Identification of the main arterial branches by whole-body contrast-enhanced MRA in elderly subjects using limited user interaction and fast marching

Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group. Materials and Methods Maximum intensity projections (MIPs) were used a...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 25; no. 4; pp. 806 - 814
Main Authors Tizon, Xavier, Lin, Qingfen, Hansen, Tomas, Borgefors, Gunilla, Johansson, Lars, Ahlström, Håkan, Frimmel, Hans
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group. Materials and Methods Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three‐dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. Results We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. Conclusion We were able to extract chosen arterial branches in 3D whole‐body CE‐MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc.
AbstractList To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE- MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007.
Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography (CE‐MRA) data sets in elderly asymptomatic subjects, a high‐incidence group. Materials and Methods Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three‐dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. Results We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. Conclusion We were able to extract chosen arterial branches in 3D whole‐body CE‐MRA images with a moderate amount of interaction using a single MIP projection. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc.
To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection.
To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group.PURPOSETo extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group.Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified.MATERIALS AND METHODSMaximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified.We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%.RESULTSWe tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%.We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection.CONCLUSIONWe were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection.
Purpose: To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data sets in elderly asymptomatic subjects, a high-incidence group. Materials and Methods: Maximum intensity projections (MIPs) were used as an interface to place landmarks in the three-dimensional (3D) data sets. These landmarks were linked together using fast marching to form a graph model of the arterial tree. Only vessels of interest were identified. Results: We tested our method on 10 subjects. We were able to build a graph model of the main arterial branches that performed well in the presence of vascular pathologies, such as stenosis and aneurysm. The results were rated by an experienced radiologist, with an overall success rate of 80%. Conclusion: We were able to extract chosen arterial branches in 3D whole-body CE-MRA images with a moderate amount of interaction using a single MIP projection. © 2007 Wiley-Liss, Inc.
Author Frimmel, Hans
Hansen, Tomas
Johansson, Lars
Tizon, Xavier
Lin, Qingfen
Borgefors, Gunilla
Ahlström, Håkan
Author_xml – sequence: 1
  givenname: Xavier
  surname: Tizon
  fullname: Tizon, Xavier
  organization: Centre for Image Analysis, SLU/Uppsala University, Uppsala, Sweden
– sequence: 2
  givenname: Qingfen
  surname: Lin
  fullname: Lin, Qingfen
  organization: Computer Vision Laboratory, Linköping University, Linköping, Sweden
– sequence: 3
  givenname: Tomas
  surname: Hansen
  fullname: Hansen, Tomas
  organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
– sequence: 4
  givenname: Gunilla
  surname: Borgefors
  fullname: Borgefors, Gunilla
  organization: Centre for Image Analysis, SLU/Uppsala University, Uppsala, Sweden
– sequence: 5
  givenname: Lars
  surname: Johansson
  fullname: Johansson, Lars
  organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
– sequence: 6
  givenname: Håkan
  surname: Ahlström
  fullname: Ahlström, Håkan
  organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
– sequence: 7
  givenname: Hans
  surname: Frimmel
  fullname: Frimmel, Hans
  email: frimmel@it.uu.se
  organization: Department of Oncology, Radiology and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17348000$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-49944$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-11223$$DView record from Swedish Publication Index
BookMark eNqF0s9v0zAUB3ALDbGtcOEPQD5xADLs2K6TY1VgK2oBjV9Hy3FeVo_ULraj0j-E_xev3XpAiJ2SyJ_v81PeO0VHzjtA6CklZ5SQ8vX1KtizklS8eoBOqCjLohTV-Ci_E8EKWhF5jE5jvCaE1DUXj9AxlYxX-fME_Z614JLtrNHJeod9h9MS8Epbh3VIEKzucRO0M0uIuNnizdL3UDS-3WLjXQo6pgLcMgNo8eJygnMQ-hZCv8VxaK7BpIiHaN0V7u3KpqyGCCGzXFyb3aXatbjLhfK1wSwzfYwedrqP8OT2OUJf3739Mr0o5h_PZ9PJvDCCiKpgZVMD4a3sdN21wGVH6qqsxqTlpC0lFQ1n-bxumWkaYaTm0nSsA8OpELUhbIRe7uvGDayHRq2DzS1slddWvbHfJsqHKzUMitKyZFm_ul_3dlA8_2ae-fM9Xwf_c4CY1MpGA32vHfghKkkYHdeS3AtpRoTnDkbo2S0cmhW0hwbuxpkB2QMTfIwBOmVs2g02D8r2ihJ1szHqZmPUbmNy5MVfkUPVf2G6xxvbw_Y_Ur1fXM7uMsU-Y2OCX4eMDj_UWDIp1PcP52r-aTGdXlRSfWZ_ALCQ42o
CitedBy_id crossref_primary_10_3892_etm_2016_3387
crossref_primary_10_1002_mrm_26098
crossref_primary_10_1016_j_media_2015_05_008
Cites_doi 10.1007/3-540-45468-3_102
10.1109/42.993126
10.1016/S1361-8415(01)00040-8
10.1016/S0730-725X(99)00099-5
10.1006/cviu.2000.0866
10.1109/42.811279
10.1002/mrm.10617
10.1109/TITB.2002.804136
10.1109/TMI.2003.817756
10.1016/S0090-3019(01)00452-9
10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-#
10.1002/mrm.10722
10.1007/s00330-005-2681-5
10.1023/A:1011234012449
10.1016/0167-8655(93)90152-4
10.1016/S1361-8415(00)00040-2
10.1016/S1361-8415(01)00046-9
10.1016/0021-9991(88)90002-2
10.1007/3-540-45468-3_124
10.1016/S0720-048X(01)00386-2
10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2
10.1007/BFb0056195
10.1016/S0140-6736(00)04261-6
10.1109/TMI.2003.819920
10.1137/S0036144598347059
10.1016/S1361-8415(01)00038-X
10.1109/TMI.2002.806409
10.1016/S0967-2109(03)00124-8
10.1007/978-3-662-03939-7
10.1007/3-540-45468-3_101
10.1016/S1361-8415(00)00041-4
10.1109/TITB.2002.804139
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
Copyright (c) 2007 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
– notice: Copyright (c) 2007 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ADTPV
AOWAS
DG8
DF2
DOI 10.1002/jmri.20848
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Linköpings universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 814
ExternalDocumentID oai_DiVA_org_uu_11223
oai_DiVA_org_liu_49944
17348000
10_1002_jmri_20848
JMRI20848
ark_67375_WNG_LPMCCH87_S
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swedish Foundation for Strategic Research
– fundername: Swedish Research Council
  funderid: K2006‐71x‐06676‐24‐3
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ADTPV
AOWAS
DG8
DF2
ID FETCH-LOGICAL-c5058-32b9e04d7fa9fde47f0982860d40d2715b43e049d3cbb5c7a47cf3fec41559c03
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 06:37:01 EDT 2025
Thu Aug 21 06:39:57 EDT 2025
Fri Jul 11 03:00:22 EDT 2025
Fri Jul 11 15:47:32 EDT 2025
Wed Feb 12 01:05:33 EST 2025
Tue Jul 01 01:41:13 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Wed Jan 22 17:04:13 EST 2025
Wed Oct 30 09:52:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright (c) 2007 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5058-32b9e04d7fa9fde47f0982860d40d2715b43e049d3cbb5c7a47cf3fec41559c03
Notes Swedish Foundation for Strategic Research
Swedish Research Council - No. K2006-71x-06676-24-3
ArticleID:JMRI20848
ark:/67375/WNG-LPMCCH87-S
istex:74C483047267C281C844664AAD3B50B4FFC1FE10
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.20848
PMID 17348000
PQID 19700422
PQPubID 23462
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_11223
swepub_primary_oai_DiVA_org_liu_49944
proquest_miscellaneous_70316970
proquest_miscellaneous_19700422
pubmed_primary_17348000
crossref_citationtrail_10_1002_jmri_20848
crossref_primary_10_1002_jmri_20848
wiley_primary_10_1002_jmri_20848_JMRI20848
istex_primary_ark_67375_WNG_LPMCCH87_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ragnemalm I. The Euclidean distance transform in arbitrary dimensions. Patt Recognit Lett 1993; 14: 883-888.
Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed 2002; 6: 338-350.
Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International 2004; 11: 36-42.
Flasque N, Desvignes M, Constans J, Revenu M. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med Image Anal 2001; 5: 173-183.
Watanabe Z, Kikuchi Y, Izaki KJ, et al. The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms. Surg Neurol 2001; 55: 359-364.
Langlois S, Desvignes M, Constans J, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831.
Meijering EHW, Niessen WJ, Viergever MA. Quantitative evaluation of convolution-based methods for medical image interpolation. Med Image Anal 2001; 5: 111-126.
Kimmel R, Sethian JA. Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 2001; 14: 237-244.
Sethian J. Fast marching methods. SIAM Rev 1999; 41: 199-235.
Winterer JT, Schaefer O, Uhrmeister P, et al. Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 2002; 41: 153-60.
Lorigo L, Faugeras O, Grimson W, et al. CURVES: curve evolution for vessel segmentation. Med Image Anal 2001; 5: 195-206.
Aylward SR, Bullit E. Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction. IEEE Trans Med Imaging 2002; 21: 61-75.
de Koning P, Schaap J, Janssen J, Westenberg J, van der Geest R, Reiber J. Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images. Magn Reson Med 2003; 50: 1189-1198.
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988; 79: 12-49.
Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular structures in 3D images. Comput Vis Image Understand 2000; 80: 130-171.
Sethian JA. Level set methods and fast marching methods. Cambridge: Cambridge University Press, 1999. 378 p.
Wan M, Liang, Z, Ke Q, Hong L, Bitter I, Kaufman A. Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 2002; 21: 1450-1460.
Westenberg J, van der Geest R, Wasser M, et al. Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries. Magn Reson Imaging 2000; 18: 13-22.
Ruehm S, Goyen M, Barkhausen J, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001; 357: 1086-1091.
van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ. Level-set-based artery-vein separation in blood-pool agent CE-MR angiograms. IEEE Trans Med Imaging 2003; 22: 1224-1234.
Rapp JH, Saloner D. Current status of carotid imaging by MRA. Cardiovasc Surg 2003; 11: 445-447.
Hansen T, Wikstrom J, Eriksson MO, et al. Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 2006; 16: 147-153.
Frangi AF, Niessen W, Hoogeyeen R, van Walsum T, Viergever M. Model-based quantification of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging 1999; 18: 946-956.
Desbleds-Mansard C, Canet Soulas EP, Anwander A, et al. Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation. Magn Reson Med 2004; 51: 370-379.
Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001; 5: 127-142.
Wink O, Niessen W, Viergever M. Multiscale vessel tracking. IEEE Trans Med Imaging 2004; 23: 130-133.
Deschamps T, Cohen LD. Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Med Image Anal 2001; 5: 281-299.
Parker DL, Chapman BE, Roberts JA, Alexander AL, Tsuruda JS. Enhanced image detail using continuity in the mip z-buffer: applications to magnetic resonance angiography. J Magn Reson Imaging 2000, 11: 378-388.
Soille P. Morphological image analysis. Berlin: Springer-Verlag; 1999.
Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inf Technol Biomed 2002; 6: 324-337.
2006; 16
2002; 6
2004; 23
1998
1988; 79
1995
1999; 41
2003
2003; 50
2003; 11
1999; 9
1999
1993; 14
2004; 11
2000; 18
2004; 51
2001
2002; 41
2001; 5
1999; 18
2000; 11
2002; 21
2000; 80
2001; 55
2001; 14
2001; 357
2003; 22
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Sethian JA (e_1_2_6_26_2) 1999
Abramoff MD (e_1_2_6_31_2) 2004; 11
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Buckheit J (e_1_2_6_34_2) 1995
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_25_2
References_xml – reference: Langlois S, Desvignes M, Constans J, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831.
– reference: Sethian JA. Level set methods and fast marching methods. Cambridge: Cambridge University Press, 1999. 378 p.
– reference: Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular structures in 3D images. Comput Vis Image Understand 2000; 80: 130-171.
– reference: van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ. Level-set-based artery-vein separation in blood-pool agent CE-MR angiograms. IEEE Trans Med Imaging 2003; 22: 1224-1234.
– reference: Westenberg J, van der Geest R, Wasser M, et al. Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries. Magn Reson Imaging 2000; 18: 13-22.
– reference: Soille P. Morphological image analysis. Berlin: Springer-Verlag; 1999.
– reference: Winterer JT, Schaefer O, Uhrmeister P, et al. Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 2002; 41: 153-60.
– reference: Flasque N, Desvignes M, Constans J, Revenu M. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med Image Anal 2001; 5: 173-183.
– reference: Lorigo L, Faugeras O, Grimson W, et al. CURVES: curve evolution for vessel segmentation. Med Image Anal 2001; 5: 195-206.
– reference: Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International 2004; 11: 36-42.
– reference: Aylward SR, Bullit E. Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction. IEEE Trans Med Imaging 2002; 21: 61-75.
– reference: Meijering EHW, Niessen WJ, Viergever MA. Quantitative evaluation of convolution-based methods for medical image interpolation. Med Image Anal 2001; 5: 111-126.
– reference: Sethian J. Fast marching methods. SIAM Rev 1999; 41: 199-235.
– reference: Kimmel R, Sethian JA. Optimal algorithm for shape from shading and path planning. J Math Imaging Vis 2001; 14: 237-244.
– reference: Desbleds-Mansard C, Canet Soulas EP, Anwander A, et al. Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation. Magn Reson Med 2004; 51: 370-379.
– reference: de Koning P, Schaap J, Janssen J, Westenberg J, van der Geest R, Reiber J. Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images. Magn Reson Med 2003; 50: 1189-1198.
– reference: Wink O, Niessen W, Viergever M. Multiscale vessel tracking. IEEE Trans Med Imaging 2004; 23: 130-133.
– reference: Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inf Technol Biomed 2002; 6: 324-337.
– reference: Deschamps T, Cohen LD. Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Med Image Anal 2001; 5: 281-299.
– reference: Parker DL, Chapman BE, Roberts JA, Alexander AL, Tsuruda JS. Enhanced image detail using continuity in the mip z-buffer: applications to magnetic resonance angiography. J Magn Reson Imaging 2000, 11: 378-388.
– reference: Watanabe Z, Kikuchi Y, Izaki KJ, et al. The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms. Surg Neurol 2001; 55: 359-364.
– reference: Ruehm S, Goyen M, Barkhausen J, et al. Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 2001; 357: 1086-1091.
– reference: Ragnemalm I. The Euclidean distance transform in arbitrary dimensions. Patt Recognit Lett 1993; 14: 883-888.
– reference: Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001; 5: 127-142.
– reference: Osher S, Sethian JA. Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988; 79: 12-49.
– reference: Suri J, Liu K, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed 2002; 6: 338-350.
– reference: Rapp JH, Saloner D. Current status of carotid imaging by MRA. Cardiovasc Surg 2003; 11: 445-447.
– reference: Wan M, Liang, Z, Ke Q, Hong L, Bitter I, Kaufman A. Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 2002; 21: 1450-1460.
– reference: Frangi AF, Niessen W, Hoogeyeen R, van Walsum T, Viergever M. Model-based quantification of 3-D magnetic resonance angiographic images. IEEE Trans Med Imaging 1999; 18: 946-956.
– reference: Hansen T, Wikstrom J, Eriksson MO, et al. Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 2006; 16: 147-153.
– volume: 11
  start-page: 378
  year: 2000
  end-page: 388
  article-title: Enhanced image detail using continuity in the mip z‐buffer: applications to magnetic resonance angiography
  publication-title: J Magn Reson Imaging
– volume: 41
  start-page: 153
  year: 2002
  end-page: 60
  article-title: Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two‐step examination protocol in comparison to conventional DSA
  publication-title: Eur J Radiol
– volume: 5
  start-page: 173
  year: 2001
  end-page: 183
  article-title: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images
  publication-title: Med Image Anal
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– start-page: 53
  year: 1995
  end-page: 81
– year: 2001
– volume: 6
  start-page: 338
  year: 2002
  end-page: 350
  article-title: A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 14
  start-page: 237
  year: 2001
  end-page: 244
  article-title: Optimal algorithm for shape from shading and path planning
  publication-title: J Math Imaging Vis
– year: 2003
– volume: 80
  start-page: 130
  year: 2000
  end-page: 171
  article-title: Model‐based detection of tubular structures in 3D images
  publication-title: Comput Vis Image Understand
– volume: 21
  start-page: 1450
  year: 2002
  end-page: 1460
  article-title: Automatic centerline extraction for virtual colonoscopy
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 127
  year: 2001
  end-page: 142
  article-title: Interaction in the segmentation of medical images: a survey
  publication-title: Med Image Anal
– volume: 21
  start-page: 61
  year: 2002
  end-page: 75
  article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular objects centerline extraction
  publication-title: IEEE Trans Med Imaging
– volume: 50
  start-page: 1189
  year: 2003
  end-page: 1198
  article-title: Automated segmentation and analysis of vascular structures in magnetic resonance angiographic images
  publication-title: Magn Reson Med
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  article-title: Fronts propagating with curvature‐dependent speed algorithms based on Hamilton‐Jacobi formulations
  publication-title: J Comput Phys
– volume: 23
  start-page: 130
  year: 2004
  end-page: 133
  article-title: Multiscale vessel tracking
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 281
  year: 2001
  end-page: 299
  article-title: Fast extraction of minimal paths in 3D images and application to virtual endoscopy
  publication-title: Med Image Anal
– year: 1998
– volume: 18
  start-page: 13
  year: 2000
  end-page: 22
  article-title: Vessel diameter measurements in gadolinium contrast enhanced three dimensional MRA of peripheral arteries
  publication-title: Magn Reson Imaging
– volume: 16
  start-page: 147
  year: 2006
  end-page: 153
  article-title: Whole‐body magnetic resonance angiography of patients using a standard clinical scanner
  publication-title: Eur Radiol
– volume: 9
  start-page: 821
  year: 1999
  end-page: 831
  article-title: MRI geometric distortion: a simple approach to correcting the effects of non‐linear gradient fields
  publication-title: J Magn Reson Imaging
– volume: 51
  start-page: 370
  year: 2004
  end-page: 379
  article-title: Quantification of multicontrast vascular MR images with NLSnake, an active contour model: in vitro validation and in vivo evaluation
  publication-title: Magn Reson Med
– volume: 5
  start-page: 111
  year: 2001
  end-page: 126
  article-title: Quantitative evaluation of convolution‐based methods for medical image interpolation
  publication-title: Med Image Anal
– volume: 14
  start-page: 883
  year: 1993
  end-page: 888
  article-title: The Euclidean distance transform in arbitrary dimensions
  publication-title: Patt Recognit Lett
– volume: 18
  start-page: 946
  year: 1999
  end-page: 956
  article-title: Model‐based quantification of 3‐D magnetic resonance angiographic images
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 445
  year: 2003
  end-page: 447
  article-title: Current status of carotid imaging by MRA
  publication-title: Cardiovasc Surg
– volume: 357
  start-page: 1086
  year: 2001
  end-page: 1091
  article-title: Rapid magnetic resonance angiography for detection of atherosclerosis
  publication-title: Lancet
– volume: 41
  start-page: 199
  year: 1999
  end-page: 235
  article-title: Fast marching methods
  publication-title: SIAM Rev
– volume: 22
  start-page: 1224
  year: 2003
  end-page: 1234
  article-title: Level‐set‐based artery‐vein separation in blood‐pool agent CE‐MR angiograms
  publication-title: IEEE Trans Med Imaging
– volume: 55
  start-page: 359
  year: 2001
  end-page: 364
  article-title: The usefulness of 3D MR angiography in surgery for ruptured cerebral aneurysms
  publication-title: Surg Neurol
– volume: 6
  start-page: 324
  year: 2002
  end-page: 337
  article-title: A review on MR vascular image processing algorithms: acquisition and prefiltering: part I
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 5
  start-page: 195
  year: 2001
  end-page: 206
  article-title: CURVES: curve evolution for vessel segmentation
  publication-title: Med Image Anal
– start-page: 378
  year: 1999
– year: 1999
– ident: e_1_2_6_15_2
  doi: 10.1007/3-540-45468-3_102
– ident: e_1_2_6_10_2
  doi: 10.1109/42.993126
– ident: e_1_2_6_14_2
  doi: 10.1016/S1361-8415(01)00040-8
– ident: e_1_2_6_33_2
  doi: 10.1016/S0730-725X(99)00099-5
– ident: e_1_2_6_7_2
  doi: 10.1006/cviu.2000.0866
– ident: e_1_2_6_9_2
  doi: 10.1109/42.811279
– ident: e_1_2_6_35_2
  doi: 10.1002/mrm.10617
– ident: e_1_2_6_6_2
  doi: 10.1109/TITB.2002.804136
– ident: e_1_2_6_18_2
  doi: 10.1109/TMI.2003.817756
– ident: e_1_2_6_4_2
  doi: 10.1016/S0090-3019(01)00452-9
– ident: e_1_2_6_23_2
  doi: 10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-#
– ident: e_1_2_6_36_2
  doi: 10.1002/mrm.10722
– start-page: 53
  volume-title: Wavelets and statistics
  year: 1995
  ident: e_1_2_6_34_2
– ident: e_1_2_6_3_2
  doi: 10.1007/s00330-005-2681-5
– ident: e_1_2_6_24_2
  doi: 10.1023/A:1011234012449
– volume: 11
  start-page: 36
  year: 2004
  ident: e_1_2_6_31_2
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– ident: e_1_2_6_30_2
  doi: 10.1016/0167-8655(93)90152-4
– ident: e_1_2_6_32_2
  doi: 10.1016/S1361-8415(00)00040-2
– ident: e_1_2_6_12_2
  doi: 10.1016/S1361-8415(01)00046-9
– ident: e_1_2_6_25_2
  doi: 10.1016/0021-9991(88)90002-2
– ident: e_1_2_6_29_2
– ident: e_1_2_6_11_2
– ident: e_1_2_6_16_2
  doi: 10.1007/3-540-45468-3_124
– ident: e_1_2_6_20_2
  doi: 10.1016/S0720-048X(01)00386-2
– ident: e_1_2_6_21_2
  doi: 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2
– ident: e_1_2_6_27_2
  doi: 10.1007/BFb0056195
– ident: e_1_2_6_2_2
  doi: 10.1016/S0140-6736(00)04261-6
– ident: e_1_2_6_37_2
  doi: 10.1109/TMI.2003.819920
– start-page: 378
  volume-title: Level set methods and fast marching methods
  year: 1999
  ident: e_1_2_6_26_2
– ident: e_1_2_6_13_2
  doi: 10.1137/S0036144598347059
– ident: e_1_2_6_8_2
  doi: 10.1016/S1361-8415(01)00038-X
– ident: e_1_2_6_28_2
  doi: 10.1109/TMI.2002.806409
– ident: e_1_2_6_19_2
  doi: 10.1016/S0967-2109(03)00124-8
– ident: e_1_2_6_38_2
  doi: 10.1007/978-3-662-03939-7
– ident: e_1_2_6_17_2
  doi: 10.1007/3-540-45468-3_101
– ident: e_1_2_6_22_2
  doi: 10.1016/S1361-8415(00)00041-4
– ident: e_1_2_6_5_2
  doi: 10.1109/TITB.2002.804139
SSID ssj0009945
Score 1.836008
Snippet Purpose To extract a graph model corresponding to a predefined set of arterial branches from whole‐body contrast‐enhanced magnetic resonance angiography...
To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE-MRA) data...
To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography (CE- MRA) data...
Purpose: To extract a graph model corresponding to a predefined set of arterial branches from whole-body contrast-enhanced magnetic resonance angiography...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 806
SubjectTerms Aged
Algorithms
Arteries - anatomy & histology
Atherosclerosis
Contrast Media
Contrast-enhanced magnetic resonance angiography
Fast marching
Humans
Imaging, Three-Dimensional
Magnetic Resonance Angiography - methods
Maximum intensity projection
Segmentation
TECHNOLOGY
TEKNIKVETENSKAP
User interaction
Whole Body Imaging - methods
Title Identification of the main arterial branches by whole-body contrast-enhanced MRA in elderly subjects using limited user interaction and fast marching
URI https://api.istex.fr/ark:/67375/WNG-LPMCCH87-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.20848
https://www.ncbi.nlm.nih.gov/pubmed/17348000
https://www.proquest.com/docview/19700422
https://www.proquest.com/docview/70316970
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-49944
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-11223
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamISFeuF_C1RIDCaRsSePEscRLVRhlohMqDPaCLNuxu7I2QU0jKE_8BF75e_wSfOw21dCYBG-JfBIlzuf48_E530FoiyhV5CkVYREnKiQsNyETRISaUCKNnWCyGBKcB_tZ_4DsHaaHG-jZKhfG60O0DjcYGe5_DQNcyHpnLRr6aTob2_VdTiDTF4K1gBEN19pRjLkKxZY_JGGcR7TVJu3srC89MRudg479ehrVbHVET1JYNwftXkIfV0_vQ0-Ot5u53Fbf_hB2_N_Xu4wuLskp7no0XUEburyKzg-W2-_X0E-f1muWfj5cGWz5I56KcYldbKgFM5ZQquNI11gu8Beovvvr-w9ZFQvsouJFPbfnujxykQd4MOxie7GGWuGTBa4bCX6hGkM4_ghPfPYVBk8KBmGLmU_DwKIssLG3wlO3EVKOrqOD3Rfvev1wWdshVJZz5WHSkUxHpKBGMFNYZJiIQUZ7VJCo6NA4lSSx7axIlJSpooJQZRKjFRAgpqLkBtosq1LfQljbxiLraJPmimR5JtOMFdIkIo8JlYwE6MnqG3O1FD6H-hsT7iWbOxz6mru-DtDD1vazl_s41eqxg0prImbHECBHU_5h_yV__WbQ6_Vzyt8G6MEKS9wOW9iLEaWumprHjDr5tb9bQGGBzFoF6KYH4fqBQJHIIjxAjzwq2xbQCn8-ft_l1WzEJ-OG2_UssR2wdZZd09hloGWJAXrqAHnGi_O9wfCVO7r9L8Z30AXvEoeAp7tocz5r9D3L5ebyvhuzvwF3nEs8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwmyUGEkjZksa5-LEqjG40FSrb2JtlO3ZX1iaoaQTliZ_AK3-PX4KPk6UaGpPgLZFPosT5HH8-Puc7CG0SKbMkjLmb-YF0CU20SznhriIxEdpMMJEPCc7pMOofkL2j8KiJzYFcmFofonW4wciw_2sY4OCQ3l6phn6azSdmgZeQ5DJah5LedkU1WqlHUWprFBsGEbh-4sWtOmlne3XtmfloHbr263lks1USPUti7Sy0c6MutVpa8UIIPjnZqhZiS377Q9rxv1_wJrre8FPcrQF1C11S-W10JW124O-gn3Vmr25cfbjQ2FBIPOOTHNvwUINnLKBax7EqsVjiL1CA99f3H6LIltgGxvNyYc5VfmyDD3A66mJzsYJy4dMlLisBrqESQ0T-GE_rBCwMzhQM2hbzOhMD8zzD2twKz-xeSD6-iw523uz3-m5T3sGVhnYlbtARVHkkizWnOjPg0B6FpHYvI17Wif1QkMC00yyQQoQy5iSWOtBKAgei0gvuobW8yNUDhJVpzKKO0mEiSZREIoxoJnTAE5_EghIHvTz9yEw22udQgmPKatXmDoO-ZravHfSstf1cK36ca_XCYqU14fMTiJGLQ_Zx-JYN3qe9Xj-J2QcHbZyCiZmRC9sxPFdFVTKfxlaB7e8WUFsgMlYOul-jcPVAIEpkIO6g5zUs2xaQC389OeyyYj5m00nFzJKWmA7YvMiuqsxK0BBFB72yiLzgxdleOtq1Rw__xXgDXe3vpwM22B2-e4Su1R5yiH96jNYW80o9MdRuIZ7aAfwb5s1PVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cL-E2ywxkEDKljROYku8VC2lG2s1FQZ7QZavXVmbTm0jKE_8BF75e_wSfGlTDY1J8JbIJ1HifI4_H5_zHQC2kRASpzkLZZyIEBGsQ8IQCxXKEddmgslim-Dc6WbtI7R_nB6vgVfLXBivD1E53OzIcP9rO8DPpN5diYZ-Hk0GZn2HEb4CNlAWYYvpZm8lHkWIK1FsCEQSxjjKK3HS2u7q2nPT0Ybt2a8Xcc1KSPQ8h3WTUOs6-LR8fB97crpTzviO-PaHsuP_vt8NcG3BTmHdw-kmWFPFLbDZWey_3wY_fV6vXjj64FhDQyDhiA0K6IJDDZoht7U6TtQU8jn8Ysvv_vr-g4_lHLqweDadmXNVnLjQA9jp1aG5WNli4cM5nJbcOoam0Mbj9-HQp19B60qBVtli4vMwICsk1OZWcOR2Qor-HXDUev2-0Q4XxR1CYUgXDpMaJypCMteMaGmgoSNiU9ojiSJZy-OUo8S0E5kIzlORM5QLnWglLAMiIkrugvViXKj7ACrTKLOa0ikWKMMZTzMiuU4YjlHOCQrAi-U3pmKhfG4LcAyp12yuUdvX1PV1AJ5Wtmde7-NCq-cOKpUJm5zaCLk8pR-7b-jBYafRaOOcvgvA1hJL1IxbuxnDCjUupzQmudNf-7uFrSyQGasA3PMgXD2QlSQyCA_AM4_KqsWKhTcHH-p0POnT4aCkZkGLTAdsX2ZXlmYdaGhiAF46QF7y4nS_09tzRw_-xXgLbB42W_Rgr_v2Ibjq3eM2-OkRWJ9NSvXY8LoZf-KG72_whk4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+main+arterial+branches+by+whole-body+contrast-enhanced+MRA+in+elderly+subjects+using+limited+user+interaction+and+fast+marching&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tizon%2C+Xavier&rft.au=Lin%2C+Qingfen&rft.au=Hansen%2C+Tomas&rft.au=Borgefors%2C+Gunilla&rft.date=2007-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=25&rft.issue=4&rft.spage=806&rft.epage=814&rft_id=info:doi/10.1002%2Fjmri.20848&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LPMCCH87_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon