Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes

A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tr...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 14; no. 2; pp. 382 - 402
Main Authors FUMOTO, TAMON, KOBAYASHI, KAZUHIKO, LI, CHANGSHENG, YAGI, KAZUYUKI, HASEGAWA, TOSHIHIRO
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2008
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3−, Mn4+, Fe3+, and SO42−). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions.
AbstractList A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH 4 ) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O 2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H 2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH 4 production and other reductive reactions based on the availability of electron donors and acceptors (NO 3 − , Mn 4+ , Fe 3+ , and SO 4 2− ). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH 4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH 4 emission as a function of residue management. It also successfully predicted the negative effect of (NH 4 ) 2 SO 4 on CH 4 emission, which the current model missed. Predicted CH 4 emission was highly sensitive to the content of reducible soil Fe 3+ , which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH 4 emission, but not of daily CH 4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH 4 transport. It also overestimated CH 4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH 4 emissions from rice fields under a range of conditions.
A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3-, Mn4+, Fe3+, and SO42-). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar-specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions. [PUBLICATION ABSTRACT]
A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3−, Mn4+, Fe3+, and SO42−). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions.
Modifications to DNDC's submodels of soil climate, crop growth, and soil biogeochemistry to improve its performance across a range of climatic, soil, and management conditions are presented. The model still holds considerable uncertainty in estimating rice root biomass, and this uncertainty can strongly affect the predicted methane (CH sub(4)) production. The current DNDC calculates crop N uptake based on accumulated temperature, and calculates crop growth based on the N uptake, subject to water or N stress. DNDC shows acceptable agreement with most observations, indicating that the coefficients and factors used in the model are determined appropriately to provide good estimates of CH sub(4) emission. It is shown that the CH sub(4) emission estimates at a national scale does not account for the effects of variations in the content of electron acceptors.
Author KOBAYASHI, KAZUHIKO
YAGI, KAZUYUKI
HASEGAWA, TOSHIHIRO
LI, CHANGSHENG
FUMOTO, TAMON
Author_xml – sequence: 1
  givenname: TAMON
  surname: FUMOTO
  fullname: FUMOTO, TAMON
  organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan
– sequence: 2
  givenname: KAZUHIKO
  surname: KOBAYASHI
  fullname: KOBAYASHI, KAZUHIKO
  organization: University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
– sequence: 3
  givenname: CHANGSHENG
  surname: LI
  fullname: LI, CHANGSHENG
  organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
– sequence: 4
  givenname: KAZUYUKI
  surname: YAGI
  fullname: YAGI, KAZUYUKI
  organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan
– sequence: 5
  givenname: TOSHIHIRO
  surname: HASEGAWA
  fullname: HASEGAWA, TOSHIHIRO
  organization: National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20063458$$DView record in Pascal Francis
BookMark eNqNks9u1DAQxiNUJNrCO1hIIDgk2HGcpAeQypZukaqFIhC9WRN7svWS2IudlF3ehjfF6VZ76Km-eKT5ffPHn4-SA-ssJglhNGPxvFtljJcizYu6zHJKq4yyohLZ5klyuE8cTLEoUkYZf5YchbCilPKclofJv294a4KxSwJk7Z3CENIGAmrSGLdEp26wN2HwW9I7jR15c7Y4m70lgyPB9GMHA5IehxuwSCYwGGdJ611PvFFI1qD1lrQGOx3IaDV6cgveuDEQj8HoMarBwhJ7tAMBq0mLfjCd-RtJj0vTY3iePG2hC_ji_j5Ofpx_-j67SC-_zD_PTi9TJagQqQKGNBeAJ7oFWgLWNRecc408h4rHdMN0rcqInDQF0wUUddMgZ3XOgNc5P05e7-rGZ_g9Yhhk3Edh18Xd4sCSFXVRsrKO4MsH4MqN3sbZZE5FnlN-B726hyAo6FoPVpkg19704LcRpCUvxMTVO055F4LHdo8wKieD5UpOPsrJx0lWyTuD5SZKPzyQKjPAEB0YPJjuMQXe7wr8MR1uH91Yzmcfpyjq050-fhDc7PXgf8my4hH9uZjLr9dX5xfF4lpe8f-GMNNC
CitedBy_id crossref_primary_10_2208_jscejer_69_II_189
crossref_primary_10_3389_fsufs_2025_1499425
crossref_primary_10_1016_j_scitotenv_2017_05_090
crossref_primary_10_1016_j_scitotenv_2017_12_208
crossref_primary_10_18178_ijesd_2020_11_3_1238
crossref_primary_10_1016_j_jclepro_2019_118060
crossref_primary_10_2480_agrmet_69_3_11
crossref_primary_10_1016_j_energy_2025_135191
crossref_primary_10_1016_j_chemer_2016_04_002
crossref_primary_10_1080_00380768_2014_994469
crossref_primary_10_1016_j_agsy_2019_102743
crossref_primary_10_1007_s10705_013_9561_1
crossref_primary_10_1016_j_agrformet_2017_02_006
crossref_primary_10_1038_s41598_017_13582_y
crossref_primary_10_1016_j_ecolmodel_2014_09_004
crossref_primary_10_1016_j_soilbio_2017_11_001
crossref_primary_10_1007_s10098_021_02094_z
crossref_primary_10_1016_j_envpol_2011_11_027
crossref_primary_10_1007_s11104_008_9751_9
crossref_primary_10_1016_j_compag_2023_107929
crossref_primary_10_1016_j_xinn_2021_100192
crossref_primary_10_1016_j_geoderma_2018_06_004
crossref_primary_10_1111_j_1365_2486_2009_02050_x
crossref_primary_10_1017_S0021859618001004
crossref_primary_10_11626_KJEB_2017_35_1_013
crossref_primary_10_1016_j_agsy_2016_10_011
crossref_primary_10_1111_pce_14683
crossref_primary_10_1016_j_spc_2024_01_019
crossref_primary_10_1007_s13143_024_00375_3
crossref_primary_10_1016_j_advwatres_2012_11_016
crossref_primary_10_5194_bg_11_237_2014
crossref_primary_10_5194_bg_13_5021_2016
crossref_primary_10_1007_s00374_014_0909_8
crossref_primary_10_1016_j_scitotenv_2021_151450
crossref_primary_10_1016_j_geoderma_2023_116732
crossref_primary_10_1002_2016MS000817
crossref_primary_10_3390_f8060220
crossref_primary_10_1016_j_earscirev_2024_104789
crossref_primary_10_1016_j_scitotenv_2015_12_149
crossref_primary_10_1016_j_agee_2016_06_017
crossref_primary_10_1016_S1881_8366_13_80029_8
crossref_primary_10_3390_agronomy13020379
crossref_primary_10_1016_j_envsoft_2013_07_002
crossref_primary_10_1016_j_scitotenv_2016_05_145
crossref_primary_10_1029_2008JG000775
crossref_primary_10_5454_mi_6_3_2
crossref_primary_10_1016_j_jclepro_2015_09_071
crossref_primary_10_1371_journal_pone_0049073
crossref_primary_10_3390_agriculture10080355
crossref_primary_10_5194_bg_11_4753_2014
crossref_primary_10_1007_s40003_017_0263_9
crossref_primary_10_2166_wst_2022_271
crossref_primary_10_1016_j_agsy_2020_102919
crossref_primary_10_1016_j_agrformet_2018_03_014
crossref_primary_10_1016_j_scitotenv_2020_142578
crossref_primary_10_1016_j_agee_2015_11_023
crossref_primary_10_1016_j_resconrec_2020_105267
crossref_primary_10_3390_drones8090459
crossref_primary_10_1016_j_agsy_2022_103528
crossref_primary_10_1016_j_jclepro_2017_06_116
crossref_primary_10_1016_j_jenvman_2018_11_113
crossref_primary_10_3390_agriculture10110500
crossref_primary_10_1016_j_rcrx_2020_100047
crossref_primary_10_1007_s11367_021_01879_0
crossref_primary_10_1016_j_chnaes_2010_11_006
crossref_primary_10_1016_j_envpol_2017_12_041
crossref_primary_10_1016_j_scitotenv_2017_03_208
crossref_primary_10_1016_j_agrformet_2017_10_030
crossref_primary_10_1080_00380768_2013_836943
crossref_primary_10_1016_j_ecolmodel_2012_08_016
crossref_primary_10_1128_AEM_00688_12
crossref_primary_10_5194_bg_7_2639_2010
crossref_primary_10_1007_s10333_020_00818_3
crossref_primary_10_1016_j_scitotenv_2020_144385
crossref_primary_10_1111_j_1365_2486_2011_02587_x
crossref_primary_10_1002_2014JG002880
crossref_primary_10_3390_rs5115926
crossref_primary_10_1016_j_envsoft_2013_01_005
crossref_primary_10_1007_s11367_016_1191_9
crossref_primary_10_1016_j_agsy_2016_11_011
crossref_primary_10_1016_j_ecolmodel_2013_04_003
crossref_primary_10_1016_j_ecolmodel_2022_109896
crossref_primary_10_1590_0103_8478cr20190336
crossref_primary_10_1016_j_agsy_2017_04_006
crossref_primary_10_1016_j_fcr_2015_10_004
crossref_primary_10_1088_1748_9326_aafc8b
crossref_primary_10_1007_s11104_014_2255_x
crossref_primary_10_1111_gcb_13981
crossref_primary_10_1002_wcc_304
crossref_primary_10_1016_j_jclepro_2017_11_172
crossref_primary_10_1016_j_scitotenv_2020_139506
crossref_primary_10_1016_j_envsoft_2014_08_004
crossref_primary_10_1016_j_aiia_2020_07_002
crossref_primary_10_1016_j_biosystemseng_2017_02_001
crossref_primary_10_1007_s11027_018_9804_1
crossref_primary_10_3390_agriculture11111144
crossref_primary_10_1016_j_geoderma_2011_08_002
crossref_primary_10_1016_j_scitotenv_2015_10_097
crossref_primary_10_3390_w15142633
crossref_primary_10_1016_j_cosust_2011_06_002
crossref_primary_10_2480_agrmet_D_20_00024
crossref_primary_10_1016_j_agrformet_2008_06_011
crossref_primary_10_1016_j_advwatres_2015_07_005
crossref_primary_10_1111_j_1574_6941_2010_01018_x
crossref_primary_10_2480_agrmet_D_16_00013
crossref_primary_10_1016_j_jclepro_2019_01_328
crossref_primary_10_1016_j_agrformet_2025_110504
crossref_primary_10_1007_s10333_015_0484_0
crossref_primary_10_1016_j_agrformet_2024_109908
crossref_primary_10_1016_j_rse_2022_113139
crossref_primary_10_1007_s11027_011_9290_1
crossref_primary_10_1007_s11104_012_1356_7
crossref_primary_10_1080_00380768_2012_682955
crossref_primary_10_11626_KJEB_2017_35_1_037
crossref_primary_10_3370_lca_5_432
crossref_primary_10_1007_s13593_021_00697_w
crossref_primary_10_1016_S1002_0160_20_60068_6
crossref_primary_10_1016_j_envsoft_2016_09_007
crossref_primary_10_1016_j_heliyon_2023_e19639
crossref_primary_10_1016_j_fcr_2013_09_004
Cites_doi 10.1271/nogeikagaku1924.31.4_211
10.2135/cropsci1989.0011183X002900010023x
10.1029/2003GB002046
10.1023/A:1004203208686
10.1029/94GB03231
10.1029/96GL03577
10.1023/A:1024935107543
10.1029/1999GB001204
10.1019/2003GB002045
10.1046/j.1365-3040.1997.d01-142.x
10.1029/2004GB002341
10.1016/S0016-7037(01)00563-4
10.1080/00380768.1966.10431963
10.1023/A:1004773810520
10.1029/2001GB001838
10.3402/tellusb.v50i2.16030
10.2136/sssaj1985.03615995004900060013x
10.1029/92JD00509
10.1016/B978-0-12-639010-0.50007-8
10.1007/BF00336349
10.1016/0378-4290(96)00027-5
10.2136/sssaj1993.03615995005700020017x
10.1016/S0045-6535(99)00101-0
10.1029/2002GL015370
10.1038/344529a0
10.1111/j.1747-0765.2005.tb00064.x
10.1046/j.1365-2486.2003.00665.x
10.1046/j.1365-2486.1998.00129.x
10.2134/jeq2005.0208
10.2136/sssaj1983.03615995004700010017x
10.1023/A:1004263405020
10.1023/A:1009879610785
10.1007/s10705-005-6111-5
10.2136/sssaj1984.03615995004800040015x
10.1029/94GB00767
10.1016/S0378-4290(01)00184-8
10.1016/0016-7037(88)90163-9
10.1016/S0167-8809(01)00260-2
10.1016/S0038-0717(97)00016-3
ContentType Journal Article
Copyright 2007 The Authors
2008 INIST-CNRS
Journal compilation © 2007 Blackwell Publishing Ltd
Copyright_xml – notice: 2007 The Authors
– notice: 2008 INIST-CNRS
– notice: Journal compilation © 2007 Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
DOI 10.1111/j.1365-2486.2007.01475.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage 402
ExternalDocumentID 1509787911
20063458
10_1111_j_1365_2486_2007_01475_x
GCB1475
ark_67375_WNG_PXQFH4NX_Q
Genre article
Feature
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
ID FETCH-LOGICAL-c5055-ca1e025ae9dfa06ae8835333de32a73ca1b1d8c625a9b41d4a48bbe31821a3823
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 12:21:41 EDT 2025
Fri Jul 25 10:56:14 EDT 2025
Mon Jul 21 09:17:55 EDT 2025
Thu Apr 24 22:50:44 EDT 2025
Tue Jul 01 03:52:46 EDT 2025
Wed Jan 22 16:16:32 EST 2025
Wed Oct 30 09:57:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Methane
greenhouse gases
Monocotyledones
Emission
Decomposition
soil redox status
methane emission
Modeling
electron donors
biogeochemical modeling
Oryza sativa
Gramineae
Greenhouse gas
Angiospermae
Paddy field
Warming
Biogeochemical cycle
rice
Fertilizers
Dynamical climatology
Climate change
Soils
Biogeochemistry
global warming
Residue
Global change
paddy fields
Spermatophyta
Models
Electron donor
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5055-ca1e025ae9dfa06ae8835333de32a73ca1b1d8c625a9b41d4a48bbe31821a3823
Notes ark:/67375/WNG-PXQFH4NX-Q
istex:C581EF070055C28890C811731981E78CD562B161
ArticleID:GCB1475
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 205220368
PQPubID 30327
PageCount 21
ParticipantIDs proquest_miscellaneous_14846168
proquest_journals_205220368
pascalfrancis_primary_20063458
crossref_primary_10_1111_j_1365_2486_2007_01475_x
crossref_citationtrail_10_1111_j_1365_2486_2007_01475_x
wiley_primary_10_1111_j_1365_2486_2007_01475_x_GCB1475
istex_primary_ark_67375_WNG_PXQFH4NX_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2008
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: February 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Li C, Qiu J, Frolking S et al. (2002) Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters, 29, 1972.
Van Bodegom PM, Van Reeven J, Denier Van Der Gon HAC (2003) Prediction of reducible soil iron from iron extraction data. Biogeochemistry, 64, 231-245.
Hanaki M, Ito T, Saigusa M (2002) Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Journal of Soil Science and Plant Nutrition, 73, 135-143 (in Japanese with English summary).
Cai Z, Sawamoto T, Li C et al. (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems. Global Biogeochemical Cycles, 17, 1107.
Takai Y (1961b) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 51-53 (in Japanese).
Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behavior. Soil Science Society of America Journal, 47, 85-91.
Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, 1061.
Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant and Soil, 222, 83-93.
Penning de Vries FWT, Jansen DM, Ten Berge HFM, Bakema A (1989) Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc/IRRI, Wageningen/Los Baños, 271pp.
Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993-3003.
Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environmental Quality, 35, 1554-1565.
Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield to cool water at different growth stages in paddy rice. Field Crops Research, 73, 67-79.
Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant, Cell and Environment, 20, 1175-1183.
Hasegawa T, Horie T (1996) Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Research, 47, 107-116.
Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutrient Cycling in Agroecosystems, 58, 349-356.
Van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochimica et Cosmochimica Acta, 65, 2055-2066.
Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529-531.
Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276.
IPCC (1995) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC. WMO/UNEP, Geneva, pp. 745-771.
Nishimura S, Sudo S, Akiyama H, Yonemura S, Yagi K, Tsuruta H (2005) Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method. Soil Science and Plant Nutrition, 51, 557-564.
Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agriculture, Ecosystems and Environment, 91, 59-71.
Van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere, 39, 167-182.
Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 196, 7-14.
Walter BP, Heimann M, Shannon RD, White JR (1996) A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23, 3731-3734.
Hosono T, Nouchi I (1997) The dependence of methane transport in rice plants on the root zone temperature. Plant and Soil, 191, 233-240.
Kropff MJ, Van Laar HH, Matthews RB (1994) ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings. DLO-Research Institute for Agrobiology and Soil Fertility/WAU-Department of Theoretical Production Ecology/International Rice Research Institute, Wageningen/Wageningen/Los Baños, Philippines.
Takai Y, Koyama T, Kamura T (1957) Microbial metabolism of paddy soils. Part III. Nippon Nogeikagaku Kaishi, 31, 211-215 (in Japanese with English summary).
Inubushi K, Cheng W, Aonuma S et al. (2003) Effect of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology, 9, 1458-1464.
Goto E, Miyamori Y, Hasegawa S, Inatsu O (2004) Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district. Japanese Journal of Soil Science and Plant Nutrition, 75, 191-201 (in Japanese with English summary).
Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series B, 50B, 128-150.
Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Global Biogeochemical Cycles, 9, 183-195.
Watson A, Stephen KD, Nedwell DB, Arah JRM (1997) Oxidation of methane in peat: kinetics of CH4 and O2 removal and the role of plant roots. Soil Biology and Biochemistry, 29, 1257-1267.
Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems in India. Nutrient Cycling in Agroecosystems, 74, 157-174.
Takai Y (1961a) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 1-4 (in Japanese).
Kludze HK, DeLaune RD, Patrik WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 57, 386-391.
Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19, 65-72.
Li C, Frolking S, Xiao X et al. (2005) Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 19, GB3010, doi: DOI: 10.1029/2004GB002341.
Gotoh S, Yamashita K (1966) Oxidation-reduction potential of a paddy soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide. Soil Science and Plant Nutrition, 12, 230-238.
Huang Y, Sass RS, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 4, 247-268.
Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal, 48, 772-778.
Mogi S, Yoshizawa T, Nakano M (1980) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition. Bulletin of Tochigi Agricultural Experiment Station, 26, 17-26 (in Japanese with English summary).
Gilmour JT, Clark MD, Sigua GC (1985) Estimating net nitrogen mineralization from carbon dioxide evolution. Soil Science Society of America Journal, 49, 1398-1402.
Takai Y (1961c) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 122-126 (in Japanese).
Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles, 14, 745-765.
Li C, Mosier A, Wassmann R et al. (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles, 18, GB1043, doi: DOI: 10.1019/2003GB002045.
Yoshizawa T, Nakayama K (1983) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter. Bulletin of Tochigi Agricultural Experiment Station, 29, 49-60 (in Japanese with English summary).
Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254.
Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, 29, 90-98.
Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759-9776.
Nanzyo M (1989) Chemi-sorption of phosphate on soils and soil constituents. Bulletin of National Institute of Agro-Environmental Sciences, 6, 19-73 (in Japanese with English summary).
2002; 16
2006; 74
2006; 35
1997; 196
2003; 17
1966; 12
1992; 97
1990; 344
2004; 75
1990
2000; 58
2000; 14
2000
2003; 9
1997; 191
2002; 91
1983; 29
1989
1996; 23
1995; 9
1980; 26
1957; 31
1984; 48
1997; 20
2002; 73
1989; 6
1997; 29
1995
1994
1961a; 16
1995; 19
1988; 52
2003
1991
1985; 49
1989; 29
2001; 65
1994; 8
1993; 57
1961b; 16
2005; 19
1998; 50B
2002; 29
2004; 18
1999; 39
2005; 51
1961c; 16
2000; 222
1996; 47
1998; 4
2003; 64
1983; 47
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Kuwagata T (e_1_2_6_22_1) 2000
e_1_2_6_30_1
Kropff MJ (e_1_2_6_21_1) 1994
e_1_2_6_36_1
Yoshizawa T (e_1_2_6_54_1) 1983; 29
e_1_2_6_34_1
e_1_2_6_17_1
Lelieveld J (e_1_2_6_24_1) 1998; 50
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Takai Y (e_1_2_6_42_1) 1961; 16
Takai Y (e_1_2_6_43_1) 1961; 16
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
Takai Y (e_1_2_6_44_1) 1961; 16
Penning de Vries FWT (e_1_2_6_37_1) 1989
e_1_2_6_50_1
IPCC (e_1_2_6_19_1) 1995
Hanaki M (e_1_2_6_14_1) 2002; 73
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_40_1
e_1_2_6_8_1
Goudriaan J (e_1_2_6_13_1) 1990
Mogi S (e_1_2_6_33_1) 1980; 26
e_1_2_6_4_1
e_1_2_6_6_1
Goto E (e_1_2_6_11_1) 2004; 75
e_1_2_6_25_1
e_1_2_6_48_1
Nanzyo M (e_1_2_6_35_1) 1989; 6
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Goto E, Miyamori Y, Hasegawa S, Inatsu O (2004) Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district. Japanese Journal of Soil Science and Plant Nutrition, 75, 191-201 (in Japanese with English summary).
– reference: Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276.
– reference: Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series B, 50B, 128-150.
– reference: Hanaki M, Ito T, Saigusa M (2002) Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Journal of Soil Science and Plant Nutrition, 73, 135-143 (in Japanese with English summary).
– reference: Takai Y (1961c) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 122-126 (in Japanese).
– reference: Li C, Frolking S, Xiao X et al. (2005) Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 19, GB3010, doi: DOI: 10.1029/2004GB002341.
– reference: Watson A, Stephen KD, Nedwell DB, Arah JRM (1997) Oxidation of methane in peat: kinetics of CH4 and O2 removal and the role of plant roots. Soil Biology and Biochemistry, 29, 1257-1267.
– reference: Cai Z, Sawamoto T, Li C et al. (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems. Global Biogeochemical Cycles, 17, 1107.
– reference: Gilmour JT, Clark MD, Sigua GC (1985) Estimating net nitrogen mineralization from carbon dioxide evolution. Soil Science Society of America Journal, 49, 1398-1402.
– reference: Yao H, Yagi K, Nouchi I (2000) Importance of physical plant properties on methane transport through several rice cultivars. Plant and Soil, 222, 83-93.
– reference: Gotoh S, Yamashita K (1966) Oxidation-reduction potential of a paddy soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide. Soil Science and Plant Nutrition, 12, 230-238.
– reference: Inubushi K, Cheng W, Aonuma S et al. (2003) Effect of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology, 9, 1458-1464.
– reference: Li C, Mosier A, Wassmann R et al. (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles, 18, GB1043, doi: DOI: 10.1019/2003GB002045.
– reference: Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behavior. Soil Science Society of America Journal, 47, 85-91.
– reference: Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutrient Cycling in Agroecosystems, 58, 349-356.
– reference: Van Bodegom PM, Scholten JCM (2001) Microbial processes of CH4 production in a rice paddy soil: model and experimental validation. Geochimica et Cosmochimica Acta, 65, 2055-2066.
– reference: Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529-531.
– reference: Kropff MJ, Van Laar HH, Matthews RB (1994) ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings. DLO-Research Institute for Agrobiology and Soil Fertility/WAU-Department of Theoretical Production Ecology/International Rice Research Institute, Wageningen/Wageningen/Los Baños, Philippines.
– reference: Kludze HK, DeLaune RD, Patrik WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 57, 386-391.
– reference: Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agriculture, Ecosystems and Environment, 91, 59-71.
– reference: Hosono T, Nouchi I (1997) The dependence of methane transport in rice plants on the root zone temperature. Plant and Soil, 191, 233-240.
– reference: Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19, 65-72.
– reference: Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254.
– reference: Li C, Qiu J, Frolking S et al. (2002) Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters, 29, 1972.
– reference: Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 196, 7-14.
– reference: Takai Y (1961a) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 1-4 (in Japanese).
– reference: Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97, 9759-9776.
– reference: Takai Y (1961b) Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism). Nougyou Gijutsu, 16, 51-53 (in Japanese).
– reference: Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environmental Quality, 35, 1554-1565.
– reference: Penning de Vries FWT, Jansen DM, Ten Berge HFM, Bakema A (1989) Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc/IRRI, Wageningen/Los Baños, 271pp.
– reference: Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993-3003.
– reference: Hasegawa T, Horie T (1996) Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Research, 47, 107-116.
– reference: Nishimura S, Sudo S, Akiyama H, Yonemura S, Yagi K, Tsuruta H (2005) Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method. Soil Science and Plant Nutrition, 51, 557-564.
– reference: Van Bodegom PM, Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere, 39, 167-182.
– reference: IPCC (1995) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC. WMO/UNEP, Geneva, pp. 745-771.
– reference: Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal, 48, 772-778.
– reference: Van Bodegom PM, Van Reeven J, Denier Van Der Gon HAC (2003) Prediction of reducible soil iron from iron extraction data. Biogeochemistry, 64, 231-245.
– reference: Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield to cool water at different growth stages in paddy rice. Field Crops Research, 73, 67-79.
– reference: Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, 1061.
– reference: Takai Y, Koyama T, Kamura T (1957) Microbial metabolism of paddy soils. Part III. Nippon Nogeikagaku Kaishi, 31, 211-215 (in Japanese with English summary).
– reference: Cao M, Dent JB, Heal OW (1995) Modeling methane emissions from rice paddies. Global Biogeochemical Cycles, 9, 183-195.
– reference: Mogi S, Yoshizawa T, Nakano M (1980) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition. Bulletin of Tochigi Agricultural Experiment Station, 26, 17-26 (in Japanese with English summary).
– reference: Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles, 14, 745-765.
– reference: Walter BP, Heimann M, Shannon RD, White JR (1996) A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23, 3731-3734.
– reference: Huang Y, Sass RS, Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 4, 247-268.
– reference: Nanzyo M (1989) Chemi-sorption of phosphate on soils and soil constituents. Bulletin of National Institute of Agro-Environmental Sciences, 6, 19-73 (in Japanese with English summary).
– reference: Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems in India. Nutrient Cycling in Agroecosystems, 74, 157-174.
– reference: Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant, Cell and Environment, 20, 1175-1183.
– reference: Yoshizawa T, Nakayama K (1983) Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter. Bulletin of Tochigi Agricultural Experiment Station, 29, 49-60 (in Japanese with English summary).
– reference: Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, 29, 90-98.
– volume: 73
  start-page: 135
  year: 2002
  end-page: 143
  article-title: Effect of no‐tillage rice ( L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application
  publication-title: Japanese Journal of Soil Science and Plant Nutrition
– volume: 23
  start-page: 3731
  year: 1996
  end-page: 3734
  article-title: A process‐based model to derive methane emissions from natural wetlands
  publication-title: Geophysical Research Letters
– volume: 50B
  start-page: 128
  year: 1998
  end-page: 150
  article-title: Changing concentration, lifetime and climate forcing of atmospheric methane
  publication-title: Tellus Series B
– volume: 9
  start-page: 1458
  year: 2003
  end-page: 1464
  article-title: Effect of free‐air CO enrichment (FACE) on CH emission from a rice paddy field
  publication-title: Global Change Biology
– year: 1989
– volume: 29
  start-page: 90
  year: 1989
  end-page: 98
  article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency
  publication-title: Crop Science
– volume: 6
  start-page: 19
  year: 1989
  end-page: 73
  article-title: Chemi‐sorption of phosphate on soils and soil constituents
  publication-title: Bulletin of National Institute of Agro-Environmental Sciences
– volume: 29
  start-page: 49
  year: 1983
  end-page: 60
  article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter
  publication-title: Bulletin of Tochigi Agricultural Experiment Station
– volume: 9
  start-page: 183
  year: 1995
  end-page: 195
  article-title: Modeling methane emissions from rice paddies
  publication-title: Global Biogeochemical Cycles
– volume: 20
  start-page: 1175
  year: 1997
  end-page: 1183
  article-title: Impact of gas transport through rice cultivars on methane emission from paddy fields
  publication-title: Plant, Cell and Environment
– start-page: 111
  year: 1990
  end-page: 130
– year: 1994
– volume: 344
  start-page: 529
  year: 1990
  end-page: 531
  article-title: Relative contributions of greenhouse gas emissions to global warming
  publication-title: Nature
– volume: 19
  start-page: GB3010
  year: 2005
  article-title: Modeling impacts of farming management alternatives on CO , CH , and N O emissions
  publication-title: Global Biogeochemical Cycles
– volume: 26
  start-page: 17
  year: 1980
  end-page: 26
  article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition
  publication-title: Bulletin of Tochigi Agricultural Experiment Station
– volume: 47
  start-page: 107
  year: 1996
  end-page: 116
  article-title: Leaf nitrogen, plant age and crop dry matter production in rice
  publication-title: Field Crops Research
– volume: 57
  start-page: 386
  year: 1993
  end-page: 391
  article-title: Aerenchyma formation and methane and oxygen exchange in rice
  publication-title: Soil Science Society of America Journal
– volume: 91
  start-page: 59
  year: 2002
  end-page: 71
  article-title: Methane transport capacity of twenty‐two rice cultivars from five major Asian rice‐growing countries
  publication-title: Agriculture, Ecosystems and Environment
– volume: 51
  start-page: 557
  year: 2005
  end-page: 564
  article-title: Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from crop fields based on the automated closed chamber method
  publication-title: Soil Science and Plant Nutrition
– volume: 48
  start-page: 772
  year: 1984
  end-page: 778
  article-title: A chemical model of phosphate adsorption by soils
  publication-title: Soil Science Society of America Journal
– volume: 29
  start-page: 1972
  year: 2002
  article-title: Reduced methane emissions from large‐scale changes in water management of China's rice paddies during 1980–2000
  publication-title: Geophysical Research Letters
– volume: 19
  start-page: 65
  year: 1995
  end-page: 72
  article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil
  publication-title: Biology and Fertility of Soils
– volume: 31
  start-page: 211
  year: 1957
  end-page: 215
  article-title: Microbial metabolism of paddy soils. Part III
  publication-title: Nippon Nogeikagaku Kaishi
– volume: 222
  start-page: 83
  year: 2000
  end-page: 93
  article-title: Importance of physical plant properties on methane transport through several rice cultivars
  publication-title: Plant and Soil
– volume: 191
  start-page: 233
  year: 1997
  end-page: 240
  article-title: The dependence of methane transport in rice plants on the root zone temperature
  publication-title: Plant and Soil
– volume: 35
  start-page: 1554
  year: 2006
  end-page: 1565
  article-title: Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years
  publication-title: Journal of Environmental Quality
– volume: 74
  start-page: 157
  year: 2006
  end-page: 174
  article-title: Field validation of DNDC model for methane and nitrous oxide emissions from rice‐based production systems in India
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 16
  start-page: 122
  year: 1961c
  end-page: 126
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– volume: 14
  start-page: 745
  year: 2000
  end-page: 765
  article-title: A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands
  publication-title: Global Biogeochemical Cycles
– volume: 97
  start-page: 9759
  year: 1992
  end-page: 9776
  article-title: A model of nitrous oxide evolution from soil driven by rainfall events
  publication-title: Journal of Geophysical Research
– volume: 73
  start-page: 67
  year: 2002
  end-page: 79
  article-title: Response of growth and grain yield to cool water at different growth stages in paddy rice
  publication-title: Field Crops Research
– volume: 4
  start-page: 247
  year: 1998
  end-page: 268
  article-title: A semi‐empirical model of methane emission from flooded rice paddy soils
  publication-title: Global Change Biology
– volume: 39
  start-page: 167
  year: 1999
  end-page: 182
  article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils
  publication-title: Chemosphere
– volume: 196
  start-page: 7
  year: 1997
  end-page: 14
  article-title: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management
  publication-title: Plant and Soil
– volume: 12
  start-page: 230
  year: 1966
  end-page: 238
  article-title: Oxidation–reduction potential of a paddy soil with special reference to the production of ferrous iron, manganous manganese and sulfide
  publication-title: Soil Science and Plant Nutrition
– volume: 29
  start-page: 1257
  year: 1997
  end-page: 1267
  article-title: Oxidation of methane in peat
  publication-title: Soil Biology and Biochemistry
– start-page: 745
  year: 1995
  end-page: 771
– year: 2003
– volume: 75
  start-page: 191
  year: 2004
  end-page: 201
  article-title: Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district
  publication-title: Japanese Journal of Soil Science and Plant Nutrition
– volume: 58
  start-page: 259
  year: 2000
  end-page: 276
  article-title: Modeling trace gas emissions from agricultural ecosystems
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 47
  start-page: 85
  year: 1983
  end-page: 91
  article-title: NCSOIL, a model of nitrogen and carbon transformations in soil
  publication-title: Soil Science Society of America Journal
– start-page: 29
  year: 1991
  end-page: 63
– volume: 64
  start-page: 231
  year: 2003
  end-page: 245
  article-title: Prediction of reducible soil iron from iron extraction data
  publication-title: Biogeochemistry
– volume: 17
  start-page: 1107
  year: 2003
  article-title: Field validation of the DNDC model for greenhouse gas emissions in East Asia cropping systems
  publication-title: Global Biogeochemical Cycles
– volume: 52
  start-page: 2993
  year: 1988
  end-page: 3003
  article-title: Hydrogen concentrations as an indicator of the predominant terminal electron‐accepting reactions in aquatic sediments
  publication-title: Geochimica et Cosmochimica Acta
– volume: 65
  start-page: 2055
  year: 2001
  end-page: 2066
  article-title: Microbial processes of CH production in a rice paddy soil
  publication-title: Geochimica et Cosmochimica Acta
– volume: 18
  start-page: GB1043
  year: 2004
  article-title: Modeling greenhouse gas emissions from rice‐based production systems
  publication-title: Global Biogeochemical Cycles
– volume: 58
  start-page: 349
  year: 2000
  end-page: 356
  article-title: Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 16
  start-page: 51
  year: 1961b
  end-page: 53
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– volume: 16
  start-page: 1061
  year: 2002
  article-title: An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems
  publication-title: Global Biogeochemical Cycles
– volume: 8
  start-page: 237
  year: 1994
  end-page: 254
  article-title: Modeling carbon biogeochemistry in agricultural soils
  publication-title: Global Biogeochemical Cycles
– volume: 49
  start-page: 1398
  year: 1985
  end-page: 1402
  article-title: Estimating net nitrogen mineralization from carbon dioxide evolution
  publication-title: Soil Science Society of America Journal
– volume: 16
  start-page: 1
  year: 1961a
  end-page: 4
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– start-page: 133
  year: 2000
  end-page: 134
– volume: 6
  start-page: 19
  year: 1989
  ident: e_1_2_6_35_1
  article-title: Chemi‐sorption of phosphate on soils and soil constituents
  publication-title: Bulletin of National Institute of Agro-Environmental Sciences
– volume: 16
  start-page: 51
  year: 1961
  ident: e_1_2_6_43_1
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– ident: e_1_2_6_45_1
  doi: 10.1271/nogeikagaku1924.31.4_211
– ident: e_1_2_6_41_1
  doi: 10.2135/cropsci1989.0011183X002900010023x
– ident: e_1_2_6_6_1
  doi: 10.1029/2003GB002046
– start-page: 745
  volume-title: Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific‐Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the IPCC
  year: 1995
  ident: e_1_2_6_19_1
– ident: e_1_2_6_16_1
  doi: 10.1023/A:1004203208686
– ident: e_1_2_6_8_1
  doi: 10.1029/94GB03231
– ident: e_1_2_6_50_1
  doi: 10.1029/96GL03577
– volume: 75
  start-page: 191
  year: 2004
  ident: e_1_2_6_11_1
  article-title: Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold district
  publication-title: Japanese Journal of Soil Science and Plant Nutrition
– ident: e_1_2_6_48_1
  doi: 10.1023/A:1024935107543
– volume-title: ORYZA1: An Ecophysiological Model for Irrigated Rice Production. SARP Research Proceedings
  year: 1994
  ident: e_1_2_6_21_1
– ident: e_1_2_6_49_1
  doi: 10.1029/1999GB001204
– ident: e_1_2_6_29_1
  doi: 10.1019/2003GB002045
– ident: e_1_2_6_5_1
  doi: 10.1046/j.1365-3040.1997.d01-142.x
– ident: e_1_2_6_28_1
  doi: 10.1029/2004GB002341
– volume: 26
  start-page: 17
  year: 1980
  ident: e_1_2_6_33_1
  article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (II) Decomposition process of rice straw in paddy field and changes in its chemical composition
  publication-title: Bulletin of Tochigi Agricultural Experiment Station
– ident: e_1_2_6_46_1
  doi: 10.1016/S0016-7037(01)00563-4
– ident: e_1_2_6_12_1
  doi: 10.1080/00380768.1966.10431963
– start-page: 111
  volume-title: Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture
  year: 1990
  ident: e_1_2_6_13_1
– ident: e_1_2_6_53_1
  doi: 10.1023/A:1004773810520
– ident: e_1_2_6_55_1
  doi: 10.1029/2001GB001838
– volume: 50
  start-page: 128
  year: 1998
  ident: e_1_2_6_24_1
  article-title: Changing concentration, lifetime and climate forcing of atmospheric methane
  publication-title: Tellus Series B
  doi: 10.3402/tellusb.v50i2.16030
– ident: e_1_2_6_9_1
  doi: 10.2136/sssaj1985.03615995004900060013x
– ident: e_1_2_6_25_1
  doi: 10.1029/92JD00509
– ident: e_1_2_6_38_1
  doi: 10.1016/B978-0-12-639010-0.50007-8
– volume: 29
  start-page: 49
  year: 1983
  ident: e_1_2_6_54_1
  article-title: Studies on soil science and fertilizer in the paddy field applied rice and barley straw. (V) Decomposition process of barley and rice straw in the paddy field and changes of soil science by application of organic matter
  publication-title: Bulletin of Tochigi Agricultural Experiment Station
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00336349
– ident: e_1_2_6_15_1
  doi: 10.1016/0378-4290(96)00027-5
– ident: e_1_2_6_20_1
  doi: 10.2136/sssaj1993.03615995005700020017x
– ident: e_1_2_6_26_1
  doi: 10.1029/92JD00509
– volume: 16
  start-page: 122
  year: 1961
  ident: e_1_2_6_44_1
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– volume: 16
  start-page: 1
  year: 1961
  ident: e_1_2_6_42_1
  article-title: Suiden no kangen to biseibutsu taisha (Reduction of rice paddy fields and microbial metabolism)
  publication-title: Nougyou Gijutsu
– ident: e_1_2_6_47_1
  doi: 10.1016/S0045-6535(99)00101-0
– ident: e_1_2_6_39_1
– ident: e_1_2_6_30_1
  doi: 10.1029/2002GL015370
– ident: e_1_2_6_23_1
  doi: 10.1038/344529a0
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1747-0765.2005.tb00064.x
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1365-2486.2003.00665.x
– ident: e_1_2_6_17_1
  doi: 10.1046/j.1365-2486.1998.00129.x
– ident: e_1_2_6_31_1
  doi: 10.2134/jeq2005.0208
– ident: e_1_2_6_34_1
  doi: 10.2136/sssaj1983.03615995004700010017x
– ident: e_1_2_6_7_1
  doi: 10.1023/A:1004263405020
– ident: e_1_2_6_51_1
  doi: 10.1023/A:1009879610785
– ident: e_1_2_6_4_1
  doi: 10.1007/s10705-005-6111-5
– ident: e_1_2_6_10_1
  doi: 10.2136/sssaj1984.03615995004800040015x
– start-page: 133
  volume-title: Preprint Volume of the 24th Conference on Agricultural and Forest Meteorology
  year: 2000
  ident: e_1_2_6_22_1
– ident: e_1_2_6_27_1
  doi: 10.1029/94GB00767
– volume: 73
  start-page: 135
  year: 2002
  ident: e_1_2_6_14_1
  article-title: Effect of no‐tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application
  publication-title: Japanese Journal of Soil Science and Plant Nutrition
– ident: e_1_2_6_40_1
  doi: 10.1016/S0378-4290(01)00184-8
– ident: e_1_2_6_32_1
  doi: 10.1016/0016-7037(88)90163-9
– ident: e_1_2_6_3_1
  doi: 10.1016/S0167-8809(01)00260-2
– volume-title: Simulation of Ecophysiological Processes of Growth in Several Annual Crops
  year: 1989
  ident: e_1_2_6_37_1
– ident: e_1_2_6_52_1
  doi: 10.1016/S0038-0717(97)00016-3
SSID ssj0003206
Score 2.2849038
Snippet A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane...
Modifications to DNDC's submodels of soil climate, crop growth, and soil biogeochemistry to improve its performance across a range of climatic, soil, and...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 382
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biochemistry
biogeochemical modeling
Biogeochemistry
Biological and medical sciences
Climate change
Cultivars
Decomposition
Dissolved organic carbon
Ecology
electron donors
Emissions
Fundamental and applied biological sciences. Psychology
General aspects
Geochemistry
global warming
greenhouse gases
Heterogeneity
Leaves
Low temperature
Methane
methane emission
Moisture content
Oryza sativa
paddy fields
Photosynthesis
Residues
Respiration
Rice
Rice fields
Roots
soil redox status
Soil water
Synecology
Title Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes
URI https://api.istex.fr/ark:/67375/WNG-PXQFH4NX-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2007.01475.x
https://www.proquest.com/docview/205220368
https://www.proquest.com/docview/14846168
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJiReYCtMhLHtHtAED6nq2vnTR9atq5BWsYmJvkV24kxVu7RKWrTtiY_Ad-Cb8Um4c9JsQTxMiLdE56vq3Nn-2f7dHWPvtPYoM1Ho0h2TK9PYdzWua2439f2OTLXkKR3on4384aX8NPbGFf-JYmHK_BD1gRuNDDtf0wBXumgOcsvQkqFfZSLkMvDahCdJQPjo4j6TlOjaMptceBJnHi6apJ6__lBjpdqkj35DzElV4MdLy6oXDVj6ENza1Wnwgk3X_SpJKdP2aqnb8d0fKR__T8e32PMKxMLH0uu22ROTtdjTsqzlbYvtnNxHz2GzavooWsw5Q4g-z20zOIT-bIJ42b69ZD8vbJx7dgUKFmX0wq_vP2iRTUBP5leGSnuVtenAlu-B98ej4_4HWM6hmFxTFTIDVA9bZQaoIR0DAkXPAOVNggVOsbdgCXsFUORcDt9UTgxgyA0OyRVq11QgUFkCKVHOZ5M7bEnlK65N8YpdDk6-9IduVUHCjRHZeW6suEFQp0wvSVXHVyZEwCmESIzoqkCgWPMkjHEPqHrololUMtSajoW7XJH37rCNbJ6Z1wyEL0SAvkuAVeoOV4iMDN1ae37YwweHBWtvieIqvTpV-ZhFD7ZZaLeI7EbFP4PI2i26cRivNRdlipFH6Bxah6wVVD4lih7Kvo5Oo8_j88FQjsbRucP2Gx5bK9BRkpBe6LDdtQtH1fRVoBB7idgGpQe1FC1Hl0loRTQNbhkRuXJq4VtnffRfj077R_T05l8Vd9mzkrRDnKK3bGOZr8weIsOl3rdj_jfQ51Yq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hVggu_AQqTKGdA6rg4CjOrn9yLGnTAI1Fq1bkZu3a6ypq6kR2UrU98Qi8A2_GkzCzdtwacagQN1u7E2U9s7vfzs7Mx9g7pVyqTBTYdMdkizT2bIX7mt1NPa8jUiWclBz6o9AbnorPY3dc0QFRLkxZH6J2uNHMMOs1TXBySDdnuQnREoFXlSJ0hO-2EVCuE8G3OV8d39aS4l1DtOlwV-Da4_BmWM9ff6mxV63TZ7-i2ElZ4OdLS96LBjC9C2_N_jR4yqarkZVhKeft5UK145s_ij7-p6E_Y08qHAu7peE9Zw901mIPS2bL6xbb2L9NoMNu1QpStJg1QpQ-y0032IH-dIKQ2by9YD-PTap7dgYS5mUCw6_vP2ifTUBNZmea2L1KejowDD7wfi_c63-AxQyKyQURkWkgSmyZaaCO5AkESqABKp0Ec1xlr8HE7BVAyXM5XMqcgoAh1zgrlyhdRwOBzBJIKep8OrnBnsRgcaGLl-x0sH_SH9oViYQdI7hz7Vg6GnGd1L0klR1P6gAxJ-c80bwrfY7NykmCGI-BsoeWmQgpAqXIM9x1JBnwBlvLZpl-xYB7nPtovoRZheo4EsGRpotr1wt6-GAxf2UuUVxVWCeij2l056SFeotIb8T_6UdGb9GVxZxacl5WGbmHzI6xyFpA5ucUpYdt38KD6Ov4aDAU4Tg6sthWw2RrAfImceEGFttc2XBUrWAFNuIoEd5g63bdipqj-yTUIqoGT40IXh3q4Rlrvfdfjw76H-np9b8KbrNHw5PRYXT4KfyyyR6XMTwUYvSGrS3ypX6LQHGhtswC8BsVnlpF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJhA3_BSmhcF2LtAEF6ma2vnpJbTrys-ibWKid5GdOFPVLq2SFm274hF4B96MJ-EcJ80WxMWEuEtku6pzju3P9nfOx9hrpVzKTBTYdMdkizT2bIXrmt1NPa8jUiWclA70j0JvdCY-jt1xxX-iWJgyP0R94EYjw8zXNMAXSdoc5IahJQKvykToCN9tI57cFF4nIA8fnN6kkuJdo7PpcFfg1OPwJqvnr7_UWKo26atfEnVSFvj10lL2ooFLb6NbszwNH7PpumMlK2XaXi1VO77-I-fj_-n5E_aoQrHwrnS7p-yezlrsfqlredViWwc34XNYrZo_ihazjhCjz3NTDfahP5sgYDZvz9jPUxPonp2DhEUZvvDr-w9aZRNQk_m5Jm2vUpwOjH4PvBmEg_5bWM6hmFyQDJkGEsSWmQaqSOeAQOEzQImTYIFz7BUYxl4BFDqXwzeZEwUYco1jcoWtay4QyCyBlDjns8k11iT9igtdPGdnw4Mv_ZFdSUjYMUI7146loxHVSd1LUtnxpA4QcXLOE8270udYrJwkiHETKHvol4mQIlCKzoW7jiT33WIb2TzT2wy4x7mPzkuIVaiOIxEaabq2dr2ghw8W89feEsVVfnWS-ZhFt_ZZaLeI7Ebqn35k7BZdWsypWy7KHCN3aLNvHLJuIPMpcfSw7Gt4GB2PT4YjEY6jE4vtNjy2bkBnSVy4gcV21i4cVfNXgYXYSwQ3WLpXl6Ll6DYJrYimwT0jQleHanjGWe_816PD_nt6evGvDffYg-PBMPr8Ify0wx6WBB7iF71kG8t8pV8hSlyqXTP8fwPU_1j9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revising+a+process-based+biogeochemistry+model+%28DNDC%29+to+simulate+methane+emission+from+rice+paddy+fields+under+various+residue+management+and+fertilizer+regimes&rft.jtitle=Global+change+biology&rft.au=FUMOTO%2C+Tamon&rft.au=KOBAYASHI%2C+Kazuhiko&rft.au=CHANGSHENG+LI&rft.au=YAGI%2C+Kazuyuki&rft.date=2008-02-01&rft.pub=Blackwell&rft.issn=1354-1013&rft.volume=14&rft.issue=2&rft.spage=382&rft.epage=402&rft_id=info:doi/10.1111%2Fj.1365-2486.2007.01475.x&rft.externalDBID=n%2Fa&rft.externalDocID=20063458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon