Cover

Loading…
Abstract This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. Key Points This paper presents a new, generalized and unified two‐phase debris flow model Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two‐phase debris flow, sediment transport
AbstractList This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid-volume-fraction-gradient-enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid-like and fluid-like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid- and the fluid-momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non-Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid-volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two-phase flow model to date, and can reproduce results from most previous simple models that consider single- and two-phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two-phase debris flows, particle-laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. Key Points This paper presents a new, generalized and unified two-phase debris flow model Includes non-Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two-phase debris flow, sediment transport
This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. Key Points This paper presents a new, generalized and unified two‐phase debris flow model Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two‐phase debris flow, sediment transport
This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid-volume-fraction-gradient-enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid-like and fluid-like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid- and the fluid-momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non-Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid-volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two-phase flow model to date, and can reproduce results from most previous simple models that consider single- and two-phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two-phase debris flows, particle-laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena.
This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. This paper presents a new, generalized and unified two‐phase debris flow model Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two‐phase debris flow, sediment transport
Author Pudasaini, Shiva P.
Author_xml – sequence: 1
  givenname: Shiva P.
  surname: Pudasaini
  fullname: Pudasaini, Shiva P.
  email: pudasaini@geo.uni-bonn.de, (pudasaini@geo.uni-bonn.de
  organization: Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn, Bonn, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26507113$$DView record in Pascal Francis
BookMark eNp9kEtL7EAQRhtRcHzs_AEBcWe0qp-ZpQxmdBAFUVw2PZ1qbzQmY3dk9N8bGZWLoFWL2pzzVVFbbL3tWmJsD-EIgY-POSDOSgCOhV5jI45K55wDX2cjQFnkwLnZZLspPcBQUmkJOGIHJ9k9tRRdk_XLLl_8c4myiuaxTlloumX21FXU7LCN4JpEu59zm92WpzeTs_ziano-ObnIvQJl8nkRZAWKquBNJQNpTlqBDJWonNMVGC8DCoPSOS70XHhPilDMuQgQqJBim-2vchexe36h1NuH7iW2w0qLRhtQBSjxJwXF0EqOcaAOPimXvGtCdK2vk13E-snFN8uHywziRxpfcT52KUUK1te96-uu7aOrmyHSfvzX_v_fQTr8IX3l_oLjCl_WDb39ydrZ9LocczM4-cqpU0-v346Lj1YbYZS9u5xaLCezG7gs7US8AyPllmc
CitedBy_id crossref_primary_10_1016_j_enggeo_2017_01_007
crossref_primary_10_1002_esp_4469
crossref_primary_10_1155_2022_2864271
crossref_primary_10_1016_j_enggeo_2015_05_020
crossref_primary_10_1142_S1793962318500010
crossref_primary_10_3390_w10121784
crossref_primary_10_1139_cgj_2021_0437
crossref_primary_10_1007_s10346_015_0585_2
crossref_primary_10_1016_j_compgeo_2022_105099
crossref_primary_10_1002_2016WR018675
crossref_primary_10_1007_s12665_017_6788_1
crossref_primary_10_1017_jfm_2022_1089
crossref_primary_10_1016_j_advwatres_2024_104691
crossref_primary_10_1016_j_cageo_2020_104640
crossref_primary_10_1016_j_coldregions_2013_08_007
crossref_primary_10_1016_j_enggeo_2021_106072
crossref_primary_10_1007_s10346_023_02146_z
crossref_primary_10_1007_s10346_019_01151_5
crossref_primary_10_1016_j_apm_2021_06_031
crossref_primary_10_1093_gji_ggac482
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292
crossref_primary_10_1038_s41467_022_28296_7
crossref_primary_10_1016_j_enggeo_2018_03_023
crossref_primary_10_1016_j_jcp_2024_112798
crossref_primary_10_1016_j_enggeo_2013_01_012
crossref_primary_10_1002_esp_4578
crossref_primary_10_1016_j_jhydrol_2019_123967
crossref_primary_10_1002_esp_5542
crossref_primary_10_1007_s11069_021_04501_6
crossref_primary_10_1007_s11440_016_0496_y
crossref_primary_10_1007_s10064_023_03480_1
crossref_primary_10_1016_j_heliyon_2019_e01994
crossref_primary_10_1061_JHEND8_HYENG_13736
crossref_primary_10_1016_j_coastaleng_2019_103623
crossref_primary_10_1016_j_euromechflu_2022_10_003
crossref_primary_10_1007_s10346_021_01772_9
crossref_primary_10_1016_j_euromechflu_2022_06_002
crossref_primary_10_1111_gto_12037
crossref_primary_10_5194_nhess_21_2447_2021
crossref_primary_10_17277_jamt_2021_03_pp_204_215
crossref_primary_10_1007_s00707_014_1126_0
crossref_primary_10_1016_j_camwa_2016_06_020
crossref_primary_10_1007_s40571_023_00699_3
crossref_primary_10_1038_s41598_020_71016_8
crossref_primary_10_1007_s10346_019_01229_0
crossref_primary_10_1007_s10346_021_01733_2
crossref_primary_10_2166_hydro_2024_103
crossref_primary_10_3189_2015JoG14J168
crossref_primary_10_1080_19475705_2024_2432365
crossref_primary_10_1007_s10346_023_02036_4
crossref_primary_10_1016_j_enggeo_2023_107186
crossref_primary_10_5194_nhess_22_377_2022
crossref_primary_10_3390_land11101629
crossref_primary_10_1007_s10706_017_0241_9
crossref_primary_10_1007_s10346_016_0734_2
crossref_primary_10_1002_nag_3339
crossref_primary_10_1007_s10346_014_0484_y
crossref_primary_10_1016_j_enggeo_2019_105260
crossref_primary_10_1016_j_matcom_2019_03_014
crossref_primary_10_1007_s11069_024_07048_4
crossref_primary_10_1016_j_scitotenv_2019_05_124
crossref_primary_10_1007_s11069_024_06728_5
crossref_primary_10_1063_1_5030349
crossref_primary_10_1029_2018JC014167
crossref_primary_10_1002_esp_4318
crossref_primary_10_5194_nhess_21_3015_2021
crossref_primary_10_1007_s12040_024_02315_1
crossref_primary_10_3390_w15081592
crossref_primary_10_1103_PhysRevE_99_042904
crossref_primary_10_3390_rs16244740
crossref_primary_10_1007_s10346_022_01890_y
crossref_primary_10_1007_s11004_021_09948_8
crossref_primary_10_5194_gmd_10_3963_2017
crossref_primary_10_3390_app10082954
crossref_primary_10_1007_s10346_022_01901_y
crossref_primary_10_1016_j_jfluidstructs_2020_103162
crossref_primary_10_1007_s10346_021_01661_1
crossref_primary_10_1016_j_geomorph_2021_107664
crossref_primary_10_5194_esurf_10_165_2022
crossref_primary_10_1016_j_ijnonlinmec_2020_103638
crossref_primary_10_1002_2014JF003331
crossref_primary_10_7409_rabdim_022_019
crossref_primary_10_1016_j_ijnonlinmec_2015_09_010
crossref_primary_10_1007_s00445_017_1169_x
crossref_primary_10_1007_s10064_018_1329_z
crossref_primary_10_1007_s11629_018_4886_5
crossref_primary_10_5194_npg_22_109_2015
crossref_primary_10_1007_s00161_013_0326_5
crossref_primary_10_1051_e3sconf_20184004019
crossref_primary_10_3389_feart_2023_1051913
crossref_primary_10_1016_j_advwatres_2016_12_014
crossref_primary_10_1007_s12650_020_00628_z
crossref_primary_10_1007_s00033_023_02115_5
crossref_primary_10_1016_j_cageo_2023_105417
crossref_primary_10_1007_s11069_022_05376_x
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416
crossref_primary_10_1098_rspa_2013_0819
crossref_primary_10_1144_qjegh2017_071
crossref_primary_10_1007_s10346_024_02450_2
crossref_primary_10_1038_s41467_021_26959_5
crossref_primary_10_1007_s10064_019_01504_3
crossref_primary_10_1029_2019JC015873
crossref_primary_10_1016_j_enggeo_2022_106798
crossref_primary_10_1051_e3sconf_202341502022
crossref_primary_10_1002_nag_2748
crossref_primary_10_1016_j_enggeo_2019_105440
crossref_primary_10_1016_j_enggeo_2022_106797
crossref_primary_10_3390_w13121698
crossref_primary_10_1139_cgj_2017_0211
crossref_primary_10_1140_epjp_s13360_024_04908_7
crossref_primary_10_1016_j_enggeo_2021_106154
crossref_primary_10_1186_s13617_017_0060_y
crossref_primary_10_1016_j_enggeo_2013_10_010
crossref_primary_10_1016_j_enggeo_2015_12_023
crossref_primary_10_1080_01490419_2019_1583146
crossref_primary_10_1016_j_geomorph_2018_08_032
crossref_primary_10_1016_j_enggeo_2020_105877
crossref_primary_10_1016_j_geomorph_2016_10_007
crossref_primary_10_1111_1755_6724_13416
crossref_primary_10_1016_j_jhydrol_2021_126134
crossref_primary_10_1017_jfm_2021_348
crossref_primary_10_3390_w16091285
crossref_primary_10_1016_j_enggeo_2015_12_008
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105153
crossref_primary_10_1016_j_cnsns_2023_107624
crossref_primary_10_1016_j_finel_2022_103864
crossref_primary_10_1007_s10230_024_01015_y
crossref_primary_10_1016_j_enggeo_2025_107995
crossref_primary_10_1007_s10346_021_01778_3
crossref_primary_10_1007_s10346_022_01989_2
crossref_primary_10_1007_s10346_023_02159_8
crossref_primary_10_1007_s10064_021_02202_9
crossref_primary_10_1016_j_jhydrol_2018_10_001
crossref_primary_10_1007_s10346_020_01478_4
crossref_primary_10_1007_s11440_018_0727_5
crossref_primary_10_5194_gmd_11_2923_2018
crossref_primary_10_1016_j_coldregions_2013_09_011
crossref_primary_10_1016_j_jnnfm_2013_07_005
crossref_primary_10_3390_geotechnics3020020
crossref_primary_10_1007_s10346_023_02174_9
crossref_primary_10_1016_j_advwatres_2017_08_014
crossref_primary_10_5194_hess_24_93_2020
crossref_primary_10_1016_j_compfluid_2021_105211
crossref_primary_10_1007_s10346_023_02092_w
crossref_primary_10_1007_s11629_022_7462_y
crossref_primary_10_1016_j_catena_2021_105727
crossref_primary_10_1016_j_geomorph_2016_08_022
crossref_primary_10_1002_geot_201900075
crossref_primary_10_1016_j_compfluid_2019_06_015
crossref_primary_10_3390_geosciences13120378
crossref_primary_10_15446_esrj_v23n4_77683
crossref_primary_10_1007_s11629_021_7199_z
crossref_primary_10_3390_app14199059
crossref_primary_10_3390_app14020564
crossref_primary_10_1007_s11831_024_10198_0
crossref_primary_10_1016_j_advwatres_2023_104592
crossref_primary_10_1002_nag_3814
crossref_primary_10_1007_s11629_018_5279_5
crossref_primary_10_3189_2016AoG71A039
crossref_primary_10_1016_j_enggeo_2016_03_002
crossref_primary_10_1016_j_ijnonlinmec_2023_104585
crossref_primary_10_1098_rspa_2013_0820
crossref_primary_10_1680_jgeot_21_00226
crossref_primary_10_1007_s12040_024_02502_0
crossref_primary_10_1002_esp_4870
crossref_primary_10_1016_j_apm_2022_01_032
crossref_primary_10_3189_2016AoG71A034
crossref_primary_10_1007_s10346_020_01383_w
crossref_primary_10_3367_UFNe_2020_01_038729
crossref_primary_10_1016_j_enggeo_2019_105218
crossref_primary_10_1088_1755_1315_1331_1_012027
crossref_primary_10_2139_ssrn_4057017
crossref_primary_10_1016_j_enggeo_2019_04_013
crossref_primary_10_1007_s10346_023_02081_z
crossref_primary_10_1016_j_enggeo_2014_11_016
crossref_primary_10_1007_s10346_019_01333_1
crossref_primary_10_1016_j_enggeo_2020_105771
crossref_primary_10_5194_tc_17_591_2023
crossref_primary_10_1016_j_enggeo_2022_106546
crossref_primary_10_1016_j_ijnonlinmec_2023_104349
crossref_primary_10_1061__ASCE_HY_1943_7900_0001656
crossref_primary_10_5194_se_15_437_2024
crossref_primary_10_20965_jdr_2017_p0607
crossref_primary_10_1016_j_enggeo_2018_05_023
crossref_primary_10_1016_j_enggeo_2018_01_007
crossref_primary_10_1007_s00161_016_0535_9
crossref_primary_10_1007_s10346_017_0894_8
crossref_primary_10_1007_s11440_022_01774_4
crossref_primary_10_3390_rs15215154
crossref_primary_10_1007_s11069_023_05956_5
crossref_primary_10_1029_2023JF007466
crossref_primary_10_1016_j_enggeo_2024_107722
crossref_primary_10_1029_2021JF006452
crossref_primary_10_1016_j_euromechflu_2024_12_008
crossref_primary_10_1016_j_compgeo_2024_106581
crossref_primary_10_1016_j_enggeo_2017_11_007
crossref_primary_10_1080_19648189_2020_1756418
crossref_primary_10_1016_j_apm_2019_11_031
crossref_primary_10_1063_5_0092726
crossref_primary_10_1007_s12665_015_4920_7
crossref_primary_10_1016_j_scitotenv_2023_163262
crossref_primary_10_1130_GES01389_1
crossref_primary_10_1051_e3sconf_202341501015
crossref_primary_10_1061__ASCE_HY_1943_7900_0001024
crossref_primary_10_1007_s11069_015_1947_8
crossref_primary_10_1139_cgj_2020_0774
crossref_primary_10_1016_j_yofte_2024_103721
crossref_primary_10_1016_j_sandf_2023_101338
crossref_primary_10_5194_nhess_18_1373_2018
crossref_primary_10_1371_journal_pone_0160756
crossref_primary_10_1007_s10346_019_01254_z
crossref_primary_10_1016_j_partic_2012_11_006
crossref_primary_10_1016_j_scitotenv_2021_148439
crossref_primary_10_5194_nhess_21_3539_2021
crossref_primary_10_1007_s41207_023_00409_8
crossref_primary_10_1016_j_enggeo_2015_07_014
crossref_primary_10_3390_w14091348
crossref_primary_10_3390_w12092341
crossref_primary_10_1007_s10346_022_01987_4
crossref_primary_10_3390_app12063093
crossref_primary_10_1002_2014JF003279
crossref_primary_10_1016_j_enggeo_2022_106767
crossref_primary_10_1088_1755_1315_570_4_042053
crossref_primary_10_5194_nhess_22_3041_2022
crossref_primary_10_1016_j_geomorph_2021_107960
crossref_primary_10_1080_1064119X_2021_2020942
crossref_primary_10_3390_su13147955
crossref_primary_10_1016_j_jrmge_2023_12_001
crossref_primary_10_1017_jfm_2013_675
crossref_primary_10_1007_s00603_020_02180_6
crossref_primary_10_1002_nag_3971
crossref_primary_10_1016_j_enggeo_2019_105429
crossref_primary_10_1061__ASCE_HY_1943_7900_0001163
crossref_primary_10_1007_s11433_017_9093_y
crossref_primary_10_1111_1755_6724_15146
crossref_primary_10_1007_s11629_024_8954_8
crossref_primary_10_1061__ASCE_HY_1943_7900_0001281
crossref_primary_10_1063_5_0096069
crossref_primary_10_5194_nhess_20_3455_2020
crossref_primary_10_5194_gmd_9_2909_2016
crossref_primary_10_1051_e3sconf_202341502004
crossref_primary_10_1007_s11440_021_01296_5
crossref_primary_10_1016_j_compgeo_2020_103973
crossref_primary_10_1002_2014JF003183
crossref_primary_10_1002_esp_4830
crossref_primary_10_3390_w14071050
crossref_primary_10_1007_s11629_017_4458_0
crossref_primary_10_3390_app132312610
crossref_primary_10_1007_s00707_019_02457_0
crossref_primary_10_24850_j_tyca_16_4_10
crossref_primary_10_3390_su11113199
crossref_primary_10_1016_j_compgeo_2024_106210
crossref_primary_10_1002_esp_4283
crossref_primary_10_1007_s10652_016_9483_y
crossref_primary_10_1007_s10346_019_01142_6
crossref_primary_10_1016_j_enggeo_2018_10_021
crossref_primary_10_1051_e3sconf_202341502016
crossref_primary_10_1029_2020JF005657
crossref_primary_10_3390_rs15194691
crossref_primary_10_1016_j_advwatres_2021_103966
crossref_primary_10_1007_s10346_018_1108_8
crossref_primary_10_1016_j_enggeo_2013_12_017
crossref_primary_10_1016_j_ijnonlinmec_2018_07_008
crossref_primary_10_3367_UFNr_2020_01_038729
crossref_primary_10_1016_j_ijnonlinmec_2022_104312
crossref_primary_10_1007_s10064_020_01999_1
crossref_primary_10_1007_s11440_016_0509_x
crossref_primary_10_1007_s11069_020_04132_3
crossref_primary_10_1029_2024JF007689
crossref_primary_10_1007_s10064_021_02278_3
crossref_primary_10_5194_gmd_14_1841_2021
crossref_primary_10_1016_j_advwatres_2022_104254
crossref_primary_10_1016_j_enggeo_2019_105287
crossref_primary_10_1016_j_euromechflu_2018_09_005
crossref_primary_10_1029_2022JF006712
crossref_primary_10_1016_j_enggeo_2019_105168
crossref_primary_10_1016_j_geomorph_2018_09_003
crossref_primary_10_5194_gmd_8_4027_2015
crossref_primary_10_1007_s10346_024_02358_x
crossref_primary_10_1080_00288306_2021_1885048
crossref_primary_10_3390_app11125751
crossref_primary_10_1007_s11440_015_0418_4
crossref_primary_10_1007_s11440_020_01114_4
crossref_primary_10_1016_j_enggeo_2014_08_024
crossref_primary_10_5194_nhess_18_303_2018
crossref_primary_10_2110_jsr_2020_020
crossref_primary_10_1007_s10346_018_1119_5
crossref_primary_10_1029_2018JF004671
crossref_primary_10_1016_j_ijsrc_2017_06_003
crossref_primary_10_5194_gmd_17_6545_2024
crossref_primary_10_5194_esurf_11_325_2023
crossref_primary_10_1002_esp_4939
crossref_primary_10_1016_j_envsoft_2018_03_017
crossref_primary_10_3390_geotechnics2030025
crossref_primary_10_1029_2018JF004667
crossref_primary_10_5194_nhess_20_505_2020
crossref_primary_10_1016_j_enggeo_2023_107076
crossref_primary_10_1680_jgeot_21_00080
crossref_primary_10_1029_2021JF006245
crossref_primary_10_1007_s11069_022_05669_1
crossref_primary_10_5194_nhess_22_3183_2022
crossref_primary_10_1016_j_advwatres_2021_103989
crossref_primary_10_1016_j_jhydrol_2015_12_054
crossref_primary_10_1144_qjegh2014_036
crossref_primary_10_1063_5_0140599
crossref_primary_10_1016_j_jhydrol_2022_128221
crossref_primary_10_1016_j_enggeo_2013_01_021
crossref_primary_10_1016_j_ijnonlinmec_2016_10_005
crossref_primary_10_1007_s11629_020_6164_6
crossref_primary_10_1016_j_partic_2013_11_010
crossref_primary_10_1029_2021WR030688
crossref_primary_10_1007_s10064_022_02871_0
crossref_primary_10_5194_nhess_24_465_2024
crossref_primary_10_1029_2019JF005204
crossref_primary_10_3390_w14091352
crossref_primary_10_5194_nhess_21_1229_2021
crossref_primary_10_1016_j_geomorph_2020_107431
crossref_primary_10_1007_s12583_022_1625_1
crossref_primary_10_1016_j_geomorph_2021_107992
crossref_primary_10_5194_nhess_13_1655_2013
crossref_primary_10_1016_j_compgeo_2020_103669
crossref_primary_10_1016_j_ijnonlinmec_2017_12_003
crossref_primary_10_1007_s10706_025_03104_3
crossref_primary_10_1080_00221686_2020_1744746
crossref_primary_10_1016_j_apm_2023_11_029
crossref_primary_10_5194_nhess_20_2319_2020
crossref_primary_10_1007_s11831_021_09686_4
crossref_primary_10_1016_j_watres_2020_116031
crossref_primary_10_1111_1755_6724_13031
crossref_primary_10_1016_j_enggeo_2018_09_003
crossref_primary_10_3390_w16111594
crossref_primary_10_1016_j_compgeo_2020_103541
crossref_primary_10_5194_gmd_10_553_2017
crossref_primary_10_1007_s10346_023_02157_w
crossref_primary_10_1139_cgj_2016_0171
Cites_doi 10.5194/nhess-5-799-2005
10.1063/1.864230
10.3934/dcdsb.2005.5.189
10.1007/s00161-010-0154-9
10.4408/IJEGE.2011‐03.B‐047
10.1017/S0022112009007460
10.1029/97RG00426
10.1016/j.cpc.2010.12.001
10.1007/978-3-540-36565-5_5
10.1021/i160024a007
10.1007/s10915-010-9427-5
10.1016/j.coldregions.2012.01.005
10.1098/rsta.2005.1596
10.1017/S0022112089000340
10.1016/j.enggeo.2008.02.012
10.1002/aic.690250513
10.1139/t95-063
10.1061/(ASCE)0733-9429(1988)114:3(237)
10.1007/BF01175749
10.1016/j.jnnfm.2012.03.001
10.1029/2009JB006515
10.1016/0301-9322(87)90011-5
10.1051/m2an:2008029
10.1016/j.jcp.2008.04.039
10.1016/j.geomorph.2003.07.015
10.1098/rspa.1954.0186
10.1016/S0013-7952(01)00090-4
10.1006/jcph.2001.6946
10.1061/(ASCE)0733-9429(1993)119:2(244)
10.1146/annurev.fl.15.010183.001401
10.1201/9780203946282
10.1017/S0022112009007915
10.1017/S0022112003006141
10.13182/NSE78-4
10.1098/rspa.1999.0383
10.1007/s10346-005-0027-7
10.1007/s00161-010-0153-x
10.1038/nature04801
10.1103/PhysRevE.78.041308
10.1029/2000JB900329
10.5194/npg-16-399-2009
10.1016/0021-9991(90)90260-8
10.1080/00986449108911515
10.1007/3-540-69833-7
10.1029/2006GL029183
10.1063/1.3570532
10.1051/m2an:2008019
10.1063/1.2726885
10.1007/978-0-387-29187-1
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2011JF002186
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (subscription)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 3959591051
2772421031
26507113
10_1029_2011JF002186
JGRF927
ark_67375_WNG_1FCJT0NF_C
Genre article
Feature
GrantInformation_xml – fundername: German Research Foundation (DFG)
  funderid: PU 386/1‐1; PU 386/1‐2
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-c5057-b8f4d05edfc7d4fe62e6504fd3daa6d07c4f13714aa236b3cce5e13b23f0fe843
IEDL.DBID BENPR
ISSN 0148-0227
2169-9003
IngestDate Fri Jul 25 18:55:20 EDT 2025
Fri Jul 25 10:36:57 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Tue Jul 01 01:55:53 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Wed Jan 22 16:44:36 EST 2025
Wed Oct 30 09:57:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F3
Keywords advection
stress
models
Two phase flow
mixing
debris flows
plasticity
Submarine
Strong coupling
buoyancy
lead
dynamics
Momentum transfer
sediment transport
avalanches
Drag
separation
deformation
Diffusion
particles
Natural hazards
inclusions
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5057-b8f4d05edfc7d4fe62e6504fd3daa6d07c4f13714aa236b3cce5e13b23f0fe843
Notes ark:/67375/WNG-1FCJT0NF-C
German Research Foundation (DFG) - No. PU 386/1-1; No. PU 386/1-2
istex:2077960F1BB70539CE0895032F78EDEF6E0B3D76
ArticleID:2011JF002186
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JF002186
PQID 1080805491
PQPubID 54727
PageCount 28
ParticipantIDs proquest_journals_1767058053
proquest_journals_1080805491
pascalfrancis_primary_26507113
crossref_citationtrail_10_1029_2011JF002186
crossref_primary_10_1029_2011JF002186
wiley_primary_10_1029_2011JF002186_JGRF927
istex_primary_ark_67375_WNG_1FCJT0NF_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Hutter, K., B. Svendsen, and D. Rickenmann (1996), Debris flow modelling: A review, Continuum Mech, Thermodyn., 8, 1-35.
Domnik, B., and S. P. Pudasaini (2012), Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newtonian Fluid Mech., 173-174, 72-86.
Pitman, E. B., and L. Le (2005), A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A, 363, 1573-1602.
Carman, P. C. (1956), Flow of Gases Through Porous Media, Butterworths, London.
Sosio, R., G. B. Crosta, and O. Hungr (2008), Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100, 11-26.
Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc, A, 455, 1841-1874.
Zahibo, N., E. Pelinovsky, T. Talipova, and I. Nikolkina (2010), Savage-Hutter model for avalanche dynamics in inclined channels: Analytical solutions, J. Geophys. Res., 115, B03402, doi:10.1029/2009JB006515.
Ishii, M. (1975), Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.
Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296.
Pelanti, M., F. Bouchut, and A. Mangeney (2008), A Roe-Type scheme for two-phase shallow granular flows over variable topography, Math. Model. Numer. Anal., 42, 851-885.
Pudasaini, S. P., and K. Hutter (2007), Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 602 pp., Springer, New York.
Pudasaini, S. P., and C. Kröner (2008), Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Phys. Rev. E, 78, 041308, doi:10.1103/PhysRevE.78.041308.
Ouriemi, M., P. Aussillous, and E. Guazzelli (2009), Sediment dynamics. Part 1: Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295-319.
Rivero, M., J. Magnaudet, and J. Fabre (1991), Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere, C. R. Acad. Sci., Ser. II, 312, 1499-1506.
Pudasaini, S. P., Y. Wang, and K. Hutter (2005), Modelling debris flows down general channels, Nat. Hazards Earth Syst. Sci., 5, 799-819.
Fischer, J.-T., J. Kowalski, and S. P. Pudasaini (2012), Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Tech., 74-75, 21-30.
Pudasaini, S. P., and K. Hutter (2003), Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208.
O'Brien, J. S., P. J. Julien, and W. T. Fullerton (1993), Two-dimensional water flood and mudflow simulation, J. Hyd. Eng., 119(2), 244-261.
Strom, A. L., and O. Korup (2006), Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslides, 3, 125-136.
Chen, C. L. (1988), Generalized viscoplastic modelling of debris flow, J. Hydraul. Res., 114(3), 237-258.
Lyczkowski, R. W., D. Gidaspow, C. Solbrig, and E. D. Hughes (1978), Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations, Nucl. Sci. Eng., 66, 378-396.
Nessyahu, H., and E. Tadmor (1990), Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463.
Ishii, M., and T. Hibiki (2006), Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York.
Pudasaini, S. P., and B. Domnik (2009), Energy consideration in accelerating rapid shear granular flows, Nonlin. Processes Geophys., 16, 399-407.
Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843-855.
Bouchut, F., and T. Morales (2008), An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment, ESAIM: Math. Modell. Numer. Anal., 42(4), 683-698.
Maxey, R. M., and J. J. Riley (1993), Equation of motion for a small sphere in a non-uniform flow, Phys. Fluids, 26, 883-889.
Takahashi, T. (2007), Debris Flow: Mechanics, Prediction and Countermeasures, Taylor and Francis, New York.
Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301-331.
McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183.
Hutter, K., and L. Schneider (2010b), Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling, Continuum Mech. Thermodyn., 22, 391-411.
Takahashi, T. (1991), Debris Flow, Balkema, Rotterdam, Netherlands.
Hungr, O. (1995), A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotechn. J., 32, 610-623.
Kytoma, H. K. (1991), Viscous particle interactions and their effect on kinematic wave propagation, Chem. Eng. Commun., 105(1), 27-42.
Jop, P., Y. Forterre, and O. Pouliquen (2006), A constitutive law for dense granular flow, Nature, 441, 727-730.
Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215.
Kozeny, J. (1927), Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss. Wien, 136(2), 271-306.
Drew, D. A., and R. T. Lahey Jr. (1987), The virtual mass and lift force on a sphere in rotating and straining inviscid flow, Int. J. Multiphase Flow, 13, 113-121.
Crosta, G. B., H. Chen, and C. F. Lee (2004), Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology, 60, 127-146.
Sano, O. (2011), Flow-induced waterway in a heterogeneous granular material, Comp. Phys. Commun., 182, 1870-1874.
Pudasaini, S. P., K. Hutter, S.-S. Hsiau, S.-C. Tai, Y. Wang, and R. Katzenbach (2007), Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Phys. Fluids, 19(5), 053302, doi:10.1063/1.2726885.
Anderson, T. B., and R. Jackson (1967), A fluid mechanical description of fluidized beds: Equations of motion, Ind. Eng. Chem. Fundam., 6, 527-539.
Fernandez-Nieto, E. D., F. Bouchut, D. Bresch, M. J. Castro Diaz, and A. Mangeney (2008), A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720-7754.
Pudasaini, S. P. (2011), Some exact solutions for debris and avalanche flows, Phys. Fluids, 23(4), 043301, doi:10.1063/1.3570532.
Tai, Y.-C., S. Noelle, J. M. N. T. Gray, and K. Hutter (2002), Shock-capturing and front-tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301.
Hutter, K., and L. Schneider (2010a), Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications, Continuum Mech. Thermodyn., 22, 363-390.
George, D. L., and R. M. Iverson (2011), A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Ital. J. Eng. Geol. Environ., doi:10.4408/IJEGE.2011-03.B-047, in press.
Kolev, N. I. (2007), Multiphase Flow Dynamics: Thermal and Mechanical Interactions, 3rd ed., Springer, New York.
Carman, P. C. (1937), Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166.
Castro-Diaz, M. J., E. D. Fernandez-Nieto, J. M., Gonzalez-Vida, and C. Pares-Madronal (2011), Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48(1-3), 16-40.
Pailha, M., and O. Pouliquen (2009), A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135.
Richardson, J. F., and W. N. Zaki (1954), Sedimentation and fluidization: Part 1, Trans. Inst. Chem. Eng., 32, 35-53.
Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552.
Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond., Ser. A, 225, 49-63.
Audusse, E. (2005), A multilayer Saint-Venant model: Derivation and numerical validation, Discrete Cont. Dyn. Syst., Ser. B, 5(2), 189-214.
Drew, D. A. (1983), Mathematical modelling of two-phase flow, Ann. Rev. Fluid Mech., 15, 261-291.
1993; 26
1991; 312
2004; 60
1995; 32
1989; 199
1975
2008; 78
2008; 227
2012; 74–75
2009; 636
2008; 100
1983; 15
2007; 34
2001; 106
2009; 633
2003; 11
2010; 22
1990; 87
1979; 25
1978; 66
2010; 115
1937; 15
1999; 455
2011; 23
1991; 105
1996; 8
2009; 16
2006; 441
1987; 13
2007; 19
2002; 175
2011
2010
2007
2006
2006; 3
1991
1954; 225
2003; 495
1956
1967; 6
1993; 119
2002; 63
2005; 363
1997; 35
1954; 32
2005; 5
1988; 114
2011; 48
2008; 42
2012; 173–174
2011; 182
1927; 136
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_40_1
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_44_1
Ishii M. (e_1_2_15_23_1) 1975
e_1_2_15_9_1
e_1_2_15_5_1
Rivero M. (e_1_2_15_50_1) 1991; 312
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_58_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_37_1
Pudasaini S. P. (e_1_2_15_45_1) 2007
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
e_1_2_15_19_1
Carman P. C. (e_1_2_15_6_1) 1937; 15
Maxey R. M. (e_1_2_15_34_1) 1993; 26
e_1_2_15_20_1
e_1_2_15_43_1
Takahashi T. (e_1_2_15_56_1) 1991
e_1_2_15_41_1
e_1_2_15_28_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_22_1
e_1_2_15_8_1
Carman P. C. (e_1_2_15_7_1) 1956
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
Kozeny J. (e_1_2_15_30_1) 1927; 136
e_1_2_15_57_1
e_1_2_15_59_1
Richardson J. F. (e_1_2_15_49_1) 1954; 32
e_1_2_15_17_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_11_1
e_1_2_15_53_1
References_xml – reference: Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296.
– reference: Castro-Diaz, M. J., E. D. Fernandez-Nieto, J. M., Gonzalez-Vida, and C. Pares-Madronal (2011), Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48(1-3), 16-40.
– reference: Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215.
– reference: Pudasaini, S. P., K. Hutter, S.-S. Hsiau, S.-C. Tai, Y. Wang, and R. Katzenbach (2007), Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Phys. Fluids, 19(5), 053302, doi:10.1063/1.2726885.
– reference: Sano, O. (2011), Flow-induced waterway in a heterogeneous granular material, Comp. Phys. Commun., 182, 1870-1874.
– reference: Rivero, M., J. Magnaudet, and J. Fabre (1991), Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere, C. R. Acad. Sci., Ser. II, 312, 1499-1506.
– reference: Domnik, B., and S. P. Pudasaini (2012), Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newtonian Fluid Mech., 173-174, 72-86.
– reference: Jop, P., Y. Forterre, and O. Pouliquen (2006), A constitutive law for dense granular flow, Nature, 441, 727-730.
– reference: Strom, A. L., and O. Korup (2006), Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslides, 3, 125-136.
– reference: Pailha, M., and O. Pouliquen (2009), A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135.
– reference: Carman, P. C. (1937), Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166.
– reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552.
– reference: Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301-331.
– reference: O'Brien, J. S., P. J. Julien, and W. T. Fullerton (1993), Two-dimensional water flood and mudflow simulation, J. Hyd. Eng., 119(2), 244-261.
– reference: McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183.
– reference: Nessyahu, H., and E. Tadmor (1990), Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463.
– reference: Ishii, M. (1975), Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.
– reference: Takahashi, T. (1991), Debris Flow, Balkema, Rotterdam, Netherlands.
– reference: Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc, A, 455, 1841-1874.
– reference: Anderson, T. B., and R. Jackson (1967), A fluid mechanical description of fluidized beds: Equations of motion, Ind. Eng. Chem. Fundam., 6, 527-539.
– reference: Pudasaini, S. P., and K. Hutter (2003), Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208.
– reference: Ishii, M., and T. Hibiki (2006), Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York.
– reference: Tai, Y.-C., S. Noelle, J. M. N. T. Gray, and K. Hutter (2002), Shock-capturing and front-tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301.
– reference: Kytoma, H. K. (1991), Viscous particle interactions and their effect on kinematic wave propagation, Chem. Eng. Commun., 105(1), 27-42.
– reference: Drew, D. A., and R. T. Lahey Jr. (1987), The virtual mass and lift force on a sphere in rotating and straining inviscid flow, Int. J. Multiphase Flow, 13, 113-121.
– reference: Kozeny, J. (1927), Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss. Wien, 136(2), 271-306.
– reference: Pudasaini, S. P., Y. Wang, and K. Hutter (2005), Modelling debris flows down general channels, Nat. Hazards Earth Syst. Sci., 5, 799-819.
– reference: Fernandez-Nieto, E. D., F. Bouchut, D. Bresch, M. J. Castro Diaz, and A. Mangeney (2008), A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720-7754.
– reference: Sosio, R., G. B. Crosta, and O. Hungr (2008), Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100, 11-26.
– reference: Fischer, J.-T., J. Kowalski, and S. P. Pudasaini (2012), Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Tech., 74-75, 21-30.
– reference: Pudasaini, S. P., and C. Kröner (2008), Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Phys. Rev. E, 78, 041308, doi:10.1103/PhysRevE.78.041308.
– reference: Pudasaini, S. P., and K. Hutter (2007), Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 602 pp., Springer, New York.
– reference: Pudasaini, S. P. (2011), Some exact solutions for debris and avalanche flows, Phys. Fluids, 23(4), 043301, doi:10.1063/1.3570532.
– reference: Pitman, E. B., and L. Le (2005), A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A, 363, 1573-1602.
– reference: Bouchut, F., and T. Morales (2008), An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment, ESAIM: Math. Modell. Numer. Anal., 42(4), 683-698.
– reference: Lyczkowski, R. W., D. Gidaspow, C. Solbrig, and E. D. Hughes (1978), Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations, Nucl. Sci. Eng., 66, 378-396.
– reference: Kolev, N. I. (2007), Multiphase Flow Dynamics: Thermal and Mechanical Interactions, 3rd ed., Springer, New York.
– reference: Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843-855.
– reference: Carman, P. C. (1956), Flow of Gases Through Porous Media, Butterworths, London.
– reference: Richardson, J. F., and W. N. Zaki (1954), Sedimentation and fluidization: Part 1, Trans. Inst. Chem. Eng., 32, 35-53.
– reference: Drew, D. A. (1983), Mathematical modelling of two-phase flow, Ann. Rev. Fluid Mech., 15, 261-291.
– reference: Pelanti, M., F. Bouchut, and A. Mangeney (2008), A Roe-Type scheme for two-phase shallow granular flows over variable topography, Math. Model. Numer. Anal., 42, 851-885.
– reference: Hutter, K., and L. Schneider (2010b), Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling, Continuum Mech. Thermodyn., 22, 391-411.
– reference: Hutter, K., B. Svendsen, and D. Rickenmann (1996), Debris flow modelling: A review, Continuum Mech, Thermodyn., 8, 1-35.
– reference: Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond., Ser. A, 225, 49-63.
– reference: Pudasaini, S. P., and B. Domnik (2009), Energy consideration in accelerating rapid shear granular flows, Nonlin. Processes Geophys., 16, 399-407.
– reference: Zahibo, N., E. Pelinovsky, T. Talipova, and I. Nikolkina (2010), Savage-Hutter model for avalanche dynamics in inclined channels: Analytical solutions, J. Geophys. Res., 115, B03402, doi:10.1029/2009JB006515.
– reference: Crosta, G. B., H. Chen, and C. F. Lee (2004), Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology, 60, 127-146.
– reference: Audusse, E. (2005), A multilayer Saint-Venant model: Derivation and numerical validation, Discrete Cont. Dyn. Syst., Ser. B, 5(2), 189-214.
– reference: Chen, C. L. (1988), Generalized viscoplastic modelling of debris flow, J. Hydraul. Res., 114(3), 237-258.
– reference: Ouriemi, M., P. Aussillous, and E. Guazzelli (2009), Sediment dynamics. Part 1: Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295-319.
– reference: Maxey, R. M., and J. J. Riley (1993), Equation of motion for a small sphere in a non-uniform flow, Phys. Fluids, 26, 883-889.
– reference: George, D. L., and R. M. Iverson (2011), A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Ital. J. Eng. Geol. Environ., doi:10.4408/IJEGE.2011-03.B-047, in press.
– reference: Hutter, K., and L. Schneider (2010a), Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications, Continuum Mech. Thermodyn., 22, 363-390.
– reference: Takahashi, T. (2007), Debris Flow: Mechanics, Prediction and Countermeasures, Taylor and Francis, New York.
– reference: Hungr, O. (1995), A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotechn. J., 32, 610-623.
– volume: 173–174
  start-page: 72
  year: 2012
  end-page: 86
  article-title: Full two‐dimensional rapid chute flows of simple viscoplastic granular materials with a pressure‐dependent dynamic slip‐velocity and their numerical simulations
  publication-title: J. Non‐Newtonian Fluid Mech.
– volume: 63
  start-page: 301
  year: 2002
  end-page: 331
  article-title: The mobility of long‐runout landslides
  publication-title: Eng. Geol.
– volume: 11
  start-page: 161
  year: 2003
  end-page: 194
– year: 1956
– volume: 100
  start-page: 11
  year: 2008
  end-page: 26
  article-title: Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)
  publication-title: Eng. Geol.
– volume: 182
  start-page: 1870
  year: 2011
  end-page: 1874
  article-title: Flow‐induced waterway in a heterogeneous granular material
  publication-title: Comp. Phys. Commun.
– volume: 22
  start-page: 363
  year: 2010
  end-page: 390
  article-title: Important aspects in the formulation of solid‐fluid debris‐flow models. Part I. Thermodynamic implications
  publication-title: Continuum Mech. Thermodyn.
– volume: 312
  start-page: 1499
  year: 1991
  end-page: 1506
  article-title: Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere
  publication-title: C. R. Acad. Sci., Ser. II
– volume: 26
  start-page: 883
  year: 1993
  end-page: 889
  article-title: Equation of motion for a small sphere in a non‐uniform flow
  publication-title: Phys. Fluids
– volume: 42
  start-page: 851
  year: 2008
  end-page: 885
  article-title: A Roe‐Type scheme for two‐phase shallow granular flows over variable topography
  publication-title: Math. Model. Numer. Anal.
– year: 1975
– volume: 227
  start-page: 7720
  year: 2008
  end-page: 7754
  article-title: A new Savage‐Hutter type model for submarine avalanches and generated tsunami
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 1
  year: 1996
  end-page: 35
  article-title: Debris flow modelling: A review
  publication-title: Continuum Mech, Thermodyn.
– volume: 105
  start-page: 27
  issue: 1
  year: 1991
  end-page: 42
  article-title: Viscous particle interactions and their effect on kinematic wave propagation
  publication-title: Chem. Eng. Commun.
– volume: 66
  start-page: 378
  year: 1978
  end-page: 396
  article-title: Characteristics and stability analyses of transient one‐dimensional two‐phase flow equations and their finite difference approximations
  publication-title: Nucl. Sci. Eng.
– volume: 60
  start-page: 127
  year: 2004
  end-page: 146
  article-title: Replay of the 1987 Val Pola Landslide, Italian Alps
  publication-title: Geomorphology
– volume: 3
  start-page: 125
  year: 2006
  end-page: 136
  article-title: Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan
  publication-title: Landslides
– volume: 87
  start-page: 408
  year: 1990
  end-page: 463
  article-title: Non‐oscillatory central differencing for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 495
  start-page: 193
  year: 2003
  end-page: 208
  article-title: Rapid shear flows of dry granular masses down curved and twisted channels
  publication-title: J. Fluid Mech.
– volume: 106
  start-page: 537
  issue: B1
  year: 2001
  end-page: 552
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory
  publication-title: J. Geophys. Res.
– volume: 633
  start-page: 115
  year: 2009
  end-page: 135
  article-title: A two‐phase flow description of the initiation of underwater granular avalanches
  publication-title: J. Fluid Mech.
– volume: 23
  issue: 4
  year: 2011
  article-title: Some exact solutions for debris and avalanche flows
  publication-title: Phys. Fluids
– volume: 19
  issue: 5
  year: 2007
  article-title: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls
  publication-title: Phys. Fluids
– volume: 22
  start-page: 391
  year: 2010
  end-page: 411
  article-title: Important aspects in the formulation of solid‐fluid debris‐flow models. Part II. Constitutive modelling
  publication-title: Continuum Mech. Thermodyn.
– volume: 225
  start-page: 49
  year: 1954
  end-page: 63
  article-title: Experiments on a gravity‐free dispersion of large solid spheres in a Newtonian fluid under shear
  publication-title: Proc. R. Soc. Lond., Ser. A
– volume: 115
  year: 2010
  article-title: Savage‐Hutter model for avalanche dynamics in inclined channels: Analytical solutions
  publication-title: J. Geophys. Res.
– volume: 5
  start-page: 799
  year: 2005
  end-page: 819
  article-title: Modelling debris flows down general channels
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 35
  start-page: 245
  issue: 3
  year: 1997
  end-page: 296
  article-title: The physics of debris flows
  publication-title: Rev. Geophys.
– volume: 78
  year: 2008
  article-title: Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results
  publication-title: Phys. Rev. E
– volume: 25
  start-page: 843
  year: 1979
  end-page: 855
  article-title: Drag coefficient and relative velocity in bubbly, droplet or particulate flows
  publication-title: AIChE J.
– year: 2011
  article-title: A two‐phase debris‐flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore‐fluid pressure
  publication-title: Ital. J. Eng. Geol. Environ.
– volume: 199
  start-page: 177
  year: 1989
  end-page: 215
  article-title: The motion of a finite mass of granular material down a rough incline
  publication-title: J. Fluid Mech.
– volume: 74–75
  start-page: 21
  year: 2012
  end-page: 30
  article-title: Topographic curvature effects in applied avalanche modeling
  publication-title: Cold Reg. Sci. Tech.
– year: 2007
– volume: 13
  start-page: 113
  year: 1987
  end-page: 121
  article-title: The virtual mass and lift force on a sphere in rotating and straining inviscid flow
  publication-title: Int. J. Multiphase Flow
– volume: 15
  start-page: 150
  year: 1937
  end-page: 166
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– volume: 441
  start-page: 727
  year: 2006
  end-page: 730
  article-title: A constitutive law for dense granular flow
  publication-title: Nature
– volume: 42
  start-page: 683
  issue: 4
  year: 2008
  end-page: 698
  article-title: An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment
  publication-title: ESAIM: Math. Modell. Numer. Anal.
– volume: 34
  year: 2007
  article-title: Field observations of basal forces and fluid pore pressure in a debris flow
  publication-title: Geophys. Res. Lett.
– volume: 32
  start-page: 35
  year: 1954
  end-page: 53
  article-title: Sedimentation and fluidization: Part 1
  publication-title: Trans. Inst. Chem. Eng.
– year: 2010
– volume: 136
  start-page: 271
  issue: 2
  year: 1927
  end-page: 306
  article-title: Ueber kapillare Leitung des Wassers im Boden
  publication-title: Sitzungsber Akad. Wiss. Wien
– volume: 5
  start-page: 189
  issue: 2
  year: 2005
  end-page: 214
  article-title: A multilayer Saint‐Venant model: Derivation and numerical validation
  publication-title: Discrete Cont. Dyn. Syst., Ser. B
– volume: 636
  start-page: 295
  year: 2009
  end-page: 319
  article-title: Sediment dynamics. Part 1: Bed‐load transport by laminar shearing flows
  publication-title: J. Fluid Mech.
– volume: 114
  start-page: 237
  issue: 3
  year: 1988
  end-page: 258
  article-title: Generalized viscoplastic modelling of debris flow
  publication-title: J. Hydraul. Res.
– volume: 16
  start-page: 399
  year: 2009
  end-page: 407
  article-title: Energy consideration in accelerating rapid shear granular flows
  publication-title: Nonlin. Processes Geophys.
– volume: 48
  start-page: 16
  issue: 1–3
  year: 2011
  end-page: 40
  article-title: Numerical treatment of the loss of hyperbolicity of the two‐layer shallow‐water system
  publication-title: J. Sci. Comput.
– volume: 455
  start-page: 1841
  year: 1999
  end-page: 1874
  article-title: Gravity‐driven free surface flow of granular avalanches over complex basal topography
  publication-title: Proc. R. Soc, A
– volume: 32
  start-page: 610
  year: 1995
  end-page: 623
  article-title: A model for the runout analysis of rapid flow slides, debris flows, and avalanches
  publication-title: Can. Geotechn. J.
– volume: 15
  start-page: 261
  year: 1983
  end-page: 291
  article-title: Mathematical modelling of two‐phase flow
  publication-title: Ann. Rev. Fluid Mech.
– volume: 119
  start-page: 244
  issue: 2
  year: 1993
  end-page: 261
  article-title: Two‐dimensional water flood and mudflow simulation
  publication-title: J. Hyd. Eng.
– volume: 6
  start-page: 527
  year: 1967
  end-page: 539
  article-title: A fluid mechanical description of fluidized beds: Equations of motion
  publication-title: Ind. Eng. Chem. Fundam.
– year: 2006
– volume: 363
  start-page: 1573
  year: 2005
  end-page: 1602
  article-title: A two‐fluid model for avalanche and debris flows
  publication-title: Philos. Trans. R. Soc. A
– year: 1991
– volume: 175
  start-page: 269
  year: 2002
  end-page: 301
  article-title: Shock‐capturing and front‐tracking methods for granular avalanches
  publication-title: J. Comput. Phys.
– ident: e_1_2_15_47_1
  doi: 10.5194/nhess-5-799-2005
– volume: 26
  start-page: 883
  year: 1993
  ident: e_1_2_15_34_1
  article-title: Equation of motion for a small sphere in a non‐uniform flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.864230
– ident: e_1_2_15_3_1
  doi: 10.3934/dcdsb.2005.5.189
– ident: e_1_2_15_21_1
  doi: 10.1007/s00161-010-0154-9
– ident: e_1_2_15_17_1
  doi: 10.4408/IJEGE.2011‐03.B‐047
– ident: e_1_2_15_39_1
  doi: 10.1017/S0022112009007460
– ident: e_1_2_15_26_1
  doi: 10.1029/97RG00426
– ident: e_1_2_15_51_1
  doi: 10.1016/j.cpc.2010.12.001
– ident: e_1_2_15_59_1
  doi: 10.1007/978-3-540-36565-5_5
– ident: e_1_2_15_2_1
  doi: 10.1021/i160024a007
– volume: 312
  start-page: 1499
  year: 1991
  ident: e_1_2_15_50_1
  article-title: Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere
  publication-title: C. R. Acad. Sci., Ser. II
– ident: e_1_2_15_9_1
  doi: 10.1007/s10915-010-9427-5
– volume-title: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches
  year: 2007
  ident: e_1_2_15_45_1
– ident: e_1_2_15_16_1
  doi: 10.1016/j.coldregions.2012.01.005
– ident: e_1_2_15_41_1
  doi: 10.1098/rsta.2005.1596
– ident: e_1_2_15_52_1
  doi: 10.1017/S0022112089000340
– ident: e_1_2_15_53_1
  doi: 10.1016/j.enggeo.2008.02.012
– ident: e_1_2_15_25_1
  doi: 10.1002/aic.690250513
– volume-title: Debris Flow
  year: 1991
  ident: e_1_2_15_56_1
– ident: e_1_2_15_19_1
  doi: 10.1139/t95-063
– ident: e_1_2_15_10_1
  doi: 10.1061/(ASCE)0733-9429(1988)114:3(237)
– ident: e_1_2_15_22_1
  doi: 10.1007/BF01175749
– ident: e_1_2_15_12_1
  doi: 10.1016/j.jnnfm.2012.03.001
– volume-title: Flow of Gases Through Porous Media
  year: 1956
  ident: e_1_2_15_7_1
– volume: 15
  start-page: 150
  year: 1937
  ident: e_1_2_15_6_1
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– ident: e_1_2_15_58_1
  doi: 10.1029/2009JB006515
– ident: e_1_2_15_14_1
  doi: 10.1016/0301-9322(87)90011-5
– ident: e_1_2_15_40_1
  doi: 10.1051/m2an:2008029
– ident: e_1_2_15_15_1
  doi: 10.1016/j.jcp.2008.04.039
– ident: e_1_2_15_11_1
  doi: 10.1016/j.geomorph.2003.07.015
– ident: e_1_2_15_4_1
  doi: 10.1098/rspa.1954.0186
– ident: e_1_2_15_32_1
  doi: 10.1016/S0013-7952(01)00090-4
– ident: e_1_2_15_55_1
  doi: 10.1006/jcph.2001.6946
– ident: e_1_2_15_37_1
  doi: 10.1061/(ASCE)0733-9429(1993)119:2(244)
– ident: e_1_2_15_13_1
  doi: 10.1146/annurev.fl.15.010183.001401
– volume-title: Thermo‐Fluid Dynamic Theory of Two‐Phase Flow
  year: 1975
  ident: e_1_2_15_23_1
– ident: e_1_2_15_57_1
  doi: 10.1201/9780203946282
– ident: e_1_2_15_8_1
– ident: e_1_2_15_38_1
  doi: 10.1017/S0022112009007915
– ident: e_1_2_15_44_1
  doi: 10.1017/S0022112003006141
– ident: e_1_2_15_33_1
  doi: 10.13182/NSE78-4
– volume: 32
  start-page: 35
  year: 1954
  ident: e_1_2_15_49_1
  article-title: Sedimentation and fluidization: Part 1
  publication-title: Trans. Inst. Chem. Eng.
– ident: e_1_2_15_18_1
  doi: 10.1098/rspa.1999.0383
– ident: e_1_2_15_54_1
  doi: 10.1007/s10346-005-0027-7
– ident: e_1_2_15_20_1
  doi: 10.1007/s00161-010-0153-x
– ident: e_1_2_15_28_1
  doi: 10.1038/nature04801
– ident: e_1_2_15_46_1
  doi: 10.1103/PhysRevE.78.041308
– ident: e_1_2_15_27_1
  doi: 10.1029/2000JB900329
– ident: e_1_2_15_43_1
  doi: 10.5194/npg-16-399-2009
– ident: e_1_2_15_36_1
  doi: 10.1016/0021-9991(90)90260-8
– ident: e_1_2_15_31_1
  doi: 10.1080/00986449108911515
– ident: e_1_2_15_29_1
  doi: 10.1007/3-540-69833-7
– ident: e_1_2_15_35_1
  doi: 10.1029/2006GL029183
– ident: e_1_2_15_42_1
  doi: 10.1063/1.3570532
– ident: e_1_2_15_5_1
  doi: 10.1051/m2an:2008019
– ident: e_1_2_15_48_1
  doi: 10.1063/1.2726885
– volume: 136
  start-page: 271
  issue: 2
  year: 1927
  ident: e_1_2_15_30_1
  article-title: Ueber kapillare Leitung des Wassers im Boden
  publication-title: Sitzungsber Akad. Wiss. Wien
– ident: e_1_2_15_24_1
  doi: 10.1007/978-0-387-29187-1
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.565504
Snippet This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb...
This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Avalanches
Buoyancy
Cryosphere
Debris flow
Detritus
Earth sciences
Earth, ocean, space
Exact sciences and technology
general two-phase debris flow
generalized drag
generalized drag, buoyancy, virtual mass, Newtonian and non‐Newtonian viscous stresses
Hydrology
Landslides & mudslides
Momentum transfer
Multiphase flow
Newtonian and non-Newtonian viscous stresses
particle-laden and dispersive flows
physical modeling
Sediment transport
sediment transports
sediment transports, particle‐laden and dispersive flows
virtual mass
Title A general two-phase debris flow model
URI https://api.istex.fr/ark:/67375/WNG-1FCJT0NF-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002186
https://www.proquest.com/docview/1080805491
https://www.proquest.com/docview/1767058053
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-NAEB7UvtyL3KFy8WrJg_XhZDHZ3SSbp0OLqRQsR1HOt7DZHwpX2l5b0T_fnWQbLJy-BbIbwreTnW9nJvMBnFaOhGQVM8SanGLoRhLh7IgkXDvyqqSMI_wb-Xac3tzz0UPy4ANuK19WudkT641azxXGyC_iLM2iRDib-bX4R1A1CrOrXkJjFzpuCxbu8NW5uh7_nrRRFpSVyOuUJ3UXBMN2vvo9ovkFOr9R0egybfmlDkL8inWScuWgso3GxRYJfU9la19UfIV9TyLDy2bVv8GOmR1A_zJ8bHpIh-uXOVk8Of8UaoMV_aGdzl_CWvTmEO6L67vBDfEiCETh2YFUwnIdJUZblWluTUqNI1XcaqalTHWUKW5jbLsnJWVpxZQyiYlZRZmNrBGcHcHebD4z3yGsVCJiqZJc64gbJnPhzr8Se5phix0rAjjfQFAq3yEchSqmZZ2ppnn5HrAA-u3oRdMZ44NxZzWa7SC5_IvVZFlS_hkPy7gYjO6icVEOAuhtwd1OoCmS1pgF0N3gX_ovbVU3OHVWwfP4_7dbswngZ71kn75sORpOipxmx58_6wd8cbNoU2vWhb318tmcOHKyrnqwK4phz9vhG9033II
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXBALEQil7IBxAVndt78MHhKrAJk3bHFAqejNeP0CiSkITFPhT_EY83ocaCXrrbaX1WqvxZ8_n8Xg-gFe1JyFFzSxxVlAM3ShSehyRjBtPXrVSaYK3kc-m-ficTy6yix34092FwbTKbk0MC7VZaIyRH6ZFXiRZ6THzfvmDoGoUnq52EhoNLE7s743fsq3eHX_w4zugtPo4G45JqypANJJxUpeOmySzxunCcGdzaj1L4c4wo1RukkJzl2IdO6Uoy2umtc1symrKXOJsyZnv9w7sccYEzqiyGvUxHRSxEOGAlfoHgkHCNtc-oeIQXe2kalSgtrzgHg7oL8zKVCs_MK5R1NiivNeJc_B81QO431LW-KjB2EPYsfNHMDiKvzYVq-P1ZkGW37w3jI3F-wOxu1xs4iCx8xjOb8U4T2B3vpjbpxDXOitTpTNhTMItU6L0u22FFdSwoI8rI3jbmUDqth45ymJcynAuToW8brAIBn3rZVOH4z_tXgdr9o3U1XfMXSsy-Xk6kmk1nMySaSWHERxsmbv_gOZIkVMWwX5nf9nO61Uop-oxyEX679c9SCN4E4bsxp-Vk9GnStDi2c19vYS749nZqTw9np48h3u-B9pkue3D7vrqp33hadG6PghYjOHLbYP_L8xkGJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXQlxQSBABErJgeUAstaxndcBobJt2m4hqqpW9GYcP0Ci2l26ixb-Gr8OT17qStBbb5HiWNHMl8zn8Xg-gFeVJyFpxS1xNmeYulEk8zgisTCevGqlIoqnkT-VyeG5mF7EF1vwpzsLg2WV3T-x_lGbucYc-ThKk5TGmcfM2LVlESd7xfvFD4IKUrjT2slpNBA5tr_Xfvm2fHe05309YqzYP5scklZhgGgk5qTKnDA0tsbp1AhnE2Y9YxHOcKNUYmiqhYuwp51SjCcV19rGNuIV4446mwnu570Dw9SviugAhh_2y5PTPsODkhZ5vd3K_AXBlGFbeU9ZPsbAOy0aTaiNmDhE9_7CGk219G5yjb7GBgG-TqPrOFg8gPstgQ13G8Q9hC07ewSj3fBr0786XK3nZPHNx8bQWDxNELrL-TqsBXcew_mtmOcJDGbzmX0KYaXjLFI6zo2hwnKVZ37trbCfGrb3cVkAbzsTSN12J0eRjEtZ75KzXF43WACjfvSi6crxn3Gva2v2g9TVd6xkS2P5uTyQUTGZntGykJMAdjbM3T_AEiTMEQ9gu7O_bL_yZd1c1SNS5NG_b_eQDeBN7bIbX1ZOD06LnKXPbp7rJdz1wJcfj8rj53DPT8CakrdtGKyuftoXniOtqp0WjCF8uW38_wXW5R4l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+two%E2%80%90phase+debris+flow+model&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Pudasaini%2C+Shiva+P.&rft.date=2012-09-01&rft.issn=0148-0227&rft.volume=117&rft.issue=F3&rft_id=info:doi/10.1029%2F2011JF002186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JF002186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon