapp JH, Saloner D. Current status of carotid imaging by MRA. Cardiovasc Surg 2003; 11: 445-447. Hansen T, Wikstrom J, Eriksson MO, et al. Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 2006; 16: 147-153. Frangi AF, Niessen W, Hoogeyeen R, van Walsum T, Viergever M. Model-based quantification of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging 1999; 18: 946-956. Desbleds-Mansard C, Canet Soulas EP, Anwander A, et al. Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation. Magn Reson Med 2004; 51: 370-379. Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001; 5: 127-142. Wink O, Niessen W, Viergever M. Multiscale vessel tracking. IEEE Trans Med Imaging 2004; 23: 130-133. Deschamps T, Cohen LD. Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Med Image Anal 2001; 5: 281-299. Parker DL, Chapman BE, Roberts JA, Alexander AL, Tsuruda JS. Enhanced image detail using continuity in the mip z-buffer: applications to magnetic resonance angiography. J Magn Reson Imaging 2000, 11: 378-388. Soille P. Morphological image analysis. Berlin: Springer-Verlag; 1999. Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inf Technol Biomed 2002; 6: 324-337. 2006; 16 2002; 6 2004; 23 1998 1988; 79 1995 1999; 41 2003 2003; 50 2003; 11 1999; 9 1999 1993; 14 2004; 11 2000; 18 2004; 51 2001 2002; 41 2001; 5 1999; 18 2000; 11 2002; 21 2000; 80 2001; 55 2001; 14 2001; 357 2003; 22 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Sethian JA (e_1_2_6_26_2) 1999 Abramoff MD (e_1_2_6_31_2) 2004; 11 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 Buckheit J (e_1_2_6_34_2) 1995 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_25_2 |
References_xml | – reference: Langlois S, Desvignes M, Constans J, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831. – reference: Sethian JA. Level set methods and fast marching methods. Cambridge: Cambridge University Press, 1999. 378 p. – reference: Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular structures in 3D images. Comput Vis Image Understand 2000; 80: 130-171. – reference: van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ. Level-set-based artery-vein separation in blood-pool agent CE-MR angiograms. IEEE Trans Med Imaging 2003; 22: 1224-1234. – reference: Westenberg J, van der Geest R, Wasser M, et al. Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries. Magn Reson Imaging 2000; 18: 13-22. – reference: Soille P. Morphological image analysis. Berlin: Springer-Verlag; 1999. – reference: Winterer JT, Schaefer O, Uhrmeister P, et al. Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 2002; 41: 153-60. – reference: Flasque N, Desvignes M, Constans J, Revenu M. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med Image Anal 2001; 5: 173-183. – reference: Lorigo L, Faugeras O, Grimson W, et al. CURVES: curve evolution for vessel segmentation. Med Image Anal 2001; 5: 195-206. – reference: Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International 2004; 11: 36-42. – reference: Aylward SR, Bullit E. Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction. IEEE Trans Med Imaging 2002; 21: 61-75. – reference: Meijering EHW, Niessen WJ, Viergever MA. Quantitative evaluation of convolution-based methods for medical image interpolation. Med Image Anal 2001; 5: 111-126. – reference: Sethian J. Fast marching methods. SIAM Rev 1999; 41: 199-235. – reference: Kimmel R, Sethian JA. Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 2001; 14: 237-244. – reference: Desbleds-Mansard C, Canet Soulas EP, Anwander A, et al. Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation. Magn Reson Med 2004; 51: 370-379. – reference: de Koning P, Schaap J, Janssen J, Westenberg J, van der Geest R, Reiber J. Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images. Magn Reson Med 2003; 50: 1189-1198. – reference: Wink O, Niessen W, Viergever M. Multiscale vessel tracking. IEEE Trans Med Imaging 2004; 23: 130-133. – reference: Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inf Technol Biomed 2002; 6: 324-337. – reference: Deschamps T, Cohen LD. Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Med Image Anal 2001; 5: 281-299. – reference: Parker DL, Chapman BE, Roberts JA, Alexander AL, Tsuruda JS. Enhanced image detail using continuity in the mip z-buffer: applications to magnetic resonance angiography. J Magn Reson Imaging 2000, 11: 378-388. – reference: Watanabe Z, Kikuchi Y, Izaki KJ, et al. The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms. Surg Neurol 2001; 55: 359-364. – reference: Ruehm S, Goyen M, Barkhausen J, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001; 357: 1086-1091. – reference: Ragnemalm I. The Euclidean distance transform in arbitrary dimensions. Patt Recognit Lett 1993; 14: 883-888. – reference: Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001; 5: 127-142. – reference: Osher S, Sethian JA. Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988; 79: 12-49. – reference: Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed 2002; 6: 338-350. – reference: Rapp JH, Saloner D. Current status of carotid imaging by MRA. Cardiovasc Surg 2003; 11: 445-447. – reference: Wan M, Liang, Z, Ke Q, Hong L, Bitter I, Kaufman A. Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 2002; 21: 1450-1460. – reference: Frangi AF, Niessen W, Hoogeyeen R, van Walsum T, Viergever M. Model-based quantification of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging 1999; 18: 946-956. – reference: Hansen T, Wikstrom J, Eriksson MO, et al. Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 2006; 16: 147-153. – volume: 11 start-page: 378 year: 2000 end-page: 388 article-title: Enhanced image detail using continuity in the mip z‐buffer: applications to magnetic resonance angiography publication-title: J Magn Reson Imaging – volume: 41 start-page: 153 year: 2002 end-page: 60 article-title: Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two‐step examination protocol in comparison to conventional DSA publication-title: Eur J Radiol – volume: 5 start-page: 173 year: 2001 end-page: 183 article-title: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images publication-title: Med Image Anal – volume: 11 start-page: 36 year: 2004 end-page: 42 article-title: Image processing with ImageJ publication-title: Biophotonics International – start-page: 53 year: 1995 end-page: 81 – year: 2001 – volume: 6 start-page: 338 year: 2002 end-page: 350 article-title: A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II publication-title: IEEE Trans Inf Technol Biomed – volume: 14 start-page: 237 year: 2001 end-page: 244 article-title: Optimal algorithm for shape from shading and path planning publication-title: J Math Imaging Vis – year: 2003 – volume: 80 start-page: 130 year: 2000 end-page: 171 article-title: Model‐based detection of tubular structures in 3D images publication-title: Comput Vis Image Understand – volume: 21 start-page: 1450 year: 2002 end-page: 1460 article-title: Automatic centerline extraction for virtual colonoscopy publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 127 year: 2001 end-page: 142 article-title: Interaction in the segmentation of medical images: a survey publication-title: Med Image Anal – volume: 21 start-page: 61 year: 2002 end-page: 75 article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction publication-title: IEEE Trans Med Imaging – volume: 50 start-page: 1189 year: 2003 end-page: 1198 article-title: Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images publication-title: Magn Reson Med – volume: 79 start-page: 12 year: 1988 end-page: 49 article-title: Fronts propagating with curvature‐dependent speed algorithms based on Hamilton‐Jacobi formulations publication-title: J Comput Phys – volume: 23 start-page: 130 year: 2004 end-page: 133 article-title: Multiscale vessel tracking publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 281 year: 2001 end-page: 299 article-title: Fast extraction of minimal paths in 3D images and application to virtual endoscopy publication-title: Med Image Anal – year: 1998 – volume: 18 start-page: 13 year: 2000 end-page: 22 article-title: Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries publication-title: Magn Reson Imaging – volume: 16 start-page: 147 year: 2006 end-page: 153 article-title: Whole‐body magnetic resonance angiography of patients using a standard clinical scanner publication-title: Eur Radiol – volume: 9 start-page: 821 year: 1999 end-page: 831 article-title: MRI geometric distortion: a simple approach to correcting the effects of non‐linear gradient fields publication-title: J Magn Reson Imaging – volume: 51 start-page: 370 year: 2004 end-page: 379 article-title: Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation publication-title: Magn Reson Med – volume: 5 start-page: 111 year: 2001 end-page: 126 article-title: Quantitative evaluation of convolution‐based methods for medical image interpolation publication-title: Med Image Anal – volume: 14 start-page: 883 year: 1993 end-page: 888 article-title: The Euclidean distance transform in arbitrary dimensions publication-title: Patt Recognit Lett – volume: 18 start-page: 946 year: 1999 end-page: 956 article-title: Model‐based quantification of 3‐D magnetic resonance angiographic images publication-title: IEEE Trans Med Imaging – volume: 11 start-page: 445 year: 2003 end-page: 447 article-title: Current status of carotid imaging by MRA publication-title: Cardiovasc Surg – volume: 357 start-page: 1086 year: 2001 end-page: 1091 article-title: Rapid magnetic resonance angiography for detection of atherosclerosis publication-title: Lancet – volume: 41 start-page: 199 year: 1999 end-page: 235 article-title: Fast marching methods publication-title: SIAM Rev – volume: 22 start-page: 1224 year: 2003 end-page: 1234 article-title: Level‐set‐based artery‐vein separation in blood‐pool agent CE‐MR angiograms publication-title: IEEE Trans Med Imaging – volume: 55 start-page: 359 year: 2001 end-page: 364 article-title: The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms publication-title: Surg Neurol – volume: 6 start-page: 324 year: 2002 end-page: 337 article-title: A review on MR vascular image processing algorithms: acquisition and prefiltering: part I publication-title: IEEE Trans Inf Technol Biomed – volume: 5 start-page: 195 year: 2001 end-page: 206 article-title: CURVES: curve evolution for vessel segmentation publication-title: Med Image Anal – start-page: 378 year: 1999 – year: 1999 – ident: e_1_2_6_15_2 doi: 10.1007/3-540-45468-3_102 – ident: e_1_2_6_10_2 doi: 10.1109/42.993126 – ident: e_1_2_6_14_2 doi: 10.1016/S1361-8415(01)00040-8 – ident: e_1_2_6_33_2 doi: 10.1016/S0730-725X(99)00099-5 – ident: e_1_2_6_7_2 doi: 10.1006/cviu.2000.0866 – ident: e_1_2_6_9_2 doi: 10.1109/42.811279 – ident: e_1_2_6_35_2 doi: 10.1002/mrm.10617 – ident: e_1_2_6_6_2 doi: 10.1109/TITB.2002.804136 – ident: e_1_2_6_18_2 doi: 10.1109/TMI.2003.817756 – ident: e_1_2_6_4_2 doi: 10.1016/S0090-3019(01)00452-9 – ident: e_1_2_6_23_2 doi: 10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-# – ident: e_1_2_6_36_2 doi: 10.1002/mrm.10722 – start-page: 53 volume-title: Wavelets and statistics year: 1995 ident: e_1_2_6_34_2 – ident: e_1_2_6_3_2 doi: 10.1007/s00330-005-2681-5 – ident: e_1_2_6_24_2 doi: 10.1023/A:1011234012449 – volume: 11 start-page: 36 year: 2004 ident: e_1_2_6_31_2 article-title: Image processing with ImageJ publication-title: Biophotonics International – ident: e_1_2_6_30_2 doi: 10.1016/0167-8655(93)90152-4 – ident: e_1_2_6_32_2 doi: 10.1016/S1361-8415(00)00040-2 – ident: e_1_2_6_12_2 doi: 10.1016/S1361-8415(01)00046-9 – ident: e_1_2_6_25_2 doi: 10.1016/0021-9991(88)90002-2 – ident: e_1_2_6_29_2 – ident: e_1_2_6_11_2 – ident: e_1_2_6_16_2 doi: 10.1007/3-540-45468-3_124 – ident: e_1_2_6_20_2 doi: 10.1016/S0720-048X(01)00386-2 – ident: e_1_2_6_21_2 doi: 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2 – ident: e_1_2_6_27_2 doi: 10.1007/BFb0056195 – ident: e_1_2_6_2_2 doi: 10.1016/S0140-6736(00)04261-6 – ident: e_1_2_6_37_2 doi: 10.1109/TMI.2003.819920 – start-page: 378 volume-title: Level set methods and fast marching methods year: 1999 ident: e_1_2_6_26_2 – ident: e_1_2_6_13_2 doi: 10.1137/S0036144598347059 – ident: e_1_2_6_8_2 doi: 10.1016/S1361-8415(01)00038-X – ident: e_1_2_6_28_2 doi: 10.1109/TMI.2002.806409 – ident: e_1_2_6_19_2 doi: 10.1016/S0967-2109(03)00124-8 – ident: e_1_2_6_38_2 doi: 10.1007/978-3-662-03939-7 – ident: e_1_2_6_17_2 doi: 10.1007/3-540-45468-3_101 – ident: e_1_2_6_22_2 doi: 10.1016/S1361-8415(00)00041-4 – ident: e_1_2_6_5_2 doi: 10.1109/TITB.2002.804139 |
SSID | ssj0009945 |
Score | 1.836008 |
Snippet | Purpose
To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography... To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data... To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE- MRA) data... Purpose: To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 806 |
SubjectTerms | Aged Algorithms Arteries - anatomy & histology Atherosclerosis Contrast Media Contrast-enhanced magnetic resonance angiography Fast marching Humans Imaging, Three-Dimensional Magnetic Resonance Angiography - methods Maximum intensity projection Segmentation TECHNOLOGY TEKNIKVETENSKAP User interaction Whole Body Imaging - methods |
Title | Identification of the main arterial branches by whole-body contrast-enhanced MRA in elderly subjects using limited user interaction and fast marching |
URI | https://api.istex.fr/ark:/67375/WNG-LPMCCH87-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.20848 https://www.ncbi.nlm.nih.gov/pubmed/17348000 https://www.proquest.com/docview/19700422 https://www.proquest.com/docview/70316970 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-49944 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-11223 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamISFeuF_C1RIDCaRsSePEscRLVRhlohMqDPaCLNuxu7I2QU0jKE_8BF75e_wSfOw21dCYBG-JfBIlzuf48_E530FoiyhV5CkVYREnKiQsNyETRISaUCKNnWCyGBKcB_tZ_4DsHaaHG-jZKhfG60O0DjcYGe5_DQNcyHpnLRr6aTob2_VdTiDTF4K1gBEN19pRjLkKxZY_JGGcR7TVJu3srC89MRudg479ehrVbHVET1JYNwftXkIfV0_vQ0-Ot5u53Fbf_hB2_N_Xu4wuLskp7no0XUEburyKzg-W2-_X0E-f1muWfj5cGWz5I56KcYldbKgFM5ZQquNI11gu8Beovvvr-w9ZFQvsouJFPbfnujxykQd4MOxie7GGWuGTBa4bCX6hGkM4_ghPfPYVBk8KBmGLmU_DwKIssLG3wlO3EVKOrqOD3Rfvev1wWdshVJZz5WHSkUxHpKBGMFNYZJiIQUZ7VJCo6NA4lSSx7axIlJSpooJQZRKjFRAgpqLkBtosq1LfQljbxiLraJPmimR5JtOMFdIkIo8JlYwE6MnqG3O1FD6H-hsT7iWbOxz6mru-DtDD1vazl_s41eqxg0prImbHECBHU_5h_yV__WbQ6_Vzyt8G6MEKS9wOW9iLEaWumprHjDr5tb9bQGGBzFoF6KYH4fqBQJHIIjxAjzwq2xbQCn8-ft_l1WzEJ-OG2_UssR2wdZZd09hloGWJAXrqAHnGi_O9wfCVO7r9L8Z30AXvEoeAp7tocz5r9D3L5ebyvhuzvwF3nEs8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwmyUGEkjZksa5-LEqjG40FSrb2JtlO3ZX1iaoaQTliZ_AK3-PX4KPk6UaGpPgLZFPosT5HH8-Puc7CG0SKbMkjLmb-YF0CU20SznhriIxEdpMMJEPCc7pMOofkL2j8KiJzYFcmFofonW4wciw_2sY4OCQ3l6phn6azSdmgZeQ5DJah5LedkU1WqlHUWprFBsGEbh-4sWtOmlne3XtmfloHbr263lks1USPUti7Sy0c6MutVpa8UIIPjnZqhZiS377Q9rxv1_wJrre8FPcrQF1C11S-W10JW124O-gn3Vmr25cfbjQ2FBIPOOTHNvwUINnLKBax7EqsVjiL1CA99f3H6LIltgGxvNyYc5VfmyDD3A66mJzsYJy4dMlLisBrqESQ0T-GE_rBCwMzhQM2hbzOhMD8zzD2twKz-xeSD6-iw523uz3-m5T3sGVhnYlbtARVHkkizWnOjPg0B6FpHYvI17Wif1QkMC00yyQQoQy5iSWOtBKAgei0gvuobW8yNUDhJVpzKKO0mEiSZREIoxoJnTAE5_EghIHvTz9yEw22udQgmPKatXmDoO-ZravHfSstf1cK36ca_XCYqU14fMTiJGLQ_Zx-JYN3qe9Xj-J2QcHbZyCiZmRC9sxPFdFVTKfxlaB7e8WUFsgMlYOul-jcPVAIEpkIO6g5zUs2xaQC389OeyyYj5m00nFzJKWmA7YvMiuqsxK0BBFB72yiLzgxdleOtq1Rw__xXgDXe3vpwM22B2-e4Su1R5yiH96jNYW80o9MdRuIZ7aAfwb5s1PVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cL-E2ywxkEDKljROYku8VC2lG2s1FQZ7QZavXVmbTm0jKE_8BF75e_wSfGlTDY1J8JbIJ1HifI4_H5_zHQC2kRASpzkLZZyIEBGsQ8IQCxXKEddmgslim-Dc6WbtI7R_nB6vgVfLXBivD1E53OzIcP9rO8DPpN5diYZ-Hk0GZn2HEb4CNlAWYYvpZm8lHkWIK1FsCEQSxjjKK3HS2u7q2nPT0Ybt2a8Xcc1KSPQ8h3WTUOs6-LR8fB97crpTzviO-PaHsuP_vt8NcG3BTmHdw-kmWFPFLbDZWey_3wY_fV6vXjj64FhDQyDhiA0K6IJDDZoht7U6TtQU8jn8Ysvv_vr-g4_lHLqweDadmXNVnLjQA9jp1aG5WNli4cM5nJbcOoam0Mbj9-HQp19B60qBVtli4vMwICsk1OZWcOR2Qor-HXDUev2-0Q4XxR1CYUgXDpMaJypCMteMaGmgoSNiU9ojiSJZy-OUo8S0E5kIzlORM5QLnWglLAMiIkrugvViXKj7ACrTKLOa0ikWKMMZTzMiuU4YjlHOCQrAi-U3pmKhfG4LcAyp12yuUdvX1PV1AJ5Wtmde7-NCq-cOKpUJm5zaCLk8pR-7b-jBYafRaOOcvgvA1hJL1IxbuxnDCjUupzQmudNf-7uFrSyQGasA3PMgXD2QlSQyCA_AM4_KqsWKhTcHH-p0POnT4aCkZkGLTAdsX2ZXlmYdaGhiAF46QF7y4nS_09tzRw_-xXgLbB42W_Rgr_v2Ibjq3eM2-OkRWJ9NSvXY8LoZf-KG72_whk4P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+main+arterial+branches+by+whole-body+contrast-enhanced+MRA+in+elderly+subjects+using+limited+user+interaction+and+fast+marching&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tizon%2C+Xavier&rft.au=Lin%2C+Qingfen&rft.au=Hansen%2C+Tomas&rft.au=Borgefors%2C+Gunilla&rft.date=2007-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=25&rft.issue=4&rft.spage=806&rft.epage=814&rft_id=info:doi/10.1002%2Fjmri.20848&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LPMCCH87_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |