A general two-phase debris flow model
This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The gener...
Saved in:
Published in | Journal of Geophysical Research: Earth Surface Vol. 117; no. F3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.09.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena.
Key Points
This paper presents a new, generalized and unified two‐phase debris flow model
Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy
New model adequately describes complex two‐phase debris flow, sediment transport |
---|---|
AbstractList | This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid-volume-fraction-gradient-enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid-like and fluid-like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid- and the fluid-momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non-Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid-volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two-phase flow model to date, and can reproduce results from most previous simple models that consider single- and two-phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two-phase debris flows, particle-laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. Key Points This paper presents a new, generalized and unified two-phase debris flow model Includes non-Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two-phase debris flow, sediment transport This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. Key Points This paper presents a new, generalized and unified two‐phase debris flow model Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two‐phase debris flow, sediment transport This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid-volume-fraction-gradient-enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid-like and fluid-like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid- and the fluid-momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non-Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid-volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two-phase flow model to date, and can reproduce results from most previous simple models that consider single- and two-phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two-phase debris flows, particle-laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb plasticity for the solid stress, and the fluid stress is modeled as a solid‐volume‐fraction‐gradient‐enhanced non‐Newtonian viscous stress. The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass. A new, generalized drag force is proposed that covers both solid‐like and fluid‐like contributions, and can be applied to drag ranging from linear to quadratic. Strong coupling between the solid‐ and the fluid‐momentum transfer leads to simultaneous deformation, mixing, and separation of the phases. Inclusion of the non‐Newtonian viscous stresses is important in several aspects. The evolution, advection, and diffusion of the solid‐volume fraction plays an important role. The model, which includes three innovative, fundamentally new, and dominant physical aspects (enhanced viscous stress, virtual mass, generalized drag) constitutes the most generalized two‐phase flow model to date, and can reproduce results from most previous simple models that consider single‐ and two‐phase avalanches and debris flows as special cases. Numerical results indicate that the model can adequately describe the complex dynamics of subaerial two‐phase debris flows, particle‐laden and dispersive flows, sediment transport, and submarine debris flows and associated phenomena. This paper presents a new, generalized and unified two‐phase debris flow model Includes non‐Newtonian viscous stress, virtual mass, generalized drag, buoyancy New model adequately describes complex two‐phase debris flow, sediment transport |
Author | Pudasaini, Shiva P. |
Author_xml | – sequence: 1 givenname: Shiva P. surname: Pudasaini fullname: Pudasaini, Shiva P. email: pudasaini@geo.uni-bonn.de, (pudasaini@geo.uni-bonn.de organization: Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn, Bonn, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26507113$$DView record in Pascal Francis |
BookMark | eNp9kEtL7EAQRhtRcHzs_AEBcWe0qp-ZpQxmdBAFUVw2PZ1qbzQmY3dk9N8bGZWLoFWL2pzzVVFbbL3tWmJsD-EIgY-POSDOSgCOhV5jI45K55wDX2cjQFnkwLnZZLspPcBQUmkJOGIHJ9k9tRRdk_XLLl_8c4myiuaxTlloumX21FXU7LCN4JpEu59zm92WpzeTs_ziano-ObnIvQJl8nkRZAWKquBNJQNpTlqBDJWonNMVGC8DCoPSOS70XHhPilDMuQgQqJBim-2vchexe36h1NuH7iW2w0qLRhtQBSjxJwXF0EqOcaAOPimXvGtCdK2vk13E-snFN8uHywziRxpfcT52KUUK1te96-uu7aOrmyHSfvzX_v_fQTr8IX3l_oLjCl_WDb39ydrZ9LocczM4-cqpU0-v346Lj1YbYZS9u5xaLCezG7gs7US8AyPllmc |
CitedBy_id | crossref_primary_10_1016_j_enggeo_2017_01_007 crossref_primary_10_1002_esp_4469 crossref_primary_10_1155_2022_2864271 crossref_primary_10_1016_j_enggeo_2015_05_020 crossref_primary_10_1142_S1793962318500010 crossref_primary_10_3390_w10121784 crossref_primary_10_1139_cgj_2021_0437 crossref_primary_10_1007_s10346_015_0585_2 crossref_primary_10_1016_j_compgeo_2022_105099 crossref_primary_10_1002_2016WR018675 crossref_primary_10_1007_s12665_017_6788_1 crossref_primary_10_1017_jfm_2022_1089 crossref_primary_10_1016_j_advwatres_2024_104691 crossref_primary_10_1016_j_cageo_2020_104640 crossref_primary_10_1016_j_coldregions_2013_08_007 crossref_primary_10_1016_j_enggeo_2021_106072 crossref_primary_10_1007_s10346_023_02146_z crossref_primary_10_1007_s10346_019_01151_5 crossref_primary_10_1016_j_apm_2021_06_031 crossref_primary_10_1093_gji_ggac482 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292 crossref_primary_10_1038_s41467_022_28296_7 crossref_primary_10_1016_j_enggeo_2018_03_023 crossref_primary_10_1016_j_jcp_2024_112798 crossref_primary_10_1016_j_enggeo_2013_01_012 crossref_primary_10_1002_esp_4578 crossref_primary_10_1016_j_jhydrol_2019_123967 crossref_primary_10_1002_esp_5542 crossref_primary_10_1007_s11069_021_04501_6 crossref_primary_10_1007_s11440_016_0496_y crossref_primary_10_1007_s10064_023_03480_1 crossref_primary_10_1016_j_heliyon_2019_e01994 crossref_primary_10_1061_JHEND8_HYENG_13736 crossref_primary_10_1016_j_coastaleng_2019_103623 crossref_primary_10_1016_j_euromechflu_2022_10_003 crossref_primary_10_1007_s10346_021_01772_9 crossref_primary_10_1016_j_euromechflu_2022_06_002 crossref_primary_10_1111_gto_12037 crossref_primary_10_5194_nhess_21_2447_2021 crossref_primary_10_17277_jamt_2021_03_pp_204_215 crossref_primary_10_1007_s00707_014_1126_0 crossref_primary_10_1016_j_camwa_2016_06_020 crossref_primary_10_1007_s40571_023_00699_3 crossref_primary_10_1038_s41598_020_71016_8 crossref_primary_10_1007_s10346_019_01229_0 crossref_primary_10_1007_s10346_021_01733_2 crossref_primary_10_2166_hydro_2024_103 crossref_primary_10_3189_2015JoG14J168 crossref_primary_10_1080_19475705_2024_2432365 crossref_primary_10_1007_s10346_023_02036_4 crossref_primary_10_1016_j_enggeo_2023_107186 crossref_primary_10_5194_nhess_22_377_2022 crossref_primary_10_3390_land11101629 crossref_primary_10_1007_s10706_017_0241_9 crossref_primary_10_1007_s10346_016_0734_2 crossref_primary_10_1002_nag_3339 crossref_primary_10_1007_s10346_014_0484_y crossref_primary_10_1016_j_enggeo_2019_105260 crossref_primary_10_1016_j_matcom_2019_03_014 crossref_primary_10_1007_s11069_024_07048_4 crossref_primary_10_1016_j_scitotenv_2019_05_124 crossref_primary_10_1007_s11069_024_06728_5 crossref_primary_10_1063_1_5030349 crossref_primary_10_1029_2018JC014167 crossref_primary_10_1002_esp_4318 crossref_primary_10_5194_nhess_21_3015_2021 crossref_primary_10_1007_s12040_024_02315_1 crossref_primary_10_3390_w15081592 crossref_primary_10_1103_PhysRevE_99_042904 crossref_primary_10_3390_rs16244740 crossref_primary_10_1007_s10346_022_01890_y crossref_primary_10_1007_s11004_021_09948_8 crossref_primary_10_5194_gmd_10_3963_2017 crossref_primary_10_3390_app10082954 crossref_primary_10_1007_s10346_022_01901_y crossref_primary_10_1016_j_jfluidstructs_2020_103162 crossref_primary_10_1007_s10346_021_01661_1 crossref_primary_10_1016_j_geomorph_2021_107664 crossref_primary_10_5194_esurf_10_165_2022 crossref_primary_10_1016_j_ijnonlinmec_2020_103638 crossref_primary_10_1002_2014JF003331 crossref_primary_10_7409_rabdim_022_019 crossref_primary_10_1016_j_ijnonlinmec_2015_09_010 crossref_primary_10_1007_s00445_017_1169_x crossref_primary_10_1007_s10064_018_1329_z crossref_primary_10_1007_s11629_018_4886_5 crossref_primary_10_5194_npg_22_109_2015 crossref_primary_10_1007_s00161_013_0326_5 crossref_primary_10_1051_e3sconf_20184004019 crossref_primary_10_3389_feart_2023_1051913 crossref_primary_10_1016_j_advwatres_2016_12_014 crossref_primary_10_1007_s12650_020_00628_z crossref_primary_10_1007_s00033_023_02115_5 crossref_primary_10_1016_j_cageo_2023_105417 crossref_primary_10_1007_s11069_022_05376_x crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416 crossref_primary_10_1098_rspa_2013_0819 crossref_primary_10_1144_qjegh2017_071 crossref_primary_10_1007_s10346_024_02450_2 crossref_primary_10_1038_s41467_021_26959_5 crossref_primary_10_1007_s10064_019_01504_3 crossref_primary_10_1029_2019JC015873 crossref_primary_10_1016_j_enggeo_2022_106798 crossref_primary_10_1051_e3sconf_202341502022 crossref_primary_10_1002_nag_2748 crossref_primary_10_1016_j_enggeo_2019_105440 crossref_primary_10_1016_j_enggeo_2022_106797 crossref_primary_10_3390_w13121698 crossref_primary_10_1139_cgj_2017_0211 crossref_primary_10_1140_epjp_s13360_024_04908_7 crossref_primary_10_1016_j_enggeo_2021_106154 crossref_primary_10_1186_s13617_017_0060_y crossref_primary_10_1016_j_enggeo_2013_10_010 crossref_primary_10_1016_j_enggeo_2015_12_023 crossref_primary_10_1080_01490419_2019_1583146 crossref_primary_10_1016_j_geomorph_2018_08_032 crossref_primary_10_1016_j_enggeo_2020_105877 crossref_primary_10_1016_j_geomorph_2016_10_007 crossref_primary_10_1111_1755_6724_13416 crossref_primary_10_1016_j_jhydrol_2021_126134 crossref_primary_10_1017_jfm_2021_348 crossref_primary_10_3390_w16091285 crossref_primary_10_1016_j_enggeo_2015_12_008 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105153 crossref_primary_10_1016_j_cnsns_2023_107624 crossref_primary_10_1016_j_finel_2022_103864 crossref_primary_10_1007_s10230_024_01015_y crossref_primary_10_1016_j_enggeo_2025_107995 crossref_primary_10_1007_s10346_021_01778_3 crossref_primary_10_1007_s10346_022_01989_2 crossref_primary_10_1007_s10346_023_02159_8 crossref_primary_10_1007_s10064_021_02202_9 crossref_primary_10_1016_j_jhydrol_2018_10_001 crossref_primary_10_1007_s10346_020_01478_4 crossref_primary_10_1007_s11440_018_0727_5 crossref_primary_10_5194_gmd_11_2923_2018 crossref_primary_10_1016_j_coldregions_2013_09_011 crossref_primary_10_1016_j_jnnfm_2013_07_005 crossref_primary_10_3390_geotechnics3020020 crossref_primary_10_1007_s10346_023_02174_9 crossref_primary_10_1016_j_advwatres_2017_08_014 crossref_primary_10_5194_hess_24_93_2020 crossref_primary_10_1016_j_compfluid_2021_105211 crossref_primary_10_1007_s10346_023_02092_w crossref_primary_10_1007_s11629_022_7462_y crossref_primary_10_1016_j_catena_2021_105727 crossref_primary_10_1016_j_geomorph_2016_08_022 crossref_primary_10_1002_geot_201900075 crossref_primary_10_1016_j_compfluid_2019_06_015 crossref_primary_10_3390_geosciences13120378 crossref_primary_10_15446_esrj_v23n4_77683 crossref_primary_10_1007_s11629_021_7199_z crossref_primary_10_3390_app14199059 crossref_primary_10_3390_app14020564 crossref_primary_10_1007_s11831_024_10198_0 crossref_primary_10_1016_j_advwatres_2023_104592 crossref_primary_10_1002_nag_3814 crossref_primary_10_1007_s11629_018_5279_5 crossref_primary_10_3189_2016AoG71A039 crossref_primary_10_1016_j_enggeo_2016_03_002 crossref_primary_10_1016_j_ijnonlinmec_2023_104585 crossref_primary_10_1098_rspa_2013_0820 crossref_primary_10_1680_jgeot_21_00226 crossref_primary_10_1007_s12040_024_02502_0 crossref_primary_10_1002_esp_4870 crossref_primary_10_1016_j_apm_2022_01_032 crossref_primary_10_3189_2016AoG71A034 crossref_primary_10_1007_s10346_020_01383_w crossref_primary_10_3367_UFNe_2020_01_038729 crossref_primary_10_1016_j_enggeo_2019_105218 crossref_primary_10_1088_1755_1315_1331_1_012027 crossref_primary_10_2139_ssrn_4057017 crossref_primary_10_1016_j_enggeo_2019_04_013 crossref_primary_10_1007_s10346_023_02081_z crossref_primary_10_1016_j_enggeo_2014_11_016 crossref_primary_10_1007_s10346_019_01333_1 crossref_primary_10_1016_j_enggeo_2020_105771 crossref_primary_10_5194_tc_17_591_2023 crossref_primary_10_1016_j_enggeo_2022_106546 crossref_primary_10_1016_j_ijnonlinmec_2023_104349 crossref_primary_10_1061__ASCE_HY_1943_7900_0001656 crossref_primary_10_5194_se_15_437_2024 crossref_primary_10_20965_jdr_2017_p0607 crossref_primary_10_1016_j_enggeo_2018_05_023 crossref_primary_10_1016_j_enggeo_2018_01_007 crossref_primary_10_1007_s00161_016_0535_9 crossref_primary_10_1007_s10346_017_0894_8 crossref_primary_10_1007_s11440_022_01774_4 crossref_primary_10_3390_rs15215154 crossref_primary_10_1007_s11069_023_05956_5 crossref_primary_10_1029_2023JF007466 crossref_primary_10_1016_j_enggeo_2024_107722 crossref_primary_10_1029_2021JF006452 crossref_primary_10_1016_j_euromechflu_2024_12_008 crossref_primary_10_1016_j_compgeo_2024_106581 crossref_primary_10_1016_j_enggeo_2017_11_007 crossref_primary_10_1080_19648189_2020_1756418 crossref_primary_10_1016_j_apm_2019_11_031 crossref_primary_10_1063_5_0092726 crossref_primary_10_1007_s12665_015_4920_7 crossref_primary_10_1016_j_scitotenv_2023_163262 crossref_primary_10_1130_GES01389_1 crossref_primary_10_1051_e3sconf_202341501015 crossref_primary_10_1061__ASCE_HY_1943_7900_0001024 crossref_primary_10_1007_s11069_015_1947_8 crossref_primary_10_1139_cgj_2020_0774 crossref_primary_10_1016_j_yofte_2024_103721 crossref_primary_10_1016_j_sandf_2023_101338 crossref_primary_10_5194_nhess_18_1373_2018 crossref_primary_10_1371_journal_pone_0160756 crossref_primary_10_1007_s10346_019_01254_z crossref_primary_10_1016_j_partic_2012_11_006 crossref_primary_10_1016_j_scitotenv_2021_148439 crossref_primary_10_5194_nhess_21_3539_2021 crossref_primary_10_1007_s41207_023_00409_8 crossref_primary_10_1016_j_enggeo_2015_07_014 crossref_primary_10_3390_w14091348 crossref_primary_10_3390_w12092341 crossref_primary_10_1007_s10346_022_01987_4 crossref_primary_10_3390_app12063093 crossref_primary_10_1002_2014JF003279 crossref_primary_10_1016_j_enggeo_2022_106767 crossref_primary_10_1088_1755_1315_570_4_042053 crossref_primary_10_5194_nhess_22_3041_2022 crossref_primary_10_1016_j_geomorph_2021_107960 crossref_primary_10_1080_1064119X_2021_2020942 crossref_primary_10_3390_su13147955 crossref_primary_10_1016_j_jrmge_2023_12_001 crossref_primary_10_1017_jfm_2013_675 crossref_primary_10_1007_s00603_020_02180_6 crossref_primary_10_1002_nag_3971 crossref_primary_10_1016_j_enggeo_2019_105429 crossref_primary_10_1061__ASCE_HY_1943_7900_0001163 crossref_primary_10_1007_s11433_017_9093_y crossref_primary_10_1111_1755_6724_15146 crossref_primary_10_1007_s11629_024_8954_8 crossref_primary_10_1061__ASCE_HY_1943_7900_0001281 crossref_primary_10_1063_5_0096069 crossref_primary_10_5194_nhess_20_3455_2020 crossref_primary_10_5194_gmd_9_2909_2016 crossref_primary_10_1051_e3sconf_202341502004 crossref_primary_10_1007_s11440_021_01296_5 crossref_primary_10_1016_j_compgeo_2020_103973 crossref_primary_10_1002_2014JF003183 crossref_primary_10_1002_esp_4830 crossref_primary_10_3390_w14071050 crossref_primary_10_1007_s11629_017_4458_0 crossref_primary_10_3390_app132312610 crossref_primary_10_1007_s00707_019_02457_0 crossref_primary_10_24850_j_tyca_16_4_10 crossref_primary_10_3390_su11113199 crossref_primary_10_1016_j_compgeo_2024_106210 crossref_primary_10_1002_esp_4283 crossref_primary_10_1007_s10652_016_9483_y crossref_primary_10_1007_s10346_019_01142_6 crossref_primary_10_1016_j_enggeo_2018_10_021 crossref_primary_10_1051_e3sconf_202341502016 crossref_primary_10_1029_2020JF005657 crossref_primary_10_3390_rs15194691 crossref_primary_10_1016_j_advwatres_2021_103966 crossref_primary_10_1007_s10346_018_1108_8 crossref_primary_10_1016_j_enggeo_2013_12_017 crossref_primary_10_1016_j_ijnonlinmec_2018_07_008 crossref_primary_10_3367_UFNr_2020_01_038729 crossref_primary_10_1016_j_ijnonlinmec_2022_104312 crossref_primary_10_1007_s10064_020_01999_1 crossref_primary_10_1007_s11440_016_0509_x crossref_primary_10_1007_s11069_020_04132_3 crossref_primary_10_1029_2024JF007689 crossref_primary_10_1007_s10064_021_02278_3 crossref_primary_10_5194_gmd_14_1841_2021 crossref_primary_10_1016_j_advwatres_2022_104254 crossref_primary_10_1016_j_enggeo_2019_105287 crossref_primary_10_1016_j_euromechflu_2018_09_005 crossref_primary_10_1029_2022JF006712 crossref_primary_10_1016_j_enggeo_2019_105168 crossref_primary_10_1016_j_geomorph_2018_09_003 crossref_primary_10_5194_gmd_8_4027_2015 crossref_primary_10_1007_s10346_024_02358_x crossref_primary_10_1080_00288306_2021_1885048 crossref_primary_10_3390_app11125751 crossref_primary_10_1007_s11440_015_0418_4 crossref_primary_10_1007_s11440_020_01114_4 crossref_primary_10_1016_j_enggeo_2014_08_024 crossref_primary_10_5194_nhess_18_303_2018 crossref_primary_10_2110_jsr_2020_020 crossref_primary_10_1007_s10346_018_1119_5 crossref_primary_10_1029_2018JF004671 crossref_primary_10_1016_j_ijsrc_2017_06_003 crossref_primary_10_5194_gmd_17_6545_2024 crossref_primary_10_5194_esurf_11_325_2023 crossref_primary_10_1002_esp_4939 crossref_primary_10_1016_j_envsoft_2018_03_017 crossref_primary_10_3390_geotechnics2030025 crossref_primary_10_1029_2018JF004667 crossref_primary_10_5194_nhess_20_505_2020 crossref_primary_10_1016_j_enggeo_2023_107076 crossref_primary_10_1680_jgeot_21_00080 crossref_primary_10_1029_2021JF006245 crossref_primary_10_1007_s11069_022_05669_1 crossref_primary_10_5194_nhess_22_3183_2022 crossref_primary_10_1016_j_advwatres_2021_103989 crossref_primary_10_1016_j_jhydrol_2015_12_054 crossref_primary_10_1144_qjegh2014_036 crossref_primary_10_1063_5_0140599 crossref_primary_10_1016_j_jhydrol_2022_128221 crossref_primary_10_1016_j_enggeo_2013_01_021 crossref_primary_10_1016_j_ijnonlinmec_2016_10_005 crossref_primary_10_1007_s11629_020_6164_6 crossref_primary_10_1016_j_partic_2013_11_010 crossref_primary_10_1029_2021WR030688 crossref_primary_10_1007_s10064_022_02871_0 crossref_primary_10_5194_nhess_24_465_2024 crossref_primary_10_1029_2019JF005204 crossref_primary_10_3390_w14091352 crossref_primary_10_5194_nhess_21_1229_2021 crossref_primary_10_1016_j_geomorph_2020_107431 crossref_primary_10_1007_s12583_022_1625_1 crossref_primary_10_1016_j_geomorph_2021_107992 crossref_primary_10_5194_nhess_13_1655_2013 crossref_primary_10_1016_j_compgeo_2020_103669 crossref_primary_10_1016_j_ijnonlinmec_2017_12_003 crossref_primary_10_1007_s10706_025_03104_3 crossref_primary_10_1080_00221686_2020_1744746 crossref_primary_10_1016_j_apm_2023_11_029 crossref_primary_10_5194_nhess_20_2319_2020 crossref_primary_10_1007_s11831_021_09686_4 crossref_primary_10_1016_j_watres_2020_116031 crossref_primary_10_1111_1755_6724_13031 crossref_primary_10_1016_j_enggeo_2018_09_003 crossref_primary_10_3390_w16111594 crossref_primary_10_1016_j_compgeo_2020_103541 crossref_primary_10_5194_gmd_10_553_2017 crossref_primary_10_1007_s10346_023_02157_w crossref_primary_10_1139_cgj_2016_0171 |
Cites_doi | 10.5194/nhess-5-799-2005 10.1063/1.864230 10.3934/dcdsb.2005.5.189 10.1007/s00161-010-0154-9 10.4408/IJEGE.2011‐03.B‐047 10.1017/S0022112009007460 10.1029/97RG00426 10.1016/j.cpc.2010.12.001 10.1007/978-3-540-36565-5_5 10.1021/i160024a007 10.1007/s10915-010-9427-5 10.1016/j.coldregions.2012.01.005 10.1098/rsta.2005.1596 10.1017/S0022112089000340 10.1016/j.enggeo.2008.02.012 10.1002/aic.690250513 10.1139/t95-063 10.1061/(ASCE)0733-9429(1988)114:3(237) 10.1007/BF01175749 10.1016/j.jnnfm.2012.03.001 10.1029/2009JB006515 10.1016/0301-9322(87)90011-5 10.1051/m2an:2008029 10.1016/j.jcp.2008.04.039 10.1016/j.geomorph.2003.07.015 10.1098/rspa.1954.0186 10.1016/S0013-7952(01)00090-4 10.1006/jcph.2001.6946 10.1061/(ASCE)0733-9429(1993)119:2(244) 10.1146/annurev.fl.15.010183.001401 10.1201/9780203946282 10.1017/S0022112009007915 10.1017/S0022112003006141 10.13182/NSE78-4 10.1098/rspa.1999.0383 10.1007/s10346-005-0027-7 10.1007/s00161-010-0153-x 10.1038/nature04801 10.1103/PhysRevE.78.041308 10.1029/2000JB900329 10.5194/npg-16-399-2009 10.1016/0021-9991(90)90260-8 10.1080/00986449108911515 10.1007/3-540-69833-7 10.1029/2006GL029183 10.1063/1.3570532 10.1051/m2an:2008019 10.1063/1.2726885 10.1007/978-0-387-29187-1 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2011JF002186 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database (subscription) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 3959591051 2772421031 26507113 10_1029_2011JF002186 JGRF927 ark_67375_WNG_1FCJT0NF_C |
Genre | article Feature |
GrantInformation_xml | – fundername: German Research Foundation (DFG) funderid: PU 386/1‐1; PU 386/1‐2 |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-c5057-b8f4d05edfc7d4fe62e6504fd3daa6d07c4f13714aa236b3cce5e13b23f0fe843 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9003 |
IngestDate | Fri Jul 25 18:55:20 EDT 2025 Fri Jul 25 10:36:57 EDT 2025 Mon Jul 21 09:14:59 EDT 2025 Tue Jul 01 01:55:53 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Wed Jan 22 16:44:36 EST 2025 Wed Oct 30 09:57:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F3 |
Keywords | advection stress models Two phase flow mixing debris flows plasticity Submarine Strong coupling buoyancy lead dynamics Momentum transfer sediment transport avalanches Drag separation deformation Diffusion particles Natural hazards inclusions |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5057-b8f4d05edfc7d4fe62e6504fd3daa6d07c4f13714aa236b3cce5e13b23f0fe843 |
Notes | ark:/67375/WNG-1FCJT0NF-C German Research Foundation (DFG) - No. PU 386/1-1; No. PU 386/1-2 istex:2077960F1BB70539CE0895032F78EDEF6E0B3D76 ArticleID:2011JF002186 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JF002186 |
PQID | 1080805491 |
PQPubID | 54727 |
PageCount | 28 |
ParticipantIDs | proquest_journals_1767058053 proquest_journals_1080805491 pascalfrancis_primary_26507113 crossref_citationtrail_10_1029_2011JF002186 crossref_primary_10_1029_2011JF002186 wiley_primary_10_1029_2011JF002186_JGRF927 istex_primary_ark_67375_WNG_1FCJT0NF_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Earth Surface |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Hutter, K., B. Svendsen, and D. Rickenmann (1996), Debris flow modelling: A review, Continuum Mech, Thermodyn., 8, 1-35. Domnik, B., and S. P. Pudasaini (2012), Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newtonian Fluid Mech., 173-174, 72-86. Pitman, E. B., and L. Le (2005), A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A, 363, 1573-1602. Carman, P. C. (1956), Flow of Gases Through Porous Media, Butterworths, London. Sosio, R., G. B. Crosta, and O. Hungr (2008), Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100, 11-26. Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc, A, 455, 1841-1874. Zahibo, N., E. Pelinovsky, T. Talipova, and I. Nikolkina (2010), Savage-Hutter model for avalanche dynamics in inclined channels: Analytical solutions, J. Geophys. Res., 115, B03402, doi:10.1029/2009JB006515. Ishii, M. (1975), Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris. Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296. Pelanti, M., F. Bouchut, and A. Mangeney (2008), A Roe-Type scheme for two-phase shallow granular flows over variable topography, Math. Model. Numer. Anal., 42, 851-885. Pudasaini, S. P., and K. Hutter (2007), Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 602 pp., Springer, New York. Pudasaini, S. P., and C. Kröner (2008), Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Phys. Rev. E, 78, 041308, doi:10.1103/PhysRevE.78.041308. Ouriemi, M., P. Aussillous, and E. Guazzelli (2009), Sediment dynamics. Part 1: Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295-319. Rivero, M., J. Magnaudet, and J. Fabre (1991), Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere, C. R. Acad. Sci., Ser. II, 312, 1499-1506. Pudasaini, S. P., Y. Wang, and K. Hutter (2005), Modelling debris flows down general channels, Nat. Hazards Earth Syst. Sci., 5, 799-819. Fischer, J.-T., J. Kowalski, and S. P. Pudasaini (2012), Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Tech., 74-75, 21-30. Pudasaini, S. P., and K. Hutter (2003), Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208. O'Brien, J. S., P. J. Julien, and W. T. Fullerton (1993), Two-dimensional water flood and mudflow simulation, J. Hyd. Eng., 119(2), 244-261. Strom, A. L., and O. Korup (2006), Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslides, 3, 125-136. Chen, C. L. (1988), Generalized viscoplastic modelling of debris flow, J. Hydraul. Res., 114(3), 237-258. Lyczkowski, R. W., D. Gidaspow, C. Solbrig, and E. D. Hughes (1978), Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations, Nucl. Sci. Eng., 66, 378-396. Nessyahu, H., and E. Tadmor (1990), Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463. Ishii, M., and T. Hibiki (2006), Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York. Pudasaini, S. P., and B. Domnik (2009), Energy consideration in accelerating rapid shear granular flows, Nonlin. Processes Geophys., 16, 399-407. Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843-855. Bouchut, F., and T. Morales (2008), An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment, ESAIM: Math. Modell. Numer. Anal., 42(4), 683-698. Maxey, R. M., and J. J. Riley (1993), Equation of motion for a small sphere in a non-uniform flow, Phys. Fluids, 26, 883-889. Takahashi, T. (2007), Debris Flow: Mechanics, Prediction and Countermeasures, Taylor and Francis, New York. Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301-331. McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183. Hutter, K., and L. Schneider (2010b), Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling, Continuum Mech. Thermodyn., 22, 391-411. Takahashi, T. (1991), Debris Flow, Balkema, Rotterdam, Netherlands. Hungr, O. (1995), A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotechn. J., 32, 610-623. Kytoma, H. K. (1991), Viscous particle interactions and their effect on kinematic wave propagation, Chem. Eng. Commun., 105(1), 27-42. Jop, P., Y. Forterre, and O. Pouliquen (2006), A constitutive law for dense granular flow, Nature, 441, 727-730. Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215. Kozeny, J. (1927), Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss. Wien, 136(2), 271-306. Drew, D. A., and R. T. Lahey Jr. (1987), The virtual mass and lift force on a sphere in rotating and straining inviscid flow, Int. J. Multiphase Flow, 13, 113-121. Crosta, G. B., H. Chen, and C. F. Lee (2004), Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology, 60, 127-146. Sano, O. (2011), Flow-induced waterway in a heterogeneous granular material, Comp. Phys. Commun., 182, 1870-1874. Pudasaini, S. P., K. Hutter, S.-S. Hsiau, S.-C. Tai, Y. Wang, and R. Katzenbach (2007), Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Phys. Fluids, 19(5), 053302, doi:10.1063/1.2726885. Anderson, T. B., and R. Jackson (1967), A fluid mechanical description of fluidized beds: Equations of motion, Ind. Eng. Chem. Fundam., 6, 527-539. Fernandez-Nieto, E. D., F. Bouchut, D. Bresch, M. J. Castro Diaz, and A. Mangeney (2008), A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720-7754. Pudasaini, S. P. (2011), Some exact solutions for debris and avalanche flows, Phys. Fluids, 23(4), 043301, doi:10.1063/1.3570532. Tai, Y.-C., S. Noelle, J. M. N. T. Gray, and K. Hutter (2002), Shock-capturing and front-tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301. Hutter, K., and L. Schneider (2010a), Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications, Continuum Mech. Thermodyn., 22, 363-390. George, D. L., and R. M. Iverson (2011), A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Ital. J. Eng. Geol. Environ., doi:10.4408/IJEGE.2011-03.B-047, in press. Kolev, N. I. (2007), Multiphase Flow Dynamics: Thermal and Mechanical Interactions, 3rd ed., Springer, New York. Carman, P. C. (1937), Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166. Castro-Diaz, M. J., E. D. Fernandez-Nieto, J. M., Gonzalez-Vida, and C. Pares-Madronal (2011), Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48(1-3), 16-40. Pailha, M., and O. Pouliquen (2009), A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135. Richardson, J. F., and W. N. Zaki (1954), Sedimentation and fluidization: Part 1, Trans. Inst. Chem. Eng., 32, 35-53. Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552. Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond., Ser. A, 225, 49-63. Audusse, E. (2005), A multilayer Saint-Venant model: Derivation and numerical validation, Discrete Cont. Dyn. Syst., Ser. B, 5(2), 189-214. Drew, D. A. (1983), Mathematical modelling of two-phase flow, Ann. Rev. Fluid Mech., 15, 261-291. 1993; 26 1991; 312 2004; 60 1995; 32 1989; 199 1975 2008; 78 2008; 227 2012; 74–75 2009; 636 2008; 100 1983; 15 2007; 34 2001; 106 2009; 633 2003; 11 2010; 22 1990; 87 1979; 25 1978; 66 2010; 115 1937; 15 1999; 455 2011; 23 1991; 105 1996; 8 2009; 16 2006; 441 1987; 13 2007; 19 2002; 175 2011 2010 2007 2006 2006; 3 1991 1954; 225 2003; 495 1956 1967; 6 1993; 119 2002; 63 2005; 363 1997; 35 1954; 32 2005; 5 1988; 114 2011; 48 2008; 42 2012; 173–174 2011; 182 1927; 136 e_1_2_15_21_1 e_1_2_15_42_1 e_1_2_15_40_1 e_1_2_15_3_1 e_1_2_15_29_1 e_1_2_15_27_1 e_1_2_15_48_1 e_1_2_15_25_1 e_1_2_15_46_1 e_1_2_15_44_1 Ishii M. (e_1_2_15_23_1) 1975 e_1_2_15_9_1 e_1_2_15_5_1 Rivero M. (e_1_2_15_50_1) 1991; 312 e_1_2_15_10_1 e_1_2_15_31_1 e_1_2_15_58_1 e_1_2_15_18_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_37_1 Pudasaini S. P. (e_1_2_15_45_1) 2007 e_1_2_15_14_1 e_1_2_15_35_1 e_1_2_15_52_1 e_1_2_15_12_1 e_1_2_15_33_1 e_1_2_15_54_1 e_1_2_15_19_1 Carman P. C. (e_1_2_15_6_1) 1937; 15 Maxey R. M. (e_1_2_15_34_1) 1993; 26 e_1_2_15_20_1 e_1_2_15_43_1 Takahashi T. (e_1_2_15_56_1) 1991 e_1_2_15_41_1 e_1_2_15_28_1 e_1_2_15_2_1 e_1_2_15_26_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_22_1 e_1_2_15_8_1 Carman P. C. (e_1_2_15_7_1) 1956 e_1_2_15_4_1 e_1_2_15_32_1 e_1_2_15_55_1 Kozeny J. (e_1_2_15_30_1) 1927; 136 e_1_2_15_57_1 e_1_2_15_59_1 Richardson J. F. (e_1_2_15_49_1) 1954; 32 e_1_2_15_17_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_13_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_11_1 e_1_2_15_53_1 |
References_xml | – reference: Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296. – reference: Castro-Diaz, M. J., E. D. Fernandez-Nieto, J. M., Gonzalez-Vida, and C. Pares-Madronal (2011), Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48(1-3), 16-40. – reference: Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215. – reference: Pudasaini, S. P., K. Hutter, S.-S. Hsiau, S.-C. Tai, Y. Wang, and R. Katzenbach (2007), Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Phys. Fluids, 19(5), 053302, doi:10.1063/1.2726885. – reference: Sano, O. (2011), Flow-induced waterway in a heterogeneous granular material, Comp. Phys. Commun., 182, 1870-1874. – reference: Rivero, M., J. Magnaudet, and J. Fabre (1991), Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere, C. R. Acad. Sci., Ser. II, 312, 1499-1506. – reference: Domnik, B., and S. P. Pudasaini (2012), Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newtonian Fluid Mech., 173-174, 72-86. – reference: Jop, P., Y. Forterre, and O. Pouliquen (2006), A constitutive law for dense granular flow, Nature, 441, 727-730. – reference: Strom, A. L., and O. Korup (2006), Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslides, 3, 125-136. – reference: Pailha, M., and O. Pouliquen (2009), A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135. – reference: Carman, P. C. (1937), Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166. – reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552. – reference: Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301-331. – reference: O'Brien, J. S., P. J. Julien, and W. T. Fullerton (1993), Two-dimensional water flood and mudflow simulation, J. Hyd. Eng., 119(2), 244-261. – reference: McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183. – reference: Nessyahu, H., and E. Tadmor (1990), Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463. – reference: Ishii, M. (1975), Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris. – reference: Takahashi, T. (1991), Debris Flow, Balkema, Rotterdam, Netherlands. – reference: Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc, A, 455, 1841-1874. – reference: Anderson, T. B., and R. Jackson (1967), A fluid mechanical description of fluidized beds: Equations of motion, Ind. Eng. Chem. Fundam., 6, 527-539. – reference: Pudasaini, S. P., and K. Hutter (2003), Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208. – reference: Ishii, M., and T. Hibiki (2006), Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York. – reference: Tai, Y.-C., S. Noelle, J. M. N. T. Gray, and K. Hutter (2002), Shock-capturing and front-tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301. – reference: Kytoma, H. K. (1991), Viscous particle interactions and their effect on kinematic wave propagation, Chem. Eng. Commun., 105(1), 27-42. – reference: Drew, D. A., and R. T. Lahey Jr. (1987), The virtual mass and lift force on a sphere in rotating and straining inviscid flow, Int. J. Multiphase Flow, 13, 113-121. – reference: Kozeny, J. (1927), Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss. Wien, 136(2), 271-306. – reference: Pudasaini, S. P., Y. Wang, and K. Hutter (2005), Modelling debris flows down general channels, Nat. Hazards Earth Syst. Sci., 5, 799-819. – reference: Fernandez-Nieto, E. D., F. Bouchut, D. Bresch, M. J. Castro Diaz, and A. Mangeney (2008), A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720-7754. – reference: Sosio, R., G. B. Crosta, and O. Hungr (2008), Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100, 11-26. – reference: Fischer, J.-T., J. Kowalski, and S. P. Pudasaini (2012), Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Tech., 74-75, 21-30. – reference: Pudasaini, S. P., and C. Kröner (2008), Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Phys. Rev. E, 78, 041308, doi:10.1103/PhysRevE.78.041308. – reference: Pudasaini, S. P., and K. Hutter (2007), Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 602 pp., Springer, New York. – reference: Pudasaini, S. P. (2011), Some exact solutions for debris and avalanche flows, Phys. Fluids, 23(4), 043301, doi:10.1063/1.3570532. – reference: Pitman, E. B., and L. Le (2005), A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A, 363, 1573-1602. – reference: Bouchut, F., and T. Morales (2008), An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment, ESAIM: Math. Modell. Numer. Anal., 42(4), 683-698. – reference: Lyczkowski, R. W., D. Gidaspow, C. Solbrig, and E. D. Hughes (1978), Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations, Nucl. Sci. Eng., 66, 378-396. – reference: Kolev, N. I. (2007), Multiphase Flow Dynamics: Thermal and Mechanical Interactions, 3rd ed., Springer, New York. – reference: Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843-855. – reference: Carman, P. C. (1956), Flow of Gases Through Porous Media, Butterworths, London. – reference: Richardson, J. F., and W. N. Zaki (1954), Sedimentation and fluidization: Part 1, Trans. Inst. Chem. Eng., 32, 35-53. – reference: Drew, D. A. (1983), Mathematical modelling of two-phase flow, Ann. Rev. Fluid Mech., 15, 261-291. – reference: Pelanti, M., F. Bouchut, and A. Mangeney (2008), A Roe-Type scheme for two-phase shallow granular flows over variable topography, Math. Model. Numer. Anal., 42, 851-885. – reference: Hutter, K., and L. Schneider (2010b), Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling, Continuum Mech. Thermodyn., 22, 391-411. – reference: Hutter, K., B. Svendsen, and D. Rickenmann (1996), Debris flow modelling: A review, Continuum Mech, Thermodyn., 8, 1-35. – reference: Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond., Ser. A, 225, 49-63. – reference: Pudasaini, S. P., and B. Domnik (2009), Energy consideration in accelerating rapid shear granular flows, Nonlin. Processes Geophys., 16, 399-407. – reference: Zahibo, N., E. Pelinovsky, T. Talipova, and I. Nikolkina (2010), Savage-Hutter model for avalanche dynamics in inclined channels: Analytical solutions, J. Geophys. Res., 115, B03402, doi:10.1029/2009JB006515. – reference: Crosta, G. B., H. Chen, and C. F. Lee (2004), Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology, 60, 127-146. – reference: Audusse, E. (2005), A multilayer Saint-Venant model: Derivation and numerical validation, Discrete Cont. Dyn. Syst., Ser. B, 5(2), 189-214. – reference: Chen, C. L. (1988), Generalized viscoplastic modelling of debris flow, J. Hydraul. Res., 114(3), 237-258. – reference: Ouriemi, M., P. Aussillous, and E. Guazzelli (2009), Sediment dynamics. Part 1: Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295-319. – reference: Maxey, R. M., and J. J. Riley (1993), Equation of motion for a small sphere in a non-uniform flow, Phys. Fluids, 26, 883-889. – reference: George, D. L., and R. M. Iverson (2011), A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Ital. J. Eng. Geol. Environ., doi:10.4408/IJEGE.2011-03.B-047, in press. – reference: Hutter, K., and L. Schneider (2010a), Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications, Continuum Mech. Thermodyn., 22, 363-390. – reference: Takahashi, T. (2007), Debris Flow: Mechanics, Prediction and Countermeasures, Taylor and Francis, New York. – reference: Hungr, O. (1995), A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotechn. J., 32, 610-623. – volume: 173–174 start-page: 72 year: 2012 end-page: 86 article-title: Full two‐dimensional rapid chute flows of simple viscoplastic granular materials with a pressure‐dependent dynamic slip‐velocity and their numerical simulations publication-title: J. Non‐Newtonian Fluid Mech. – volume: 63 start-page: 301 year: 2002 end-page: 331 article-title: The mobility of long‐runout landslides publication-title: Eng. Geol. – volume: 11 start-page: 161 year: 2003 end-page: 194 – year: 1956 – volume: 100 start-page: 11 year: 2008 end-page: 26 article-title: Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) publication-title: Eng. Geol. – volume: 182 start-page: 1870 year: 2011 end-page: 1874 article-title: Flow‐induced waterway in a heterogeneous granular material publication-title: Comp. Phys. Commun. – volume: 22 start-page: 363 year: 2010 end-page: 390 article-title: Important aspects in the formulation of solid‐fluid debris‐flow models. Part I. Thermodynamic implications publication-title: Continuum Mech. Thermodyn. – volume: 312 start-page: 1499 year: 1991 end-page: 1506 article-title: Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere publication-title: C. R. Acad. Sci., Ser. II – volume: 26 start-page: 883 year: 1993 end-page: 889 article-title: Equation of motion for a small sphere in a non‐uniform flow publication-title: Phys. Fluids – volume: 42 start-page: 851 year: 2008 end-page: 885 article-title: A Roe‐Type scheme for two‐phase shallow granular flows over variable topography publication-title: Math. Model. Numer. Anal. – year: 1975 – volume: 227 start-page: 7720 year: 2008 end-page: 7754 article-title: A new Savage‐Hutter type model for submarine avalanches and generated tsunami publication-title: J. Comput. Phys. – volume: 8 start-page: 1 year: 1996 end-page: 35 article-title: Debris flow modelling: A review publication-title: Continuum Mech, Thermodyn. – volume: 105 start-page: 27 issue: 1 year: 1991 end-page: 42 article-title: Viscous particle interactions and their effect on kinematic wave propagation publication-title: Chem. Eng. Commun. – volume: 66 start-page: 378 year: 1978 end-page: 396 article-title: Characteristics and stability analyses of transient one‐dimensional two‐phase flow equations and their finite difference approximations publication-title: Nucl. Sci. Eng. – volume: 60 start-page: 127 year: 2004 end-page: 146 article-title: Replay of the 1987 Val Pola Landslide, Italian Alps publication-title: Geomorphology – volume: 3 start-page: 125 year: 2006 end-page: 136 article-title: Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan publication-title: Landslides – volume: 87 start-page: 408 year: 1990 end-page: 463 article-title: Non‐oscillatory central differencing for hyperbolic conservation laws publication-title: J. Comput. Phys. – volume: 495 start-page: 193 year: 2003 end-page: 208 article-title: Rapid shear flows of dry granular masses down curved and twisted channels publication-title: J. Fluid Mech. – volume: 106 start-page: 537 issue: B1 year: 2001 end-page: 552 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory publication-title: J. Geophys. Res. – volume: 633 start-page: 115 year: 2009 end-page: 135 article-title: A two‐phase flow description of the initiation of underwater granular avalanches publication-title: J. Fluid Mech. – volume: 23 issue: 4 year: 2011 article-title: Some exact solutions for debris and avalanche flows publication-title: Phys. Fluids – volume: 19 issue: 5 year: 2007 article-title: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls publication-title: Phys. Fluids – volume: 22 start-page: 391 year: 2010 end-page: 411 article-title: Important aspects in the formulation of solid‐fluid debris‐flow models. Part II. Constitutive modelling publication-title: Continuum Mech. Thermodyn. – volume: 225 start-page: 49 year: 1954 end-page: 63 article-title: Experiments on a gravity‐free dispersion of large solid spheres in a Newtonian fluid under shear publication-title: Proc. R. Soc. Lond., Ser. A – volume: 115 year: 2010 article-title: Savage‐Hutter model for avalanche dynamics in inclined channels: Analytical solutions publication-title: J. Geophys. Res. – volume: 5 start-page: 799 year: 2005 end-page: 819 article-title: Modelling debris flows down general channels publication-title: Nat. Hazards Earth Syst. Sci. – volume: 35 start-page: 245 issue: 3 year: 1997 end-page: 296 article-title: The physics of debris flows publication-title: Rev. Geophys. – volume: 78 year: 2008 article-title: Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results publication-title: Phys. Rev. E – volume: 25 start-page: 843 year: 1979 end-page: 855 article-title: Drag coefficient and relative velocity in bubbly, droplet or particulate flows publication-title: AIChE J. – year: 2011 article-title: A two‐phase debris‐flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore‐fluid pressure publication-title: Ital. J. Eng. Geol. Environ. – volume: 199 start-page: 177 year: 1989 end-page: 215 article-title: The motion of a finite mass of granular material down a rough incline publication-title: J. Fluid Mech. – volume: 74–75 start-page: 21 year: 2012 end-page: 30 article-title: Topographic curvature effects in applied avalanche modeling publication-title: Cold Reg. Sci. Tech. – year: 2007 – volume: 13 start-page: 113 year: 1987 end-page: 121 article-title: The virtual mass and lift force on a sphere in rotating and straining inviscid flow publication-title: Int. J. Multiphase Flow – volume: 15 start-page: 150 year: 1937 end-page: 166 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – volume: 441 start-page: 727 year: 2006 end-page: 730 article-title: A constitutive law for dense granular flow publication-title: Nature – volume: 42 start-page: 683 issue: 4 year: 2008 end-page: 698 article-title: An entropy satisfying scheme for twolayer shallow water equations with uncoupled treatment publication-title: ESAIM: Math. Modell. Numer. Anal. – volume: 34 year: 2007 article-title: Field observations of basal forces and fluid pore pressure in a debris flow publication-title: Geophys. Res. Lett. – volume: 32 start-page: 35 year: 1954 end-page: 53 article-title: Sedimentation and fluidization: Part 1 publication-title: Trans. Inst. Chem. Eng. – year: 2010 – volume: 136 start-page: 271 issue: 2 year: 1927 end-page: 306 article-title: Ueber kapillare Leitung des Wassers im Boden publication-title: Sitzungsber Akad. Wiss. Wien – volume: 5 start-page: 189 issue: 2 year: 2005 end-page: 214 article-title: A multilayer Saint‐Venant model: Derivation and numerical validation publication-title: Discrete Cont. Dyn. Syst., Ser. B – volume: 636 start-page: 295 year: 2009 end-page: 319 article-title: Sediment dynamics. Part 1: Bed‐load transport by laminar shearing flows publication-title: J. Fluid Mech. – volume: 114 start-page: 237 issue: 3 year: 1988 end-page: 258 article-title: Generalized viscoplastic modelling of debris flow publication-title: J. Hydraul. Res. – volume: 16 start-page: 399 year: 2009 end-page: 407 article-title: Energy consideration in accelerating rapid shear granular flows publication-title: Nonlin. Processes Geophys. – volume: 48 start-page: 16 issue: 1–3 year: 2011 end-page: 40 article-title: Numerical treatment of the loss of hyperbolicity of the two‐layer shallow‐water system publication-title: J. Sci. Comput. – volume: 455 start-page: 1841 year: 1999 end-page: 1874 article-title: Gravity‐driven free surface flow of granular avalanches over complex basal topography publication-title: Proc. R. Soc, A – volume: 32 start-page: 610 year: 1995 end-page: 623 article-title: A model for the runout analysis of rapid flow slides, debris flows, and avalanches publication-title: Can. Geotechn. J. – volume: 15 start-page: 261 year: 1983 end-page: 291 article-title: Mathematical modelling of two‐phase flow publication-title: Ann. Rev. Fluid Mech. – volume: 119 start-page: 244 issue: 2 year: 1993 end-page: 261 article-title: Two‐dimensional water flood and mudflow simulation publication-title: J. Hyd. Eng. – volume: 6 start-page: 527 year: 1967 end-page: 539 article-title: A fluid mechanical description of fluidized beds: Equations of motion publication-title: Ind. Eng. Chem. Fundam. – year: 2006 – volume: 363 start-page: 1573 year: 2005 end-page: 1602 article-title: A two‐fluid model for avalanche and debris flows publication-title: Philos. Trans. R. Soc. A – year: 1991 – volume: 175 start-page: 269 year: 2002 end-page: 301 article-title: Shock‐capturing and front‐tracking methods for granular avalanches publication-title: J. Comput. Phys. – ident: e_1_2_15_47_1 doi: 10.5194/nhess-5-799-2005 – volume: 26 start-page: 883 year: 1993 ident: e_1_2_15_34_1 article-title: Equation of motion for a small sphere in a non‐uniform flow publication-title: Phys. Fluids doi: 10.1063/1.864230 – ident: e_1_2_15_3_1 doi: 10.3934/dcdsb.2005.5.189 – ident: e_1_2_15_21_1 doi: 10.1007/s00161-010-0154-9 – ident: e_1_2_15_17_1 doi: 10.4408/IJEGE.2011‐03.B‐047 – ident: e_1_2_15_39_1 doi: 10.1017/S0022112009007460 – ident: e_1_2_15_26_1 doi: 10.1029/97RG00426 – ident: e_1_2_15_51_1 doi: 10.1016/j.cpc.2010.12.001 – ident: e_1_2_15_59_1 doi: 10.1007/978-3-540-36565-5_5 – ident: e_1_2_15_2_1 doi: 10.1021/i160024a007 – volume: 312 start-page: 1499 year: 1991 ident: e_1_2_15_50_1 article-title: Quelques resultants nouveaux concernat les forces exercees sur une inclusion spherique par un ecoulement accelere publication-title: C. R. Acad. Sci., Ser. II – ident: e_1_2_15_9_1 doi: 10.1007/s10915-010-9427-5 – volume-title: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches year: 2007 ident: e_1_2_15_45_1 – ident: e_1_2_15_16_1 doi: 10.1016/j.coldregions.2012.01.005 – ident: e_1_2_15_41_1 doi: 10.1098/rsta.2005.1596 – ident: e_1_2_15_52_1 doi: 10.1017/S0022112089000340 – ident: e_1_2_15_53_1 doi: 10.1016/j.enggeo.2008.02.012 – ident: e_1_2_15_25_1 doi: 10.1002/aic.690250513 – volume-title: Debris Flow year: 1991 ident: e_1_2_15_56_1 – ident: e_1_2_15_19_1 doi: 10.1139/t95-063 – ident: e_1_2_15_10_1 doi: 10.1061/(ASCE)0733-9429(1988)114:3(237) – ident: e_1_2_15_22_1 doi: 10.1007/BF01175749 – ident: e_1_2_15_12_1 doi: 10.1016/j.jnnfm.2012.03.001 – volume-title: Flow of Gases Through Porous Media year: 1956 ident: e_1_2_15_7_1 – volume: 15 start-page: 150 year: 1937 ident: e_1_2_15_6_1 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – ident: e_1_2_15_58_1 doi: 10.1029/2009JB006515 – ident: e_1_2_15_14_1 doi: 10.1016/0301-9322(87)90011-5 – ident: e_1_2_15_40_1 doi: 10.1051/m2an:2008029 – ident: e_1_2_15_15_1 doi: 10.1016/j.jcp.2008.04.039 – ident: e_1_2_15_11_1 doi: 10.1016/j.geomorph.2003.07.015 – ident: e_1_2_15_4_1 doi: 10.1098/rspa.1954.0186 – ident: e_1_2_15_32_1 doi: 10.1016/S0013-7952(01)00090-4 – ident: e_1_2_15_55_1 doi: 10.1006/jcph.2001.6946 – ident: e_1_2_15_37_1 doi: 10.1061/(ASCE)0733-9429(1993)119:2(244) – ident: e_1_2_15_13_1 doi: 10.1146/annurev.fl.15.010183.001401 – volume-title: Thermo‐Fluid Dynamic Theory of Two‐Phase Flow year: 1975 ident: e_1_2_15_23_1 – ident: e_1_2_15_57_1 doi: 10.1201/9780203946282 – ident: e_1_2_15_8_1 – ident: e_1_2_15_38_1 doi: 10.1017/S0022112009007915 – ident: e_1_2_15_44_1 doi: 10.1017/S0022112003006141 – ident: e_1_2_15_33_1 doi: 10.13182/NSE78-4 – volume: 32 start-page: 35 year: 1954 ident: e_1_2_15_49_1 article-title: Sedimentation and fluidization: Part 1 publication-title: Trans. Inst. Chem. Eng. – ident: e_1_2_15_18_1 doi: 10.1098/rspa.1999.0383 – ident: e_1_2_15_54_1 doi: 10.1007/s10346-005-0027-7 – ident: e_1_2_15_20_1 doi: 10.1007/s00161-010-0153-x – ident: e_1_2_15_28_1 doi: 10.1038/nature04801 – ident: e_1_2_15_46_1 doi: 10.1103/PhysRevE.78.041308 – ident: e_1_2_15_27_1 doi: 10.1029/2000JB900329 – ident: e_1_2_15_43_1 doi: 10.5194/npg-16-399-2009 – ident: e_1_2_15_36_1 doi: 10.1016/0021-9991(90)90260-8 – ident: e_1_2_15_31_1 doi: 10.1080/00986449108911515 – ident: e_1_2_15_29_1 doi: 10.1007/3-540-69833-7 – ident: e_1_2_15_35_1 doi: 10.1029/2006GL029183 – ident: e_1_2_15_42_1 doi: 10.1063/1.3570532 – ident: e_1_2_15_5_1 doi: 10.1051/m2an:2008019 – ident: e_1_2_15_48_1 doi: 10.1063/1.2726885 – volume: 136 start-page: 271 issue: 2 year: 1927 ident: e_1_2_15_30_1 article-title: Ueber kapillare Leitung des Wassers im Boden publication-title: Sitzungsber Akad. Wiss. Wien – ident: e_1_2_15_24_1 doi: 10.1007/978-0-387-29187-1 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.565504 |
Snippet | This paper presents a new, generalized two‐phase debris flow model that includes many essential physical phenomena. The model employs the Mohr‐Coulomb... This paper presents a new, generalized two-phase debris flow model that includes many essential physical phenomena. The model employs the Mohr-Coulomb... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Avalanches Buoyancy Cryosphere Debris flow Detritus Earth sciences Earth, ocean, space Exact sciences and technology general two-phase debris flow generalized drag generalized drag, buoyancy, virtual mass, Newtonian and non‐Newtonian viscous stresses Hydrology Landslides & mudslides Momentum transfer Multiphase flow Newtonian and non-Newtonian viscous stresses particle-laden and dispersive flows physical modeling Sediment transport sediment transports sediment transports, particle‐laden and dispersive flows virtual mass |
Title | A general two-phase debris flow model |
URI | https://api.istex.fr/ark:/67375/WNG-1FCJT0NF-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002186 https://www.proquest.com/docview/1080805491 https://www.proquest.com/docview/1767058053 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-NAEB7UvtyL3KFy8WrJg_XhZDHZ3SSbp0OLqRQsR1HOt7DZHwpX2l5b0T_fnWQbLJy-BbIbwreTnW9nJvMBnFaOhGQVM8SanGLoRhLh7IgkXDvyqqSMI_wb-Xac3tzz0UPy4ANuK19WudkT641azxXGyC_iLM2iRDib-bX4R1A1CrOrXkJjFzpuCxbu8NW5uh7_nrRRFpSVyOuUJ3UXBMN2vvo9ovkFOr9R0egybfmlDkL8inWScuWgso3GxRYJfU9la19UfIV9TyLDy2bVv8GOmR1A_zJ8bHpIh-uXOVk8Of8UaoMV_aGdzl_CWvTmEO6L67vBDfEiCETh2YFUwnIdJUZblWluTUqNI1XcaqalTHWUKW5jbLsnJWVpxZQyiYlZRZmNrBGcHcHebD4z3yGsVCJiqZJc64gbJnPhzr8Se5phix0rAjjfQFAq3yEchSqmZZ2ppnn5HrAA-u3oRdMZ44NxZzWa7SC5_IvVZFlS_hkPy7gYjO6icVEOAuhtwd1OoCmS1pgF0N3gX_ovbVU3OHVWwfP4_7dbswngZ71kn75sORpOipxmx58_6wd8cbNoU2vWhb318tmcOHKyrnqwK4phz9vhG9033II |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXBALEQil7IBxAVndt78MHhKrAJk3bHFAqejNeP0CiSkITFPhT_EY83ocaCXrrbaX1WqvxZ8_n8Xg-gFe1JyFFzSxxVlAM3ShSehyRjBtPXrVSaYK3kc-m-ficTy6yix34092FwbTKbk0MC7VZaIyRH6ZFXiRZ6THzfvmDoGoUnq52EhoNLE7s743fsq3eHX_w4zugtPo4G45JqypANJJxUpeOmySzxunCcGdzaj1L4c4wo1RukkJzl2IdO6Uoy2umtc1symrKXOJsyZnv9w7sccYEzqiyGvUxHRSxEOGAlfoHgkHCNtc-oeIQXe2kalSgtrzgHg7oL8zKVCs_MK5R1NiivNeJc_B81QO431LW-KjB2EPYsfNHMDiKvzYVq-P1ZkGW37w3jI3F-wOxu1xs4iCx8xjOb8U4T2B3vpjbpxDXOitTpTNhTMItU6L0u22FFdSwoI8rI3jbmUDqth45ymJcynAuToW8brAIBn3rZVOH4z_tXgdr9o3U1XfMXSsy-Xk6kmk1nMySaSWHERxsmbv_gOZIkVMWwX5nf9nO61Uop-oxyEX679c9SCN4E4bsxp-Vk9GnStDi2c19vYS749nZqTw9np48h3u-B9pkue3D7vrqp33hadG6PghYjOHLbYP_L8xkGJM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXQlxQSBABErJgeUAstaxndcBobJt2m4hqqpW9GYcP0Ci2l26ixb-Gr8OT17qStBbb5HiWNHMl8zn8Xg-gFeVJyFpxS1xNmeYulEk8zgisTCevGqlIoqnkT-VyeG5mF7EF1vwpzsLg2WV3T-x_lGbucYc-ThKk5TGmcfM2LVlESd7xfvFD4IKUrjT2slpNBA5tr_Xfvm2fHe05309YqzYP5scklZhgGgk5qTKnDA0tsbp1AhnE2Y9YxHOcKNUYmiqhYuwp51SjCcV19rGNuIV4446mwnu570Dw9SviugAhh_2y5PTPsODkhZ5vd3K_AXBlGFbeU9ZPsbAOy0aTaiNmDhE9_7CGk219G5yjb7GBgG-TqPrOFg8gPstgQ13G8Q9hC07ewSj3fBr0786XK3nZPHNx8bQWDxNELrL-TqsBXcew_mtmOcJDGbzmX0KYaXjLFI6zo2hwnKVZ37trbCfGrb3cVkAbzsTSN12J0eRjEtZ75KzXF43WACjfvSi6crxn3Gva2v2g9TVd6xkS2P5uTyQUTGZntGykJMAdjbM3T_AEiTMEQ9gu7O_bL_yZd1c1SNS5NG_b_eQDeBN7bIbX1ZOD06LnKXPbp7rJdz1wJcfj8rj53DPT8CakrdtGKyuftoXniOtqp0WjCF8uW38_wXW5R4l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+two%E2%80%90phase+debris+flow+model&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Pudasaini%2C+Shiva+P.&rft.date=2012-09-01&rft.issn=0148-0227&rft.volume=117&rft.issue=F3&rft_id=info:doi/10.1029%2F2011JF002186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JF002186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |