Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input
Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothala...
Saved in:
Published in | The Journal of physiology Vol. 595; no. 11; pp. 3621 - 3649 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 |
DOI | 10.1113/JP273850 |
Cover
Loading…
Abstract | Key points
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day.
In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood.
In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner.
We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs.
Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system.
Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi‐electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT‐signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Key points
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day.
In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood.
In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner.
We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs.
Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system. |
---|---|
AbstractList | Key points
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day.
In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood.
In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner.
We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs.
Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system.
Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi‐electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT‐signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Key points
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day.
In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood.
In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner.
We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs.
Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system. Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system. KEY POINTSVisual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system.ABSTRACTSensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. |
Author | Hanna, Lydia Walmsley, Lauren Brown, Timothy M. Pienaar, Abigail Howarth, Michael |
AuthorAffiliation | 1 Faculty of Biology Medicine and Health University of Manchester Manchester UK |
AuthorAffiliation_xml | – name: 1 Faculty of Biology Medicine and Health University of Manchester Manchester UK |
Author_xml | – sequence: 1 givenname: Lydia orcidid: 0000-0002-5000-6676 surname: Hanna fullname: Hanna, Lydia organization: University of Manchester – sequence: 2 givenname: Lauren surname: Walmsley fullname: Walmsley, Lauren organization: University of Manchester – sequence: 3 givenname: Abigail surname: Pienaar fullname: Pienaar, Abigail organization: University of Manchester – sequence: 4 givenname: Michael surname: Howarth fullname: Howarth, Michael organization: University of Manchester – sequence: 5 givenname: Timothy M. orcidid: 0000-0002-5625-4750 surname: Brown fullname: Brown, Timothy M. email: timothy.brown@manchester.ac.uk organization: University of Manchester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28217893$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLcFiV-AInHhkuKvxM4FaanKQlWJHsrZ8jqTXa8cO9gOaP99XXW3fAhOtjWPH70zc4ZOfPCA0GuCLwgh7P31LRVMNvgZWhDedrUQHTtBC4wprZloyCk6S2mHMWG4616gUyopEbJjC7RegbdmdmG7n0LeaqdHa6rV8uMS4qbcphh2YLINPlUbnaFK8xS12VqdRp0L4GfjYE5VhDQVCFKVQ3lk67WrrJ_m_BI9H7RL8OpwnqNvn67uLj_XN19XXy6XN7VpcNPWazDYSMaGtmFDj1veE2wIH6jmGnrdMym1lKzHUgKnpuctHrhgLWaUcMEpO0cfHr3TvB6hN-Bz1E5N0Y467lXQVv1Z8XarNuGHanhDiqgI3h0EMXyfIWU12mTAOe0hzEkRKUosIbEo6Nu_0F2YY2m5UB3mWBSmKdSb3xM9RTmOvwAXj4CJIaUIgzI264dpl4DWKYLVw37Vcb-_Ij59ODr_gR7cP62D_X85dXd9SyiVLbsHXvuzaQ |
CitedBy_id | crossref_primary_10_1016_j_steroids_2024_109398 crossref_primary_10_1152_jn_00556_2020 crossref_primary_10_1039_D3LC00064H crossref_primary_10_1111_ejn_16582 crossref_primary_10_3389_fncel_2022_992747 crossref_primary_10_1186_s12915_020_00871_8 crossref_primary_10_15252_embr_202051866 crossref_primary_10_3389_fnins_2024_1186677 crossref_primary_10_1113_JP276917 crossref_primary_10_1111_jne_12824 crossref_primary_10_3390_nu16244330 crossref_primary_10_14814_phy2_14257 crossref_primary_10_7554_eLife_68179 crossref_primary_10_1038_s41598_023_35885_z crossref_primary_10_1073_pnas_2100094118 crossref_primary_10_1038_s41467_020_15277_x crossref_primary_10_2174_2666082216999201124152432 crossref_primary_10_1016_j_cub_2017_04_039 crossref_primary_10_1523_JNEUROSCI_0112_21_2022 crossref_primary_10_1002_cne_25293 |
Cites_doi | 10.1097/00001756-200005150-00043 10.1016/j.neuroscience.2006.01.050 10.1016/0006-8993(89)91617-X 10.1016/j.brainresbull.2004.12.006 10.1016/0361-9230(89)90068-3 10.1177/074873048700200104 10.1017/S0952523800007318 10.1007/BF01417857 10.1002/cne.902580204 10.1002/(SICI)1096-9861(20000508)420:3<398::AID-CNE9>3.0.CO;2-9 10.1016/j.neuroscience.2008.03.068 10.1097/00001756-199605170-00005 10.1016/S0306-4522(98)00490-4 10.1111/j.1460-9568.1997.tb01531.x 10.1016/j.pneurobio.2007.05.002 10.1002/(SICI)1096-9861(19991122)414:3<348::AID-CNE5>3.0.CO;2-H 10.1097/00001756-199703030-00014 10.1177/074873049501000403 10.1371/journal.pbio.1000558 10.1371/journal.pone.0073750 10.1177/074873048600100405 10.1016/S0149-7634(96)00019-X 10.3109/07420520903227746 10.1152/jn.00909.2005 10.1016/0306-4522(94)90240-2 10.1007/BF00616752 10.1016/0304-3940(85)90022-9 10.1007/s10633-007-9055-z 10.1016/S0165-0270(96)00039-8 10.1177/07430402017003005 10.1523/JNEUROSCI.2672-05.2005 10.1016/j.neuron.2011.07.026 10.1177/074873049601100206 10.1016/j.cub.2007.01.048 10.1016/j.neuroscience.2011.11.037 10.1073/pnas.2436298100 10.1002/cne.20970 10.1038/nn1361 10.1523/JNEUROSCI.5750-07.2008 10.1113/jphysiol.2014.280065 10.1037/0735-7044.118.3.498 10.1152/ajpregu.2000.278.4.R987 10.1016/S0306-4522(96)00547-7 10.1016/S0306-4522(02)00811-4 10.1002/cne.902990409 10.1038/nature10206 10.1002/cne.21553 10.1016/0306-4522(92)90283-8 10.1111/j.1460-9568.1993.tb00504.x 10.1523/JNEUROSCI.17-20-07974.1997 10.1016/S0006-8993(98)01025-7 10.1073/pnas.1319820111 10.1038/nn1448 10.1002/cne.903440306 10.1101/sqb.2007.72.074 10.1002/cne.1271 10.1016/j.cub.2014.04.014 10.1002/cne.10881 10.1113/jphysiol.2014.288225 10.1111/j.0953-816X.2004.03098.x 10.1016/0006-8993(93)91118-C 10.1113/jphysiol.2012.248047 10.1016/0006-8993(89)91163-3 10.1046/j.1460-9568.2003.02425.x 10.1016/S0006-8993(02)03610-7 10.1371/journal.pone.0106148 10.1038/42468 10.1177/0748730414561545 10.1016/j.cub.2012.05.032 10.1523/JNEUROSCI.1423-12.2012 10.1523/JNEUROSCI.18-24-10709.1998 10.1016/0006-8993(94)90695-5 10.1016/0306-4522(94)00429-9 10.1016/S0006-8993(97)00235-7 10.1523/JNEUROSCI.18-21-09078.1998 10.1016/j.brainresbull.2004.05.001 10.1073/pnas.85.14.5301 10.1016/j.cub.2008.02.024 10.1016/j.neuroscience.2012.10.044 10.1111/j.1460-9568.2009.06944.x 10.1016/0006-8993(82)90361-4 10.1017/S0952523800174036 10.1111/j.1749-6632.1990.tb48935.x 10.1371/journal.pbio.1002127 10.1523/JNEUROSCI.18-08-03014.1998 10.1038/nature728 10.1002/cne.903320304 10.1111/j.1365-2826.2005.01395.x 10.1016/j.brainresrev.2005.08.003 10.1113/jphysiol.2010.199877 10.1016/0006-8993(82)91041-1 10.1016/S0169-328X(00)00194-7 10.1017/S0952523800002170 10.1038/nn.3078 10.1523/JNEUROSCI.18-04-01546.1998 10.1177/0748730408327918 10.1038/nature05453 10.1523/JNEUROSCI.19-01-00372.1999 10.1016/0006-8993(94)91302-1 10.1016/S0006-8993(01)02890-6 10.1096/fj.13-233098 10.1523/JNEUROSCI.5044-03.2004 10.1016/S0006-8993(96)01091-8 10.1016/S0006-8993(97)00831-7 10.1016/j.jneumeth.2006.02.024 10.1016/0304-3940(82)90189-6 10.1002/cne.902110107 10.1016/0304-3940(81)90447-X |
ContentType | Journal Article |
Copyright | 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. Journal compilation © 2017 The Physiological Society |
Copyright_xml | – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. – notice: Journal compilation © 2017 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP273850 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | L. Hanna and others |
EISSN | 1469-7793 |
EndPage | 3649 |
ExternalDocumentID | PMC5451736 28217893 10_1113_JP273850 TJP12286 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/I017836/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I017836/1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 31~ 3EH 3O- AAYJJ AAYXX ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF FA8 H13 HF~ H~9 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5056-bec0c833f653fd064d10c14f2a4aedad388a883d088e42cd460f4736032147423 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Thu Aug 21 18:24:16 EDT 2025 Fri Jul 11 10:33:54 EDT 2025 Sun Jul 13 04:30:43 EDT 2025 Tue Jan 21 03:22:09 EST 2025 Thu Apr 24 23:01:20 EDT 2025 Tue Jul 01 04:29:16 EDT 2025 Wed Jan 22 16:20:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | mouse circadian channelrhodopsin electrophysiology intergeniculate leaflet |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5056-bec0c833f653fd064d10c14f2a4aedad388a883d088e42cd460f4736032147423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5000-6676 0000-0002-5625-4750 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5451736 |
PMID | 28217893 |
PQID | 1904070735 |
PQPubID | 1086388 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451736 proquest_miscellaneous_1870647807 proquest_journals_1904070735 pubmed_primary_28217893 crossref_citationtrail_10_1113_JP273850 crossref_primary_10_1113_JP273850 wiley_primary_10_1113_JP273850_TJP12286 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 1 June 2017 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1994; 651 2002; 17 2011; 476 1999b; 19 2008; 506 2004; 24 2014; 24 2005; 65 2002; 957 2007; 72 2012; 15 2013; 8 1994; 61 1997; 9 1997; 8 1998; 18 1986; 1 1994; 660 1990; 611 2000; 17 1989; 504 2011; 71 2000; 11 2008; 28 1997; 387 2013; 591 1988; 85 1992; 48 1990; 299 1996; 69 2012; 22 2010; 8 1982; 34 2007; 17 1989; 2 2007; 445 2006; 51 1997; 21 1989; 493 2013; 228 1981; 27 2002; 416 2012; 32 1996; 11 2005; 8 2015; 593 2007; 82 1994; 15 2001; 437 2003; 465 2003; 100 1999a; 90 2004; 63 1987; 2 2003; 119 2013; 27 2015; 30 2003; 17 2012; 202 1997; 759 1996; 741 2006; 497 1993; 5 2005; 25 1995; 64 1994; 344 1993; 615 2001 1982; 211 1997; 17 1985; 55 2014; 9 2008; 154 1999; 815 1993; 332 1996; 7 2015; 13 2009; 24 1989; 22 2006; 95 2000; 278 1976; 106 2008; 18 1995; 12 1997; 772 1995; 10 2006; 18 1982; 247 1982; 245 2014; 111 2014; 592 2006; 156 2009; 26 2011; 589 2007; 115 2009; 30 1997; 77 2004; 19 1987; 258 1989; 164 2006; 140 2001; 916 2000; 420 2004; 118 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 916 start-page: 172 year: 2001 end-page: 191 article-title: Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections publication-title: Brain Res – volume: 497 start-page: 326 year: 2006 end-page: 349 article-title: Central projections of melanopsin‐expressing retinal ganglion cells in the mouse publication-title: J Comp Neurol – volume: 8 start-page: 650 year: 2005 end-page: 656 article-title: Fast delayed rectifier potassium current is required for circadian neural activity publication-title: Nat Neurosci – volume: 18 start-page: 10709 year: 1998 end-page: 10723 article-title: Rhythmic properties of the hamster suprachiasmatic nucleus in vivo publication-title: J Neurosci – volume: 592 start-page: 5025 year: 2014 end-page: 5045 article-title: Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity publication-title: J Physiol – volume: 772 start-page: 176 year: 1997 end-page: 180 article-title: Tetrodotoxin blocks NPY‐induced but not muscimol‐induced phase advances of wheel‐running activity in Syrian hamsters publication-title: Brain Res – volume: 27 start-page: 303 year: 1981 end-page: 308 article-title: Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat publication-title: Neurosci Lett – volume: 465 start-page: 401 year: 2003 end-page: 416 article-title: Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity publication-title: J Comp Neurol – volume: 164 start-page: 805 year: 1989 end-page: 814 article-title: Central administration of muscimol phase‐shifts the mammalian circadian clock publication-title: J Comp Physiol A – volume: 247 start-page: 154 year: 1982 end-page: 158 article-title: Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice publication-title: Brain Res – volume: 11 start-page: 137 year: 1996 end-page: 144 article-title: Bicuculline increases and muscimol reduces the phase‐delaying effects of light and VIP/PHI/GRP in the suprachiasmatic region publication-title: J Biol Rhythms – volume: 34 start-page: 283 year: 1982 end-page: 288 article-title: Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro publication-title: Neurosci Lett – volume: 2 start-page: 35 year: 1987 end-page: 56 article-title: The intergeniculate leaflet partially mediates effects of light on circadian rhythms publication-title: J Biol Rhythms – volume: 15 start-page: 1475 year: 1994 end-page: 1478 article-title: Neuropeptide Y microinjected into the suprachiasmatic region phase shifts circadian rhythms in constant darkness publication-title: Peptides – volume: 416 start-page: 286 year: 2002 end-page: 290 article-title: Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock publication-title: Nature – volume: 154 start-page: 839 year: 2008 end-page: 847 article-title: Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons publication-title: Neuroscience – volume: 22 start-page: 411 year: 1989 end-page: 422 article-title: Lateral geniculate lesions alter circadian activity rhythms in the hamster publication-title: Brain Res Bull – volume: 332 start-page: 293 year: 1993 end-page: 314 article-title: Efferent projections of the suprachiasmatic nucleus in the golden hamster ( ) publication-title: J Comp Neurol – volume: 95 start-page: 3727 year: 2006 end-page: 3741 article-title: Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage‐gated Ca channels publication-title: J Neurophysiol – volume: 18 start-page: 381 year: 2008 end-page: 385 article-title: In vivo monitoring of circadian timing in freely moving mice publication-title: Curr Biol – volume: 493 start-page: 283 year: 1989 end-page: 291 article-title: Hamster circadian rhythms are phase‐shifted by electrical stimulation of the geniculo‐hypothalamic tract publication-title: Brain Res – volume: 118 start-page: 498 year: 2004 end-page: 504 article-title: Circadian phase alteration by GABA and light differs in diurnal and nocturnal rodents during the day publication-title: Behav Neurosci – volume: 8 start-page: 885 year: 1997 end-page: 889 article-title: Neuronal subpopulations in the suprachiasmatic nuclei based on their response to retinal and intergeniculate leaflet stimulation publication-title: Neuroreport – volume: 8 start-page: e1000558 year: 2010 article-title: Melanopsin contributions to irradiance coding in the thalamo‐cortical visual system publication-title: PLoS Biol – volume: 28 start-page: 5450 year: 2008 end-page: 5459 article-title: Excitatory actions of GABA in the suprachiasmatic nucleus publication-title: J Neurosci – volume: 8 start-page: e73750 year: 2013 article-title: Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification publication-title: PLoS ONE – volume: 445 start-page: 168 year: 2007 end-page: 176 article-title: Genome‐wide atlas of gene expression in the adult mouse brain publication-title: Nature – volume: 957 start-page: 109 year: 2002 end-page: 116 article-title: Attenuation of phase shifts to light by activity or neuropeptide Y: a time course study publication-title: Brain Res – volume: 278 start-page: R987 year: 2000 end-page: R994 article-title: Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 115 start-page: 137 year: 2007 end-page: 144 article-title: Contributions of the mouse UV photopigment to the ERG and to vision publication-title: Doc Ophthalmol – volume: 611 start-page: 232 year: 1990 end-page: 246 article-title: Ultrastructural localization of neuropeptide Y in the hypothalamus publication-title: Ann NY Acad Sci – volume: 5 start-page: 368 year: 1993 end-page: 381 article-title: Glutamate‐like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus publication-title: Eur J Neurosci – volume: 12 start-page: 57 year: 1995 end-page: 67 article-title: Organization of the hamster intergeniculate leaflet: NPY and ENK projections to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus publication-title: Vis Neurosci – volume: 17 start-page: 7974 year: 1997 end-page: 7987 article-title: Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules publication-title: J Neurosci – volume: 437 start-page: 79 year: 2001 end-page: 90 article-title: Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain publication-title: J Comp Neurol – volume: 245 start-page: 198 year: 1982 end-page: 200 article-title: Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice publication-title: Brain Res – volume: 593 start-page: 1731 year: 2015 end-page: 1743 article-title: Eye‐specific visual processing in the mouse suprachiasmatic nuclei publication-title: J Physiol – volume: 589 start-page: 1173 year: 2011 end-page: 1194 article-title: Multiple hypothalamic cell populations encoding distinct visual information publication-title: J Physiol – volume: 615 start-page: 95 year: 1993 end-page: 100 article-title: Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro publication-title: Brain Res – volume: 106 start-page: 253 year: 1976 end-page: 266 article-title: A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents: II. The Variability of Phase Response Curves publication-title: J Comp Physiol – volume: 63 start-page: 531 year: 2004 end-page: 535 article-title: GABA(B) receptor activation in the suprachiasmatic nucleus of diurnal and nocturnal rodents publication-title: Brain Res Bull – volume: 65 start-page: 149 year: 2005 end-page: 154 article-title: Age‐related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro publication-title: Brain Res Bull – volume: 111 start-page: 9627 year: 2014 end-page: 9632 article-title: Seasonal induction of GABAergic excitation in the central mammalian clock publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 2983 year: 2004 end-page: 2988 article-title: Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus publication-title: J Neurosci – volume: 32 start-page: 11478 year: 2012 end-page: 11485 article-title: A retinal ganglion cell that can signal irradiance continuously for 10 hours publication-title: J Neurosci – volume: 69 start-page: 163 year: 1996 end-page: 169 article-title: A novel carbon fibre bundle microelectrode and modified brain slice chamber for recording long‐term multiunit activity from brain slices publication-title: J Neurosci Methods – volume: 90 start-page: 1093 year: 1999a end-page: 1101 article-title: The intergeniculate leaflet does not mediate the disruptive effects of constant light on circadian rhythms in the rat publication-title: Neuroscience – volume: 156 start-page: 173 year: 2006 end-page: 181 article-title: A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices publication-title: J Neurosci Methods – volume: 17 start-page: 468 year: 2007 end-page: 473 article-title: Seasonal encoding by the circadian pacemaker of the SCN publication-title: Curr Biol – volume: 26 start-page: 1075 year: 2009 end-page: 1089 article-title: Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time publication-title: Chronobiol Int – volume: 85 start-page: 5301 year: 1988 end-page: 5304 article-title: Lateral geniculate lesions block circadian phase‐shift responses to a benzodiazepine publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 1587 year: 2000 end-page: 1591 article-title: Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo publication-title: Neuroreport – volume: 61 start-page: 391 year: 1994 end-page: 410 article-title: Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster publication-title: Neuroscience – volume: 140 start-page: 305 year: 2006 end-page: 320 article-title: Intergeniculate leaflet: contributions to photic and non‐photic responsiveness of the hamster circadian system publication-title: Neuroscience – volume: 815 start-page: 154 year: 1999 end-page: 166 article-title: Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole‐cell recording publication-title: Brain Res – volume: 77 start-page: 1049 year: 1997 end-page: 1057 article-title: Neuropeptide Y and glutamate block each other's phase shifts in the suprachiasmatic nucleus in vitro publication-title: Neuroscience – volume: 72 start-page: 509 year: 2007 end-page: 515 article-title: Multiple photoreceptors contribute to nonimage‐forming visual functions predominantly through melanopsin‐containing retinal ganglion cells publication-title: Cold Spring Harb Symp Quant Biol – volume: 71 start-page: 995 year: 2011 end-page: 1013 article-title: A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex publication-title: Neuron – volume: 19 start-page: 891 year: 2004 end-page: 897 article-title: Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies publication-title: Eur J Neurosci – volume: 82 start-page: 229 year: 2007 end-page: 255 article-title: Electrophysiology of the suprachiasmatic circadian clock publication-title: Prog Neurobiol – volume: 9 start-page: 1739 year: 1997 end-page: 1747 article-title: A thalamic contribution to arousal‐induced, non‐photic entrainment of the circadian clock of the Syrian hamster publication-title: Eur J Neurosci – volume: 258 start-page: 204 year: 1987 end-page: 229 article-title: Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of leucoagglutinin in the rat publication-title: J Comp Neurol – volume: 119 start-page: 611 year: 2003 end-page: 618 article-title: Attenuation of circadian light induced phase advances and delays by neuropeptide Y and a neuropeptide Y Y1/Y5 receptor agonist publication-title: Neuroscience – year: 2001 – volume: 55 start-page: 211 year: 1985 end-page: 217 article-title: Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus publication-title: Neurosci Lett – volume: 759 start-page: 181 year: 1997 end-page: 189 article-title: GABA(A) and GABA(B) agonists and antagonists alter the phase‐shifting effects of light when microinjected into the suprachiasmatic region publication-title: Brain Res – volume: 202 start-page: 300 year: 2012 end-page: 308 article-title: Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways publication-title: Neuroscience – volume: 48 start-page: 953 year: 1992 end-page: 962 article-title: The organization of the crossed geniculogeniculate pathway of the rat: a ‐leucoagglutinin study publication-title: Neuroscience – volume: 17 start-page: 197 year: 2003 end-page: 204 article-title: The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro publication-title: Eur J Neurosci – volume: 17 start-page: 509 year: 2000 end-page: 528 article-title: In search of the visual pigment template publication-title: Vis Neurosci – volume: 741 start-page: 352 year: 1996 end-page: 355 article-title: Circadian rhythm in light response in suprachiasmatic nucleus neurons of freely moving rats publication-title: Brain Res – volume: 8 start-page: 61 year: 2005 end-page: 66 article-title: Electrical synapses coordinate activity in the suprachiasmatic nucleus publication-title: Nat Neurosci – volume: 18 start-page: 9078 year: 1998 end-page: 9087 article-title: Light responsiveness of the suprachiasmatic nucleus: long‐term multiunit and single‐unit recordings in freely moving rats publication-title: J Neurosci – volume: 591 start-page: 2475 year: 2013 end-page: 2490 article-title: GABAB receptor‐mediated frequency‐dependent and circadian changes in synaptic plasticity modulate retinal input to the suprachiasmatic nucleus publication-title: J Physiol – volume: 10 start-page: 299 year: 1995 end-page: 307 article-title: Two distinct retinal projections to the hamster suprachiasmatic nucleus publication-title: J Biol Rhythms – volume: 18 start-page: 1546 year: 1998 end-page: 1558 article-title: An alternate pathway for visual signal integration into the hypothalamo‐pituitary axis: retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine publication-title: J Neurosci – volume: 228 start-page: 315 year: 2013 end-page: 324 article-title: Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet publication-title: Neuroscience – volume: 504 start-page: 161 year: 1989 end-page: 164 article-title: Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate publication-title: Brain Res – volume: 19 start-page: 372 year: 1999b end-page: 380 article-title: The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod publication-title: J Neurosci – volume: 1 start-page: 309 year: 1986 end-page: 325 article-title: Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms publication-title: J Biol Rhythms – volume: 2 start-page: 367 year: 1989 end-page: 375 article-title: Photic responses of geniculo‐hypothalamic tract neurons in the Syrian hamster publication-title: Vis Neurosci – volume: 420 start-page: 398 year: 2000 end-page: 418 article-title: Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat publication-title: J Comp Neurol – volume: 30 start-page: 35 year: 2015 end-page: 41 article-title: Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells publication-title: J Biol Rhythms – volume: 21 start-page: 705 year: 1997 end-page: 727 article-title: The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems publication-title: Neurosci Biobehav Rev – volume: 7 start-page: 1249 year: 1996 end-page: 1252 article-title: Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor publication-title: Neuroreport – volume: 476 start-page: 92 year: 2011 end-page: 95 article-title: Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs publication-title: Nature – volume: 24 start-page: 1241 year: 2014 end-page: 1247 article-title: Binocular integration in the mouse lateral geniculate nuclei publication-title: Curr Biol – volume: 299 start-page: 493 year: 1990 end-page: 508 article-title: Projections from the lateral geniculate nucleus to the hypothalamus of the Mongolian gerbil ( ): an anterograde and retrograde tracing study publication-title: J Comp Neurol – volume: 22 start-page: 1397 year: 2012 end-page: 1402 article-title: Ultraviolet light provides a major input to non‐image‐forming light detection in mice publication-title: Curr Biol – volume: 24 start-page: 44 year: 2009 end-page: 54 article-title: Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod publication-title: J Biol Rhythms – volume: 9 start-page: e106148 year: 2014 article-title: Step‐by‐step instructions for retina recordings with perforated multi electrode arrays publication-title: PLoS ONE – volume: 25 start-page: 9195 year: 2005 end-page: 9204 article-title: Juxtacellular recording/labelling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons publication-title: J Neurosci – volume: 64 start-page: 813 year: 1995 end-page: 819 article-title: Presynaptic inhibition by baclofen of retinohypothalamic excitatory synaptic transmission in rat suprachiasmatic nucleus publication-title: Neuroscience – volume: 15 start-page: 793 year: 2012 end-page: 802 article-title: A toolbox of Cre‐dependent optogenetic transgenic mice for light‐induced activation and silencing publication-title: Nat Neurosci – volume: 18 start-page: 3014 year: 1998 end-page: 3022 article-title: Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes publication-title: J Neurosci – volume: 211 start-page: 65 year: 1982 end-page: 83 article-title: The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection publication-title: J Comp Neurol – volume: 27 start-page: 4204 year: 2013 end-page: 4212 article-title: Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors publication-title: FASEB J – volume: 17 start-page: 217 year: 2002 end-page: 226 article-title: The intergeniculate leaflet, but not the visual midbrain, mediates hamster circadian rhythm response to constant light publication-title: J Biol Rhythms – volume: 18 start-page: 146 year: 2006 end-page: 153 article-title: Pinealectomy reduces optic nerve but not intergeniculate leaflet input to the suprachiasmatic nucleus at night publication-title: J Neuroendocrinol – volume: 13 start-page: e1002127 year: 2015 article-title: Colour as a signal for entraining the mammalian circadian clock publication-title: PLoS Biol – volume: 51 start-page: 1 year: 2006 end-page: 60 article-title: The circadian visual system, 2005 publication-title: Brain Res Rev – volume: 506 start-page: 708 year: 2008 end-page: 732 article-title: Heterogeneous expression of gamma‐aminobutyric acid and gamma‐aminobutyric acid‐associated receptors and transporters in the rat suprachiasmatic nucleus publication-title: J Comp Neurol – volume: 651 start-page: 174 year: 1994 end-page: 182 article-title: Intergeniculate leaflet lesions and behaviourally‐induced shifts of circadian rhythms publication-title: Brain Res – volume: 344 start-page: 403 year: 1994 end-page: 430 article-title: Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex publication-title: J Comp Neurol – volume: 30 start-page: 1462 year: 2009 end-page: 1475 article-title: GABAergic signalling induces divergent neuronal Ca responses in the suprachiasmatic nucleus network publication-title: Eur J Neurosci – volume: 387 start-page: 598 year: 1997 end-page: 603 article-title: GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity publication-title: Nature – volume: 660 start-page: 293 year: 1994 end-page: 300 article-title: Lesions of the thalamic intergeniculate leaflet block activity‐induced phase shifts in the circadian activity rhythm of the golden hamster publication-title: Brain Res – volume: 100 start-page: 15994 year: 2003 end-page: 15999 article-title: Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding publication-title: Proc Natl Acad Sci USA – ident: e_1_2_7_107_1 doi: 10.1097/00001756-200005150-00043 – ident: e_1_2_7_70_1 doi: 10.1016/j.neuroscience.2006.01.050 – ident: e_1_2_7_108_1 doi: 10.1016/0006-8993(89)91617-X – ident: e_1_2_7_74_1 doi: 10.1016/j.brainresbull.2004.12.006 – ident: e_1_2_7_44_1 doi: 10.1016/0361-9230(89)90068-3 – ident: e_1_2_7_80_1 doi: 10.1177/074873048700200104 – ident: e_1_2_7_64_1 doi: 10.1017/S0952523800007318 – ident: e_1_2_7_16_1 doi: 10.1007/BF01417857 – ident: e_1_2_7_102_1 doi: 10.1002/cne.902580204 – ident: e_1_2_7_62_1 doi: 10.1002/(SICI)1096-9861(20000508)420:3<398::AID-CNE9>3.0.CO;2-9 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuroscience.2008.03.068 – ident: e_1_2_7_37_1 doi: 10.1097/00001756-199605170-00005 – ident: e_1_2_7_17_1 doi: 10.1016/S0306-4522(98)00490-4 – ident: e_1_2_7_54_1 doi: 10.1111/j.1460-9568.1997.tb01531.x – ident: e_1_2_7_9_1 doi: 10.1016/j.pneurobio.2007.05.002 – ident: e_1_2_7_36_1 doi: 10.1002/(SICI)1096-9861(19991122)414:3<348::AID-CNE5>3.0.CO;2-H – ident: e_1_2_7_82_1 doi: 10.1097/00001756-199703030-00014 – ident: e_1_2_7_94_1 doi: 10.1177/074873049501000403 – ident: e_1_2_7_7_1 doi: 10.1371/journal.pbio.1000558 – ident: e_1_2_7_109_1 doi: 10.1371/journal.pone.0073750 – ident: e_1_2_7_31_1 doi: 10.1177/074873048600100405 – ident: e_1_2_7_30_1 doi: 10.1016/S0149-7634(96)00019-X – ident: e_1_2_7_98_1 doi: 10.3109/07420520903227746 – ident: e_1_2_7_60_1 doi: 10.1152/jn.00909.2005 – ident: e_1_2_7_67_1 doi: 10.1016/0306-4522(94)90240-2 – ident: e_1_2_7_89_1 doi: 10.1007/BF00616752 – ident: e_1_2_7_79_1 doi: 10.1016/0304-3940(85)90022-9 – ident: e_1_2_7_41_1 doi: 10.1007/s10633-007-9055-z – ident: e_1_2_7_91_1 doi: 10.1016/S0165-0270(96)00039-8 – ident: e_1_2_7_68_1 doi: 10.1177/07430402017003005 – ident: e_1_2_7_92_1 doi: 10.1523/JNEUROSCI.2672-05.2005 – ident: e_1_2_7_90_1 doi: 10.1016/j.neuron.2011.07.026 – ident: e_1_2_7_21_1 doi: 10.1177/074873049601100206 – ident: e_1_2_7_97_1 doi: 10.1016/j.cub.2007.01.048 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroscience.2011.11.037 – ident: e_1_2_7_85_1 doi: 10.1073/pnas.2436298100 – ident: e_1_2_7_33_1 doi: 10.1002/cne.20970 – ident: e_1_2_7_51_1 doi: 10.1038/nn1361 – ident: e_1_2_7_14_1 doi: 10.1523/JNEUROSCI.5750-07.2008 – ident: e_1_2_7_84_1 doi: 10.1113/jphysiol.2014.280065 – ident: e_1_2_7_72_1 doi: 10.1037/0735-7044.118.3.498 – ident: e_1_2_7_69_1 doi: 10.1152/ajpregu.2000.278.4.R987 – ident: e_1_2_7_4_1 doi: 10.1016/S0306-4522(96)00547-7 – ident: e_1_2_7_49_1 doi: 10.1016/S0306-4522(02)00811-4 – ident: e_1_2_7_57_1 doi: 10.1002/cne.902990409 – ident: e_1_2_7_13_1 doi: 10.1038/nature10206 – ident: e_1_2_7_3_1 doi: 10.1002/cne.21553 – ident: e_1_2_7_58_1 doi: 10.1016/0306-4522(92)90283-8 – ident: e_1_2_7_12_1 doi: 10.1111/j.1460-9568.1993.tb00504.x – ident: e_1_2_7_53_1 doi: 10.1523/JNEUROSCI.17-20-07974.1997 – ident: e_1_2_7_86_1 doi: 10.1016/S0006-8993(98)01025-7 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.1319820111 – ident: e_1_2_7_40_1 doi: 10.1038/nn1448 – ident: e_1_2_7_61_1 doi: 10.1002/cne.903440306 – ident: e_1_2_7_29_1 doi: 10.1101/sqb.2007.72.074 – ident: e_1_2_7_65_1 doi: 10.1002/cne.1271 – ident: e_1_2_7_35_1 doi: 10.1016/j.cub.2014.04.014 – ident: e_1_2_7_66_1 doi: 10.1002/cne.10881 – ident: e_1_2_7_100_1 doi: 10.1113/jphysiol.2014.288225 – ident: e_1_2_7_106_1 doi: 10.1111/j.0953-816X.2004.03098.x – ident: e_1_2_7_87_1 doi: 10.1016/0006-8993(93)91118-C – ident: e_1_2_7_59_1 doi: 10.1113/jphysiol.2012.248047 – ident: e_1_2_7_83_1 doi: 10.1016/0006-8993(89)91163-3 – ident: e_1_2_7_15_1 doi: 10.1046/j.1460-9568.2003.02425.x – ident: e_1_2_7_48_1 doi: 10.1016/S0006-8993(02)03610-7 – ident: e_1_2_7_81_1 doi: 10.1371/journal.pone.0106148 – ident: e_1_2_7_99_1 doi: 10.1038/42468 – ident: e_1_2_7_23_1 doi: 10.1177/0748730414561545 – ident: e_1_2_7_96_1 doi: 10.1016/j.cub.2012.05.032 – ident: e_1_2_7_104_1 doi: 10.1523/JNEUROSCI.1423-12.2012 – ident: e_1_2_7_105_1 doi: 10.1523/JNEUROSCI.18-24-10709.1998 – ident: e_1_2_7_42_1 doi: 10.1016/0006-8993(94)90695-5 – ident: e_1_2_7_43_1 doi: 10.1016/0306-4522(94)00429-9 – ident: e_1_2_7_22_1 doi: 10.1016/S0006-8993(97)00235-7 – ident: e_1_2_7_56_1 doi: 10.1523/JNEUROSCI.18-21-09078.1998 – ident: e_1_2_7_73_1 doi: 10.1016/j.brainresbull.2004.05.001 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.85.14.5301 – ident: e_1_2_7_71_1 doi: 10.1016/j.cub.2008.02.024 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroscience.2012.10.044 – ident: e_1_2_7_39_1 doi: 10.1111/j.1460-9568.2009.06944.x – ident: e_1_2_7_26_1 doi: 10.1016/0006-8993(82)90361-4 – ident: e_1_2_7_25_1 doi: 10.1017/S0952523800174036 – ident: e_1_2_7_76_1 doi: 10.1111/j.1749-6632.1990.tb48935.x – ident: e_1_2_7_101_1 doi: 10.1371/journal.pbio.1002127 – ident: e_1_2_7_27_1 doi: 10.1523/JNEUROSCI.18-08-03014.1998 – ident: e_1_2_7_77_1 doi: 10.1038/nature728 – ident: e_1_2_7_46_1 doi: 10.1002/cne.903320304 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2826.2005.01395.x – ident: e_1_2_7_63_1 doi: 10.1016/j.brainresrev.2005.08.003 – ident: e_1_2_7_11_1 doi: 10.1113/jphysiol.2010.199877 – ident: e_1_2_7_88_1 doi: 10.1016/0006-8993(82)91041-1 – ident: e_1_2_7_75_1 doi: 10.1016/S0169-328X(00)00194-7 – ident: e_1_2_7_32_1 doi: 10.1017/S0952523800002170 – ident: e_1_2_7_52_1 doi: 10.1038/nn.3078 – ident: e_1_2_7_34_1 doi: 10.1523/JNEUROSCI.18-04-01546.1998 – ident: e_1_2_7_10_1 doi: 10.1177/0748730408327918 – ident: e_1_2_7_50_1 doi: 10.1038/nature05453 – ident: e_1_2_7_18_1 doi: 10.1523/JNEUROSCI.19-01-00372.1999 – ident: e_1_2_7_103_1 doi: 10.1016/0006-8993(94)91302-1 – ident: e_1_2_7_2_1 doi: 10.1016/S0006-8993(01)02890-6 – ident: e_1_2_7_95_1 doi: 10.1096/fj.13-233098 – ident: e_1_2_7_93_1 doi: 10.1523/JNEUROSCI.5044-03.2004 – ident: e_1_2_7_55_1 doi: 10.1016/S0006-8993(96)01091-8 – ident: e_1_2_7_38_1 doi: 10.1016/S0006-8993(97)00831-7 – ident: e_1_2_7_6_1 doi: 10.1016/j.jneumeth.2006.02.024 – ident: e_1_2_7_28_1 doi: 10.1016/0304-3940(82)90189-6 – ident: e_1_2_7_78_1 doi: 10.1002/cne.902110107 – ident: e_1_2_7_47_1 doi: 10.1016/0304-3940(81)90447-X |
SSID | ssj0013099 |
Score | 2.3526213 |
Snippet | Key points
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar... Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In... Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In... Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar... KEY POINTSVisual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3621 |
SubjectTerms | Animals Biological clocks Brain slice preparation channelrhodopsin circadian Circadian Rhythm Circadian rhythms electrophysiology Female GABAergic Neurons - physiology Hypothalamus Illumination intergeniculate leaflet Light Male Mice Mice, Inbred C57BL mouse Neural networks Neurons Neuroscience ‐ Behavioural/Systems/Cognitive Physiology Research Paper Retina Retinal Neurons - physiology Signal transduction Suprachiasmatic nucleus Suprachiasmatic Nucleus Neurons - physiology Thalamus Vision, Ocular Visual system γ-Aminobutyric acid |
Title | Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP273850 https://www.ncbi.nlm.nih.gov/pubmed/28217893 https://www.proquest.com/docview/1904070735 https://www.proquest.com/docview/1870647807 https://pubmed.ncbi.nlm.nih.gov/PMC5451736 |
Volume | 595 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQT70AbXkslMpICE4pfiVxjttCWxaBKtRKlThEie1oVxTvapMc2l_PjPOApSAhjlEmiRPPTL4Zj78h5JUAvytlpiKjhIuULsEPVlzCIStlFutUxrjf-dPn5OxSza7iq76qEvfCdPwQY8INLSP4azTwouy7kHAkG5idByYWDNe5TJA2_90X8XMBgWXZSBSexrznnYVL3w4Xbv6J7sDLu1WSv6LX8Ps5eUC-DgPvqk6-HbZNeWhuf-N0_L83e0ju96iUTjs12iH3nN8le1MPEfn3G_qahjrRkIDfI-Wp85g0XM5vVjDNxTV2tKen06OpW4MbpX1uB9WZYo6O1i1uxZovijrQw1KPFMptTdddea6rabOkuJkSh7Dwq7Z5RC5P3l8cn0V9p4bIIIKKQBGY0VJWSSwrCyjHcma4qkShCmcLK7UutJYWXJpTwliVsEqlMmGhTRIgusdkyy-9e0qoizNmjRWaQWSYaFMmlQWNySAOMim4mwl5M8xabnoac-ymcZ134YzMh883IS9HyVVH3fEHmf1h4vPeeOscMJJCFiQZwy3G02B2uJZSeLdsQQbXh1WqWTohTzo9GR8CUSxPAQdOSLqhQaMAUnpvnvGLeaD2BjzL4bvASwYF-eu484vZORdCJ8_-WfI52RYISUIGaZ9sNevWvQBA1ZQHYDofPh4EA_oBXHUcOg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALr_LYtoCREJxSHNtJHHFaHu2ytFWFtlIPSFFiO9oVxbvaJIfy65lxHrAUJMQx8jjxY2byzdj-TMgLDn5XiFQGWnIbSFWAHyxDAY-sEGmkEhHheeeT03hyLqcX0cUWedOfhWn5IYaEG1qG99do4JiQ7qwc2QamZ56KBeL1GxJwBkZe7z_zn0sILE0HqvAkCjvmWaj7uq-5-S-6BjCv75P8Fb_6H9DhHfKlb3q77-TrQVMXB_r7b6yO_9m3u-R2B0zpuNWke2TLuvtkZ-wgKP92RV9Sv1XU5-B3SHFkHeYNl_OrFcx0fomX2tOj8duxXYMnpV16BzWaYpqOVg2expov8sozxFKHLMpNRdftDl1b0XpJ8TwlNmHhVk39gJwffpi9mwTdZQ2BRhAVgC4wrYQo40iUBoCOCZkOZclzmVuTG6FUrpQw4NWs5NrImJUyETHzNyUBqHtItt3S2ceE2ihlRhuuGASHsdJFXBpQmhRCIZ2AxxmRV_20ZbpjMscLNS6zNqIRWT98I_J8kFy17B1_kNnvZz7r7LfKACZJJEISEbxiKAbLw-WU3NllAzK4RCwTxZIRedQqyvARCGTDBKDgiCQbKjQIIKv3ZolbzD27N0DaEMYFOuk15K_tzmbTs5BzFe_-s-QzcnMyOznOjj-eftojtzgiFJ9Q2ifb9bqxTwBf1cVTb0c_AF53H2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyEutKU8ti-MhOCUkthO4hy3LduyQLVCrVSJQ5TYjnZF611tkkP76zvjPGApSIhjlEnix8zkm_H4MyFvGfhdzhPhKcGMJ2QOfrAIOFz6OU9CGfMQ9zt_PY_OLsX4KrxqqypxL0zDD9En3NAynL9GA1_oojVyJBsYTxwTC4Tr6yICIIGA6Bv7uYLgJ0nPFB6HQUs8C89-6J5c_RU9wJcPyyR_ha_u_zPaIN-7ljdlJz8O6yo_VHe_kTr-X9c2ydMWltJho0db5JGxz8j20EJIfnNL31FXKOoy8NskPzUWs4bz6e0C5jm7xiPt6enwaGiW4Edpm9xBfaaYpKNljXuxprOsdPyw1CKHcl3SZVOfa0pazSnupsQmzOyirp6Ty9HHi-Mzrz2qwVMIoTzQBF9Jzoso5IUGmKMDXwWiYJnIjM40lzKTkmvwaUYwpWHGChHzyHfnJAGke0HW7NyaV4SaMPG10kz6EBpGUuVRoUFlEgiEVAz-ZkDed7OWqpbHHI_TuE6beIan3fANyJtectFwd_xBZq-b-LS13jIFkCSQBomH8Ir-NtgdLqZk1sxrkMEFYhFLPx6Ql42e9B-BMDaIAQgOSLyiQb0Acnqv3rGzqeP2BkAbwLhAJ52C_LXd6cV4EjAmo51_lnxNHk9ORumXT-efd8kThvDEZZP2yFq1rM0-gKsqP3BWdA_sPR4P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geniculohypothalamic+GABAergic+projections+gate+suprachiasmatic+nucleus+responses+to+retinal+input&rft.jtitle=The+Journal+of+physiology&rft.au=Hanna%2C+Lydia&rft.au=Walmsley%2C+Lauren&rft.au=Pienaar%2C+Abigail&rft.au=Howarth%2C+Michael&rft.date=2017-06-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=595&rft.issue=11&rft.spage=3621&rft.epage=3649&rft_id=info:doi/10.1113%2FJP273850&rft.externalDBID=10.1113%252FJP273850&rft.externalDocID=TJP12286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |