Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes
A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tr...
Saved in:
Published in | Global change biology Vol. 14; no. 2; pp. 382 - 402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2008
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3−, Mn4+, Fe3+, and SO42−). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions. |
---|---|
AbstractList | A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH
4
) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O
2
from roots. For anaerobic soil processes, it quantifies the production of electron donors [H
2
and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH
4
production and other reductive reactions based on the availability of electron donors and acceptors (NO
3
−
, Mn
4+
, Fe
3+
, and SO
4
2−
). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH
4
concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH
4
emission as a function of residue management. It also successfully predicted the negative effect of (NH
4
)
2
SO
4
on CH
4
emission, which the current model missed. Predicted CH
4
emission was highly sensitive to the content of reducible soil Fe
3+
, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH
4
emission, but not of daily CH
4
fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH
4
transport. It also overestimated CH
4
emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH
4
emissions from rice fields under a range of conditions. A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3-, Mn4+, Fe3+, and SO42-). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar-specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions. [PUBLICATION ABSTRACT] A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3−, Mn4+, Fe3+, and SO42−). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions. Modifications to DNDC's submodels of soil climate, crop growth, and soil biogeochemistry to improve its performance across a range of climatic, soil, and management conditions are presented. The model still holds considerable uncertainty in estimating rice root biomass, and this uncertainty can strongly affect the predicted methane (CH sub(4)) production. The current DNDC calculates crop N uptake based on accumulated temperature, and calculates crop growth based on the N uptake, subject to water or N stress. DNDC shows acceptable agreement with most observations, indicating that the coefficients and factors used in the model are determined appropriately to provide good estimates of CH sub(4) emission. It is shown that the CH sub(4) emission estimates at a national scale does not account for the effects of variations in the content of electron acceptors. |
Author | KOBAYASHI, KAZUHIKO YAGI, KAZUYUKI HASEGAWA, TOSHIHIRO LI, CHANGSHENG FUMOTO, TAMON |
Author_xml | – sequence: 1 givenname: TAMON surname: FUMOTO fullname: FUMOTO, TAMON organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan – sequence: 2 givenname: KAZUHIKO surname: KOBAYASHI fullname: KOBAYASHI, KAZUHIKO organization: University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan – sequence: 3 givenname: CHANGSHENG surname: LI fullname: LI, CHANGSHENG organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA – sequence: 4 givenname: KAZUYUKI surname: YAGI fullname: YAGI, KAZUYUKI organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan – sequence: 5 givenname: TOSHIHIRO surname: HASEGAWA fullname: HASEGAWA, TOSHIHIRO organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20063458$$DView record in Pascal Francis |
BookMark | eNqNks9u1DAQxiNUJNrCO1hIIDgk2HGcpAeQypZukaqFIhC9WRN7svWS2IudlF3ehjfF6VZ76Km-eKT5ffPHn4-SA-ssJglhNGPxvFtljJcizYu6zHJKq4yyohLZ5klyuE8cTLEoUkYZf5YchbCilPKclofJv294a4KxSwJk7Z3CENIGAmrSGLdEp26wN2HwW9I7jR15c7Y4m70lgyPB9GMHA5IehxuwSCYwGGdJ611PvFFI1qD1lrQGOx3IaDV6cgveuDEQj8HoMarBwhJ7tAMBq0mLfjCd-RtJj0vTY3iePG2hC_ji_j5Ofpx_-j67SC-_zD_PTi9TJagQqQKGNBeAJ7oFWgLWNRecc408h4rHdMN0rcqInDQF0wUUddMgZ3XOgNc5P05e7-rGZ_g9Yhhk3Edh18Xd4sCSFXVRsrKO4MsH4MqN3sbZZE5FnlN-B726hyAo6FoPVpkg19704LcRpCUvxMTVO055F4LHdo8wKieD5UpOPsrJx0lWyTuD5SZKPzyQKjPAEB0YPJjuMQXe7wr8MR1uH91Yzmcfpyjq050-fhDc7PXgf8my4hH9uZjLr9dX5xfF4lpe8f-GMNNC |
CitedBy_id | crossref_primary_10_2208_jscejer_69_II_189 crossref_primary_10_3389_fsufs_2025_1499425 crossref_primary_10_1016_j_scitotenv_2017_05_090 crossref_primary_10_1016_j_scitotenv_2017_12_208 crossref_primary_10_18178_ijesd_2020_11_3_1238 crossref_primary_10_1016_j_jclepro_2019_118060 crossref_primary_10_2480_agrmet_69_3_11 crossref_primary_10_1016_j_energy_2025_135191 crossref_primary_10_1016_j_chemer_2016_04_002 crossref_primary_10_1080_00380768_2014_994469 crossref_primary_10_1016_j_agsy_2019_102743 crossref_primary_10_1007_s10705_013_9561_1 crossref_primary_10_1016_j_agrformet_2017_02_006 crossref_primary_10_1038_s41598_017_13582_y crossref_primary_10_1016_j_ecolmodel_2014_09_004 crossref_primary_10_1016_j_soilbio_2017_11_001 crossref_primary_10_1007_s10098_021_02094_z crossref_primary_10_1016_j_envpol_2011_11_027 crossref_primary_10_1007_s11104_008_9751_9 crossref_primary_10_1016_j_compag_2023_107929 crossref_primary_10_1016_j_xinn_2021_100192 crossref_primary_10_1016_j_geoderma_2018_06_004 crossref_primary_10_1111_j_1365_2486_2009_02050_x crossref_primary_10_1017_S0021859618001004 crossref_primary_10_11626_KJEB_2017_35_1_013 crossref_primary_10_1016_j_agsy_2016_10_011 crossref_primary_10_1111_pce_14683 crossref_primary_10_1016_j_spc_2024_01_019 crossref_primary_10_1007_s13143_024_00375_3 crossref_primary_10_1016_j_advwatres_2012_11_016 crossref_primary_10_5194_bg_11_237_2014 crossref_primary_10_5194_bg_13_5021_2016 crossref_primary_10_1007_s00374_014_0909_8 crossref_primary_10_1016_j_scitotenv_2021_151450 crossref_primary_10_1016_j_geoderma_2023_116732 crossref_primary_10_1002_2016MS000817 crossref_primary_10_3390_f8060220 crossref_primary_10_1016_j_earscirev_2024_104789 crossref_primary_10_1016_j_scitotenv_2015_12_149 crossref_primary_10_1016_j_agee_2016_06_017 crossref_primary_10_1016_S1881_8366_13_80029_8 crossref_primary_10_3390_agronomy13020379 crossref_primary_10_1016_j_envsoft_2013_07_002 crossref_primary_10_1016_j_scitotenv_2016_05_145 crossref_primary_10_1029_2008JG000775 crossref_primary_10_5454_mi_6_3_2 crossref_primary_10_1016_j_jclepro_2015_09_071 crossref_primary_10_1371_journal_pone_0049073 crossref_primary_10_3390_agriculture10080355 crossref_primary_10_5194_bg_11_4753_2014 crossref_primary_10_1007_s40003_017_0263_9 crossref_primary_10_2166_wst_2022_271 crossref_primary_10_1016_j_agsy_2020_102919 crossref_primary_10_1016_j_agrformet_2018_03_014 crossref_primary_10_1016_j_scitotenv_2020_142578 crossref_primary_10_1016_j_agee_2015_11_023 crossref_primary_10_1016_j_resconrec_2020_105267 crossref_primary_10_3390_drones8090459 crossref_primary_10_1016_j_agsy_2022_103528 crossref_primary_10_1016_j_jclepro_2017_06_116 crossref_primary_10_1016_j_jenvman_2018_11_113 crossref_primary_10_3390_agriculture10110500 crossref_primary_10_1016_j_rcrx_2020_100047 crossref_primary_10_1007_s11367_021_01879_0 crossref_primary_10_1016_j_chnaes_2010_11_006 crossref_primary_10_1016_j_envpol_2017_12_041 crossref_primary_10_1016_j_scitotenv_2017_03_208 crossref_primary_10_1016_j_agrformet_2017_10_030 crossref_primary_10_1080_00380768_2013_836943 crossref_primary_10_1016_j_ecolmodel_2012_08_016 crossref_primary_10_1128_AEM_00688_12 crossref_primary_10_5194_bg_7_2639_2010 crossref_primary_10_1007_s10333_020_00818_3 crossref_primary_10_1016_j_scitotenv_2020_144385 crossref_primary_10_1111_j_1365_2486_2011_02587_x crossref_primary_10_1002_2014JG002880 crossref_primary_10_3390_rs5115926 crossref_primary_10_1016_j_envsoft_2013_01_005 crossref_primary_10_1007_s11367_016_1191_9 crossref_primary_10_1016_j_agsy_2016_11_011 crossref_primary_10_1016_j_ecolmodel_2013_04_003 crossref_primary_10_1016_j_ecolmodel_2022_109896 crossref_primary_10_1590_0103_8478cr20190336 crossref_primary_10_1016_j_agsy_2017_04_006 crossref_primary_10_1016_j_fcr_2015_10_004 crossref_primary_10_1088_1748_9326_aafc8b crossref_primary_10_1007_s11104_014_2255_x crossref_primary_10_1111_gcb_13981 crossref_primary_10_1002_wcc_304 crossref_primary_10_1016_j_jclepro_2017_11_172 crossref_primary_10_1016_j_scitotenv_2020_139506 crossref_primary_10_1016_j_envsoft_2014_08_004 crossref_primary_10_1016_j_aiia_2020_07_002 crossref_primary_10_1016_j_biosystemseng_2017_02_001 crossref_primary_10_1007_s11027_018_9804_1 crossref_primary_10_3390_agriculture11111144 crossref_primary_10_1016_j_geoderma_2011_08_002 crossref_primary_10_1016_j_scitotenv_2015_10_097 crossref_primary_10_3390_w15142633 crossref_primary_10_1016_j_cosust_2011_06_002 crossref_primary_10_2480_agrmet_D_20_00024 crossref_primary_10_1016_j_agrformet_2008_06_011 crossref_primary_10_1016_j_advwatres_2015_07_005 crossref_primary_10_1111_j_1574_6941_2010_01018_x crossref_primary_10_2480_agrmet_D_16_00013 crossref_primary_10_1016_j_jclepro_2019_01_328 crossref_primary_10_1016_j_agrformet_2025_110504 crossref_primary_10_1007_s10333_015_0484_0 crossref_primary_10_1016_j_agrformet_2024_109908 crossref_primary_10_1016_j_rse_2022_113139 crossref_primary_10_1007_s11027_011_9290_1 crossref_primary_10_1007_s11104_012_1356_7 crossref_primary_10_1080_00380768_2012_682955 crossref_primary_10_11626_KJEB_2017_35_1_037 crossref_primary_10_3370_lca_5_432 crossref_primary_10_1007_s13593_021_00697_w crossref_primary_10_1016_S1002_0160_20_60068_6 crossref_primary_10_1016_j_envsoft_2016_09_007 crossref_primary_10_1016_j_heliyon_2023_e19639 crossref_primary_10_1016_j_fcr_2013_09_004 |
Cites_doi | 10.1271/nogeikagaku1924.31.4_211 10.2135/cropsci1989.0011183X002900010023x 10.1029/2003GB002046 10.1023/A:1004203208686 10.1029/94GB03231 10.1029/96GL03577 10.1023/A:1024935107543 10.1029/1999GB001204 10.1019/2003GB002045 10.1046/j.1365-3040.1997.d01-142.x 10.1029/2004GB002341 10.1016/S0016-7037(01)00563-4 10.1080/00380768.1966.10431963 10.1023/A:1004773810520 10.1029/2001GB001838 10.3402/tellusb.v50i2.16030 10.2136/sssaj1985.03615995004900060013x 10.1029/92JD00509 10.1016/B978-0-12-639010-0.50007-8 10.1007/BF00336349 10.1016/0378-4290(96)00027-5 10.2136/sssaj1993.03615995005700020017x 10.1016/S0045-6535(99)00101-0 10.1029/2002GL015370 10.1038/344529a0 10.1111/j.1747-0765.2005.tb00064.x 10.1046/j.1365-2486.2003.00665.x 10.1046/j.1365-2486.1998.00129.x 10.2134/jeq2005.0208 10.2136/sssaj1983.03615995004700010017x 10.1023/A:1004263405020 10.1023/A:1009879610785 10.1007/s10705-005-6111-5 10.2136/sssaj1984.03615995004800040015x 10.1029/94GB00767 10.1016/S0378-4290(01)00184-8 10.1016/0016-7037(88)90163-9 10.1016/S0167-8809(01)00260-2 10.1016/S0038-0717(97)00016-3 |
ContentType | Journal Article |
Copyright | 2007 The Authors 2008 INIST-CNRS Journal compilation © 2007 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2007 The Authors – notice: 2008 INIST-CNRS – notice: Journal compilation © 2007 Blackwell Publishing Ltd |
DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI |
DOI | 10.1111/j.1365-2486.2007.01475.x |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Ecology |
EISSN | 1365-2486 |
EndPage | 402 |
ExternalDocumentID | 1509787911 20063458 10_1111_j_1365_2486_2007_01475_x GCB1475 ark_67375_WNG_PXQFH4NX_Q |
Genre | article Feature |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI |
ID | FETCH-LOGICAL-c5055-ca1e025ae9dfa06ae8835333de32a73ca1b1d8c625a9b41d4a48bbe31821a3823 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 12:21:41 EDT 2025 Fri Jul 25 10:56:14 EDT 2025 Mon Jul 21 09:17:55 EDT 2025 Thu Apr 24 22:50:44 EDT 2025 Tue Jul 01 03:52:46 EDT 2025 Wed Jan 22 16:16:32 EST 2025 Wed Oct 30 09:57:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Methane greenhouse gases Monocotyledones Emission Decomposition soil redox status methane emission Modeling electron donors biogeochemical modeling Oryza sativa Gramineae Greenhouse gas Angiospermae Paddy field Warming Biogeochemical cycle rice Fertilizers Dynamical climatology Climate change Soils Biogeochemistry global warming Residue Global change paddy fields Spermatophyta Models Electron donor |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5055-ca1e025ae9dfa06ae8835333de32a73ca1b1d8c625a9b41d4a48bbe31821a3823 |
Notes | ark:/67375/WNG-PXQFH4NX-Q istex:C581EF070055C28890C811731981E78CD562B161 ArticleID:GCB1475 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 205220368 |
PQPubID | 30327 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_14846168 proquest_journals_205220368 pascalfrancis_primary_20063458 crossref_primary_10_1111_j_1365_2486_2007_01475_x crossref_citationtrail_10_1111_j_1365_2486_2007_01475_x wiley_primary_10_1111_j_1365_2486_2007_01475_x_GCB1475 istex_primary_ark_67375_WNG_PXQFH4NX_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2008 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: February 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Li C, Qiu J, Frolking S et al. (2002) Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters, 29, 1972. Van Bodegom PM, Van Reeven J, Denier Van Der Gon HAC (2003) Prediction of reducible soil iron from iron extraction data. Biogeochemistry, 64, 231-245. Hanaki M, Ito T, Saigusa M (2002) Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Journal of Soil Science and Plant Nutrition, 73, 135-143 (in Japanese with English summary). Cai Z, Sawamoto T, Li C et al. (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems. Global Biogeochemical Cycles, 17, 1107. Takai Y (1961b) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 51-53 (in Japanese). Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behavior. Soil Science Society of America Journal, 47, 85-91. Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, 1061. Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant and Soil, 222, 83-93. Penning de Vries FWT, Jansen DM, Ten Berge HFM, Bakema A (1989) Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc/IRRI, Wageningen/Los Baños, 271pp. Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993-3003. Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environmental Quality, 35, 1554-1565. Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield to cool water at different growth stages in paddy rice. Field Crops Research, 73, 67-79. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant, Cell and Environment, 20, 1175-1183. Hasegawa T, Horie T (1996) Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Research, 47, 107-116. Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutrient Cycling in Agroecosystems, 58, 349-356. Van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochimica et Cosmochimica Acta, 65, 2055-2066. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529-531. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276. IPCC (1995) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC. WMO/UNEP, Geneva, pp. 745-771. Nishimura S, Sudo S, Akiyama H, Yonemura S, Yagi K, Tsuruta H (2005) Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method. Soil Science and Plant Nutrition, 51, 557-564. Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agriculture, Ecosystems and Environment, 91, 59-71. Van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere, 39, 167-182. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 196, 7-14. Walter BP, Heimann M, Shannon RD, White JR (1996) A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23, 3731-3734. Hosono T, Nouchi I (1997) The dependence of methane transport in rice plants on the root zone temperature. Plant and Soil, 191, 233-240. Kropff MJ, Van Laar HH, Matthews RB (1994) ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings. DLO-Research Institute for Agrobiology and Soil Fertility/WAU-Department of Theoretical Production Ecology/International Rice Research Institute, Wageningen/Wageningen/Los Baños, Philippines. Takai Y, Koyama T, Kamura T (1957) Microbial metabolism of paddy soils. Part III. Nippon Nogeikagaku Kaishi, 31, 211-215 (in Japanese with English summary). Inubushi K, Cheng W, Aonuma S et al. (2003) Effect of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology, 9, 1458-1464. Goto E, Miyamori Y, Hasegawa S, Inatsu O (2004) Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district. Japanese Journal of Soil Science and Plant Nutrition, 75, 191-201 (in Japanese with English summary). Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series B, 50B, 128-150. Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Global Biogeochemical Cycles, 9, 183-195. Watson A, Stephen KD, Nedwell DB, Arah JRM (1997) Oxidation of methane in peat: kinetics of CH4 and O2 removal and the role of plant roots. Soil Biology and Biochemistry, 29, 1257-1267. Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems in India. Nutrient Cycling in Agroecosystems, 74, 157-174. Takai Y (1961a) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 1-4 (in Japanese). Kludze HK, DeLaune RD, Patrik WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 57, 386-391. Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19, 65-72. Li C, Frolking S, Xiao X et al. (2005) Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 19, GB3010, doi: DOI: 10.1029/2004GB002341. Gotoh S, Yamashita K (1966) Oxidation-reduction potential of a paddy soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide. Soil Science and Plant Nutrition, 12, 230-238. Huang Y, Sass RS, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 4, 247-268. Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal, 48, 772-778. Mogi S, Yoshizawa T, Nakano M (1980) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition. Bulletin of Tochigi Agricultural Experiment Station, 26, 17-26 (in Japanese with English summary). Gilmour JT, Clark MD, Sigua GC (1985) Estimating net nitrogen mineralization from carbon dioxide evolution. Soil Science Society of America Journal, 49, 1398-1402. Takai Y (1961c) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 122-126 (in Japanese). Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles, 14, 745-765. Li C, Mosier A, Wassmann R et al. (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles, 18, GB1043, doi: DOI: 10.1019/2003GB002045. Yoshizawa T, Nakayama K (1983) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter. Bulletin of Tochigi Agricultural Experiment Station, 29, 49-60 (in Japanese with English summary). Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, 29, 90-98. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759-9776. Nanzyo M (1989) Chemi-sorption of phosphate on soils and soil constituents. Bulletin of National Institute of Agro-Environmental Sciences, 6, 19-73 (in Japanese with English summary). 2002; 16 2006; 74 2006; 35 1997; 196 2003; 17 1966; 12 1992; 97 1990; 344 2004; 75 1990 2000; 58 2000; 14 2000 2003; 9 1997; 191 2002; 91 1983; 29 1989 1996; 23 1995; 9 1980; 26 1957; 31 1984; 48 1997; 20 2002; 73 1989; 6 1997; 29 1995 1994 1961a; 16 1995; 19 1988; 52 2003 1991 1985; 49 1989; 29 2001; 65 1994; 8 1993; 57 1961b; 16 2005; 19 1998; 50B 2002; 29 2004; 18 1999; 39 2005; 51 1961c; 16 2000; 222 1996; 47 1998; 4 2003; 64 1983; 47 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Kuwagata T (e_1_2_6_22_1) 2000 e_1_2_6_30_1 Kropff MJ (e_1_2_6_21_1) 1994 e_1_2_6_36_1 Yoshizawa T (e_1_2_6_54_1) 1983; 29 e_1_2_6_34_1 e_1_2_6_17_1 Lelieveld J (e_1_2_6_24_1) 1998; 50 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Takai Y (e_1_2_6_42_1) 1961; 16 Takai Y (e_1_2_6_43_1) 1961; 16 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 Takai Y (e_1_2_6_44_1) 1961; 16 Penning de Vries FWT (e_1_2_6_37_1) 1989 e_1_2_6_50_1 IPCC (e_1_2_6_19_1) 1995 Hanaki M (e_1_2_6_14_1) 2002; 73 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_40_1 e_1_2_6_8_1 Goudriaan J (e_1_2_6_13_1) 1990 Mogi S (e_1_2_6_33_1) 1980; 26 e_1_2_6_4_1 e_1_2_6_6_1 Goto E (e_1_2_6_11_1) 2004; 75 e_1_2_6_25_1 e_1_2_6_48_1 Nanzyo M (e_1_2_6_35_1) 1989; 6 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Goto E, Miyamori Y, Hasegawa S, Inatsu O (2004) Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district. Japanese Journal of Soil Science and Plant Nutrition, 75, 191-201 (in Japanese with English summary). – reference: Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276. – reference: Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series B, 50B, 128-150. – reference: Hanaki M, Ito T, Saigusa M (2002) Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Journal of Soil Science and Plant Nutrition, 73, 135-143 (in Japanese with English summary). – reference: Takai Y (1961c) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 122-126 (in Japanese). – reference: Li C, Frolking S, Xiao X et al. (2005) Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 19, GB3010, doi: DOI: 10.1029/2004GB002341. – reference: Watson A, Stephen KD, Nedwell DB, Arah JRM (1997) Oxidation of methane in peat: kinetics of CH4 and O2 removal and the role of plant roots. Soil Biology and Biochemistry, 29, 1257-1267. – reference: Cai Z, Sawamoto T, Li C et al. (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems. Global Biogeochemical Cycles, 17, 1107. – reference: Gilmour JT, Clark MD, Sigua GC (1985) Estimating net nitrogen mineralization from carbon dioxide evolution. Soil Science Society of America Journal, 49, 1398-1402. – reference: Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant and Soil, 222, 83-93. – reference: Gotoh S, Yamashita K (1966) Oxidation-reduction potential of a paddy soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide. Soil Science and Plant Nutrition, 12, 230-238. – reference: Inubushi K, Cheng W, Aonuma S et al. (2003) Effect of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology, 9, 1458-1464. – reference: Li C, Mosier A, Wassmann R et al. (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles, 18, GB1043, doi: DOI: 10.1019/2003GB002045. – reference: Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behavior. Soil Science Society of America Journal, 47, 85-91. – reference: Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutrient Cycling in Agroecosystems, 58, 349-356. – reference: Van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochimica et Cosmochimica Acta, 65, 2055-2066. – reference: Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529-531. – reference: Kropff MJ, Van Laar HH, Matthews RB (1994) ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings. DLO-Research Institute for Agrobiology and Soil Fertility/WAU-Department of Theoretical Production Ecology/International Rice Research Institute, Wageningen/Wageningen/Los Baños, Philippines. – reference: Kludze HK, DeLaune RD, Patrik WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 57, 386-391. – reference: Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agriculture, Ecosystems and Environment, 91, 59-71. – reference: Hosono T, Nouchi I (1997) The dependence of methane transport in rice plants on the root zone temperature. Plant and Soil, 191, 233-240. – reference: Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19, 65-72. – reference: Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254. – reference: Li C, Qiu J, Frolking S et al. (2002) Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters, 29, 1972. – reference: Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 196, 7-14. – reference: Takai Y (1961a) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 1-4 (in Japanese). – reference: Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759-9776. – reference: Takai Y (1961b) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 51-53 (in Japanese). – reference: Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environmental Quality, 35, 1554-1565. – reference: Penning de Vries FWT, Jansen DM, Ten Berge HFM, Bakema A (1989) Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc/IRRI, Wageningen/Los Baños, 271pp. – reference: Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993-3003. – reference: Hasegawa T, Horie T (1996) Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Research, 47, 107-116. – reference: Nishimura S, Sudo S, Akiyama H, Yonemura S, Yagi K, Tsuruta H (2005) Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method. Soil Science and Plant Nutrition, 51, 557-564. – reference: Van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere, 39, 167-182. – reference: IPCC (1995) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC. WMO/UNEP, Geneva, pp. 745-771. – reference: Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal, 48, 772-778. – reference: Van Bodegom PM, Van Reeven J, Denier Van Der Gon HAC (2003) Prediction of reducible soil iron from iron extraction data. Biogeochemistry, 64, 231-245. – reference: Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield to cool water at different growth stages in paddy rice. Field Crops Research, 73, 67-79. – reference: Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, 1061. – reference: Takai Y, Koyama T, Kamura T (1957) Microbial metabolism of paddy soils. Part III. Nippon Nogeikagaku Kaishi, 31, 211-215 (in Japanese with English summary). – reference: Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Global Biogeochemical Cycles, 9, 183-195. – reference: Mogi S, Yoshizawa T, Nakano M (1980) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition. Bulletin of Tochigi Agricultural Experiment Station, 26, 17-26 (in Japanese with English summary). – reference: Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles, 14, 745-765. – reference: Walter BP, Heimann M, Shannon RD, White JR (1996) A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23, 3731-3734. – reference: Huang Y, Sass RS, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 4, 247-268. – reference: Nanzyo M (1989) Chemi-sorption of phosphate on soils and soil constituents. Bulletin of National Institute of Agro-Environmental Sciences, 6, 19-73 (in Japanese with English summary). – reference: Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems in India. Nutrient Cycling in Agroecosystems, 74, 157-174. – reference: Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant, Cell and Environment, 20, 1175-1183. – reference: Yoshizawa T, Nakayama K (1983) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter. Bulletin of Tochigi Agricultural Experiment Station, 29, 49-60 (in Japanese with English summary). – reference: Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, 29, 90-98. – volume: 73 start-page: 135 year: 2002 end-page: 143 article-title: Effect of no‐tillage rice ( L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application publication-title: Japanese Journal of Soil Science and Plant Nutrition – volume: 23 start-page: 3731 year: 1996 end-page: 3734 article-title: A process‐based model to derive methane emissions from natural wetlands publication-title: Geophysical Research Letters – volume: 50B start-page: 128 year: 1998 end-page: 150 article-title: Changing concentration, lifetime and climate forcing of atmospheric methane publication-title: Tellus Series B – volume: 9 start-page: 1458 year: 2003 end-page: 1464 article-title: Effect of free‐air CO enrichment (FACE) on CH emission from a rice paddy field publication-title: Global Change Biology – year: 1989 – volume: 29 start-page: 90 year: 1989 end-page: 98 article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency publication-title: Crop Science – volume: 6 start-page: 19 year: 1989 end-page: 73 article-title: Chemi‐sorption of phosphate on soils and soil constituents publication-title: Bulletin of National Institute of Agro-Environmental Sciences – volume: 29 start-page: 49 year: 1983 end-page: 60 article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter publication-title: Bulletin of Tochigi Agricultural Experiment Station – volume: 9 start-page: 183 year: 1995 end-page: 195 article-title: Modeling methane emissions from rice paddies publication-title: Global Biogeochemical Cycles – volume: 20 start-page: 1175 year: 1997 end-page: 1183 article-title: Impact of gas transport through rice cultivars on methane emission from paddy fields publication-title: Plant, Cell and Environment – start-page: 111 year: 1990 end-page: 130 – year: 1994 – volume: 344 start-page: 529 year: 1990 end-page: 531 article-title: Relative contributions of greenhouse gas emissions to global warming publication-title: Nature – volume: 19 start-page: GB3010 year: 2005 article-title: Modeling impacts of farming management alternatives on CO , CH , and N O emissions publication-title: Global Biogeochemical Cycles – volume: 26 start-page: 17 year: 1980 end-page: 26 article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition publication-title: Bulletin of Tochigi Agricultural Experiment Station – volume: 47 start-page: 107 year: 1996 end-page: 116 article-title: Leaf nitrogen, plant age and crop dry matter production in rice publication-title: Field Crops Research – volume: 57 start-page: 386 year: 1993 end-page: 391 article-title: Aerenchyma formation and methane and oxygen exchange in rice publication-title: Soil Science Society of America Journal – volume: 91 start-page: 59 year: 2002 end-page: 71 article-title: Methane transport capacity of twenty‐two rice cultivars from five major Asian rice‐growing countries publication-title: Agriculture, Ecosystems and Environment – volume: 51 start-page: 557 year: 2005 end-page: 564 article-title: Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method publication-title: Soil Science and Plant Nutrition – volume: 48 start-page: 772 year: 1984 end-page: 778 article-title: A chemical model of phosphate adsorption by soils publication-title: Soil Science Society of America Journal – volume: 29 start-page: 1972 year: 2002 article-title: Reduced methane emissions from large‐scale changes in water management of China's rice paddies during 1980–2000 publication-title: Geophysical Research Letters – volume: 19 start-page: 65 year: 1995 end-page: 72 article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil publication-title: Biology and Fertility of Soils – volume: 31 start-page: 211 year: 1957 end-page: 215 article-title: Microbial metabolism of paddy soils. Part III publication-title: Nippon Nogeikagaku Kaishi – volume: 222 start-page: 83 year: 2000 end-page: 93 article-title: Importance of physical plant properties on methane transport through several rice cultivars publication-title: Plant and Soil – volume: 191 start-page: 233 year: 1997 end-page: 240 article-title: The dependence of methane transport in rice plants on the root zone temperature publication-title: Plant and Soil – volume: 35 start-page: 1554 year: 2006 end-page: 1565 article-title: Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years publication-title: Journal of Environmental Quality – volume: 74 start-page: 157 year: 2006 end-page: 174 article-title: Field validation of DNDC model for methane and nitrous oxide emissions from rice‐based production systems in India publication-title: Nutrient Cycling in Agroecosystems – volume: 16 start-page: 122 year: 1961c end-page: 126 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – volume: 14 start-page: 745 year: 2000 end-page: 765 article-title: A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands publication-title: Global Biogeochemical Cycles – volume: 97 start-page: 9759 year: 1992 end-page: 9776 article-title: A model of nitrous oxide evolution from soil driven by rainfall events publication-title: Journal of Geophysical Research – volume: 73 start-page: 67 year: 2002 end-page: 79 article-title: Response of growth and grain yield to cool water at different growth stages in paddy rice publication-title: Field Crops Research – volume: 4 start-page: 247 year: 1998 end-page: 268 article-title: A semi‐empirical model of methane emission from flooded rice paddy soils publication-title: Global Change Biology – volume: 39 start-page: 167 year: 1999 end-page: 182 article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils publication-title: Chemosphere – volume: 196 start-page: 7 year: 1997 end-page: 14 article-title: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management publication-title: Plant and Soil – volume: 12 start-page: 230 year: 1966 end-page: 238 article-title: Oxidation–reduction potential of a paddy soil with special reference to the production of ferrous iron, manganous manganese and sulfide publication-title: Soil Science and Plant Nutrition – volume: 29 start-page: 1257 year: 1997 end-page: 1267 article-title: Oxidation of methane in peat publication-title: Soil Biology and Biochemistry – start-page: 745 year: 1995 end-page: 771 – year: 2003 – volume: 75 start-page: 191 year: 2004 end-page: 201 article-title: Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district publication-title: Japanese Journal of Soil Science and Plant Nutrition – volume: 58 start-page: 259 year: 2000 end-page: 276 article-title: Modeling trace gas emissions from agricultural ecosystems publication-title: Nutrient Cycling in Agroecosystems – volume: 47 start-page: 85 year: 1983 end-page: 91 article-title: NCSOIL, a model of nitrogen and carbon transformations in soil publication-title: Soil Science Society of America Journal – start-page: 29 year: 1991 end-page: 63 – volume: 64 start-page: 231 year: 2003 end-page: 245 article-title: Prediction of reducible soil iron from iron extraction data publication-title: Biogeochemistry – volume: 17 start-page: 1107 year: 2003 article-title: Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems publication-title: Global Biogeochemical Cycles – volume: 52 start-page: 2993 year: 1988 end-page: 3003 article-title: Hydrogen concentrations as an indicator of the predominant terminal electron‐accepting reactions in aquatic sediments publication-title: Geochimica et Cosmochimica Acta – volume: 65 start-page: 2055 year: 2001 end-page: 2066 article-title: Microbial processes of CH production in a rice paddy soil publication-title: Geochimica et Cosmochimica Acta – volume: 18 start-page: GB1043 year: 2004 article-title: Modeling greenhouse gas emissions from rice‐based production systems publication-title: Global Biogeochemical Cycles – volume: 58 start-page: 349 year: 2000 end-page: 356 article-title: Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission publication-title: Nutrient Cycling in Agroecosystems – volume: 16 start-page: 51 year: 1961b end-page: 53 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – volume: 16 start-page: 1061 year: 2002 article-title: An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems publication-title: Global Biogeochemical Cycles – volume: 8 start-page: 237 year: 1994 end-page: 254 article-title: Modeling carbon biogeochemistry in agricultural soils publication-title: Global Biogeochemical Cycles – volume: 49 start-page: 1398 year: 1985 end-page: 1402 article-title: Estimating net nitrogen mineralization from carbon dioxide evolution publication-title: Soil Science Society of America Journal – volume: 16 start-page: 1 year: 1961a end-page: 4 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – start-page: 133 year: 2000 end-page: 134 – volume: 6 start-page: 19 year: 1989 ident: e_1_2_6_35_1 article-title: Chemi‐sorption of phosphate on soils and soil constituents publication-title: Bulletin of National Institute of Agro-Environmental Sciences – volume: 16 start-page: 51 year: 1961 ident: e_1_2_6_43_1 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – ident: e_1_2_6_45_1 doi: 10.1271/nogeikagaku1924.31.4_211 – ident: e_1_2_6_41_1 doi: 10.2135/cropsci1989.0011183X002900010023x – ident: e_1_2_6_6_1 doi: 10.1029/2003GB002046 – start-page: 745 volume-title: Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific‐Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC year: 1995 ident: e_1_2_6_19_1 – ident: e_1_2_6_16_1 doi: 10.1023/A:1004203208686 – ident: e_1_2_6_8_1 doi: 10.1029/94GB03231 – ident: e_1_2_6_50_1 doi: 10.1029/96GL03577 – volume: 75 start-page: 191 year: 2004 ident: e_1_2_6_11_1 article-title: Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district publication-title: Japanese Journal of Soil Science and Plant Nutrition – ident: e_1_2_6_48_1 doi: 10.1023/A:1024935107543 – volume-title: ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings year: 1994 ident: e_1_2_6_21_1 – ident: e_1_2_6_49_1 doi: 10.1029/1999GB001204 – ident: e_1_2_6_29_1 doi: 10.1019/2003GB002045 – ident: e_1_2_6_5_1 doi: 10.1046/j.1365-3040.1997.d01-142.x – ident: e_1_2_6_28_1 doi: 10.1029/2004GB002341 – volume: 26 start-page: 17 year: 1980 ident: e_1_2_6_33_1 article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition publication-title: Bulletin of Tochigi Agricultural Experiment Station – ident: e_1_2_6_46_1 doi: 10.1016/S0016-7037(01)00563-4 – ident: e_1_2_6_12_1 doi: 10.1080/00380768.1966.10431963 – start-page: 111 volume-title: Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture year: 1990 ident: e_1_2_6_13_1 – ident: e_1_2_6_53_1 doi: 10.1023/A:1004773810520 – ident: e_1_2_6_55_1 doi: 10.1029/2001GB001838 – volume: 50 start-page: 128 year: 1998 ident: e_1_2_6_24_1 article-title: Changing concentration, lifetime and climate forcing of atmospheric methane publication-title: Tellus Series B doi: 10.3402/tellusb.v50i2.16030 – ident: e_1_2_6_9_1 doi: 10.2136/sssaj1985.03615995004900060013x – ident: e_1_2_6_25_1 doi: 10.1029/92JD00509 – ident: e_1_2_6_38_1 doi: 10.1016/B978-0-12-639010-0.50007-8 – volume: 29 start-page: 49 year: 1983 ident: e_1_2_6_54_1 article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter publication-title: Bulletin of Tochigi Agricultural Experiment Station – ident: e_1_2_6_2_1 doi: 10.1007/BF00336349 – ident: e_1_2_6_15_1 doi: 10.1016/0378-4290(96)00027-5 – ident: e_1_2_6_20_1 doi: 10.2136/sssaj1993.03615995005700020017x – ident: e_1_2_6_26_1 doi: 10.1029/92JD00509 – volume: 16 start-page: 122 year: 1961 ident: e_1_2_6_44_1 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – volume: 16 start-page: 1 year: 1961 ident: e_1_2_6_42_1 article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism) publication-title: Nougyou Gijutsu – ident: e_1_2_6_47_1 doi: 10.1016/S0045-6535(99)00101-0 – ident: e_1_2_6_39_1 – ident: e_1_2_6_30_1 doi: 10.1029/2002GL015370 – ident: e_1_2_6_23_1 doi: 10.1038/344529a0 – ident: e_1_2_6_36_1 doi: 10.1111/j.1747-0765.2005.tb00064.x – ident: e_1_2_6_18_1 doi: 10.1046/j.1365-2486.2003.00665.x – ident: e_1_2_6_17_1 doi: 10.1046/j.1365-2486.1998.00129.x – ident: e_1_2_6_31_1 doi: 10.2134/jeq2005.0208 – ident: e_1_2_6_34_1 doi: 10.2136/sssaj1983.03615995004700010017x – ident: e_1_2_6_7_1 doi: 10.1023/A:1004263405020 – ident: e_1_2_6_51_1 doi: 10.1023/A:1009879610785 – ident: e_1_2_6_4_1 doi: 10.1007/s10705-005-6111-5 – ident: e_1_2_6_10_1 doi: 10.2136/sssaj1984.03615995004800040015x – start-page: 133 volume-title: Preprint Volume of the 24th Conference on Agricultural and Forest Meteorology year: 2000 ident: e_1_2_6_22_1 – ident: e_1_2_6_27_1 doi: 10.1029/94GB00767 – volume: 73 start-page: 135 year: 2002 ident: e_1_2_6_14_1 article-title: Effect of no‐tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application publication-title: Japanese Journal of Soil Science and Plant Nutrition – ident: e_1_2_6_40_1 doi: 10.1016/S0378-4290(01)00184-8 – ident: e_1_2_6_32_1 doi: 10.1016/0016-7037(88)90163-9 – ident: e_1_2_6_3_1 doi: 10.1016/S0167-8809(01)00260-2 – volume-title: Simulation of Ecophysiological Processes of Growth in Several Annual Crops year: 1989 ident: e_1_2_6_37_1 – ident: e_1_2_6_52_1 doi: 10.1016/S0038-0717(97)00016-3 |
SSID | ssj0003206 |
Score | 2.2849038 |
Snippet | A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane... Modifications to DNDC's submodels of soil climate, crop growth, and soil biogeochemistry to improve its performance across a range of climatic, soil, and... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 382 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biochemistry biogeochemical modeling Biogeochemistry Biological and medical sciences Climate change Cultivars Decomposition Dissolved organic carbon Ecology electron donors Emissions Fundamental and applied biological sciences. Psychology General aspects Geochemistry global warming greenhouse gases Heterogeneity Leaves Low temperature Methane methane emission Moisture content Oryza sativa paddy fields Photosynthesis Residues Respiration Rice Rice fields Roots soil redox status Soil water Synecology |
Title | Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes |
URI | https://api.istex.fr/ark:/67375/WNG-PXQFH4NX-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2007.01475.x https://www.proquest.com/docview/205220368 https://www.proquest.com/docview/14846168 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJiReYCtMhLHtHtAED6nq2vnTR9atq5BWsYmJvkV24kxVu7RKWrTtiY_Ad-Cb8Um4c9JsQTxMiLdE56vq3Nn-2f7dHWPvtPYoM1Ho0h2TK9PYdzWua2439f2OTLXkKR3on4384aX8NPbGFf-JYmHK_BD1gRuNDDtf0wBXumgOcsvQkqFfZSLkMvDahCdJQPjo4j6TlOjaMptceBJnHi6apJ6__lBjpdqkj35DzElV4MdLy6oXDVj6ENza1Wnwgk3X_SpJKdP2aqnb8d0fKR__T8e32PMKxMLH0uu22ROTtdjTsqzlbYvtnNxHz2GzavooWsw5Q4g-z20zOIT-bIJ42b69ZD8vbJx7dgUKFmX0wq_vP2iRTUBP5leGSnuVtenAlu-B98ej4_4HWM6hmFxTFTIDVA9bZQaoIR0DAkXPAOVNggVOsbdgCXsFUORcDt9UTgxgyA0OyRVq11QgUFkCKVHOZ5M7bEnlK65N8YpdDk6-9IduVUHCjRHZeW6suEFQp0wvSVXHVyZEwCmESIzoqkCgWPMkjHEPqHrololUMtSajoW7XJH37rCNbJ6Z1wyEL0SAvkuAVeoOV4iMDN1ae37YwweHBWtvieIqvTpV-ZhFD7ZZaLeI7EbFP4PI2i26cRivNRdlipFH6Bxah6wVVD4lih7Kvo5Oo8_j88FQjsbRucP2Gx5bK9BRkpBe6LDdtQtH1fRVoBB7idgGpQe1FC1Hl0loRTQNbhkRuXJq4VtnffRfj077R_T05l8Vd9mzkrRDnKK3bGOZr8weIsOl3rdj_jfQ51Yq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hVggu_AQqTKGdA6rg4CjOrn9yLGnTAI1Fq1bkZu3a6ypq6kR2UrU98Qi8A2_GkzCzdtwacagQN1u7E2U9s7vfzs7Mx9g7pVyqTBTYdMdkizT2bIX7mt1NPa8jUiWclBz6o9AbnorPY3dc0QFRLkxZH6J2uNHMMOs1TXBySDdnuQnREoFXlSJ0hO-2EVCuE8G3OV8d39aS4l1DtOlwV-Da4_BmWM9ff6mxV63TZ7-i2ElZ4OdLS96LBjC9C2_N_jR4yqarkZVhKeft5UK145s_ij7-p6E_Y08qHAu7peE9Zw901mIPS2bL6xbb2L9NoMNu1QpStJg1QpQ-y0032IH-dIKQ2by9YD-PTap7dgYS5mUCw6_vP2ifTUBNZmea2L1KejowDD7wfi_c63-AxQyKyQURkWkgSmyZaaCO5AkESqABKp0Ec1xlr8HE7BVAyXM5XMqcgoAh1zgrlyhdRwOBzBJIKep8OrnBnsRgcaGLl-x0sH_SH9oViYQdI7hz7Vg6GnGd1L0klR1P6gAxJ-c80bwrfY7NykmCGI-BsoeWmQgpAqXIM9x1JBnwBlvLZpl-xYB7nPtovoRZheo4EsGRpotr1wt6-GAxf2UuUVxVWCeij2l056SFeotIb8T_6UdGb9GVxZxacl5WGbmHzI6xyFpA5ucUpYdt38KD6Ov4aDAU4Tg6sthWw2RrAfImceEGFttc2XBUrWAFNuIoEd5g63bdipqj-yTUIqoGT40IXh3q4Rlrvfdfjw76H-np9b8KbrNHw5PRYXT4KfyyyR6XMTwUYvSGrS3ypX6LQHGhtswC8BsVnlpF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJhA3_BSmhcF2LtAEF6ma2vnpJbTrys-ibWKid5GdOFPVLq2SFm274hF4B96MJ-EcJ80WxMWEuEtku6pzju3P9nfOx9hrpVzKTBTYdMdkizT2bIXrmt1NPa8jUiWclA70j0JvdCY-jt1xxX-iWJgyP0R94EYjw8zXNMAXSdoc5IahJQKvykToCN9tI57cFF4nIA8fnN6kkuJdo7PpcFfg1OPwJqvnr7_UWKo26atfEnVSFvj10lL2ooFLb6NbszwNH7PpumMlK2XaXi1VO77-I-fj_-n5E_aoQrHwrnS7p-yezlrsfqlredViWwc34XNYrZo_ihazjhCjz3NTDfahP5sgYDZvz9jPUxPonp2DhEUZvvDr-w9aZRNQk_m5Jm2vUpwOjH4PvBmEg_5bWM6hmFyQDJkGEsSWmQaqSOeAQOEzQImTYIFz7BUYxl4BFDqXwzeZEwUYco1jcoWtay4QyCyBlDjns8k11iT9igtdPGdnw4Mv_ZFdSUjYMUI7146loxHVSd1LUtnxpA4QcXLOE8270udYrJwkiHETKHvol4mQIlCKzoW7jiT33WIb2TzT2wy4x7mPzkuIVaiOIxEaabq2dr2ghw8W89feEsVVfnWS-ZhFt_ZZaLeI7Ebqn35k7BZdWsypWy7KHCN3aLNvHLJuIPMpcfSw7Gt4GB2PT4YjEY6jE4vtNjy2bkBnSVy4gcV21i4cVfNXgYXYSwQ3WLpXl6Ll6DYJrYimwT0jQleHanjGWe_816PD_nt6evGvDffYg-PBMPr8Ify0wx6WBB7iF71kG8t8pV8hSlyqXTP8fwPU_1j9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revising+a+process-based+biogeochemistry+model+%28DNDC%29+to+simulate+methane+emission+from+rice+paddy+fields+under+various+residue+management+and+fertilizer+regimes&rft.jtitle=Global+change+biology&rft.au=FUMOTO%2C+Tamon&rft.au=KOBAYASHI%2C+Kazuhiko&rft.au=CHANGSHENG+LI&rft.au=YAGI%2C+Kazuyuki&rft.date=2008-02-01&rft.pub=Blackwell&rft.issn=1354-1013&rft.volume=14&rft.issue=2&rft.spage=382&rft.epage=402&rft_id=info:doi/10.1111%2Fj.1365-2486.2007.01475.x&rft.externalDBID=n%2Fa&rft.externalDocID=20063458 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |