Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input

Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothala...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 595; no. 11; pp. 3621 - 3649
Main Authors Hanna, Lydia, Walmsley, Lauren, Pienaar, Abigail, Howarth, Michael, Brown, Timothy M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
DOI10.1113/JP273850

Cover

Loading…
Abstract Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi‐electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT‐signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system.
AbstractList Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi‐electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT‐signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system.
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally‐driven activity in the central clock in a circadian time‐dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time‐of‐day and establish an important new model for future investigations of the circadian visual system.
KEY POINTSVisual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system.ABSTRACTSensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day. Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system.
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Author Hanna, Lydia
Walmsley, Lauren
Brown, Timothy M.
Pienaar, Abigail
Howarth, Michael
AuthorAffiliation 1 Faculty of Biology Medicine and Health University of Manchester Manchester UK
AuthorAffiliation_xml – name: 1 Faculty of Biology Medicine and Health University of Manchester Manchester UK
Author_xml – sequence: 1
  givenname: Lydia
  orcidid: 0000-0002-5000-6676
  surname: Hanna
  fullname: Hanna, Lydia
  organization: University of Manchester
– sequence: 2
  givenname: Lauren
  surname: Walmsley
  fullname: Walmsley, Lauren
  organization: University of Manchester
– sequence: 3
  givenname: Abigail
  surname: Pienaar
  fullname: Pienaar, Abigail
  organization: University of Manchester
– sequence: 4
  givenname: Michael
  surname: Howarth
  fullname: Howarth, Michael
  organization: University of Manchester
– sequence: 5
  givenname: Timothy M.
  orcidid: 0000-0002-5625-4750
  surname: Brown
  fullname: Brown, Timothy M.
  email: timothy.brown@manchester.ac.uk
  organization: University of Manchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28217893$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLcFiV-AInHhkuKvxM4FaanKQlWJHsrZ8jqTXa8cO9gOaP99XXW3fAhOtjWPH70zc4ZOfPCA0GuCLwgh7P31LRVMNvgZWhDedrUQHTtBC4wprZloyCk6S2mHMWG4616gUyopEbJjC7RegbdmdmG7n0LeaqdHa6rV8uMS4qbcphh2YLINPlUbnaFK8xS12VqdRp0L4GfjYE5VhDQVCFKVQ3lk67WrrJ_m_BI9H7RL8OpwnqNvn67uLj_XN19XXy6XN7VpcNPWazDYSMaGtmFDj1veE2wIH6jmGnrdMym1lKzHUgKnpuctHrhgLWaUcMEpO0cfHr3TvB6hN-Bz1E5N0Y467lXQVv1Z8XarNuGHanhDiqgI3h0EMXyfIWU12mTAOe0hzEkRKUosIbEo6Nu_0F2YY2m5UB3mWBSmKdSb3xM9RTmOvwAXj4CJIaUIgzI264dpl4DWKYLVw37Vcb-_Ij59ODr_gR7cP62D_X85dXd9SyiVLbsHXvuzaQ
CitedBy_id crossref_primary_10_1016_j_steroids_2024_109398
crossref_primary_10_1152_jn_00556_2020
crossref_primary_10_1039_D3LC00064H
crossref_primary_10_1111_ejn_16582
crossref_primary_10_3389_fncel_2022_992747
crossref_primary_10_1186_s12915_020_00871_8
crossref_primary_10_15252_embr_202051866
crossref_primary_10_3389_fnins_2024_1186677
crossref_primary_10_1113_JP276917
crossref_primary_10_1111_jne_12824
crossref_primary_10_3390_nu16244330
crossref_primary_10_14814_phy2_14257
crossref_primary_10_7554_eLife_68179
crossref_primary_10_1038_s41598_023_35885_z
crossref_primary_10_1073_pnas_2100094118
crossref_primary_10_1038_s41467_020_15277_x
crossref_primary_10_2174_2666082216999201124152432
crossref_primary_10_1016_j_cub_2017_04_039
crossref_primary_10_1523_JNEUROSCI_0112_21_2022
crossref_primary_10_1002_cne_25293
Cites_doi 10.1097/00001756-200005150-00043
10.1016/j.neuroscience.2006.01.050
10.1016/0006-8993(89)91617-X
10.1016/j.brainresbull.2004.12.006
10.1016/0361-9230(89)90068-3
10.1177/074873048700200104
10.1017/S0952523800007318
10.1007/BF01417857
10.1002/cne.902580204
10.1002/(SICI)1096-9861(20000508)420:3<398::AID-CNE9>3.0.CO;2-9
10.1016/j.neuroscience.2008.03.068
10.1097/00001756-199605170-00005
10.1016/S0306-4522(98)00490-4
10.1111/j.1460-9568.1997.tb01531.x
10.1016/j.pneurobio.2007.05.002
10.1002/(SICI)1096-9861(19991122)414:3<348::AID-CNE5>3.0.CO;2-H
10.1097/00001756-199703030-00014
10.1177/074873049501000403
10.1371/journal.pbio.1000558
10.1371/journal.pone.0073750
10.1177/074873048600100405
10.1016/S0149-7634(96)00019-X
10.3109/07420520903227746
10.1152/jn.00909.2005
10.1016/0306-4522(94)90240-2
10.1007/BF00616752
10.1016/0304-3940(85)90022-9
10.1007/s10633-007-9055-z
10.1016/S0165-0270(96)00039-8
10.1177/07430402017003005
10.1523/JNEUROSCI.2672-05.2005
10.1016/j.neuron.2011.07.026
10.1177/074873049601100206
10.1016/j.cub.2007.01.048
10.1016/j.neuroscience.2011.11.037
10.1073/pnas.2436298100
10.1002/cne.20970
10.1038/nn1361
10.1523/JNEUROSCI.5750-07.2008
10.1113/jphysiol.2014.280065
10.1037/0735-7044.118.3.498
10.1152/ajpregu.2000.278.4.R987
10.1016/S0306-4522(96)00547-7
10.1016/S0306-4522(02)00811-4
10.1002/cne.902990409
10.1038/nature10206
10.1002/cne.21553
10.1016/0306-4522(92)90283-8
10.1111/j.1460-9568.1993.tb00504.x
10.1523/JNEUROSCI.17-20-07974.1997
10.1016/S0006-8993(98)01025-7
10.1073/pnas.1319820111
10.1038/nn1448
10.1002/cne.903440306
10.1101/sqb.2007.72.074
10.1002/cne.1271
10.1016/j.cub.2014.04.014
10.1002/cne.10881
10.1113/jphysiol.2014.288225
10.1111/j.0953-816X.2004.03098.x
10.1016/0006-8993(93)91118-C
10.1113/jphysiol.2012.248047
10.1016/0006-8993(89)91163-3
10.1046/j.1460-9568.2003.02425.x
10.1016/S0006-8993(02)03610-7
10.1371/journal.pone.0106148
10.1038/42468
10.1177/0748730414561545
10.1016/j.cub.2012.05.032
10.1523/JNEUROSCI.1423-12.2012
10.1523/JNEUROSCI.18-24-10709.1998
10.1016/0006-8993(94)90695-5
10.1016/0306-4522(94)00429-9
10.1016/S0006-8993(97)00235-7
10.1523/JNEUROSCI.18-21-09078.1998
10.1016/j.brainresbull.2004.05.001
10.1073/pnas.85.14.5301
10.1016/j.cub.2008.02.024
10.1016/j.neuroscience.2012.10.044
10.1111/j.1460-9568.2009.06944.x
10.1016/0006-8993(82)90361-4
10.1017/S0952523800174036
10.1111/j.1749-6632.1990.tb48935.x
10.1371/journal.pbio.1002127
10.1523/JNEUROSCI.18-08-03014.1998
10.1038/nature728
10.1002/cne.903320304
10.1111/j.1365-2826.2005.01395.x
10.1016/j.brainresrev.2005.08.003
10.1113/jphysiol.2010.199877
10.1016/0006-8993(82)91041-1
10.1016/S0169-328X(00)00194-7
10.1017/S0952523800002170
10.1038/nn.3078
10.1523/JNEUROSCI.18-04-01546.1998
10.1177/0748730408327918
10.1038/nature05453
10.1523/JNEUROSCI.19-01-00372.1999
10.1016/0006-8993(94)91302-1
10.1016/S0006-8993(01)02890-6
10.1096/fj.13-233098
10.1523/JNEUROSCI.5044-03.2004
10.1016/S0006-8993(96)01091-8
10.1016/S0006-8993(97)00831-7
10.1016/j.jneumeth.2006.02.024
10.1016/0304-3940(82)90189-6
10.1002/cne.902110107
10.1016/0304-3940(81)90447-X
ContentType Journal Article
Copyright 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Journal compilation © 2017 The Physiological Society
Copyright_xml – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
– notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
– notice: Journal compilation © 2017 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP273850
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate L. Hanna and others
EISSN 1469-7793
EndPage 3649
ExternalDocumentID PMC5451736
28217893
10_1113_JP273850
TJP12286
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/I017836/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I017836/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3EH
3O-
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5056-bec0c833f653fd064d10c14f2a4aedad388a883d088e42cd460f4736032147423
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Thu Aug 21 18:24:16 EDT 2025
Fri Jul 11 10:33:54 EDT 2025
Sun Jul 13 04:30:43 EDT 2025
Tue Jan 21 03:22:09 EST 2025
Thu Apr 24 23:01:20 EDT 2025
Tue Jul 01 04:29:16 EDT 2025
Wed Jan 22 16:20:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords mouse
circadian
channelrhodopsin
electrophysiology
intergeniculate leaflet
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5056-bec0c833f653fd064d10c14f2a4aedad388a883d088e42cd460f4736032147423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5000-6676
0000-0002-5625-4750
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5451736
PMID 28217893
PQID 1904070735
PQPubID 1086388
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451736
proquest_miscellaneous_1870647807
proquest_journals_1904070735
pubmed_primary_28217893
crossref_citationtrail_10_1113_JP273850
crossref_primary_10_1113_JP273850
wiley_primary_10_1113_JP273850_TJP12286
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 1 June 2017
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1994; 651
2002; 17
2011; 476
1999b; 19
2008; 506
2004; 24
2014; 24
2005; 65
2002; 957
2007; 72
2012; 15
2013; 8
1994; 61
1997; 9
1997; 8
1998; 18
1986; 1
1994; 660
1990; 611
2000; 17
1989; 504
2011; 71
2000; 11
2008; 28
1997; 387
2013; 591
1988; 85
1992; 48
1990; 299
1996; 69
2012; 22
2010; 8
1982; 34
2007; 17
1989; 2
2007; 445
2006; 51
1997; 21
1989; 493
2013; 228
1981; 27
2002; 416
2012; 32
1996; 11
2005; 8
2015; 593
2007; 82
1994; 15
2001; 437
2003; 465
2003; 100
1999a; 90
2004; 63
1987; 2
2003; 119
2013; 27
2015; 30
2003; 17
2012; 202
1997; 759
1996; 741
2006; 497
1993; 5
2005; 25
1995; 64
1994; 344
1993; 615
2001
1982; 211
1997; 17
1985; 55
2014; 9
2008; 154
1999; 815
1993; 332
1996; 7
2015; 13
2009; 24
1989; 22
2006; 95
2000; 278
1976; 106
2008; 18
1995; 12
1997; 772
1995; 10
2006; 18
1982; 247
1982; 245
2014; 111
2014; 592
2006; 156
2009; 26
2011; 589
2007; 115
2009; 30
1997; 77
2004; 19
1987; 258
1989; 164
2006; 140
2001; 916
2000; 420
2004; 118
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 916
  start-page: 172
  year: 2001
  end-page: 191
  article-title: Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections
  publication-title: Brain Res
– volume: 497
  start-page: 326
  year: 2006
  end-page: 349
  article-title: Central projections of melanopsin‐expressing retinal ganglion cells in the mouse
  publication-title: J Comp Neurol
– volume: 8
  start-page: 650
  year: 2005
  end-page: 656
  article-title: Fast delayed rectifier potassium current is required for circadian neural activity
  publication-title: Nat Neurosci
– volume: 18
  start-page: 10709
  year: 1998
  end-page: 10723
  article-title: Rhythmic properties of the hamster suprachiasmatic nucleus in vivo
  publication-title: J Neurosci
– volume: 592
  start-page: 5025
  year: 2014
  end-page: 5045
  article-title: Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity
  publication-title: J Physiol
– volume: 772
  start-page: 176
  year: 1997
  end-page: 180
  article-title: Tetrodotoxin blocks NPY‐induced but not muscimol‐induced phase advances of wheel‐running activity in Syrian hamsters
  publication-title: Brain Res
– volume: 27
  start-page: 303
  year: 1981
  end-page: 308
  article-title: Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat
  publication-title: Neurosci Lett
– volume: 465
  start-page: 401
  year: 2003
  end-page: 416
  article-title: Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity
  publication-title: J Comp Neurol
– volume: 164
  start-page: 805
  year: 1989
  end-page: 814
  article-title: Central administration of muscimol phase‐shifts the mammalian circadian clock
  publication-title: J Comp Physiol A
– volume: 247
  start-page: 154
  year: 1982
  end-page: 158
  article-title: Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice
  publication-title: Brain Res
– volume: 11
  start-page: 137
  year: 1996
  end-page: 144
  article-title: Bicuculline increases and muscimol reduces the phase‐delaying effects of light and VIP/PHI/GRP in the suprachiasmatic region
  publication-title: J Biol Rhythms
– volume: 34
  start-page: 283
  year: 1982
  end-page: 288
  article-title: Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro
  publication-title: Neurosci Lett
– volume: 2
  start-page: 35
  year: 1987
  end-page: 56
  article-title: The intergeniculate leaflet partially mediates effects of light on circadian rhythms
  publication-title: J Biol Rhythms
– volume: 15
  start-page: 1475
  year: 1994
  end-page: 1478
  article-title: Neuropeptide Y microinjected into the suprachiasmatic region phase shifts circadian rhythms in constant darkness
  publication-title: Peptides
– volume: 416
  start-page: 286
  year: 2002
  end-page: 290
  article-title: Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock
  publication-title: Nature
– volume: 154
  start-page: 839
  year: 2008
  end-page: 847
  article-title: Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons
  publication-title: Neuroscience
– volume: 22
  start-page: 411
  year: 1989
  end-page: 422
  article-title: Lateral geniculate lesions alter circadian activity rhythms in the hamster
  publication-title: Brain Res Bull
– volume: 332
  start-page: 293
  year: 1993
  end-page: 314
  article-title: Efferent projections of the suprachiasmatic nucleus in the golden hamster ( )
  publication-title: J Comp Neurol
– volume: 95
  start-page: 3727
  year: 2006
  end-page: 3741
  article-title: Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage‐gated Ca channels
  publication-title: J Neurophysiol
– volume: 18
  start-page: 381
  year: 2008
  end-page: 385
  article-title: In vivo monitoring of circadian timing in freely moving mice
  publication-title: Curr Biol
– volume: 493
  start-page: 283
  year: 1989
  end-page: 291
  article-title: Hamster circadian rhythms are phase‐shifted by electrical stimulation of the geniculo‐hypothalamic tract
  publication-title: Brain Res
– volume: 118
  start-page: 498
  year: 2004
  end-page: 504
  article-title: Circadian phase alteration by GABA and light differs in diurnal and nocturnal rodents during the day
  publication-title: Behav Neurosci
– volume: 8
  start-page: 885
  year: 1997
  end-page: 889
  article-title: Neuronal subpopulations in the suprachiasmatic nuclei based on their response to retinal and intergeniculate leaflet stimulation
  publication-title: Neuroreport
– volume: 8
  start-page: e1000558
  year: 2010
  article-title: Melanopsin contributions to irradiance coding in the thalamo‐cortical visual system
  publication-title: PLoS Biol
– volume: 28
  start-page: 5450
  year: 2008
  end-page: 5459
  article-title: Excitatory actions of GABA in the suprachiasmatic nucleus
  publication-title: J Neurosci
– volume: 8
  start-page: e73750
  year: 2013
  article-title: Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification
  publication-title: PLoS ONE
– volume: 445
  start-page: 168
  year: 2007
  end-page: 176
  article-title: Genome‐wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
– volume: 957
  start-page: 109
  year: 2002
  end-page: 116
  article-title: Attenuation of phase shifts to light by activity or neuropeptide Y: a time course study
  publication-title: Brain Res
– volume: 278
  start-page: R987
  year: 2000
  end-page: R994
  article-title: Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 115
  start-page: 137
  year: 2007
  end-page: 144
  article-title: Contributions of the mouse UV photopigment to the ERG and to vision
  publication-title: Doc Ophthalmol
– volume: 611
  start-page: 232
  year: 1990
  end-page: 246
  article-title: Ultrastructural localization of neuropeptide Y in the hypothalamus
  publication-title: Ann NY Acad Sci
– volume: 5
  start-page: 368
  year: 1993
  end-page: 381
  article-title: Glutamate‐like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus
  publication-title: Eur J Neurosci
– volume: 12
  start-page: 57
  year: 1995
  end-page: 67
  article-title: Organization of the hamster intergeniculate leaflet: NPY and ENK projections to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus
  publication-title: Vis Neurosci
– volume: 17
  start-page: 7974
  year: 1997
  end-page: 7987
  article-title: Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules
  publication-title: J Neurosci
– volume: 437
  start-page: 79
  year: 2001
  end-page: 90
  article-title: Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain
  publication-title: J Comp Neurol
– volume: 245
  start-page: 198
  year: 1982
  end-page: 200
  article-title: Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice
  publication-title: Brain Res
– volume: 593
  start-page: 1731
  year: 2015
  end-page: 1743
  article-title: Eye‐specific visual processing in the mouse suprachiasmatic nuclei
  publication-title: J Physiol
– volume: 589
  start-page: 1173
  year: 2011
  end-page: 1194
  article-title: Multiple hypothalamic cell populations encoding distinct visual information
  publication-title: J Physiol
– volume: 615
  start-page: 95
  year: 1993
  end-page: 100
  article-title: Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro
  publication-title: Brain Res
– volume: 106
  start-page: 253
  year: 1976
  end-page: 266
  article-title: A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents: II. The Variability of Phase Response Curves
  publication-title: J Comp Physiol
– volume: 63
  start-page: 531
  year: 2004
  end-page: 535
  article-title: GABA(B) receptor activation in the suprachiasmatic nucleus of diurnal and nocturnal rodents
  publication-title: Brain Res Bull
– volume: 65
  start-page: 149
  year: 2005
  end-page: 154
  article-title: Age‐related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro
  publication-title: Brain Res Bull
– volume: 111
  start-page: 9627
  year: 2014
  end-page: 9632
  article-title: Seasonal induction of GABAergic excitation in the central mammalian clock
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 2983
  year: 2004
  end-page: 2988
  article-title: Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus
  publication-title: J Neurosci
– volume: 32
  start-page: 11478
  year: 2012
  end-page: 11485
  article-title: A retinal ganglion cell that can signal irradiance continuously for 10 hours
  publication-title: J Neurosci
– volume: 69
  start-page: 163
  year: 1996
  end-page: 169
  article-title: A novel carbon fibre bundle microelectrode and modified brain slice chamber for recording long‐term multiunit activity from brain slices
  publication-title: J Neurosci Methods
– volume: 90
  start-page: 1093
  year: 1999a
  end-page: 1101
  article-title: The intergeniculate leaflet does not mediate the disruptive effects of constant light on circadian rhythms in the rat
  publication-title: Neuroscience
– volume: 156
  start-page: 173
  year: 2006
  end-page: 181
  article-title: A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices
  publication-title: J Neurosci Methods
– volume: 17
  start-page: 468
  year: 2007
  end-page: 473
  article-title: Seasonal encoding by the circadian pacemaker of the SCN
  publication-title: Curr Biol
– volume: 26
  start-page: 1075
  year: 2009
  end-page: 1089
  article-title: Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time
  publication-title: Chronobiol Int
– volume: 85
  start-page: 5301
  year: 1988
  end-page: 5304
  article-title: Lateral geniculate lesions block circadian phase‐shift responses to a benzodiazepine
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 1587
  year: 2000
  end-page: 1591
  article-title: Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo
  publication-title: Neuroreport
– volume: 61
  start-page: 391
  year: 1994
  end-page: 410
  article-title: Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster
  publication-title: Neuroscience
– volume: 140
  start-page: 305
  year: 2006
  end-page: 320
  article-title: Intergeniculate leaflet: contributions to photic and non‐photic responsiveness of the hamster circadian system
  publication-title: Neuroscience
– volume: 815
  start-page: 154
  year: 1999
  end-page: 166
  article-title: Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole‐cell recording
  publication-title: Brain Res
– volume: 77
  start-page: 1049
  year: 1997
  end-page: 1057
  article-title: Neuropeptide Y and glutamate block each other's phase shifts in the suprachiasmatic nucleus in vitro
  publication-title: Neuroscience
– volume: 72
  start-page: 509
  year: 2007
  end-page: 515
  article-title: Multiple photoreceptors contribute to nonimage‐forming visual functions predominantly through melanopsin‐containing retinal ganglion cells
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 71
  start-page: 995
  year: 2011
  end-page: 1013
  article-title: A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex
  publication-title: Neuron
– volume: 19
  start-page: 891
  year: 2004
  end-page: 897
  article-title: Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies
  publication-title: Eur J Neurosci
– volume: 82
  start-page: 229
  year: 2007
  end-page: 255
  article-title: Electrophysiology of the suprachiasmatic circadian clock
  publication-title: Prog Neurobiol
– volume: 9
  start-page: 1739
  year: 1997
  end-page: 1747
  article-title: A thalamic contribution to arousal‐induced, non‐photic entrainment of the circadian clock of the Syrian hamster
  publication-title: Eur J Neurosci
– volume: 258
  start-page: 204
  year: 1987
  end-page: 229
  article-title: Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of leucoagglutinin in the rat
  publication-title: J Comp Neurol
– volume: 119
  start-page: 611
  year: 2003
  end-page: 618
  article-title: Attenuation of circadian light induced phase advances and delays by neuropeptide Y and a neuropeptide Y Y1/Y5 receptor agonist
  publication-title: Neuroscience
– year: 2001
– volume: 55
  start-page: 211
  year: 1985
  end-page: 217
  article-title: Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus
  publication-title: Neurosci Lett
– volume: 759
  start-page: 181
  year: 1997
  end-page: 189
  article-title: GABA(A) and GABA(B) agonists and antagonists alter the phase‐shifting effects of light when microinjected into the suprachiasmatic region
  publication-title: Brain Res
– volume: 202
  start-page: 300
  year: 2012
  end-page: 308
  article-title: Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways
  publication-title: Neuroscience
– volume: 48
  start-page: 953
  year: 1992
  end-page: 962
  article-title: The organization of the crossed geniculogeniculate pathway of the rat: a ‐leucoagglutinin study
  publication-title: Neuroscience
– volume: 17
  start-page: 197
  year: 2003
  end-page: 204
  article-title: The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro
  publication-title: Eur J Neurosci
– volume: 17
  start-page: 509
  year: 2000
  end-page: 528
  article-title: In search of the visual pigment template
  publication-title: Vis Neurosci
– volume: 741
  start-page: 352
  year: 1996
  end-page: 355
  article-title: Circadian rhythm in light response in suprachiasmatic nucleus neurons of freely moving rats
  publication-title: Brain Res
– volume: 8
  start-page: 61
  year: 2005
  end-page: 66
  article-title: Electrical synapses coordinate activity in the suprachiasmatic nucleus
  publication-title: Nat Neurosci
– volume: 18
  start-page: 9078
  year: 1998
  end-page: 9087
  article-title: Light responsiveness of the suprachiasmatic nucleus: long‐term multiunit and single‐unit recordings in freely moving rats
  publication-title: J Neurosci
– volume: 591
  start-page: 2475
  year: 2013
  end-page: 2490
  article-title: GABAB receptor‐mediated frequency‐dependent and circadian changes in synaptic plasticity modulate retinal input to the suprachiasmatic nucleus
  publication-title: J Physiol
– volume: 10
  start-page: 299
  year: 1995
  end-page: 307
  article-title: Two distinct retinal projections to the hamster suprachiasmatic nucleus
  publication-title: J Biol Rhythms
– volume: 18
  start-page: 1546
  year: 1998
  end-page: 1558
  article-title: An alternate pathway for visual signal integration into the hypothalamo‐pituitary axis: retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine
  publication-title: J Neurosci
– volume: 228
  start-page: 315
  year: 2013
  end-page: 324
  article-title: Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet
  publication-title: Neuroscience
– volume: 504
  start-page: 161
  year: 1989
  end-page: 164
  article-title: Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate
  publication-title: Brain Res
– volume: 19
  start-page: 372
  year: 1999b
  end-page: 380
  article-title: The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod
  publication-title: J Neurosci
– volume: 1
  start-page: 309
  year: 1986
  end-page: 325
  article-title: Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms
  publication-title: J Biol Rhythms
– volume: 2
  start-page: 367
  year: 1989
  end-page: 375
  article-title: Photic responses of geniculo‐hypothalamic tract neurons in the Syrian hamster
  publication-title: Vis Neurosci
– volume: 420
  start-page: 398
  year: 2000
  end-page: 418
  article-title: Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat
  publication-title: J Comp Neurol
– volume: 30
  start-page: 35
  year: 2015
  end-page: 41
  article-title: Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells
  publication-title: J Biol Rhythms
– volume: 21
  start-page: 705
  year: 1997
  end-page: 727
  article-title: The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems
  publication-title: Neurosci Biobehav Rev
– volume: 7
  start-page: 1249
  year: 1996
  end-page: 1252
  article-title: Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor
  publication-title: Neuroreport
– volume: 476
  start-page: 92
  year: 2011
  end-page: 95
  article-title: Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs
  publication-title: Nature
– volume: 24
  start-page: 1241
  year: 2014
  end-page: 1247
  article-title: Binocular integration in the mouse lateral geniculate nuclei
  publication-title: Curr Biol
– volume: 299
  start-page: 493
  year: 1990
  end-page: 508
  article-title: Projections from the lateral geniculate nucleus to the hypothalamus of the Mongolian gerbil ( ): an anterograde and retrograde tracing study
  publication-title: J Comp Neurol
– volume: 22
  start-page: 1397
  year: 2012
  end-page: 1402
  article-title: Ultraviolet light provides a major input to non‐image‐forming light detection in mice
  publication-title: Curr Biol
– volume: 24
  start-page: 44
  year: 2009
  end-page: 54
  article-title: Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod
  publication-title: J Biol Rhythms
– volume: 9
  start-page: e106148
  year: 2014
  article-title: Step‐by‐step instructions for retina recordings with perforated multi electrode arrays
  publication-title: PLoS ONE
– volume: 25
  start-page: 9195
  year: 2005
  end-page: 9204
  article-title: Juxtacellular recording/labelling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons
  publication-title: J Neurosci
– volume: 64
  start-page: 813
  year: 1995
  end-page: 819
  article-title: Presynaptic inhibition by baclofen of retinohypothalamic excitatory synaptic transmission in rat suprachiasmatic nucleus
  publication-title: Neuroscience
– volume: 15
  start-page: 793
  year: 2012
  end-page: 802
  article-title: A toolbox of Cre‐dependent optogenetic transgenic mice for light‐induced activation and silencing
  publication-title: Nat Neurosci
– volume: 18
  start-page: 3014
  year: 1998
  end-page: 3022
  article-title: Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes
  publication-title: J Neurosci
– volume: 211
  start-page: 65
  year: 1982
  end-page: 83
  article-title: The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection
  publication-title: J Comp Neurol
– volume: 27
  start-page: 4204
  year: 2013
  end-page: 4212
  article-title: Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors
  publication-title: FASEB J
– volume: 17
  start-page: 217
  year: 2002
  end-page: 226
  article-title: The intergeniculate leaflet, but not the visual midbrain, mediates hamster circadian rhythm response to constant light
  publication-title: J Biol Rhythms
– volume: 18
  start-page: 146
  year: 2006
  end-page: 153
  article-title: Pinealectomy reduces optic nerve but not intergeniculate leaflet input to the suprachiasmatic nucleus at night
  publication-title: J Neuroendocrinol
– volume: 13
  start-page: e1002127
  year: 2015
  article-title: Colour as a signal for entraining the mammalian circadian clock
  publication-title: PLoS Biol
– volume: 51
  start-page: 1
  year: 2006
  end-page: 60
  article-title: The circadian visual system, 2005
  publication-title: Brain Res Rev
– volume: 506
  start-page: 708
  year: 2008
  end-page: 732
  article-title: Heterogeneous expression of gamma‐aminobutyric acid and gamma‐aminobutyric acid‐associated receptors and transporters in the rat suprachiasmatic nucleus
  publication-title: J Comp Neurol
– volume: 651
  start-page: 174
  year: 1994
  end-page: 182
  article-title: Intergeniculate leaflet lesions and behaviourally‐induced shifts of circadian rhythms
  publication-title: Brain Res
– volume: 344
  start-page: 403
  year: 1994
  end-page: 430
  article-title: Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex
  publication-title: J Comp Neurol
– volume: 30
  start-page: 1462
  year: 2009
  end-page: 1475
  article-title: GABAergic signalling induces divergent neuronal Ca responses in the suprachiasmatic nucleus network
  publication-title: Eur J Neurosci
– volume: 387
  start-page: 598
  year: 1997
  end-page: 603
  article-title: GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity
  publication-title: Nature
– volume: 660
  start-page: 293
  year: 1994
  end-page: 300
  article-title: Lesions of the thalamic intergeniculate leaflet block activity‐induced phase shifts in the circadian activity rhythm of the golden hamster
  publication-title: Brain Res
– volume: 100
  start-page: 15994
  year: 2003
  end-page: 15999
  article-title: Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_7_107_1
  doi: 10.1097/00001756-200005150-00043
– ident: e_1_2_7_70_1
  doi: 10.1016/j.neuroscience.2006.01.050
– ident: e_1_2_7_108_1
  doi: 10.1016/0006-8993(89)91617-X
– ident: e_1_2_7_74_1
  doi: 10.1016/j.brainresbull.2004.12.006
– ident: e_1_2_7_44_1
  doi: 10.1016/0361-9230(89)90068-3
– ident: e_1_2_7_80_1
  doi: 10.1177/074873048700200104
– ident: e_1_2_7_64_1
  doi: 10.1017/S0952523800007318
– ident: e_1_2_7_16_1
  doi: 10.1007/BF01417857
– ident: e_1_2_7_102_1
  doi: 10.1002/cne.902580204
– ident: e_1_2_7_62_1
  doi: 10.1002/(SICI)1096-9861(20000508)420:3<398::AID-CNE9>3.0.CO;2-9
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroscience.2008.03.068
– ident: e_1_2_7_37_1
  doi: 10.1097/00001756-199605170-00005
– ident: e_1_2_7_17_1
  doi: 10.1016/S0306-4522(98)00490-4
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1460-9568.1997.tb01531.x
– ident: e_1_2_7_9_1
  doi: 10.1016/j.pneurobio.2007.05.002
– ident: e_1_2_7_36_1
  doi: 10.1002/(SICI)1096-9861(19991122)414:3<348::AID-CNE5>3.0.CO;2-H
– ident: e_1_2_7_82_1
  doi: 10.1097/00001756-199703030-00014
– ident: e_1_2_7_94_1
  doi: 10.1177/074873049501000403
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.pbio.1000558
– ident: e_1_2_7_109_1
  doi: 10.1371/journal.pone.0073750
– ident: e_1_2_7_31_1
  doi: 10.1177/074873048600100405
– ident: e_1_2_7_30_1
  doi: 10.1016/S0149-7634(96)00019-X
– ident: e_1_2_7_98_1
  doi: 10.3109/07420520903227746
– ident: e_1_2_7_60_1
  doi: 10.1152/jn.00909.2005
– ident: e_1_2_7_67_1
  doi: 10.1016/0306-4522(94)90240-2
– ident: e_1_2_7_89_1
  doi: 10.1007/BF00616752
– ident: e_1_2_7_79_1
  doi: 10.1016/0304-3940(85)90022-9
– ident: e_1_2_7_41_1
  doi: 10.1007/s10633-007-9055-z
– ident: e_1_2_7_91_1
  doi: 10.1016/S0165-0270(96)00039-8
– ident: e_1_2_7_68_1
  doi: 10.1177/07430402017003005
– ident: e_1_2_7_92_1
  doi: 10.1523/JNEUROSCI.2672-05.2005
– ident: e_1_2_7_90_1
  doi: 10.1016/j.neuron.2011.07.026
– ident: e_1_2_7_21_1
  doi: 10.1177/074873049601100206
– ident: e_1_2_7_97_1
  doi: 10.1016/j.cub.2007.01.048
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroscience.2011.11.037
– ident: e_1_2_7_85_1
  doi: 10.1073/pnas.2436298100
– ident: e_1_2_7_33_1
  doi: 10.1002/cne.20970
– ident: e_1_2_7_51_1
  doi: 10.1038/nn1361
– ident: e_1_2_7_14_1
  doi: 10.1523/JNEUROSCI.5750-07.2008
– ident: e_1_2_7_84_1
  doi: 10.1113/jphysiol.2014.280065
– ident: e_1_2_7_72_1
  doi: 10.1037/0735-7044.118.3.498
– ident: e_1_2_7_69_1
  doi: 10.1152/ajpregu.2000.278.4.R987
– ident: e_1_2_7_4_1
  doi: 10.1016/S0306-4522(96)00547-7
– ident: e_1_2_7_49_1
  doi: 10.1016/S0306-4522(02)00811-4
– ident: e_1_2_7_57_1
  doi: 10.1002/cne.902990409
– ident: e_1_2_7_13_1
  doi: 10.1038/nature10206
– ident: e_1_2_7_3_1
  doi: 10.1002/cne.21553
– ident: e_1_2_7_58_1
  doi: 10.1016/0306-4522(92)90283-8
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1460-9568.1993.tb00504.x
– ident: e_1_2_7_53_1
  doi: 10.1523/JNEUROSCI.17-20-07974.1997
– ident: e_1_2_7_86_1
  doi: 10.1016/S0006-8993(98)01025-7
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.1319820111
– ident: e_1_2_7_40_1
  doi: 10.1038/nn1448
– ident: e_1_2_7_61_1
  doi: 10.1002/cne.903440306
– ident: e_1_2_7_29_1
  doi: 10.1101/sqb.2007.72.074
– ident: e_1_2_7_65_1
  doi: 10.1002/cne.1271
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cub.2014.04.014
– ident: e_1_2_7_66_1
  doi: 10.1002/cne.10881
– ident: e_1_2_7_100_1
  doi: 10.1113/jphysiol.2014.288225
– ident: e_1_2_7_106_1
  doi: 10.1111/j.0953-816X.2004.03098.x
– ident: e_1_2_7_87_1
  doi: 10.1016/0006-8993(93)91118-C
– ident: e_1_2_7_59_1
  doi: 10.1113/jphysiol.2012.248047
– ident: e_1_2_7_83_1
  doi: 10.1016/0006-8993(89)91163-3
– ident: e_1_2_7_15_1
  doi: 10.1046/j.1460-9568.2003.02425.x
– ident: e_1_2_7_48_1
  doi: 10.1016/S0006-8993(02)03610-7
– ident: e_1_2_7_81_1
  doi: 10.1371/journal.pone.0106148
– ident: e_1_2_7_99_1
  doi: 10.1038/42468
– ident: e_1_2_7_23_1
  doi: 10.1177/0748730414561545
– ident: e_1_2_7_96_1
  doi: 10.1016/j.cub.2012.05.032
– ident: e_1_2_7_104_1
  doi: 10.1523/JNEUROSCI.1423-12.2012
– ident: e_1_2_7_105_1
  doi: 10.1523/JNEUROSCI.18-24-10709.1998
– ident: e_1_2_7_42_1
  doi: 10.1016/0006-8993(94)90695-5
– ident: e_1_2_7_43_1
  doi: 10.1016/0306-4522(94)00429-9
– ident: e_1_2_7_22_1
  doi: 10.1016/S0006-8993(97)00235-7
– ident: e_1_2_7_56_1
  doi: 10.1523/JNEUROSCI.18-21-09078.1998
– ident: e_1_2_7_73_1
  doi: 10.1016/j.brainresbull.2004.05.001
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.85.14.5301
– ident: e_1_2_7_71_1
  doi: 10.1016/j.cub.2008.02.024
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroscience.2012.10.044
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1460-9568.2009.06944.x
– ident: e_1_2_7_26_1
  doi: 10.1016/0006-8993(82)90361-4
– ident: e_1_2_7_25_1
  doi: 10.1017/S0952523800174036
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1749-6632.1990.tb48935.x
– ident: e_1_2_7_101_1
  doi: 10.1371/journal.pbio.1002127
– ident: e_1_2_7_27_1
  doi: 10.1523/JNEUROSCI.18-08-03014.1998
– ident: e_1_2_7_77_1
  doi: 10.1038/nature728
– ident: e_1_2_7_46_1
  doi: 10.1002/cne.903320304
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2826.2005.01395.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.brainresrev.2005.08.003
– ident: e_1_2_7_11_1
  doi: 10.1113/jphysiol.2010.199877
– ident: e_1_2_7_88_1
  doi: 10.1016/0006-8993(82)91041-1
– ident: e_1_2_7_75_1
  doi: 10.1016/S0169-328X(00)00194-7
– ident: e_1_2_7_32_1
  doi: 10.1017/S0952523800002170
– ident: e_1_2_7_52_1
  doi: 10.1038/nn.3078
– ident: e_1_2_7_34_1
  doi: 10.1523/JNEUROSCI.18-04-01546.1998
– ident: e_1_2_7_10_1
  doi: 10.1177/0748730408327918
– ident: e_1_2_7_50_1
  doi: 10.1038/nature05453
– ident: e_1_2_7_18_1
  doi: 10.1523/JNEUROSCI.19-01-00372.1999
– ident: e_1_2_7_103_1
  doi: 10.1016/0006-8993(94)91302-1
– ident: e_1_2_7_2_1
  doi: 10.1016/S0006-8993(01)02890-6
– ident: e_1_2_7_95_1
  doi: 10.1096/fj.13-233098
– ident: e_1_2_7_93_1
  doi: 10.1523/JNEUROSCI.5044-03.2004
– ident: e_1_2_7_55_1
  doi: 10.1016/S0006-8993(96)01091-8
– ident: e_1_2_7_38_1
  doi: 10.1016/S0006-8993(97)00831-7
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jneumeth.2006.02.024
– ident: e_1_2_7_28_1
  doi: 10.1016/0304-3940(82)90189-6
– ident: e_1_2_7_78_1
  doi: 10.1002/cne.902110107
– ident: e_1_2_7_47_1
  doi: 10.1016/0304-3940(81)90447-X
SSID ssj0013099
Score 2.3526213
Snippet Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar...
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In...
Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In...
Key points Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar...
KEY POINTSVisual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3621
SubjectTerms Animals
Biological clocks
Brain slice preparation
channelrhodopsin
circadian
Circadian Rhythm
Circadian rhythms
electrophysiology
Female
GABAergic Neurons - physiology
Hypothalamus
Illumination
intergeniculate leaflet
Light
Male
Mice
Mice, Inbred C57BL
mouse
Neural networks
Neurons
Neuroscience ‐ Behavioural/Systems/Cognitive
Physiology
Research Paper
Retina
Retinal Neurons - physiology
Signal transduction
Suprachiasmatic nucleus
Suprachiasmatic Nucleus Neurons - physiology
Thalamus
Vision, Ocular
Visual system
γ-Aminobutyric acid
Title Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP273850
https://www.ncbi.nlm.nih.gov/pubmed/28217893
https://www.proquest.com/docview/1904070735
https://www.proquest.com/docview/1870647807
https://pubmed.ncbi.nlm.nih.gov/PMC5451736
Volume 595
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQT70AbXkslMpICE4pfiVxjttCWxaBKtRKlThEie1oVxTvapMc2l_PjPOApSAhjlEmiRPPTL4Zj78h5JUAvytlpiKjhIuULsEPVlzCIStlFutUxrjf-dPn5OxSza7iq76qEvfCdPwQY8INLSP4azTwouy7kHAkG5idByYWDNe5TJA2_90X8XMBgWXZSBSexrznnYVL3w4Xbv6J7sDLu1WSv6LX8Ps5eUC-DgPvqk6-HbZNeWhuf-N0_L83e0ju96iUTjs12iH3nN8le1MPEfn3G_qahjrRkIDfI-Wp85g0XM5vVjDNxTV2tKen06OpW4MbpX1uB9WZYo6O1i1uxZovijrQw1KPFMptTdddea6rabOkuJkSh7Dwq7Z5RC5P3l8cn0V9p4bIIIKKQBGY0VJWSSwrCyjHcma4qkShCmcLK7UutJYWXJpTwliVsEqlMmGhTRIgusdkyy-9e0qoizNmjRWaQWSYaFMmlQWNySAOMim4mwl5M8xabnoac-ymcZ134YzMh883IS9HyVVH3fEHmf1h4vPeeOscMJJCFiQZwy3G02B2uJZSeLdsQQbXh1WqWTohTzo9GR8CUSxPAQdOSLqhQaMAUnpvnvGLeaD2BjzL4bvASwYF-eu484vZORdCJ8_-WfI52RYISUIGaZ9sNevWvQBA1ZQHYDofPh4EA_oBXHUcOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALr_LYtoCREJxSHNtJHHFaHu2ytFWFtlIPSFFiO9oVxbvaJIfy65lxHrAUJMQx8jjxY2byzdj-TMgLDn5XiFQGWnIbSFWAHyxDAY-sEGmkEhHheeeT03hyLqcX0cUWedOfhWn5IYaEG1qG99do4JiQ7qwc2QamZ56KBeL1GxJwBkZe7z_zn0sILE0HqvAkCjvmWaj7uq-5-S-6BjCv75P8Fb_6H9DhHfKlb3q77-TrQVMXB_r7b6yO_9m3u-R2B0zpuNWke2TLuvtkZ-wgKP92RV9Sv1XU5-B3SHFkHeYNl_OrFcx0fomX2tOj8duxXYMnpV16BzWaYpqOVg2expov8sozxFKHLMpNRdftDl1b0XpJ8TwlNmHhVk39gJwffpi9mwTdZQ2BRhAVgC4wrYQo40iUBoCOCZkOZclzmVuTG6FUrpQw4NWs5NrImJUyETHzNyUBqHtItt3S2ceE2ihlRhuuGASHsdJFXBpQmhRCIZ2AxxmRV_20ZbpjMscLNS6zNqIRWT98I_J8kFy17B1_kNnvZz7r7LfKACZJJEISEbxiKAbLw-WU3NllAzK4RCwTxZIRedQqyvARCGTDBKDgiCQbKjQIIKv3ZolbzD27N0DaEMYFOuk15K_tzmbTs5BzFe_-s-QzcnMyOznOjj-eftojtzgiFJ9Q2ifb9bqxTwBf1cVTb0c_AF53H2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyEutKU8ti-MhOCUkthO4hy3LduyQLVCrVSJQ5TYjnZF611tkkP76zvjPGApSIhjlEnix8zkm_H4MyFvGfhdzhPhKcGMJ2QOfrAIOFz6OU9CGfMQ9zt_PY_OLsX4KrxqqypxL0zDD9En3NAynL9GA1_oojVyJBsYTxwTC4Tr6yICIIGA6Bv7uYLgJ0nPFB6HQUs8C89-6J5c_RU9wJcPyyR_ha_u_zPaIN-7ljdlJz8O6yo_VHe_kTr-X9c2ydMWltJho0db5JGxz8j20EJIfnNL31FXKOoy8NskPzUWs4bz6e0C5jm7xiPt6enwaGiW4Edpm9xBfaaYpKNljXuxprOsdPyw1CKHcl3SZVOfa0pazSnupsQmzOyirp6Ty9HHi-Mzrz2qwVMIoTzQBF9Jzoso5IUGmKMDXwWiYJnIjM40lzKTkmvwaUYwpWHGChHzyHfnJAGke0HW7NyaV4SaMPG10kz6EBpGUuVRoUFlEgiEVAz-ZkDed7OWqpbHHI_TuE6beIan3fANyJtectFwd_xBZq-b-LS13jIFkCSQBomH8Ir-NtgdLqZk1sxrkMEFYhFLPx6Ql42e9B-BMDaIAQgOSLyiQb0Acnqv3rGzqeP2BkAbwLhAJ52C_LXd6cV4EjAmo51_lnxNHk9ORumXT-efd8kThvDEZZP2yFq1rM0-gKsqP3BWdA_sPR4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geniculohypothalamic+GABAergic+projections+gate+suprachiasmatic+nucleus+responses+to+retinal+input&rft.jtitle=The+Journal+of+physiology&rft.au=Hanna%2C+Lydia&rft.au=Walmsley%2C+Lauren&rft.au=Pienaar%2C+Abigail&rft.au=Howarth%2C+Michael&rft.date=2017-06-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=595&rft.issue=11&rft.spage=3621&rft.epage=3649&rft_id=info:doi/10.1113%2FJP273850&rft.externalDBID=10.1113%252FJP273850&rft.externalDocID=TJP12286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon