Sensory Perception of Non‐Deuterated and Deuterated Organic Compounds

The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effec...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 3; pp. 1046 - 1056
Main Authors Salthammer, Tunga, Monegel, Friederike, Schulz, Nicole, Uhde, Erik, Grimme, Stefan, Seibert, Jakob, Hohm, Uwe, Palm, Wolf‐Ulrich
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.01.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The scent of deuterium: For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors.
AbstractList The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The scent of deuterium: For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6 -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15 -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D 6 ‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D 15 ‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived. The scent of deuterium : For a mechanistic understanding of the olfactory perception of molecules, it is an interesting aspect whether or not isotopological substances are perceived differently. To investigate this question, humans and a trained sniffer dog were exposed to deuterated and non‐deuterated substances. The experimental results, supplemented by quantum mechanical calculations, provide insights into the interaction of molecules with receptors.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D 6 ‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D 15 ‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6‐acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15‐octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non‐polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non‐deuterated. In contrast, the binding of the non‐deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non‐covalent free binding energies and it turns out to be very molecule‐specific. The vibrational terms including non‐classical zero‐point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D -acetone. In contrast, clear differences were observed in the perception of octanoic acid and D -octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.
Author Palm, Wolf‐Ulrich
Monegel, Friederike
Uhde, Erik
Salthammer, Tunga
Hohm, Uwe
Schulz, Nicole
Grimme, Stefan
Seibert, Jakob
AuthorAffiliation 4 Institute of Sustainable and Environmental Chemistry Leuphana University Lüneburg 21335 Lüneburg Germany
3 Institute of Physical and Theoretical Chemistry University of Braunschweig—Institute of Technology 38106 Braunschweig Germany
1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI 38108 Braunschweig Germany
2 Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry University of Bonn 53115 Bonn Germany
AuthorAffiliation_xml – name: 1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI 38108 Braunschweig Germany
– name: 2 Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry University of Bonn 53115 Bonn Germany
– name: 3 Institute of Physical and Theoretical Chemistry University of Braunschweig—Institute of Technology 38106 Braunschweig Germany
– name: 4 Institute of Sustainable and Environmental Chemistry Leuphana University Lüneburg 21335 Lüneburg Germany
Author_xml – sequence: 1
  givenname: Tunga
  orcidid: 0000-0002-2370-8664
  surname: Salthammer
  fullname: Salthammer, Tunga
  email: tunga.salthammer@wki.fraunhofer.de
  organization: Fraunhofer WKI
– sequence: 2
  givenname: Friederike
  surname: Monegel
  fullname: Monegel, Friederike
  organization: Fraunhofer WKI
– sequence: 3
  givenname: Nicole
  surname: Schulz
  fullname: Schulz, Nicole
  organization: Fraunhofer WKI
– sequence: 4
  givenname: Erik
  orcidid: 0000-0002-8704-3702
  surname: Uhde
  fullname: Uhde, Erik
  organization: Fraunhofer WKI
– sequence: 5
  givenname: Stefan
  orcidid: 0000-0002-5844-4371
  surname: Grimme
  fullname: Grimme, Stefan
  organization: University of Bonn
– sequence: 6
  givenname: Jakob
  orcidid: 0000-0002-3163-8627
  surname: Seibert
  fullname: Seibert, Jakob
  organization: University of Bonn
– sequence: 7
  givenname: Uwe
  orcidid: 0000-0002-0869-0435
  surname: Hohm
  fullname: Hohm, Uwe
  organization: University of Braunschweig—Institute of Technology
– sequence: 8
  givenname: Wolf‐Ulrich
  orcidid: 0000-0003-4138-4189
  surname: Palm
  fullname: Palm, Wolf‐Ulrich
  organization: Leuphana University Lüneburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33058253$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUsUiQ2bDNd2bMcbJDQtLVKhSMDacpyb1lViD3YCmh2PwDPyJGQ0ZSiVECvryt859-cckYMQAxLylMKSArCX7hqHJQMGwJWoHpAFFYyWXElxQBagK1VKwfUhOcr5BgC05PwROeQcRM0EX5CzjxhyTJviAyaH69HHUMSueB_Dz-8_TnAaMdkR28KGtrhTXqYrG7wrVnFYxym0-TF52Nk-45Pb95h8fnP6aXVeXlyevV29viidAFGVVnAFurFM6rZqNOfUMVaDxbZ21IJTXde6pqaVazomJddSQiewhUYpDdjyY_Jq57uemgFbh2FMtjfr5AebNiZab_7-Cf7aXMWvRtVcK8Zngxe3Bil-mTCPZvDZYd_bgHHKhlWC1oLzup7R5_fQmzilMK83U0rJWkhBZ-rZ3Yn2o_y-8Qwsd4BLMeeE3R6hYLYhmm2IZh_iLKjuCZwf7TaaeSPf_1umd7JvvsfNf5qY1fnpuz_aX_98smg
CitedBy_id crossref_primary_10_1070_RCR5012
crossref_primary_10_1016_j_indenv_2024_100031
Cites_doi 10.1063/1.4767067
10.1002/anie.202005719
10.1073/pnas.1507103112
10.1016/S0167-4501(06)80176-7
10.3389/fphy.2018.00025
10.1021/acs.jctc.5b00296
10.1016/j.aca.2015.11.031
10.1021/acs.jafc.8b04471
10.1021/bi1017396
10.3390/ijms20123018
10.1016/j.forsciint.2019.01.023
10.1007/BF01946534
10.1002/jctb.5000572802
10.1073/pnas.1508443112
10.1063/1.4905377
10.1093/nar/28.1.235
10.1073/pnas.1012293108
10.1021/jp411616b
10.1002/wcms.1493
10.1039/C4CC06722C
10.1016/j.shpsa.2018.02.005
10.2298/JSC190701079B
10.1021/acschemneuro.8b00416
10.1016/S0021-9673(97)00483-4
10.1021/ja036006g
10.1371/journal.pone.0042846
10.1002/9781118522981
10.1016/0021-9614(74)90119-0
10.1002/chem.201200497
10.1002/ange.201813881
10.1007/s10822-013-9644-8
10.1038/s41598-019-39404-x
10.1016/j.bbr.2009.02.014
10.1103/PhysRevLett.98.038101
10.1016/S0308-8146(00)00287-9
10.1037/h0046162
10.1002/cphc.201700082
10.1080/23746149.2017.1378594
10.1016/j.pneurobio.2019.101661
10.1073/pnas.1508035112
10.1021/jacs.8b08823
10.1038/srep25103
10.1002/ange.200600782
10.1021/acs.jchemed.6b00991
10.2174/1570159X17666181206095626
10.1016/j.jsb.2007.04.013
10.1371/journal.pone.0220259
10.1021/acs.jctc.8b01176
10.1016/j.fluid.2010.09.043
10.1126/science.133.3446.80
10.1371/journal.pone.0182147
10.1093/chemse/21.6.773
10.1039/c2cp41436h
10.1006/jtbi.2001.2504
10.1073/pnas.1618422114
10.1523/JNEUROSCI.4723-04.2005
10.1002/wcms.81
10.1063/1.4991798
10.1139/v76-413
10.1073/pnas.1503054112
10.1007/BF02979668
10.1002/jctb.5010041104
10.1038/nn1215
10.1016/0092-8674(91)90418-X
10.1039/C9CP06869D
10.5012/bkcs.2013.34.2.545
10.1021/bi101493p
10.1016/j.chroma.2011.11.053
10.1016/S0009-2797(98)00097-0
10.1038/s41598-019-39495-6
10.1038/198271a0
10.1002/anie.201813881
10.1038/s41467-018-06806-w
10.1038/s41598-017-10862-5
10.1126/science.289.5480.739
10.1038/209571a0
10.1021/ja00193a033
10.1523/ENEURO.0103-19.2019
10.1021/acs.jpcb.7b09175
10.1523/ENEURO.0070-17.2017
10.1016/j.bbagen.2017.07.022
10.1039/C5MB00003C
10.1371/journal.pone.0154002
10.1002/ange.202005719
10.1063/1.5012601
10.1039/C6CC03664C
10.3390/biom10020196
10.1111/ina.12262
10.1016/j.buildenv.2020.106668
10.1016/0022-5193(73)90005-2
10.1002/anie.200600782
10.1038/2141095a0
10.1016/0021-9673(93)83377-5
10.1371/journal.pone.0055780
10.1039/C7CP04913G
10.1007/s00221-010-2430-0
10.1107/S0365110X55000340
10.1016/j.molstruc.2006.01.042
10.1021/acs.organomet.9b00586
ContentType Journal Article
Copyright 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Copyright_xml – notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/chem.202003754
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 1056
ExternalDocumentID PMC7839723
33058253
10_1002_chem_202003754
CHEM202003754
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
AASGY
ID FETCH-LOGICAL-c5054-a53709ba269d4b9331c2280aed8c1a0c7ffdcb814cbf26639660f5ed0b7790ed3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Aug 21 14:09:48 EDT 2025
Fri Jul 11 15:44:51 EDT 2025
Fri Jul 25 10:36:34 EDT 2025
Mon Jul 21 05:51:40 EDT 2025
Tue Jul 01 01:30:19 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Jan 22 16:32:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords human subjects
isotopologues
trained sniffer dogs
computational chemistry
odor perception
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5054-a53709ba269d4b9331c2280aed8c1a0c7ffdcb814cbf26639660f5ed0b7790ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8704-3702
0000-0002-5844-4371
0000-0002-3163-8627
0000-0002-0869-0435
0000-0003-4138-4189
0000-0002-2370-8664
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202003754
PMID 33058253
PQID 2477685651
PQPubID 986340
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7839723
proquest_miscellaneous_2451853388
proquest_journals_2477685651
pubmed_primary_33058253
crossref_primary_10_1002_chem_202003754
crossref_citationtrail_10_1002_chem_202003754
wiley_primary_10_1002_chem_202003754_CHEM202003754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 13, 2021
PublicationDateYYYYMMDD 2021-01-13
PublicationDate_xml – month: 01
  year: 2021
  text: January 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2017; 2
2017; 4
2013; 27
1995; 37
2019; 10
2004; 7
2015; 142
2017; 1861
2016; 904
2019; 15
1989; 111
2019; 14
2019; 17
2020 2020; 59 132
1955; 8
2012; 18
2020; 10
2012; 14
2013; 8
1974; 6
2017; 114
2005; 25
1938; 57
2018; 6
2020; 7
2018; 9
1973; 40
2019; 20
2017; 37
2000; 289
1997; 782
1966; 209
2020; 172
2009; 201
2007; 4
1977; 33
2017; 121
2012; 137
2003; 125
1993; 654
1996; 21
2014; 118
2019; 9
1963; 198
2012; 1220
2018; 140
2000; 28
2011
2010; 207
2015; 51
2010
2015; 11
2018; 148
2002; 216
1961; 133
2019; 38
1967; 214
2016; 52
1992
2018; 66
2007; 98
2006; 794
2019 2019; 58 131
2018; 69
2016; 11
1976; 54
2006 2006; 45 118
2017; 94
2007; 159
2004; 11
1957; 64
2016; 6
2012; 2
2011; 108
2019; 181
2019; 84
1991; 65
2013; 34
2015; 112
2010; 299
2017; 12
2011; 50
2017; 19
2017; 18
2014
2020; 22
1999; 117
2012; 7
2016; 26
2017; 147
2001; 73
2019; 296
e_1_2_7_108_2
e_1_2_7_3_2
e_1_2_7_104_1
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_83_1
Wolfsberg M. (e_1_2_7_96_1) 2010
e_1_2_7_100_1
e_1_2_7_60_2
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_2
e_1_2_7_116_1
e_1_2_7_94_2
e_1_2_7_112_1
e_1_2_7_71_1
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_23_2
Ohloff G. (e_1_2_7_1_1) 2011
e_1_2_7_23_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_1
e_1_2_7_4_2
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_82_2
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_120_1
e_1_2_7_63_1
Malnic B. (e_1_2_7_98_1) 2010
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_109_2
e_1_2_7_117_1
Andrione M. (e_1_2_7_41_1) 2017; 37
e_1_2_7_113_1
e_1_2_7_93_2
e_1_2_7_70_1
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_55_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_2
e_1_2_7_121_2
e_1_2_7_62_1
e_1_2_7_81_2
e_1_2_7_13_1
e_1_2_7_43_1
Devos M. (e_1_2_7_65_1) 1992
e_1_2_7_66_1
e_1_2_7_85_2
e_1_2_7_47_1
e_1_2_7_89_2
e_1_2_7_28_2
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_25_1
e_1_2_7_31_2
e_1_2_7_73_2
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_77_2
e_1_2_7_58_1
e_1_2_7_39_1
(e_1_2_7_100_2) 2020; 132
e_1_2_7_107_1
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_80_2
e_1_2_7_61_1
e_1_2_7_80_3
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_84_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_88_2
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_2
e_1_2_7_111_1
e_1_2_7_53_1
e_1_2_7_99_1
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_95_2
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_38_1
References_xml – year: 2011
– volume: 58 131
  start-page: 5080 5134
  year: 2019 2019
  end-page: 5084 5138
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 9955
  year: 2012
  end-page: 9964
  publication-title: Chem. Eur. J.
– volume: 148
  start-page: 064104
  year: 2018
  end-page: 064104
  publication-title: J. Chem. Phys.
– volume: 794
  start-page: 92
  year: 2006
  end-page: 102
  publication-title: J. Mol. Struct.
– volume: 59 132
  start-page: 16310 16450
  year: 2020 2020
  end-page: 16344 16487
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 782
  start-page: 81
  year: 1997
  end-page: 86
  publication-title: J. Chromatogr. A
– volume: 10
  start-page: 552
  year: 2019
  end-page: 562
  publication-title: ACS Chem. Neurosci.
– volume: 12
  year: 2017
  publication-title: PLoS One
– volume: 118
  start-page: 3431
  year: 2014
  end-page: 3440
  publication-title: J. Phys. Chem. B
– volume: 66
  start-page: 13346
  year: 2018
  end-page: 13366
  publication-title: J. Agric. Food Chem.
– volume: 198
  start-page: 271
  year: 1963
  end-page: 272
  publication-title: Nature
– year: 2014
– volume: 4
  start-page: 611
  year: 2007
  end-page: 615
  publication-title: J. Appl. Chem.
– volume: 14
  start-page: 13861
  year: 2012
  end-page: 13871
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 191
  year: 1999
  end-page: 217
  publication-title: Chemico-Biological Interactions
– volume: 7
  start-page: e42846
  year: 2012
  end-page: e42846
  publication-title: PLoS ONE
– volume: 50
  start-page: 843
  year: 2011
  end-page: 853
  publication-title: Biochemistry
– volume: 121
  start-page: 11144
  year: 2017
  end-page: 11162
  publication-title: J. Phys. Chem. B
– volume: 33
  start-page: 618
  year: 1977
  end-page: 619
  publication-title: Experientia
– volume: 1220
  start-page: 132
  year: 2012
  end-page: 142
  publication-title: J. Chromatogr. A
– volume: 181
  year: 2019
  publication-title: Progress in Neurobiol.
– volume: 15
  start-page: 1652
  year: 2019
  end-page: 1671
  publication-title: J. Chem. Theory Computation
– volume: 57
  start-page: 647
  year: 1938
  end-page: 651
  publication-title: J. Soc. Chem. Ind.
– volume: 108
  start-page: 3797
  year: 2011
  end-page: 3802
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  year: 2019
  publication-title: PLoS ONE
– volume: 40
  start-page: 469
  year: 1973
  end-page: 484
  publication-title: J. Theoret. Biol.
– volume: 140
  start-page: 17932
  year: 2018
  end-page: 17944
  publication-title: J. Am. Chem. Soc.
– start-page: 181
  year: 2010
  end-page: 202
– volume: 172
  year: 2020
  publication-title: Building and Environment
– volume: 94
  start-page: 1352
  year: 2017
  end-page: 1356
  publication-title: J. Chem. Educ.
– volume: 7
  start-page: 0103
  year: 2020
  end-page: 19
  publication-title: eNeuro
– volume: 114
  start-page: 5595
  year: 2017
  end-page: 5600
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 4556
  year: 2018
  publication-title: Nat. Commun.
– volume: 112
  start-page: E3154
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1992
– volume: 214
  start-page: 1095
  year: 1967
  end-page: 1098
  publication-title: Nature
– year: 2010
– volume: 296
  start-page: 110
  year: 2019
  end-page: 114
  publication-title: Forensic Sci. Int.
– volume: 6
  start-page: 25103
  year: 2016
  publication-title: Sci. Rep.
– volume: 2
  start-page: 73
  year: 2012
  end-page: 78
  publication-title: WIREs Comput. Mol. Sci.
– volume: 8
  year: 2013
  publication-title: PLoS ONE
– volume: 137
  start-page: 22A
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 73
  start-page: 67
  year: 2001
  end-page: 72
  publication-title: Food Chem.
– volume: 34
  start-page: 545
  year: 2013
  end-page: 548
  publication-title: Bull. Korean Chem. Soc.
– volume: 6
  start-page: 25
  year: 2018
  publication-title: Frontiers Phys.
– volume: 209
  start-page: 571
  year: 1966
  end-page: 573
  publication-title: Nature
– volume: 112
  start-page: E3155
  year: 2015
  end-page: E3155
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 2919
  year: 1976
  end-page: 2924
  publication-title: Can. J. Chem.
– volume: 216
  start-page: 367
  year: 2002
  end-page: 385
  publication-title: J. Theoret. Biol.
– volume: 27
  start-page: 221
  year: 2013
  end-page: 234
  publication-title: J. Comp. Aided Mol. Design
– volume: 22
  start-page: 7169
  year: 2020
  end-page: 7192
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 337
  year: 2004
  end-page: 338
  publication-title: Nat. Neurosci.
– volume: 159
  start-page: 400
  year: 2007
  end-page: 412
  publication-title: J. Structural Biol.
– volume: 64
  start-page: 153
  year: 1957
  end-page: 181
  publication-title: Psycholog. Rev.
– volume: 133
  start-page: 80
  year: 1961
  end-page: 86
  publication-title: Science
– volume: 26
  start-page: 796
  year: 2016
  end-page: 805
  publication-title: Indoor Air
– volume: 69
  start-page: 40
  year: 2018
  end-page: 51
  publication-title: Studies in History and Philosophy of Science Part A
– volume: 84
  start-page: 837
  year: 2019
  end-page: 844
  publication-title: J. Serb. Chem. Soc.
– volume: 11
  start-page: 1041
  year: 2015
  end-page: 1051
  publication-title: Mol. BioSyst.
– volume: 17
  start-page: 891
  year: 2019
  end-page: 911
  publication-title: Current Neuropharmacol.
– volume: 2
  start-page: 937
  year: 2017
  end-page: 977
  publication-title: Adv. Physics: X
– volume: 10
  start-page: 2
  year: 2020
  end-page: 11
  publication-title: Biomolecules
– volume: 125
  start-page: 13836
  year: 2003
  end-page: 13849
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 4319
  year: 2019
  end-page: 4328
  publication-title: Organometallics
– volume: 25
  start-page: 1806
  year: 2005
  end-page: 1815
  publication-title: J. Neurosci.
– volume: 147
  start-page: 161708
  year: 2017
  end-page: 161708
  publication-title: J. Chem. Phys.
– volume: 37
  start-page: 497
  year: 1995
  end-page: 524
  publication-title: Dev. Food Sci.
– volume: 51
  start-page: 1764
  year: 2015
  end-page: 1774
  publication-title: Chem. Commun.
– volume: 65
  start-page: 175
  year: 1991
  end-page: 187
  publication-title: Cell
– volume: 50
  start-page: 1505
  year: 2011
  end-page: 1513
  publication-title: Biochemistry
– volume: 52
  start-page: 9893
  year: 2016
  end-page: 9896
  publication-title: Chem. Commun.
– volume: 37
  start-page: 56
  year: 2017
  end-page: 60
  publication-title: J. Biol. Res.
– volume: 19
  start-page: 32184
  year: 2017
  end-page: 32215
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45 118
  start-page: 6254 6402
  year: 2006 2006
  end-page: 6261 6410
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 71
  year: 1955
  end-page: 83
  publication-title: Acta Crystallogr.
– volume: 112
  start-page: E2766
  year: 2015
  end-page: E2774
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  year: 2016
  publication-title: PLoS ONE
– volume: 207
  start-page: 75
  year: 2010
  end-page: 84
  publication-title: Exper. Brain Res.
– volume: 9
  start-page: 2492
  year: 2019
  publication-title: Sci. Rep.
– volume: 20
  start-page: 3018
  year: 2019
  publication-title: Int. J. Mol. Sci.
– volume: 142
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 147
  year: 2004
  end-page: 151
  publication-title: Environ. Sci. Pollut. Res.
– volume: 299
  start-page: 207
  year: 2010
  end-page: 215
  publication-title: Fluid Phase Equilibria
– volume: 7
  start-page: 10167
  year: 2017
  publication-title: Sci. Rep.
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 898
  year: 2017
  end-page: 905
  publication-title: ChemPhysChem
– volume: 904
  start-page: 98
  year: 2016
  end-page: 106
  publication-title: Anal. Chim. Acta
– volume: 21
  start-page: 773
  year: 1996
  end-page: 791
  publication-title: Chem. Senses
– volume: 201
  start-page: 207
  year: 2009
  end-page: 215
  publication-title: Behavioural Brain Res.
– volume: 289
  start-page: 739
  year: 2000
  end-page: 745
  publication-title: Science
– volume: 4
  start-page: 0070
  year: 2017
  end-page: 17
  publication-title: Eneuro
– volume: 1861
  start-page: 2766
  year: 2017
  end-page: 2777
  publication-title: Biochim. Biophys. Acta: General Subjects
– volume: 9
  start-page: 3104
  year: 2019
  publication-title: Sci. Rep.
– volume: 6
  start-page: 693
  year: 1974
  end-page: 700
  publication-title: J. Chem. Thermodyn.
– volume: 111
  start-page: 3977
  year: 1989
  end-page: 3980
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3785
  year: 2015
  end-page: 3801
  publication-title: J. Chem. Theory Comput.
– volume: 112
  start-page: 6525
  year: 2015
  end-page: 6526
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 654
  start-page: 319
  year: 1993
  end-page: 325
  publication-title: J. Chromatography A
– ident: e_1_2_7_26_2
  doi: 10.1063/1.4767067
– ident: e_1_2_7_100_1
  doi: 10.1002/anie.202005719
– ident: e_1_2_7_49_2
  doi: 10.1073/pnas.1507103112
– ident: e_1_2_7_25_1
– ident: e_1_2_7_42_1
  doi: 10.1016/S0167-4501(06)80176-7
– ident: e_1_2_7_51_2
  doi: 10.3389/fphy.2018.00025
– ident: e_1_2_7_72_2
  doi: 10.1021/acs.jctc.5b00296
– ident: e_1_2_7_102_1
  doi: 10.1016/j.aca.2015.11.031
– ident: e_1_2_7_74_1
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.jafc.8b04471
– ident: e_1_2_7_84_2
  doi: 10.1021/bi1017396
– ident: e_1_2_7_22_1
  doi: 10.3390/ijms20123018
– ident: e_1_2_7_106_1
  doi: 10.1016/j.forsciint.2019.01.023
– ident: e_1_2_7_39_1
  doi: 10.1007/BF01946534
– ident: e_1_2_7_121_2
– ident: e_1_2_7_8_1
  doi: 10.1002/jctb.5000572802
– ident: e_1_2_7_54_1
– ident: e_1_2_7_30_2
  doi: 10.1073/pnas.1508443112
– ident: e_1_2_7_28_2
  doi: 10.1063/1.4905377
– ident: e_1_2_7_119_1
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.1012293108
– ident: e_1_2_7_75_2
  doi: 10.1021/jp411616b
– ident: e_1_2_7_109_2
  doi: 10.1002/wcms.1493
– ident: e_1_2_7_29_1
– ident: e_1_2_7_76_2
  doi: 10.1039/C4CC06722C
– ident: e_1_2_7_14_1
  doi: 10.1016/j.shpsa.2018.02.005
– ident: e_1_2_7_71_1
– ident: e_1_2_7_78_2
  doi: 10.2298/JSC190701079B
– ident: e_1_2_7_97_1
  doi: 10.1021/acschemneuro.8b00416
– ident: e_1_2_7_104_1
  doi: 10.1016/S0021-9673(97)00483-4
– ident: e_1_2_7_63_1
  doi: 10.1021/ja036006g
– ident: e_1_2_7_87_2
  doi: 10.1371/journal.pone.0042846
– ident: e_1_2_7_37_1
  doi: 10.1002/9781118522981
– ident: e_1_2_7_83_1
– ident: e_1_2_7_69_1
  doi: 10.1016/0021-9614(74)90119-0
– ident: e_1_2_7_86_1
– ident: e_1_2_7_113_1
  doi: 10.1002/chem.201200497
– ident: e_1_2_7_80_3
  doi: 10.1002/ange.201813881
– ident: e_1_2_7_122_2
  doi: 10.1007/s10822-013-9644-8
– ident: e_1_2_7_58_1
– ident: e_1_2_7_94_2
  doi: 10.1038/s41598-019-39404-x
– ident: e_1_2_7_64_1
  doi: 10.1016/j.bbr.2009.02.014
– ident: e_1_2_7_19_1
  doi: 10.1103/PhysRevLett.98.038101
– ident: e_1_2_7_40_1
  doi: 10.1016/S0308-8146(00)00287-9
– ident: e_1_2_7_4_2
  doi: 10.1037/h0046162
– ident: e_1_2_7_73_2
  doi: 10.1002/cphc.201700082
– ident: e_1_2_7_24_1
  doi: 10.1080/23746149.2017.1378594
– ident: e_1_2_7_67_1
  doi: 10.1016/j.pneurobio.2019.101661
– ident: e_1_2_7_60_2
– ident: e_1_2_7_50_2
  doi: 10.1073/pnas.1508035112
– ident: e_1_2_7_81_2
  doi: 10.1021/jacs.8b08823
– ident: e_1_2_7_20_1
  doi: 10.1038/srep25103
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.200600782
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jchemed.6b00991
– ident: e_1_2_7_6_2
  doi: 10.2174/1570159X17666181206095626
– ident: e_1_2_7_48_1
– ident: e_1_2_7_85_2
  doi: 10.1016/j.jsb.2007.04.013
– ident: e_1_2_7_95_2
  doi: 10.1371/journal.pone.0220259
– ident: e_1_2_7_108_2
  doi: 10.1021/acs.jctc.8b01176
– ident: e_1_2_7_105_1
  doi: 10.1016/j.fluid.2010.09.043
– ident: e_1_2_7_3_2
  doi: 10.1126/science.133.3446.80
– ident: e_1_2_7_21_1
  doi: 10.1371/journal.pone.0182147
– ident: e_1_2_7_17_2
  doi: 10.1093/chemse/21.6.773
– ident: e_1_2_7_27_2
  doi: 10.1039/c2cp41436h
– ident: e_1_2_7_18_2
  doi: 10.1006/jtbi.2001.2504
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.1618422114
– start-page: 181
  volume-title: Odorant Receptors
  year: 2010
  ident: e_1_2_7_98_1
– ident: e_1_2_7_36_1
  doi: 10.1523/JNEUROSCI.4723-04.2005
– ident: e_1_2_7_111_1
  doi: 10.1002/wcms.81
– ident: e_1_2_7_116_1
  doi: 10.1063/1.4991798
– ident: e_1_2_7_52_1
– ident: e_1_2_7_103_1
  doi: 10.1139/v76-413
– ident: e_1_2_7_31_2
  doi: 10.1073/pnas.1503054112
– ident: e_1_2_7_5_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_99_1
  doi: 10.1007/BF02979668
– ident: e_1_2_7_2_1
– ident: e_1_2_7_9_1
  doi: 10.1002/jctb.5010041104
– ident: e_1_2_7_45_1
  doi: 10.1038/nn1215
– ident: e_1_2_7_15_1
  doi: 10.1016/0092-8674(91)90418-X
– ident: e_1_2_7_117_1
  doi: 10.1039/C9CP06869D
– ident: e_1_2_7_32_1
– ident: e_1_2_7_89_2
  doi: 10.5012/bkcs.2013.34.2.545
– ident: e_1_2_7_114_1
  doi: 10.1021/bi101493p
– volume: 37
  start-page: 56
  year: 2017
  ident: e_1_2_7_41_1
  publication-title: J. Biol. Res.
– ident: e_1_2_7_59_2
  doi: 10.1016/j.chroma.2011.11.053
– volume-title: Scent and Chemistry: The Molecular World of Odors
  year: 2011
  ident: e_1_2_7_1_1
– ident: e_1_2_7_62_1
  doi: 10.1016/S0009-2797(98)00097-0
– ident: e_1_2_7_93_2
  doi: 10.1038/s41598-019-39495-6
– ident: e_1_2_7_10_1
  doi: 10.1038/198271a0
– ident: e_1_2_7_80_2
  doi: 10.1002/anie.201813881
– ident: e_1_2_7_55_2
  doi: 10.1038/s41467-018-06806-w
– volume-title: Standardized Human Olfactory Thresholds
  year: 1992
  ident: e_1_2_7_65_1
– ident: e_1_2_7_92_2
  doi: 10.1038/s41598-017-10862-5
– ident: e_1_2_7_118_1
  doi: 10.1126/science.289.5480.739
– ident: e_1_2_7_12_1
  doi: 10.1038/209571a0
– ident: e_1_2_7_57_1
  doi: 10.1021/ja00193a033
– ident: e_1_2_7_56_2
  doi: 10.1523/ENEURO.0103-19.2019
– ident: e_1_2_7_82_2
  doi: 10.1021/acs.jpcb.7b09175
– ident: e_1_2_7_110_1
– volume-title: Isotope Effects in the Chemical, Geological, and Bio Sciences
  year: 2010
  ident: e_1_2_7_96_1
– ident: e_1_2_7_68_1
  doi: 10.1523/ENEURO.0070-17.2017
– ident: e_1_2_7_88_2
  doi: 10.1016/j.bbagen.2017.07.022
– ident: e_1_2_7_90_2
  doi: 10.1039/C5MB00003C
– ident: e_1_2_7_34_2
  doi: 10.1371/journal.pone.0154002
– volume: 132
  start-page: 16450
  year: 2020
  ident: e_1_2_7_100_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005719
– ident: e_1_2_7_112_1
  doi: 10.1063/1.5012601
– ident: e_1_2_7_77_2
  doi: 10.1039/C6CC03664C
– ident: e_1_2_7_33_2
  doi: 10.3390/biom10020196
– ident: e_1_2_7_53_1
  doi: 10.1111/ina.12262
– ident: e_1_2_7_70_1
  doi: 10.1016/j.buildenv.2020.106668
– ident: e_1_2_7_91_1
– ident: e_1_2_7_13_1
  doi: 10.1016/0022-5193(73)90005-2
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.200600782
– ident: e_1_2_7_11_1
  doi: 10.1038/2141095a0
– ident: e_1_2_7_61_1
  doi: 10.1016/0021-9673(93)83377-5
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pone.0055780
– ident: e_1_2_7_115_1
  doi: 10.1039/C7CP04913G
– ident: e_1_2_7_66_1
  doi: 10.1007/s00221-010-2430-0
– ident: e_1_2_7_35_1
  doi: 10.1107/S0365110X55000340
– ident: e_1_2_7_107_1
– ident: e_1_2_7_120_1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.molstruc.2006.01.042
– ident: e_1_2_7_101_1
– ident: e_1_2_7_79_2
  doi: 10.1021/acs.organomet.9b00586
SSID ssj0009633
Score 2.36265
Snippet The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms Acetone
Acetone - analysis
Acetone - chemistry
Acids
Animals
Caprylates - analysis
Caprylates - chemistry
Chemical compounds
Chemistry
computational chemistry
Deuteration
Deuterium - analysis
Deuterium - chemistry
Dogs
human subjects
Isotope effect
isotopologues
Liquid phases
Octanoic acid
Odor
odor perception
Odorants - analysis
Olfaction
Olfactory Perception
Organic Chemicals - analysis
Organic Chemicals - chemistry
Organic compounds
Perception
Quantum chemistry
Sensory evaluation
Sensory perception
Smell
Sniffer dogs
Statistical mechanics
trained sniffer dogs
Working Dogs
Title Sensory Perception of Non‐Deuterated and Deuterated Organic Compounds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202003754
https://www.ncbi.nlm.nih.gov/pubmed/33058253
https://www.proquest.com/docview/2477685651
https://www.proquest.com/docview/2451853388
https://pubmed.ncbi.nlm.nih.gov/PMC7839723
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VLuUCtOURoChIlTgFEtt5HRGUIqQiRIvELfJTIFCC2N0DnPoT-hv5JczEm7BbhCrBMfJYiccz48_x-BuAbzxz0nKVRcrg3kSYrMQ4yBxOCFdMpdbq9vT850l2dC6OL9KLiVv8nh-i_-FGntHGa3JwqQa7z6ShOCa6Sc58FVcMwpSwRajo7Jk_Cq3L15IXeUQcrB1rY8x2p7tPr0ovoObLjMlJJNsuRYcLILtB-AyU653RUO3oh3_4Hd8zykWYH-PUcM8b1if4YOvP8HG_Kw_3BX78wg1wc3cfnvapMWHjwpOmfvzz98COWrZma0JZm3Di0d_91CHFIaroNFiC88Pvv_ePonFVhkgjWhKRTHkel0qyrDRClZwnmih1pDWFTmSsc-eMVkUitHK4-nOi_3SpNbEiakNr-DLM1k1tVyFMnC6d1CYubSHKTMtMJaksXMqdMaiAAKJuVio9piynyhk3lSdbZhWpp-rVE8B2L3_ryTpeldzoJrkaO-2gYiLHzRci3CSArb4Z1UpnKLK2zYhkUkI4vCgCWPE20b-KY-zEDTcPIJ-yll6AqLynW-qry5bSO0ecmjPsyVpj-M_XV0SX0T-tvaXTOswxys6JkyjhGzA7vBvZrwivhmoTZpg43Wwd6Ql5Ix9e
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRzKhfcjUMBIIE5pEzvPAwfUpWxpu0LQSr2lfgoESlB3V6ic-An8Ff4KP4FfwkycpF0qhITUA8fIdh722DPjjL8BeCwyJ61QWagM-iaJyUpcB7nDARGKq9Ra3f49351k4_3k1UF6sATf-7Mwng8xbLjRzGjXa5rgtCG9fkINxY-io-Tcp3Ht4iq37fFn9Nqmz7ZGOMRPON98sbcxDrvEAqFGhZ-EMhV5VCrJs9IkCl36WBMVRlpT6FhGOnfOaFXEiVYOFZgggqVLrYkU0fmsEXjfC3CR0ogTrn_05oRYhfLss9cneUjU154TGfH1xfdd1INnjNuzMZqnbedW-W1egR99t_mYlw9r85la019-I0r-V_16FS53pjh77ufONViy9XVY2egz4N2Al2_Rx2-OjtnrIfqHNY5Nmvrn128jO2-B1NYwWRt26tIfb9WMllpKWjW9Cfvn8h23YLluansHWOx06aQ2UWmLpMy0zFScysKlwhmDHR5A2ItBpTsqOyUH-Vh5njSvaDiqYTgCeDrU_-R5JH-sudpLVdWtS9OKJzn6l2jExwE8GoqxW-k3kaxtM6c6KRlxoigCuO2FcHiUQPVQ8FQEkC-I51CBaOWLJfX7dy21PEdTPOfYkrfS95e3r4gIMlzd_ZdGD2FlvLe7U-1sTbbvwSVOwUhRHMZiFZZnR3N7H63JmXrQzl8Gh-ct2L8A3ft8zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJsqF-IQB1CbReJow093zOngwrCuIbDZREm5jP6MJmSEsG8LNn-BP4Tf5S6yaF2yIMTHh2OnqmZ6qruqq6eqvAF6L1CsndBpqi7GJtGmBdpB7FIjQXCfOmeb0_HCS7h3JT8fJ8RJc9XdhWnyI4YcbaUZjr0nBT63fuQYNxW-im-S8reLapVUeuMsLDNpm7_ZHKOE3nI8_fN3dC7u6AqHB_V6GKhFZVGjF08JKjRF9bAgURjmbm1hFJvPeGp3H0miP-5cgAEufOBtpAudzVuBz78F9OmGkJDIup9cwv2lXvF5mIYG-9jCREd9ZnO_iNnjLt72donnTdW72vvEjWO2cVva-XWWPYclVT-Dhbl8r7il8_ILRcH12yaZDngyrPZvU1e-fv0Zu3kA3O8tUZdmNZnsR1DAySlTeafYMju6Elc9huaortw4s9qbwytiocLksUqNSHScq94nw1iIHAwh7jpWmwy-nMhonZYu8zEvicDlwOIC3A_1pi9zxV8qtXgBlp8GzkssMIzF0d-MAtoduZCsdqKjK1XOiScjdEXkewForr-FVAg0pRt8igGxBkgMB4Xov9lQ_vjf43hk6rRnHkbyR-T9mXxJ2xtDa-J9Br-DBdDQuP-9PDjZhhVPWThSHsdiC5fOzuXuBbte5ftmsdAbf7lq1_gCHbToC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+Perception+of+Non%E2%80%90Deuterated+and+Deuterated+Organic+Compounds&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Salthammer%2C+Tunga&rft.au=Monegel%2C+Friederike&rft.au=Schulz%2C+Nicole&rft.au=Uhde%2C+Erik&rft.date=2021-01-13&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=3&rft.spage=1046&rft.epage=1056&rft_id=info:doi/10.1002%2Fchem.202003754&rft_id=info%3Apmid%2F33058253&rft.externalDocID=PMC7839723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon