Sensory Perception of Non‐Deuterated and Deuterated Organic Compounds
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effec...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 3; pp. 1046 - 1056 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.01.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
The scent of deuterium: For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors. |
---|---|
AbstractList | The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
The scent of deuterium: For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors. The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D 6 ‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D 15 ‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The scent of deuterium : For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors. The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D 6 ‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D 15 ‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. |
Author | Palm, Wolf‐Ulrich Monegel, Friederike Uhde, Erik Salthammer, Tunga Hohm, Uwe Schulz, Nicole Grimme, Stefan Seibert, Jakob |
AuthorAffiliation | 4 Institute of Sustainable and Environmental Chemistry Leuphana University Lüneburg 21335 Lüneburg Germany 3 Institute of Physical and Theoretical Chemistry University of Braunschweig—Institute of Technology 38106 Braunschweig Germany 1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI 38108 Braunschweig Germany 2 Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry University of Bonn 53115 Bonn Germany |
AuthorAffiliation_xml | – name: 1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI 38108 Braunschweig Germany – name: 2 Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry University of Bonn 53115 Bonn Germany – name: 3 Institute of Physical and Theoretical Chemistry University of Braunschweig—Institute of Technology 38106 Braunschweig Germany – name: 4 Institute of Sustainable and Environmental Chemistry Leuphana University Lüneburg 21335 Lüneburg Germany |
Author_xml | – sequence: 1 givenname: Tunga orcidid: 0000-0002-2370-8664 surname: Salthammer fullname: Salthammer, Tunga email: tunga.salthammer@wki.fraunhofer.de organization: Fraunhofer WKI – sequence: 2 givenname: Friederike surname: Monegel fullname: Monegel, Friederike organization: Fraunhofer WKI – sequence: 3 givenname: Nicole surname: Schulz fullname: Schulz, Nicole organization: Fraunhofer WKI – sequence: 4 givenname: Erik orcidid: 0000-0002-8704-3702 surname: Uhde fullname: Uhde, Erik organization: Fraunhofer WKI – sequence: 5 givenname: Stefan orcidid: 0000-0002-5844-4371 surname: Grimme fullname: Grimme, Stefan organization: University of Bonn – sequence: 6 givenname: Jakob orcidid: 0000-0002-3163-8627 surname: Seibert fullname: Seibert, Jakob organization: University of Bonn – sequence: 7 givenname: Uwe orcidid: 0000-0002-0869-0435 surname: Hohm fullname: Hohm, Uwe organization: University of Braunschweig—Institute of Technology – sequence: 8 givenname: Wolf‐Ulrich orcidid: 0000-0003-4138-4189 surname: Palm fullname: Palm, Wolf‐Ulrich organization: Leuphana University Lüneburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33058253$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUsUiQ2bDNd2bMcbJDQtLVKhSMDacpyb1lViD3YCmh2PwDPyJGQ0ZSiVECvryt859-cckYMQAxLylMKSArCX7hqHJQMGwJWoHpAFFYyWXElxQBagK1VKwfUhOcr5BgC05PwROeQcRM0EX5CzjxhyTJviAyaH69HHUMSueB_Dz-8_TnAaMdkR28KGtrhTXqYrG7wrVnFYxym0-TF52Nk-45Pb95h8fnP6aXVeXlyevV29viidAFGVVnAFurFM6rZqNOfUMVaDxbZ21IJTXde6pqaVazomJddSQiewhUYpDdjyY_Jq57uemgFbh2FMtjfr5AebNiZab_7-Cf7aXMWvRtVcK8Zngxe3Bil-mTCPZvDZYd_bgHHKhlWC1oLzup7R5_fQmzilMK83U0rJWkhBZ-rZ3Yn2o_y-8Qwsd4BLMeeE3R6hYLYhmm2IZh_iLKjuCZwf7TaaeSPf_1umd7JvvsfNf5qY1fnpuz_aX_98smg |
CitedBy_id | crossref_primary_10_1070_RCR5012 crossref_primary_10_1016_j_indenv_2024_100031 |
Cites_doi | 10.1063/1.4767067 10.1002/anie.202005719 10.1073/pnas.1507103112 10.1016/S0167-4501(06)80176-7 10.3389/fphy.2018.00025 10.1021/acs.jctc.5b00296 10.1016/j.aca.2015.11.031 10.1021/acs.jafc.8b04471 10.1021/bi1017396 10.3390/ijms20123018 10.1016/j.forsciint.2019.01.023 10.1007/BF01946534 10.1002/jctb.5000572802 10.1073/pnas.1508443112 10.1063/1.4905377 10.1093/nar/28.1.235 10.1073/pnas.1012293108 10.1021/jp411616b 10.1002/wcms.1493 10.1039/C4CC06722C 10.1016/j.shpsa.2018.02.005 10.2298/JSC190701079B 10.1021/acschemneuro.8b00416 10.1016/S0021-9673(97)00483-4 10.1021/ja036006g 10.1371/journal.pone.0042846 10.1002/9781118522981 10.1016/0021-9614(74)90119-0 10.1002/chem.201200497 10.1002/ange.201813881 10.1007/s10822-013-9644-8 10.1038/s41598-019-39404-x 10.1016/j.bbr.2009.02.014 10.1103/PhysRevLett.98.038101 10.1016/S0308-8146(00)00287-9 10.1037/h0046162 10.1002/cphc.201700082 10.1080/23746149.2017.1378594 10.1016/j.pneurobio.2019.101661 10.1073/pnas.1508035112 10.1021/jacs.8b08823 10.1038/srep25103 10.1002/ange.200600782 10.1021/acs.jchemed.6b00991 10.2174/1570159X17666181206095626 10.1016/j.jsb.2007.04.013 10.1371/journal.pone.0220259 10.1021/acs.jctc.8b01176 10.1016/j.fluid.2010.09.043 10.1126/science.133.3446.80 10.1371/journal.pone.0182147 10.1093/chemse/21.6.773 10.1039/c2cp41436h 10.1006/jtbi.2001.2504 10.1073/pnas.1618422114 10.1523/JNEUROSCI.4723-04.2005 10.1002/wcms.81 10.1063/1.4991798 10.1139/v76-413 10.1073/pnas.1503054112 10.1007/BF02979668 10.1002/jctb.5010041104 10.1038/nn1215 10.1016/0092-8674(91)90418-X 10.1039/C9CP06869D 10.5012/bkcs.2013.34.2.545 10.1021/bi101493p 10.1016/j.chroma.2011.11.053 10.1016/S0009-2797(98)00097-0 10.1038/s41598-019-39495-6 10.1038/198271a0 10.1002/anie.201813881 10.1038/s41467-018-06806-w 10.1038/s41598-017-10862-5 10.1126/science.289.5480.739 10.1038/209571a0 10.1021/ja00193a033 10.1523/ENEURO.0103-19.2019 10.1021/acs.jpcb.7b09175 10.1523/ENEURO.0070-17.2017 10.1016/j.bbagen.2017.07.022 10.1039/C5MB00003C 10.1371/journal.pone.0154002 10.1002/ange.202005719 10.1063/1.5012601 10.1039/C6CC03664C 10.3390/biom10020196 10.1111/ina.12262 10.1016/j.buildenv.2020.106668 10.1016/0022-5193(73)90005-2 10.1002/anie.200600782 10.1038/2141095a0 10.1016/0021-9673(93)83377-5 10.1371/journal.pone.0055780 10.1039/C7CP04913G 10.1007/s00221-010-2430-0 10.1107/S0365110X55000340 10.1016/j.molstruc.2006.01.042 10.1021/acs.organomet.9b00586 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
DOI | 10.1002/chem.202003754 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 1056 |
ExternalDocumentID | PMC7839723 33058253 10_1002_chem_202003754 CHEM202003754 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM AASGY |
ID | FETCH-LOGICAL-c5054-a53709ba269d4b9331c2280aed8c1a0c7ffdcb814cbf26639660f5ed0b7790ed3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Aug 21 14:09:48 EDT 2025 Fri Jul 11 15:44:51 EDT 2025 Fri Jul 25 10:36:34 EDT 2025 Mon Jul 21 05:51:40 EDT 2025 Tue Jul 01 01:30:19 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Jan 22 16:32:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | human subjects isotopologues trained sniffer dogs computational chemistry odor perception |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5054-a53709ba269d4b9331c2280aed8c1a0c7ffdcb814cbf26639660f5ed0b7790ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8704-3702 0000-0002-5844-4371 0000-0002-3163-8627 0000-0002-0869-0435 0000-0003-4138-4189 0000-0002-2370-8664 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202003754 |
PMID | 33058253 |
PQID | 2477685651 |
PQPubID | 986340 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7839723 proquest_miscellaneous_2451853388 proquest_journals_2477685651 pubmed_primary_33058253 crossref_primary_10_1002_chem_202003754 crossref_citationtrail_10_1002_chem_202003754 wiley_primary_10_1002_chem_202003754_CHEM202003754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 13, 2021 |
PublicationDateYYYYMMDD | 2021-01-13 |
PublicationDate_xml | – month: 01 year: 2021 text: January 13, 2021 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 7 2017; 2 2017; 4 2013; 27 1995; 37 2019; 10 2004; 7 2015; 142 2017; 1861 2016; 904 2019; 15 1989; 111 2019; 14 2019; 17 2020 2020; 59 132 1955; 8 2012; 18 2020; 10 2012; 14 2013; 8 1974; 6 2017; 114 2005; 25 1938; 57 2018; 6 2020; 7 2018; 9 1973; 40 2019; 20 2017; 37 2000; 289 1997; 782 1966; 209 2020; 172 2009; 201 2007; 4 1977; 33 2017; 121 2012; 137 2003; 125 1993; 654 1996; 21 2014; 118 2019; 9 1963; 198 2012; 1220 2018; 140 2000; 28 2011 2010; 207 2015; 51 2010 2015; 11 2018; 148 2002; 216 1961; 133 2019; 38 1967; 214 2016; 52 1992 2018; 66 2007; 98 2006; 794 2019 2019; 58 131 2018; 69 2016; 11 1976; 54 2006 2006; 45 118 2017; 94 2007; 159 2004; 11 1957; 64 2016; 6 2012; 2 2011; 108 2019; 181 2019; 84 1991; 65 2013; 34 2015; 112 2010; 299 2017; 12 2011; 50 2017; 19 2017; 18 2014 2020; 22 1999; 117 2012; 7 2016; 26 2017; 147 2001; 73 2019; 296 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_104_1 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_83_1 Wolfsberg M. (e_1_2_7_96_1) 2010 e_1_2_7_100_1 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_87_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_116_1 e_1_2_7_94_2 e_1_2_7_112_1 e_1_2_7_71_1 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_23_2 Ohloff G. (e_1_2_7_1_1) 2011 e_1_2_7_23_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_1 e_1_2_7_4_2 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_82_2 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_120_1 e_1_2_7_63_1 Malnic B. (e_1_2_7_98_1) 2010 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_109_2 e_1_2_7_117_1 Andrione M. (e_1_2_7_41_1) 2017; 37 e_1_2_7_113_1 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_2 e_1_2_7_121_2 e_1_2_7_62_1 e_1_2_7_81_2 e_1_2_7_13_1 e_1_2_7_43_1 Devos M. (e_1_2_7_65_1) 1992 e_1_2_7_66_1 e_1_2_7_85_2 e_1_2_7_47_1 e_1_2_7_89_2 e_1_2_7_28_2 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_25_1 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_77_2 e_1_2_7_58_1 e_1_2_7_39_1 (e_1_2_7_100_2) 2020; 132 e_1_2_7_107_1 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_80_2 e_1_2_7_61_1 e_1_2_7_80_3 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_84_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_88_2 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_2 e_1_2_7_111_1 e_1_2_7_53_1 e_1_2_7_99_1 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_95_2 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 58 131 start-page: 5080 5134 year: 2019 2019 end-page: 5084 5138 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chem. Eur. J. – volume: 148 start-page: 064104 year: 2018 end-page: 064104 publication-title: J. Chem. Phys. – volume: 794 start-page: 92 year: 2006 end-page: 102 publication-title: J. Mol. Struct. – volume: 59 132 start-page: 16310 16450 year: 2020 2020 end-page: 16344 16487 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 782 start-page: 81 year: 1997 end-page: 86 publication-title: J. Chromatogr. A – volume: 10 start-page: 552 year: 2019 end-page: 562 publication-title: ACS Chem. Neurosci. – volume: 12 year: 2017 publication-title: PLoS One – volume: 118 start-page: 3431 year: 2014 end-page: 3440 publication-title: J. Phys. Chem. B – volume: 66 start-page: 13346 year: 2018 end-page: 13366 publication-title: J. Agric. Food Chem. – volume: 198 start-page: 271 year: 1963 end-page: 272 publication-title: Nature – year: 2014 – volume: 4 start-page: 611 year: 2007 end-page: 615 publication-title: J. Appl. Chem. – volume: 14 start-page: 13861 year: 2012 end-page: 13871 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 191 year: 1999 end-page: 217 publication-title: Chemico-Biological Interactions – volume: 7 start-page: e42846 year: 2012 end-page: e42846 publication-title: PLoS ONE – volume: 50 start-page: 843 year: 2011 end-page: 853 publication-title: Biochemistry – volume: 121 start-page: 11144 year: 2017 end-page: 11162 publication-title: J. Phys. Chem. B – volume: 33 start-page: 618 year: 1977 end-page: 619 publication-title: Experientia – volume: 1220 start-page: 132 year: 2012 end-page: 142 publication-title: J. Chromatogr. A – volume: 181 year: 2019 publication-title: Progress in Neurobiol. – volume: 15 start-page: 1652 year: 2019 end-page: 1671 publication-title: J. Chem. Theory Computation – volume: 57 start-page: 647 year: 1938 end-page: 651 publication-title: J. Soc. Chem. Ind. – volume: 108 start-page: 3797 year: 2011 end-page: 3802 publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 year: 2019 publication-title: PLoS ONE – volume: 40 start-page: 469 year: 1973 end-page: 484 publication-title: J. Theoret. Biol. – volume: 140 start-page: 17932 year: 2018 end-page: 17944 publication-title: J. Am. Chem. Soc. – start-page: 181 year: 2010 end-page: 202 – volume: 172 year: 2020 publication-title: Building and Environment – volume: 94 start-page: 1352 year: 2017 end-page: 1356 publication-title: J. Chem. Educ. – volume: 7 start-page: 0103 year: 2020 end-page: 19 publication-title: eNeuro – volume: 114 start-page: 5595 year: 2017 end-page: 5600 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 4556 year: 2018 publication-title: Nat. Commun. – volume: 112 start-page: E3154 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – year: 1992 – volume: 214 start-page: 1095 year: 1967 end-page: 1098 publication-title: Nature – year: 2010 – volume: 296 start-page: 110 year: 2019 end-page: 114 publication-title: Forensic Sci. Int. – volume: 6 start-page: 25103 year: 2016 publication-title: Sci. Rep. – volume: 2 start-page: 73 year: 2012 end-page: 78 publication-title: WIREs Comput. Mol. Sci. – volume: 8 year: 2013 publication-title: PLoS ONE – volume: 137 start-page: 22A year: 2012 publication-title: J. Chem. Phys. – volume: 73 start-page: 67 year: 2001 end-page: 72 publication-title: Food Chem. – volume: 34 start-page: 545 year: 2013 end-page: 548 publication-title: Bull. Korean Chem. Soc. – volume: 6 start-page: 25 year: 2018 publication-title: Frontiers Phys. – volume: 209 start-page: 571 year: 1966 end-page: 573 publication-title: Nature – volume: 112 start-page: E3155 year: 2015 end-page: E3155 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 2919 year: 1976 end-page: 2924 publication-title: Can. J. Chem. – volume: 216 start-page: 367 year: 2002 end-page: 385 publication-title: J. Theoret. Biol. – volume: 27 start-page: 221 year: 2013 end-page: 234 publication-title: J. Comp. Aided Mol. Design – volume: 22 start-page: 7169 year: 2020 end-page: 7192 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 337 year: 2004 end-page: 338 publication-title: Nat. Neurosci. – volume: 159 start-page: 400 year: 2007 end-page: 412 publication-title: J. Structural Biol. – volume: 64 start-page: 153 year: 1957 end-page: 181 publication-title: Psycholog. Rev. – volume: 133 start-page: 80 year: 1961 end-page: 86 publication-title: Science – volume: 26 start-page: 796 year: 2016 end-page: 805 publication-title: Indoor Air – volume: 69 start-page: 40 year: 2018 end-page: 51 publication-title: Studies in History and Philosophy of Science Part A – volume: 84 start-page: 837 year: 2019 end-page: 844 publication-title: J. Serb. Chem. Soc. – volume: 11 start-page: 1041 year: 2015 end-page: 1051 publication-title: Mol. BioSyst. – volume: 17 start-page: 891 year: 2019 end-page: 911 publication-title: Current Neuropharmacol. – volume: 2 start-page: 937 year: 2017 end-page: 977 publication-title: Adv. Physics: X – volume: 10 start-page: 2 year: 2020 end-page: 11 publication-title: Biomolecules – volume: 125 start-page: 13836 year: 2003 end-page: 13849 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 4319 year: 2019 end-page: 4328 publication-title: Organometallics – volume: 25 start-page: 1806 year: 2005 end-page: 1815 publication-title: J. Neurosci. – volume: 147 start-page: 161708 year: 2017 end-page: 161708 publication-title: J. Chem. Phys. – volume: 37 start-page: 497 year: 1995 end-page: 524 publication-title: Dev. Food Sci. – volume: 51 start-page: 1764 year: 2015 end-page: 1774 publication-title: Chem. Commun. – volume: 65 start-page: 175 year: 1991 end-page: 187 publication-title: Cell – volume: 50 start-page: 1505 year: 2011 end-page: 1513 publication-title: Biochemistry – volume: 52 start-page: 9893 year: 2016 end-page: 9896 publication-title: Chem. Commun. – volume: 37 start-page: 56 year: 2017 end-page: 60 publication-title: J. Biol. Res. – volume: 19 start-page: 32184 year: 2017 end-page: 32215 publication-title: Phys. Chem. Chem. Phys. – volume: 45 118 start-page: 6254 6402 year: 2006 2006 end-page: 6261 6410 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 71 year: 1955 end-page: 83 publication-title: Acta Crystallogr. – volume: 112 start-page: E2766 year: 2015 end-page: E2774 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 year: 2016 publication-title: PLoS ONE – volume: 207 start-page: 75 year: 2010 end-page: 84 publication-title: Exper. Brain Res. – volume: 9 start-page: 2492 year: 2019 publication-title: Sci. Rep. – volume: 20 start-page: 3018 year: 2019 publication-title: Int. J. Mol. Sci. – volume: 142 year: 2015 publication-title: J. Chem. Phys. – volume: 11 start-page: 147 year: 2004 end-page: 151 publication-title: Environ. Sci. Pollut. Res. – volume: 299 start-page: 207 year: 2010 end-page: 215 publication-title: Fluid Phase Equilibria – volume: 7 start-page: 10167 year: 2017 publication-title: Sci. Rep. – volume: 28 start-page: 235 year: 2000 end-page: 242 publication-title: Nucleic Acids Res. – volume: 18 start-page: 898 year: 2017 end-page: 905 publication-title: ChemPhysChem – volume: 904 start-page: 98 year: 2016 end-page: 106 publication-title: Anal. Chim. Acta – volume: 21 start-page: 773 year: 1996 end-page: 791 publication-title: Chem. Senses – volume: 201 start-page: 207 year: 2009 end-page: 215 publication-title: Behavioural Brain Res. – volume: 289 start-page: 739 year: 2000 end-page: 745 publication-title: Science – volume: 4 start-page: 0070 year: 2017 end-page: 17 publication-title: Eneuro – volume: 1861 start-page: 2766 year: 2017 end-page: 2777 publication-title: Biochim. Biophys. Acta: General Subjects – volume: 9 start-page: 3104 year: 2019 publication-title: Sci. Rep. – volume: 6 start-page: 693 year: 1974 end-page: 700 publication-title: J. Chem. Thermodyn. – volume: 111 start-page: 3977 year: 1989 end-page: 3980 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3785 year: 2015 end-page: 3801 publication-title: J. Chem. Theory Comput. – volume: 112 start-page: 6525 year: 2015 end-page: 6526 publication-title: Proc. Natl. Acad. Sci. USA – volume: 654 start-page: 319 year: 1993 end-page: 325 publication-title: J. Chromatography A – ident: e_1_2_7_26_2 doi: 10.1063/1.4767067 – ident: e_1_2_7_100_1 doi: 10.1002/anie.202005719 – ident: e_1_2_7_49_2 doi: 10.1073/pnas.1507103112 – ident: e_1_2_7_25_1 – ident: e_1_2_7_42_1 doi: 10.1016/S0167-4501(06)80176-7 – ident: e_1_2_7_51_2 doi: 10.3389/fphy.2018.00025 – ident: e_1_2_7_72_2 doi: 10.1021/acs.jctc.5b00296 – ident: e_1_2_7_102_1 doi: 10.1016/j.aca.2015.11.031 – ident: e_1_2_7_74_1 – ident: e_1_2_7_7_2 doi: 10.1021/acs.jafc.8b04471 – ident: e_1_2_7_84_2 doi: 10.1021/bi1017396 – ident: e_1_2_7_22_1 doi: 10.3390/ijms20123018 – ident: e_1_2_7_106_1 doi: 10.1016/j.forsciint.2019.01.023 – ident: e_1_2_7_39_1 doi: 10.1007/BF01946534 – ident: e_1_2_7_121_2 – ident: e_1_2_7_8_1 doi: 10.1002/jctb.5000572802 – ident: e_1_2_7_54_1 – ident: e_1_2_7_30_2 doi: 10.1073/pnas.1508443112 – ident: e_1_2_7_28_2 doi: 10.1063/1.4905377 – ident: e_1_2_7_119_1 doi: 10.1093/nar/28.1.235 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.1012293108 – ident: e_1_2_7_75_2 doi: 10.1021/jp411616b – ident: e_1_2_7_109_2 doi: 10.1002/wcms.1493 – ident: e_1_2_7_29_1 – ident: e_1_2_7_76_2 doi: 10.1039/C4CC06722C – ident: e_1_2_7_14_1 doi: 10.1016/j.shpsa.2018.02.005 – ident: e_1_2_7_71_1 – ident: e_1_2_7_78_2 doi: 10.2298/JSC190701079B – ident: e_1_2_7_97_1 doi: 10.1021/acschemneuro.8b00416 – ident: e_1_2_7_104_1 doi: 10.1016/S0021-9673(97)00483-4 – ident: e_1_2_7_63_1 doi: 10.1021/ja036006g – ident: e_1_2_7_87_2 doi: 10.1371/journal.pone.0042846 – ident: e_1_2_7_37_1 doi: 10.1002/9781118522981 – ident: e_1_2_7_83_1 – ident: e_1_2_7_69_1 doi: 10.1016/0021-9614(74)90119-0 – ident: e_1_2_7_86_1 – ident: e_1_2_7_113_1 doi: 10.1002/chem.201200497 – ident: e_1_2_7_80_3 doi: 10.1002/ange.201813881 – ident: e_1_2_7_122_2 doi: 10.1007/s10822-013-9644-8 – ident: e_1_2_7_58_1 – ident: e_1_2_7_94_2 doi: 10.1038/s41598-019-39404-x – ident: e_1_2_7_64_1 doi: 10.1016/j.bbr.2009.02.014 – ident: e_1_2_7_19_1 doi: 10.1103/PhysRevLett.98.038101 – ident: e_1_2_7_40_1 doi: 10.1016/S0308-8146(00)00287-9 – ident: e_1_2_7_4_2 doi: 10.1037/h0046162 – ident: e_1_2_7_73_2 doi: 10.1002/cphc.201700082 – ident: e_1_2_7_24_1 doi: 10.1080/23746149.2017.1378594 – ident: e_1_2_7_67_1 doi: 10.1016/j.pneurobio.2019.101661 – ident: e_1_2_7_60_2 – ident: e_1_2_7_50_2 doi: 10.1073/pnas.1508035112 – ident: e_1_2_7_81_2 doi: 10.1021/jacs.8b08823 – ident: e_1_2_7_20_1 doi: 10.1038/srep25103 – ident: e_1_2_7_23_2 doi: 10.1002/ange.200600782 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jchemed.6b00991 – ident: e_1_2_7_6_2 doi: 10.2174/1570159X17666181206095626 – ident: e_1_2_7_48_1 – ident: e_1_2_7_85_2 doi: 10.1016/j.jsb.2007.04.013 – ident: e_1_2_7_95_2 doi: 10.1371/journal.pone.0220259 – ident: e_1_2_7_108_2 doi: 10.1021/acs.jctc.8b01176 – ident: e_1_2_7_105_1 doi: 10.1016/j.fluid.2010.09.043 – ident: e_1_2_7_3_2 doi: 10.1126/science.133.3446.80 – ident: e_1_2_7_21_1 doi: 10.1371/journal.pone.0182147 – ident: e_1_2_7_17_2 doi: 10.1093/chemse/21.6.773 – ident: e_1_2_7_27_2 doi: 10.1039/c2cp41436h – ident: e_1_2_7_18_2 doi: 10.1006/jtbi.2001.2504 – ident: e_1_2_7_46_1 doi: 10.1073/pnas.1618422114 – start-page: 181 volume-title: Odorant Receptors year: 2010 ident: e_1_2_7_98_1 – ident: e_1_2_7_36_1 doi: 10.1523/JNEUROSCI.4723-04.2005 – ident: e_1_2_7_111_1 doi: 10.1002/wcms.81 – ident: e_1_2_7_116_1 doi: 10.1063/1.4991798 – ident: e_1_2_7_52_1 – ident: e_1_2_7_103_1 doi: 10.1139/v76-413 – ident: e_1_2_7_31_2 doi: 10.1073/pnas.1503054112 – ident: e_1_2_7_5_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_99_1 doi: 10.1007/BF02979668 – ident: e_1_2_7_2_1 – ident: e_1_2_7_9_1 doi: 10.1002/jctb.5010041104 – ident: e_1_2_7_45_1 doi: 10.1038/nn1215 – ident: e_1_2_7_15_1 doi: 10.1016/0092-8674(91)90418-X – ident: e_1_2_7_117_1 doi: 10.1039/C9CP06869D – ident: e_1_2_7_32_1 – ident: e_1_2_7_89_2 doi: 10.5012/bkcs.2013.34.2.545 – ident: e_1_2_7_114_1 doi: 10.1021/bi101493p – volume: 37 start-page: 56 year: 2017 ident: e_1_2_7_41_1 publication-title: J. Biol. Res. – ident: e_1_2_7_59_2 doi: 10.1016/j.chroma.2011.11.053 – volume-title: Scent and Chemistry: The Molecular World of Odors year: 2011 ident: e_1_2_7_1_1 – ident: e_1_2_7_62_1 doi: 10.1016/S0009-2797(98)00097-0 – ident: e_1_2_7_93_2 doi: 10.1038/s41598-019-39495-6 – ident: e_1_2_7_10_1 doi: 10.1038/198271a0 – ident: e_1_2_7_80_2 doi: 10.1002/anie.201813881 – ident: e_1_2_7_55_2 doi: 10.1038/s41467-018-06806-w – volume-title: Standardized Human Olfactory Thresholds year: 1992 ident: e_1_2_7_65_1 – ident: e_1_2_7_92_2 doi: 10.1038/s41598-017-10862-5 – ident: e_1_2_7_118_1 doi: 10.1126/science.289.5480.739 – ident: e_1_2_7_12_1 doi: 10.1038/209571a0 – ident: e_1_2_7_57_1 doi: 10.1021/ja00193a033 – ident: e_1_2_7_56_2 doi: 10.1523/ENEURO.0103-19.2019 – ident: e_1_2_7_82_2 doi: 10.1021/acs.jpcb.7b09175 – ident: e_1_2_7_110_1 – volume-title: Isotope Effects in the Chemical, Geological, and Bio Sciences year: 2010 ident: e_1_2_7_96_1 – ident: e_1_2_7_68_1 doi: 10.1523/ENEURO.0070-17.2017 – ident: e_1_2_7_88_2 doi: 10.1016/j.bbagen.2017.07.022 – ident: e_1_2_7_90_2 doi: 10.1039/C5MB00003C – ident: e_1_2_7_34_2 doi: 10.1371/journal.pone.0154002 – volume: 132 start-page: 16450 year: 2020 ident: e_1_2_7_100_2 publication-title: Angew. Chem. doi: 10.1002/ange.202005719 – ident: e_1_2_7_112_1 doi: 10.1063/1.5012601 – ident: e_1_2_7_77_2 doi: 10.1039/C6CC03664C – ident: e_1_2_7_33_2 doi: 10.3390/biom10020196 – ident: e_1_2_7_53_1 doi: 10.1111/ina.12262 – ident: e_1_2_7_70_1 doi: 10.1016/j.buildenv.2020.106668 – ident: e_1_2_7_91_1 – ident: e_1_2_7_13_1 doi: 10.1016/0022-5193(73)90005-2 – ident: e_1_2_7_23_1 doi: 10.1002/anie.200600782 – ident: e_1_2_7_11_1 doi: 10.1038/2141095a0 – ident: e_1_2_7_61_1 doi: 10.1016/0021-9673(93)83377-5 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pone.0055780 – ident: e_1_2_7_115_1 doi: 10.1039/C7CP04913G – ident: e_1_2_7_66_1 doi: 10.1007/s00221-010-2430-0 – ident: e_1_2_7_35_1 doi: 10.1107/S0365110X55000340 – ident: e_1_2_7_107_1 – ident: e_1_2_7_120_1 – ident: e_1_2_7_38_1 doi: 10.1016/j.molstruc.2006.01.042 – ident: e_1_2_7_101_1 – ident: e_1_2_7_79_2 doi: 10.1021/acs.organomet.9b00586 |
SSID | ssj0009633 |
Score | 2.36265 |
Snippet | The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1046 |
SubjectTerms | Acetone Acetone - analysis Acetone - chemistry Acids Animals Caprylates - analysis Caprylates - chemistry Chemical compounds Chemistry computational chemistry Deuteration Deuterium - analysis Deuterium - chemistry Dogs human subjects Isotope effect isotopologues Liquid phases Octanoic acid Odor odor perception Odorants - analysis Olfaction Olfactory Perception Organic Chemicals - analysis Organic Chemicals - chemistry Organic compounds Perception Quantum chemistry Sensory evaluation Sensory perception Smell Sniffer dogs Statistical mechanics trained sniffer dogs Working Dogs |
Title | Sensory Perception of Non‐Deuterated and Deuterated Organic Compounds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202003754 https://www.ncbi.nlm.nih.gov/pubmed/33058253 https://www.proquest.com/docview/2477685651 https://www.proquest.com/docview/2451853388 https://pubmed.ncbi.nlm.nih.gov/PMC7839723 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VLuUCtOURoChIlTgFEtt5HRGUIqQiRIvELfJTIFCC2N0DnPoT-hv5JczEm7BbhCrBMfJYiccz48_x-BuAbzxz0nKVRcrg3kSYrMQ4yBxOCFdMpdbq9vT850l2dC6OL9KLiVv8nh-i_-FGntHGa3JwqQa7z6ShOCa6Sc58FVcMwpSwRajo7Jk_Cq3L15IXeUQcrB1rY8x2p7tPr0ovoObLjMlJJNsuRYcLILtB-AyU653RUO3oh3_4Hd8zykWYH-PUcM8b1if4YOvP8HG_Kw_3BX78wg1wc3cfnvapMWHjwpOmfvzz98COWrZma0JZm3Di0d_91CHFIaroNFiC88Pvv_ePonFVhkgjWhKRTHkel0qyrDRClZwnmih1pDWFTmSsc-eMVkUitHK4-nOi_3SpNbEiakNr-DLM1k1tVyFMnC6d1CYubSHKTMtMJaksXMqdMaiAAKJuVio9piynyhk3lSdbZhWpp-rVE8B2L3_ryTpeldzoJrkaO-2gYiLHzRci3CSArb4Z1UpnKLK2zYhkUkI4vCgCWPE20b-KY-zEDTcPIJ-yll6AqLynW-qry5bSO0ecmjPsyVpj-M_XV0SX0T-tvaXTOswxys6JkyjhGzA7vBvZrwivhmoTZpg43Wwd6Ql5Ix9e |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRzKhfcjUMBIIE5pEzvPAwfUpWxpu0LQSr2lfgoESlB3V6ic-An8Ff4KP4FfwkycpF0qhITUA8fIdh722DPjjL8BeCwyJ61QWagM-iaJyUpcB7nDARGKq9Ra3f49351k4_3k1UF6sATf-7Mwng8xbLjRzGjXa5rgtCG9fkINxY-io-Tcp3Ht4iq37fFn9Nqmz7ZGOMRPON98sbcxDrvEAqFGhZ-EMhV5VCrJs9IkCl36WBMVRlpT6FhGOnfOaFXEiVYOFZgggqVLrYkU0fmsEXjfC3CR0ogTrn_05oRYhfLss9cneUjU154TGfH1xfdd1INnjNuzMZqnbedW-W1egR99t_mYlw9r85la019-I0r-V_16FS53pjh77ufONViy9XVY2egz4N2Al2_Rx2-OjtnrIfqHNY5Nmvrn128jO2-B1NYwWRt26tIfb9WMllpKWjW9Cfvn8h23YLluansHWOx06aQ2UWmLpMy0zFScysKlwhmDHR5A2ItBpTsqOyUH-Vh5njSvaDiqYTgCeDrU_-R5JH-sudpLVdWtS9OKJzn6l2jExwE8GoqxW-k3kaxtM6c6KRlxoigCuO2FcHiUQPVQ8FQEkC-I51CBaOWLJfX7dy21PEdTPOfYkrfS95e3r4gIMlzd_ZdGD2FlvLe7U-1sTbbvwSVOwUhRHMZiFZZnR3N7H63JmXrQzl8Gh-ct2L8A3ft8zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJsqF-IQB1CbReJow093zOngwrCuIbDZREm5jP6MJmSEsG8LNn-BP4Tf5S6yaF2yIMTHh2OnqmZ6qruqq6eqvAF6L1CsndBpqi7GJtGmBdpB7FIjQXCfOmeb0_HCS7h3JT8fJ8RJc9XdhWnyI4YcbaUZjr0nBT63fuQYNxW-im-S8reLapVUeuMsLDNpm7_ZHKOE3nI8_fN3dC7u6AqHB_V6GKhFZVGjF08JKjRF9bAgURjmbm1hFJvPeGp3H0miP-5cgAEufOBtpAudzVuBz78F9OmGkJDIup9cwv2lXvF5mIYG-9jCREd9ZnO_iNnjLt72donnTdW72vvEjWO2cVva-XWWPYclVT-Dhbl8r7il8_ILRcH12yaZDngyrPZvU1e-fv0Zu3kA3O8tUZdmNZnsR1DAySlTeafYMju6Elc9huaortw4s9qbwytiocLksUqNSHScq94nw1iIHAwh7jpWmwy-nMhonZYu8zEvicDlwOIC3A_1pi9zxV8qtXgBlp8GzkssMIzF0d-MAtoduZCsdqKjK1XOiScjdEXkewForr-FVAg0pRt8igGxBkgMB4Xov9lQ_vjf43hk6rRnHkbyR-T9mXxJ2xtDa-J9Br-DBdDQuP-9PDjZhhVPWThSHsdiC5fOzuXuBbte5ftmsdAbf7lq1_gCHbToC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+Perception+of+Non%E2%80%90Deuterated+and+Deuterated+Organic+Compounds&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Salthammer%2C+Tunga&rft.au=Monegel%2C+Friederike&rft.au=Schulz%2C+Nicole&rft.au=Uhde%2C+Erik&rft.date=2021-01-13&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=3&rft.spage=1046&rft.epage=1056&rft_id=info:doi/10.1002%2Fchem.202003754&rft_id=info%3Apmid%2F33058253&rft.externalDocID=PMC7839723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |