Mass spectrometry-based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins

Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with di...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 12; no. 8; pp. 1093 - 1110
Main Authors Boja, Emily S., Rodriguez, Henry
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.04.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM‐MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM‐MS‐based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
AbstractList Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry ( MRM ‐ MS ), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM ‐ MS ‐based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Author Rodriguez, Henry
Boja, Emily S.
Author_xml – sequence: 1
  givenname: Emily S.
  surname: Boja
  fullname: Boja, Emily S.
  email: bojae@mail.nih.gov
  organization: Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, MD, Bethesda, USA
– sequence: 2
  givenname: Henry
  surname: Rodriguez
  fullname: Rodriguez, Henry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22577011$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9vFCEUx4mpsT_06tFM4sXLrDDAwHirG22btNo0GhMvhIU3lToDW2Da7n8v69Q9eNETj_D5fh_vfQ_Rng8eEHpJ8IJg3Lxdj84sGkzKhUrxBB2QlvC6ky3Z29Wc7qPDlG4wJkJ24hnabxouRBEdoHyhU6rSGkyOYYQcN_VKJ7BV1vEaciluJ-2zyzq7O6jWMWQIpWd6Vx2bHw7unL-uEvjkfr9rb6sIhbKTcasBKls8THbBV6Gf1c6n5-hpr4cELx7PI_T144cvy9P6_PPJ2fL4vDYcc1YLK4U1ElvSWtlzzXpteSuZNcw2hhEhWkoF1maFeaM7jkETKvu-76iQWDf0CL2ZfUvj2wlSVqNLBoZBewhTUoQ3XcdF2_0HikkjWIcJK-jrv9CbMEVfBimGRDDWliUXajFTJoaUIvRqHd2o46ZYqW10ahud2kVXBK8ebafVCHaH_8mqAGwG7t0Am3_YqcuLs6XAdPvdepa5lOFhJ9Pxp2oFFVx9-3SivtP38uryiqlT-gumnrbr
CitedBy_id crossref_primary_10_3390_proteomes5010001
crossref_primary_10_4110_in_2015_15_4_177
crossref_primary_10_1038_bjc_2016_291
crossref_primary_10_1371_journal_pone_0206051
crossref_primary_10_1002_elsc_201200205
crossref_primary_10_1016_j_jprot_2014_04_018
crossref_primary_10_1038_srep38882
crossref_primary_10_1002_rcm_9672
crossref_primary_10_1155_2014_238045
crossref_primary_10_3389_fmicb_2014_00474
crossref_primary_10_1016_j_jchromb_2013_04_030
crossref_primary_10_1002_psp4_12170
crossref_primary_10_1002_pmic_201300257
crossref_primary_10_1021_pr400650c
crossref_primary_10_3390_chemosensors12010012
crossref_primary_10_1016_j_bios_2017_09_013
crossref_primary_10_1371_journal_pone_0155460
crossref_primary_10_1002_pmic_201400364
crossref_primary_10_1016_j_abb_2018_12_031
crossref_primary_10_1038_s41564_021_01019_2
crossref_primary_10_1016_j_tplants_2013_05_002
crossref_primary_10_1016_j_clinbiochem_2012_12_019
crossref_primary_10_1002_prca_201400147
crossref_primary_10_1002_hep_27230
crossref_primary_10_1016_j_mito_2016_08_004
crossref_primary_10_1155_2013_701247
crossref_primary_10_1074_mcp_M115_048918
crossref_primary_10_1002_pmic_201400476
crossref_primary_10_1007_s00535_018_1448_0
crossref_primary_10_1002_prca_201500116
crossref_primary_10_1371_journal_pone_0119265
crossref_primary_10_1002_prca_201800138
crossref_primary_10_1021_bi500091p
crossref_primary_10_1021_acs_jproteome_0c00399
crossref_primary_10_1016_j_nbt_2012_11_011
crossref_primary_10_1007_s00580_016_2342_x
crossref_primary_10_1016_j_tifs_2020_09_019
crossref_primary_10_1038_s41598_023_42646_5
crossref_primary_10_1021_acs_biochem_7b00433
crossref_primary_10_1002_pmic_201400349
crossref_primary_10_1002_pmic_201200319
crossref_primary_10_1016_j_aca_2016_05_037
crossref_primary_10_1021_ac402306f
crossref_primary_10_1016_j_jprot_2015_07_025
crossref_primary_10_1111_jnc_14635
crossref_primary_10_3390_foods9081083
crossref_primary_10_3390_pathogens10070883
crossref_primary_10_1002_pmic_202000002
crossref_primary_10_1016_j_bmcl_2014_12_090
crossref_primary_10_1021_acs_analchem_0c02288
crossref_primary_10_3390_molecules25112718
crossref_primary_10_1186_1559_0275_11_22
crossref_primary_10_1210_jc_2012_4172
crossref_primary_10_1016_j_copbio_2017_12_011
crossref_primary_10_1371_journal_pone_0068318
crossref_primary_10_1002_jssc_201200830
crossref_primary_10_1002_jms_3932
crossref_primary_10_7314_APJCP_2013_14_10_6069
crossref_primary_10_1208_s12248_013_9529_8
crossref_primary_10_3390_ijms21103648
crossref_primary_10_1016_j_euprot_2014_02_003
crossref_primary_10_1016_j_foodchem_2016_02_115
crossref_primary_10_1016_j_foodcont_2019_106744
crossref_primary_10_1016_j_tiv_2021_105220
crossref_primary_10_1177_1177271917749216
crossref_primary_10_1186_1477_5956_12_15
crossref_primary_10_1016_j_crmeth_2021_100015
crossref_primary_10_1016_j_jprot_2013_11_004
crossref_primary_10_3389_fonc_2017_00013
crossref_primary_10_1021_acs_jafc_8b03934
crossref_primary_10_1016_j_cbd_2022_100968
crossref_primary_10_5478_MSL_2016_7_1_1
crossref_primary_10_1074_mcp_M113_029827
crossref_primary_10_4155_bio_15_222
crossref_primary_10_1007_s10404_014_1354_6
crossref_primary_10_1002_rcm_8398
crossref_primary_10_1016_j_canlet_2013_11_003
crossref_primary_10_3390_proteomes4040029
crossref_primary_10_1093_rheumatology_kew013
crossref_primary_10_7314_APJCP_2014_15_6_2433
crossref_primary_10_1021_ac500704y
crossref_primary_10_1074_mcp_O115_049957
crossref_primary_10_3390_ijms14048271
crossref_primary_10_5946_ce_2014_47_1_7
crossref_primary_10_1016_j_jprot_2018_06_003
crossref_primary_10_1021_acs_jproteome_5b00041
crossref_primary_10_3389_fnut_2022_950400
crossref_primary_10_1021_tx500284g
crossref_primary_10_1016_j_molonc_2014_03_006
crossref_primary_10_1002_mas_21635
crossref_primary_10_1016_j_jff_2018_04_023
crossref_primary_10_1038_s41467_020_16937_8
crossref_primary_10_1016_j_neuron_2014_10_031
crossref_primary_10_1016_j_jprot_2013_11_024
crossref_primary_10_1021_acs_jproteome_5b01119
crossref_primary_10_1111_joim_12486
crossref_primary_10_1007_s10753_018_0787_6
crossref_primary_10_1111_2049_632X_12150
crossref_primary_10_1186_s12885_015_1343_5
crossref_primary_10_1016_j_copbio_2017_02_007
crossref_primary_10_1016_j_matbio_2015_06_003
crossref_primary_10_1080_15548627_2017_1313944
crossref_primary_10_1074_mcp_M113_028878
crossref_primary_10_1021_pr4009404
crossref_primary_10_1189_jlb_1112591
crossref_primary_10_1155_2013_783131
Cites_doi 10.1021/pr1004289
10.1074/mcp.M000062-MCP201
10.1002/(SICI)1096-9888(199612)31:12<1371::AID-JMS433>3.0.CO;2-4
10.1038/nmeth.1584
10.1002/prca.200700009
10.1016/S1535-6108(03)00086-2
10.1021/cr100011x
10.1021/pr100532g
10.1007/s11523-009-0116-y
10.4161/cbt.8.12.8634
10.1007/978-1-61779-068-3_11
10.1038/nrc2901
10.1021/ac102228a
10.1016/j.ab.2006.12.023
10.1021/ac102179j
10.1007/BF02664935
10.1073/pnas.0608659104
10.1183/09031936.00028209
10.1021/pr034086h
10.1038/nmeth778
10.1038/nbt.1546
10.1021/ac901447h
10.1002/prca.200900217
10.1038/nbt1275
10.1186/1471-2105-12-78
10.1038/sj.bjc.6605473
10.1038/nbt.1524
10.1021/pr1006203
10.1038/embor.2008.56
10.1016/j.jprot.2009.03.007
10.1074/mcp.M800540-MCP200
10.1074/mcp.M800446-MCP200
10.1002/jps.22612
10.1007/978-1-61779-148-2_7
10.1073/pnas.0608638104
10.1093/nar/gkm1021
10.1073/pnas.96.26.14694
10.3816/CCC.2009.n.018
10.1038/nprot.2006.129
10.1074/mcp.R800015-MCP200
10.1373/clinchem.2008.109652
10.1002/elps.201000502
10.1021/ac900204f
10.1038/nchembio707
10.1038/nprot.2010.196
10.1373/clinchem.2010.152264
10.1080/07388550802688847
10.1002/prca.201000115
10.1373/clinchem.2009.127878
10.1074/mcp.M900140-MCP200
10.1021/pr900269s
10.1038/nchembio859
10.1074/mcp.M700354-MCP200
10.1002/jms.1585
10.1002/jms.1692
10.1073/pnas.0402323101
10.1021/pr901013d
10.1373/clinchem.2009.140087
10.1002/prca.201000057
10.1373/clinchem.2009.138420
10.1038/nmeth.1408
10.1016/j.jim.2009.11.017
10.1038/nchembio781
10.1074/mcp.M700504-MCP200
10.1016/j.jprot.2011.04.011
10.2478/v10042-010-0014-2
10.1373/clinchem.2009.123935
10.1002/pmic.201000736
10.1016/j.jim.2009.06.003
10.1073/pnas.1018157108
10.1074/mcp.M800008-MCP200
10.1373/clinchem.2009.126706
10.1186/1471-2105-8-S7-S23
10.1073/pnas.1019203108
10.1021/pr900158n
10.1074/mcp.M110.005645
10.1021/pr049882h
10.1016/j.ccr.2009.12.020
10.1002/mc.20177
10.1038/nbt.1899
10.1074/mcp.R200007-MCP200
10.1016/j.chembiol.2004.03.012
10.1373/clinchem.2009.135087
10.1038/nmeth.1333
10.1016/j.jasms.2010.01.024
10.1093/bioinformatics/btq054
10.1021/bi062142x
10.1038/nmeth1108-913
10.1002/jms.1895
10.1038/nature07385
ContentType Journal Article
Copyright 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
DOI 10.1002/pmic.201100387
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Engineering Research Database
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage 1110
ExternalDocumentID 3278831231
10_1002_pmic_201100387
22577011
PMIC7034
ark_67375_WNG_Z3B8RPR4_H
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZA5
ZGI
ZZTAW
~IA
~KM
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5054-7d87dc80d16d8f5a4fad5684dc4d2c417763370acb052a950ea138fff93780a23
IEDL.DBID DR2
ISSN 1615-9853
IngestDate Sat Aug 17 04:05:40 EDT 2024
Fri Aug 16 23:18:19 EDT 2024
Thu Oct 10 20:00:36 EDT 2024
Fri Aug 23 00:31:44 EDT 2024
Sat Sep 28 07:51:16 EDT 2024
Sat Aug 24 01:03:24 EDT 2024
Wed Jan 17 05:02:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5054-7d87dc80d16d8f5a4fad5684dc4d2c417763370acb052a950ea138fff93780a23
Notes ark:/67375/WNG-Z3B8RPR4-H
ArticleID:PMIC7034
istex:9746BC48447FC1615DD4C7A1F4A6B3FBB1CD1B37
Colour online
See the article online to view Figs. 1 and 2 in colour.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Feature-1
PMID 22577011
PQID 1517446897
PQPubID 1016439
PageCount 18
ParticipantIDs proquest_miscellaneous_1529957692
proquest_miscellaneous_1012749014
proquest_journals_1517446897
crossref_primary_10_1002_pmic_201100387
pubmed_primary_22577011
wiley_primary_10_1002_pmic_201100387_PMIC7034
istex_primary_ark_67375_WNG_Z3B8RPR4_H
PublicationCentury 2000
PublicationDate 2012-04
April 2012
2012-Apr
2012-04-00
20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Patricelli, M. P., Szardenings, A. K., Liyanage, M., Nomanbhoy, T. K. et al., Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 2007, 46, 350-358.
Hossain, M., Kaleta, D. T., Robinson, E. W., Liu, T. et al., Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface. Mol. Cell. Proteomics 2011, 10, M000062-MCP201.
Lee, J., Soper, S. A., Murray, K. K., Microfluidic chips for mass spectrometry-based proteomics. J. Mass Spectrom. 2009, 44, 579-593.
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061-1068.
Maclean, B., Tomazela, D. M., Abbatiello, S. E., Zhang, S. et al., Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal. Chem. 2010, 82, 10116-10124.
Polanski, M., Anderson, N. L., A list of candidate cancer biomarkers for targeted proteomics. Biomark. Insights 2007, 1, 1-48.
Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B. et al., Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J. Proteome Res. 2004, 3, 235-244.
Wang, Q., Chaerkady, R., Wu, J., Hwang, H. J. et al., Mutant proteins as cancer-specific biomarkers. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 2444-2449.
Cohen, M. S., Hadjivassiliou, H., Taunton, J., A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 2007, 3, 156-160.
Fu, Q., Zhu, J., Van Eyk, J. E., Comparison of multiplex immunoassay platforms. Clin. Chem. 2010, 56, 314-318.
Rodriguez, H., Rivers, R., Kinsinger, C., Mesri, M. et al., Reconstructing the pipeline by introducing multiplexed multiple reaction monitoring mass spectrometry for cancer biomarker verification: an NCI-CPTC initiative perspective. Proteomics Clin. Appl. 2010, 4, 904-914. doi: 10.1002/prca.201000057.
Keshishian, H., Addona, T., Burgess, M., Kuhn, E., Carr S. A., Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell. Proteomics 2007, 6, 2212-2229.
Remily-Wood, E. R., Liu, R. Z., Xiang, Y., Chen, Y. et al., A database of reaction monitoring mass spectrometry assays for elucidating therapeutic response in cancer. Proteomics Clin. Appl. 2011, 5, 383-396.
Fu, Q., Schoenhoff, F. S., Savage, W. J., Zhang, P. et al., Multiplex assays for biomarker research and clinical application: translational science coming of age. Proteomics Clin. Appl. 2010, 4, 271-284.
Gallien, S., Duriez, E., Domon, B., Selected reaction monitoring applied to proteomics. J. Mass Spectrom. 2011, 46, 298-312.
Martin, D. B., Holzman, T., May, D., Peterson, A. et al., MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol. Cell. Proteomics 2008, 7, 2270-2278.
Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V. et al., Cancer genome atlas research network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98-110.
Spicer, V., Grigoryan, M., Gotfrid, A., Standing, K. G. et al., Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC. Anal. Chem. 2010, 82, 9678-9685.
Picotti, P., Lam, H., Campbell, D., Deutsch, E. W. et al., A database of mass spectrometric assays for the yeast proteome. Nat. Methods 2008, 5, 913-914.
Kim, K., Kim, S. J., Yu, H. G., Yu, J. et al., Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring. J. Proteome Res. 2010, 9, 689-699.
García-Foncillas, J., Bandrés, E., Zárate, R., Remírez, N., Proteomic analysis in cancer research: potential application in clinical use. Clin. Transl. Oncol. 2006, 8, 250-261.
Lebert, D., Dupuis, A., Garin, J., Bruley, C. et al., Production and use of stable isotope-labeled proteins for absolute quantitative proteomics. Methods Mol. Biol. 2011, 753 93-115.
Kumar, S., Zhou, B., Liang, F., Wang, W. Q. et al., Activity-based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7943-7948.
Fusaro, V. A., Mani, D. R., Mesirov, J. P., Carr, S. A., Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 2009, 27, 190-198.
Sanders, W. S., Bridges, S. M., McCarthy, F. M., Nanduri, B. et al., Prediction of peptides observable by mass spectrometry applied at the experimental set level. BMC Bioinformatics 2007, 8, S23.
Ciccimaro, E., Hanks, S. K., Yu, K. H., Blair, I. A., Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry. Anal. Chem. 2009, 81, 3304-3313.
Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A., White, F. M., Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 5860-5865.
Picotti, P., Rinner, O., Stallmach, R., Dautel, F. et al., High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat. Methods 2010, 7, 43-46.
Ahn, Y. H., Lee, J. Y., Lee, J. Y., Kim, Y. S. et al., Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA-enrichment and SISCAPA with MRM mass spectrometry. J. Proteome Res. 2009, 8, 4216-4224.
Ossola, R., Schiess, R., Picotti, P., Rinner, O. et al., Biomarker validation in blood specimens by selected reaction monitoring mass spectrometry of N-glycosites. Methods Mol. Biol. 2011, 728, 179-194.
Qian, W. J., Kaleta, D. T., Petritis, B. O., Jiang, H. et al., Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol. Cell. Proteomics 2008, 7, 1963-1973.
Ohtsuki, S., Uchida, Y., Kubo, Y., Terasaki, T., Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J. Pharm. Sci. 2011, 100, 3547-3559.
Pratt, J. M., Simpson, D. M., Doherty, M. K., Rivers J. et al., Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 2006, 1, 1029-1043.
Craig, R., Cortens, J. P., Beavis, R. C., Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 2004, 3, 1234-1242.
Rolén, U., Kobzeva, V., Gasparjan, N., Ovaa, H. et al., Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol. Carcinog. 2006, 45, 260-269.
Nomura, D. K., Dix, M. M., Cravatt, B. F., Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 2010, 10, 630-638.
Schupke, H., Hempel, R., Eckardt, R., Kronback, T., Identification of talinolol metabolites in urine of man, dog, rat and mouse after oral administration by high-performance liquid chromatography-thermospray tandem mass spectrometry. J. Mass Spectrom. 1996, 31, 1371-1381.
Zhang, G., Fang, B., Liu, R. Z., Lin, H. et al., Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J. Proteome Res. 2011, 10, 305-319.
Krishhan, V. V., Khan, I. H., Luciw, P. A., Multiplexed microbead immunoassays by flow cytometry for molecular profiling: basic concepts and proteomics applications. Crit. Rev. Biotechnol. 2009, 29, 29-43.
Agger, S. A., Marney, L. C., Hoofnagle, A. N., Simultaneous quantification of apolipoprotein A-I and apolipoprotein B by liquid-chromatography-multiple- reaction-monitoring mass spectrometry. Clin. Chem. 2010, 56, 1804-1813.
Jiang, J., Parker, C. E., Hoadley, K. A., Perou, C. M. et al., Development of an immuno tandem mass spectrometry (iMALDI) assay for EGFR diagnosis. Proteomics Clin. Appl. 2007, 1, 1651-1659.
Kuzyk, M. A., Smith, D., Yang, J., Cross, T. J. et al., Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol. Cell. Proteomics 2009, 8, 1860-1877.
Friedman, D. B., Andacht, T. M., Bunger, M. K., Chien, A. S. et al., The ABRF proteomics research group studies: educational exercises for qualitative and quantitative proteomic analyses. Proteomics 2011, 11, 1371-1381.
Hoofnagle, A. N., Wener, M. H., The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J. Immunol. Methods 2009, 347, 3-11.
Regnier, F. E., Skates, S. J., Mesri, M., Rodriguez, H. et al., Protein-based multiplex assays: mock presubmissions to the US Food and Drug Administration. Clin. Chem. 2010, 56, 165-171.
Ang, C. S., Rothacker, J., Patsiouras, H., Gibbs, P. et al., Use of multiple reaction monitoring for multiplex analysis of colorectal cancer-associated proteins in human feces. Electrophoresis 2011 32, 1926-1938.
Young, B., Lin, E., Hebert, N., Increased long term retention time stability in scheduled MRM peptide assays using chip based chromatography. J. Biomol. Tech. 2010, 21, S33.
Schoenherr, R. M., Zhao, L., Whiteaker, J. R., Feng, L. C. et al., Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. Immunol. Methods. 2010, 353, 49-61.
Addona, T. A., Abbatiello, S. E., Schilling, B., Skates, S. J. et al., Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009, 27, 633-641.
Rego, R. L., Foster, N. R., Smyrk, T. C., Le, M. et al., Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br. J. Cancer 20
2010; 56
2009; 44
2011; 753
2007; 104
2010; 10
2010; 15
2009; 81
2010; 17
2010; 102
2008; 9
2008; 36
2004; 3
2008; 7
2011; 11
2011; 10
2008; 5
2011; 12
1996; 31
2009; 55
2010; 21
2010; 26
2011; 728
2010; 110
2007; 8
2003; 3
2010; 353
2007; 6
1999; 96
2007; 3
2007; 1
2010; 4
2011; 29
2010; 7
2007; 25
2010; 9
2004; 101
2007; 362
2002; 1
2006; 8
2011; 74
2011; 32
2008; 54
2006; 1
2006; 2
2011; 6
2011; 5
2009; 27
2011; 8
2009; 29
2010; 82
2009; 34
2004; 11
2011; 108
2010; 48
2006; 45
2009; 72
2009; 8
2005; 1
2011; 46
2009; 6
2008; 455
2009; 4
2005; 2
2007; 46
2011; 100
2009; 347
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_95_1
Rigopoulos D. N. (e_1_2_10_15_1) 2010; 15
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
Polanski M. (e_1_2_10_16_1) 2007; 1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
Young B. (e_1_2_10_38_1) 2010; 21
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 36
  start-page: D878
  year: 2008
  end-page: D883
  article-title: : new developments and new datasets
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: 995
  year: 2009
  end-page: 1005
  article-title: peptide enrichment on magnetic beads using an in‐line bead trap device
  publication-title: Mol. Cell. Proteomics
– volume: 728
  start-page: 179
  year: 2011
  end-page: 194
  article-title: Biomarker validation in blood specimens by selected reaction monitoring mass spectrometry of ‐glycosites
  publication-title: Methods Mol. Biol
– volume: 15
  start-page: 107
  year: 2010
  end-page: 115
  article-title: Deregulation of / / ‐1a signaling pathway in colon adenocarcinoma based on tissue microarrays analysis
  publication-title: J. B.U.ON
– volume: 56
  start-page: 177
  year: 2010
  end-page: 185
  article-title: The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum
  publication-title: Clin. Chem
– volume: 54
  start-page: 1796
  year: 2008
  end-page: 1804
  article-title: Quantification of thyroglobulin, a low‐abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry
  publication-title: Clin. Chem
– volume: 11
  start-page: 1371
  year: 2011
  end-page: 1381
  article-title: The proteomics research group studies: educational exercises for qualitative and quantitative proteomic analyses
  publication-title: Proteomics
– volume: 7
  start-page: 2270
  year: 2008
  end-page: 2278
  article-title: er, an interactive open source and cross‐platform system for data extraction and visualization of multiple reaction monitoring experiments
  publication-title: Mol. Cell. Proteomics
– volume: 5
  start-page: 913
  year: 2008
  end-page: 914
  article-title: A database of mass spectrometric assays for the yeast proteome
  publication-title: Nat. Methods
– volume: 1
  start-page: 1029
  year: 2006
  end-page: 1043
  article-title: Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by con genes
  publication-title: Nat. Protoc
– volume: 96
  start-page: 14694
  year: 1999
  end-page: 14699
  article-title: Activity‐based protein profiling: the serine hydrolases
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 101
  start-page: 7943
  year: 2004
  end-page: 7948
  article-title: Activity‐based probes for protein tyrosine phosphatases
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 5
  start-page: 383
  year: 2011
  end-page: 396
  article-title: A database of reaction monitoring mass spectrometry assays for elucidating therapeutic response in cancer
  publication-title: Proteomics Clin. Appl
– volume: 56
  start-page: 194
  year: 2010
  end-page: 201
  article-title: Integration of proteomic‐based tools for improved biomarkers of myocardial injury
  publication-title: Clin. Chem
– volume: 3
  start-page: 235
  year: 2004
  end-page: 244
  article-title: Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti‐peptide antibodies ( )
  publication-title: J. Proteome Res
– volume: 6
  start-page: 423
  year: 2009
  end-page: 430
  article-title: test sample working group. A test sample study reveals common problems in mass spectrometry‐based proteomics
  publication-title: Nat. Methods
– volume: 44
  start-page: 579
  year: 2009
  end-page: 593
  article-title: Microfluidic chips for mass spectrometry‐based proteomics
  publication-title: J. Mass Spectrom
– volume: 6
  start-page: 175
  year: 2011
  end-page: 186
  article-title: Absolute quantification of protein and post‐translational modification abundance with stable isotope‐labeled synthetic peptides
  publication-title: Nat. Protoc
– volume: 8
  start-page: 2339
  year: 2009
  end-page: 2349
  article-title: Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution
  publication-title: Mol. Cell. Proteomics
– volume: 104
  start-page: 5860
  year: 2007
  end-page: 5865
  article-title: Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 1
  start-page: 1
  year: 2007
  end-page: 48
  article-title: A list of candidate cancer biomarkers for targeted proteomics
  publication-title: Biomark. Insights
– volume: 32
  start-page: 1926
  year: 2011
  end-page: 1938
  article-title: Use of multiple reaction monitoring for multiplex analysis of colorectal cancer‐associated proteins in human feces
  publication-title: Electrophoresis
– volume: 1
  start-page: 33
  year: 2005
  end-page: 38
  article-title: Activity‐based probes that target diverse cysteine protease families
  publication-title: Nat. Chem. Biol
– volume: 4
  start-page: 904
  year: 2010
  end-page: 914
  article-title: Reconstructing the pipeline by introducing multiplexed multiple reaction monitoring mass spectrometry for cancer biomarker verification: an ‐ initiative perspective
  publication-title: Proteomics Clin. Appl
– volume: 21
  start-page: 1680
  year: 2010
  end-page: 1686
  article-title: Towards the Development of an Immuno (i ) mass spectrometry assay for the diagnosis of hypertension
  publication-title: J. Am. Soc. Mass. Spectrom
– volume: 46
  start-page: 350
  year: 2007
  end-page: 358
  article-title: Functional interrogation of the kinome using nucleotide acyl phosphates
  publication-title: Biochemistry
– volume: 10
  start-page: 66
  year: 2011
  end-page: 84
  article-title: Evolution of clinical proteomics and its role in medicine
  publication-title: J. Proteome Res
– volume: 31
  start-page: 1371
  year: 1996
  end-page: 1381
  article-title: Identification of talinolol metabolites in urine of man, dog, rat and mouse after oral administration by high‐performance liquid chromatography‐thermospray tandem mass spectrometry
  publication-title: J. Mass Spectrom
– volume: 82
  start-page: 10116
  year: 2010
  end-page: 10124
  article-title: Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring ( ) mass spectrometry
  publication-title: Anal. Chem
– volume: 8
  start-page: 110
  year: 2009
  end-page: 117
  article-title: Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals 2‐ signaling activation as a potential prognostic pathway biomarker
  publication-title: Clin. Colorectal Cancer
– volume: 56
  start-page: 165
  year: 2010
  end-page: 171
  article-title: Protein‐based multiplex assays: mock presubmissions to the ood and rug dministration
  publication-title: Clin. Chem
– volume: 10
  start-page: M110.005645
  year: 2011
  article-title: Evaluation of large scale quantitative proteomic assay development using peptide affinity‐based mass spectrometry
  publication-title: Mol. Cell. Proteomics
– volume: 81
  start-page: 3304
  year: 2009
  end-page: 3313
  article-title: Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry
  publication-title: Anal. Chem
– volume: 17
  start-page: 98
  year: 2010
  end-page: 110
  article-title: Cancer genome atlas research network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in , 1, , and 1
  publication-title: Cancer Cell
– volume: 8
  start-page: 250
  year: 2006
  end-page: 261
  article-title: Proteomic analysis in cancer research: potential application in clinical use
  publication-title: Clin. Transl. Oncol
– volume: 8
  start-page: 4216
  year: 2009
  end-page: 4224
  article-title: Quantitative analysis of an aberrant glycoform of 1 from colon cancer serum by ‐ ‐enrichment and with mass spectrometry
  publication-title: J. Proteome Res
– volume: 8
  start-page: 5412
  year: 2009
  end-page: 5422
  article-title: Quantitative serum proteomics using dual stable isotope coding and nano ‐ /
  publication-title: J. Proteome Res
– volume: 46
  start-page: 298
  year: 2011
  end-page: 312
  article-title: Selected reaction monitoring applied to proteomics
  publication-title: J. Mass Spectrom
– volume: 8
  start-page: 1083
  year: 2009
  end-page: 1094
  article-title: The evolving role of mass spectrometry in cancer biomarker discovery
  publication-title: Cancer Biol. Ther
– volume: 4
  start-page: 235
  year: 2009
  end-page: 252
  article-title: The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients
  publication-title: Target Oncol
– volume: 8
  start-page: 430
  year: 2011
  end-page: 435
  article-title: m rophet: automated data processing and statistical validation for large‐scale experiments
  publication-title: Nat. Methods
– volume: 9
  start-page: 429
  year: 2008
  end-page: 434
  article-title: eptide tlas: a resource for target selection for emerging targeted proteomics workflows
  publication-title: EMBO Rep
– volume: 45
  start-page: 260
  year: 2006
  end-page: 269
  article-title: Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines
  publication-title: Mol. Carcinog
– volume: 8
  start-page: 1860
  year: 2009
  end-page: 1877
  article-title: Multiple reaction monitoring‐based, multiplexed, absolute quantitation of 45 proteins in human plasma
  publication-title: Mol. Cell. Proteomics
– volume: 81
  start-page: 9343
  year: 2009
  end-page: 9352
  article-title: Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum
  publication-title: Anal. Chem
– volume: 72
  start-page: 740
  year: 2009
  end-page: 749
  article-title: Isotope dilution strategies for absolute quantitative proteomics
  publication-title: J. Proteomics
– volume: 29
  start-page: 635
  year: 2011
  end-page: 643
  article-title: A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease
  publication-title: Nat. Biotechnol
– volume: 44
  start-page: 1637
  year: 2009
  end-page: 1660
  article-title: Current trends in quantitative proteomics
  publication-title: J. Mass. Spectrom
– volume: 25
  start-page: 125
  year: 2007
  end-page: 131
  article-title: Computational prediction of proteotypic peptides for quantitative proteomics
  publication-title: Nat. Biotechnol
– volume: 110
  start-page: 3278
  year: 2010
  end-page: 3298
  article-title: Clinical protein science and bioanalytical mass spectrometry with an emphasis on lung cancer
  publication-title: Chem. Rev
– volume: 56
  start-page: 314
  year: 2010
  end-page: 318
  article-title: Comparison of multiplex immunoassay platforms
  publication-title: Clin. Chem
– volume: 3
  start-page: 317
  year: 2003
  end-page: 325
  article-title: Protein microarrays: meeting analytical challenges for clinical applications
  publication-title: Cancer Cell
– volume: 12
  start-page: 78
  year: 2011
  article-title: : a computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 305
  year: 2011
  end-page: 319
  article-title: Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity
  publication-title: J. Proteome Res
– volume: 7
  start-page: 1963
  year: 2008
  end-page: 1973
  article-title: Enhanced detection of low abundance human plasma proteins using a tandem g 12‐ uper ix immunoaffinity separation strategy
  publication-title: Mol. Cell. Proteomics
– volume: 6
  start-page: 2212
  year: 2007
  end-page: 2229
  article-title: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution
  publication-title: Mol. Cell. Proteomics
– volume: 10
  start-page: M000062
  year: 2011
  end-page: MCP201
  article-title: Enhanced sensitivity for selected reaction monitoring mass spectrometry‐based targeted proteomics using a dual stage electrodynamic ion funnel interface
  publication-title: Mol. Cell. Proteomics
– volume: 29
  start-page: 29
  year: 2009
  end-page: 43
  article-title: Multiplexed microbead immunoassays by flow cytometry for molecular profiling: basic concepts and proteomics applications
  publication-title: Crit. Rev. Biotechnol
– volume: 34
  start-page: 1376
  year: 2009
  end-page: 1382
  article-title: Multiplex immune serum biomarker profiling in sarcoidosis and systemic sclerosis
  publication-title: Eur. Respir. J
– volume: 56
  start-page: 1804
  year: 2010
  end-page: 1813
  article-title: Simultaneous quantification of apolipoprotein ‐ and apolipoprotein by liquid‐chromatography‐multiple‐ reaction‐monitoring mass spectrometry
  publication-title: Clin. Chem
– volume: 9
  start-page: 689
  year: 2010
  end-page: 699
  article-title: Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring
  publication-title: J. Proteome Res
– volume: 3
  start-page: 156
  year: 2007
  end-page: 160
  article-title: A clickable inhibitor reveals context‐dependent autoactivation of p90
  publication-title: Nat. Chem. Biol
– volume: 26
  start-page: 966
  year: 2010
  end-page: 968
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
– volume: 55
  start-page: 1108
  year: 2009
  end-page: 1117
  article-title: Developing multiplexed assays for troponin and interleukin‐33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry
  publication-title: Clin. Chem
– volume: 8
  start-page: S23
  year: 2007
  article-title: Prediction of peptides observable by mass spectrometry applied at the experimental set level
  publication-title: BMC Bioinformatics
– volume: 48
  start-page: 7
  year: 2010
  end-page: 11
  article-title: Quantitative immunohistochemistry in lung cancer: clinical perspective
  publication-title: Folia Histochem. Cytobiol
– volume: 3
  start-page: 1234
  year: 2004
  end-page: 1242
  article-title: Open source system for analyzing, validating, and storing protein identification data
  publication-title: J. Proteome Res
– volume: 108
  start-page: 2058
  year: 2011
  end-page: 2063
  article-title: High‐throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 11
  start-page: 535
  year: 2004
  end-page: 546
  article-title: Profiling enzyme activities in vivo using click chemistry methods
  publication-title: Chem. Biol
– volume: 10
  start-page: 231
  year: 2011
  end-page: 240
  article-title: Collision energy optimization of b‐ and y‐ions for multiple reaction monitoring mass spectrometry
  publication-title: J. Proteome Res
– volume: 455
  start-page: 1061
  year: 2008
  end-page: 1068
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
– volume: 10
  start-page: 630
  year: 2010
  end-page: 638
  article-title: Activity‐based protein profiling for biochemical pathway discovery in cancer
  publication-title: Nat. Rev. Cancer
– volume: 2
  start-page: 691
  year: 2005
  end-page: 697
  article-title: A streamlined platform for high‐content functional proteomics of primary human specimens
  publication-title: Nat. Methods
– volume: 1
  start-page: 1651
  year: 2007
  end-page: 1659
  article-title: Development of an immuno tandem mass spectrometry (i ) assay for diagnosis
  publication-title: Proteomics Clin. Appl
– volume: 74
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Targeted mass spectrometry approaches for protein biomarker verification
  publication-title: J. Proteomics
– volume: 27
  start-page: 190
  year: 2009
  end-page: 198
  article-title: Prediction of high‐responding peptides for targeted protein assays by mass spectrometry
  publication-title: Nat. Biotechnol
– volume: 362
  start-page: 44
  year: 2007
  end-page: 54
  article-title: Antibody‐based enrichment of peptides on magnetic beads for mass‐spectrometry‐based quantification of serum biomarkers
  publication-title: Anal. Biochem
– volume: 753
  start-page: 93
  year: 2011
  end-page: 115
  article-title: Production and use of stable isotope‐labeled proteins for absolute quantitative proteomics
  publication-title: Methods Mol. Biol
– volume: 347
  start-page: 3
  year: 2009
  end-page: 11
  article-title: The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry
  publication-title: J. Immunol. Methods
– volume: 100
  start-page: 3547
  year: 2011
  end-page: 3559
  article-title: Quantitative targeted absolute proteomics‐based research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects
  publication-title: J. Pharm. Sci
– volume: 82
  start-page: 9678
  year: 2010
  end-page: 9685
  article-title: Predicting retention time shifts associated with variation of the gradient slope in peptide ‐
  publication-title: Anal. Chem
– volume: 1
  start-page: 845
  year: 2002
  end-page: 867
  article-title: The human plasma proteome: history, character, and diagnostic prospects
  publication-title: Mol. Cell. Proteomics
– volume: 21
  start-page: S33
  year: 2010
  article-title: Increased long term retention time stability in scheduled peptide assays using chip based chromatography
  publication-title: J. Biomol. Tech
– volume: 353
  start-page: 49
  year: 2010
  end-page: 61
  article-title: Automated screening of monoclonal antibodies for assays using a magnetic bead processor and liquid chromatography‐selected reaction monitoring‐mass spectrometry
  publication-title: Immunol. Methods
– volume: 104
  start-page: 1171
  year: 2007
  end-page: 1176
  article-title: Activity‐based probes for proteomic profiling of histone deacetylase complexes
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 102
  start-page: 165
  year: 2010
  end-page: 172
  article-title: Prognostic effect of activated expression in human colon carcinomas: comparison with status
  publication-title: Br. J. Cancer
– volume: 8
  start-page: 883
  year: 2009
  end-page: 886
  article-title: A human proteome detection and quantitation project
  publication-title: Mol. Cell. Proteomics
– volume: 108
  start-page: 2444
  year: 2011
  end-page: 2449
  article-title: Mutant proteins as cancer‐specific biomarkers
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 2
  start-page: 274
  year: 2006
  end-page: 281
  article-title: Proteomic profiling of metalloprotease activities with cocktails of active‐site probes
  publication-title: Nat. Chem. Biol
– volume: 56
  start-page: 291
  year: 2010
  end-page: 305
  article-title: Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry
  publication-title: Clin. Chem
– volume: 27
  start-page: 633
  year: 2009
  end-page: 641
  article-title: Multi‐site assessment of the precision and reproducibility of multiple reaction monitoring‐based measurements of proteins in plasma
  publication-title: Nat. Biotechnol
– volume: 7
  start-page: 43
  year: 2010
  end-page: 46
  article-title: High‐throughput generation of selected reaction‐monitoring assays for proteins and proteomes
  publication-title: Nat. Methods
– volume: 4
  start-page: 271
  year: 2010
  end-page: 284
  article-title: Multiplex assays for biomarker research and clinical application: translational science coming of age
  publication-title: Proteomics Clin. Appl
– volume: 15
  start-page: 107
  year: 2010
  ident: e_1_2_10_15_1
  article-title: Deregulation of EGFR/VEGF/HIF‐1a signaling pathway in colon adenocarcinoma based on tissue microarrays analysis
  publication-title: J. B.U.ON
  contributor:
    fullname: Rigopoulos D. N.
– ident: e_1_2_10_36_1
  doi: 10.1021/pr1004289
– ident: e_1_2_10_53_1
  doi: 10.1074/mcp.M000062-MCP201
– ident: e_1_2_10_20_1
  doi: 10.1002/(SICI)1096-9888(199612)31:12<1371::AID-JMS433>3.0.CO;2-4
– ident: e_1_2_10_43_1
  doi: 10.1038/nmeth.1584
– ident: e_1_2_10_66_1
  doi: 10.1002/prca.200700009
– ident: e_1_2_10_5_1
  doi: 10.1016/S1535-6108(03)00086-2
– ident: e_1_2_10_28_1
  doi: 10.1021/cr100011x
– ident: e_1_2_10_83_1
  doi: 10.1021/pr100532g
– ident: e_1_2_10_60_1
  doi: 10.1007/s11523-009-0116-y
– ident: e_1_2_10_2_1
  doi: 10.4161/cbt.8.12.8634
– ident: e_1_2_10_76_1
  doi: 10.1007/978-1-61779-068-3_11
– ident: e_1_2_10_86_1
  doi: 10.1038/nrc2901
– ident: e_1_2_10_37_1
  doi: 10.1021/ac102228a
– ident: e_1_2_10_57_1
  doi: 10.1016/j.ab.2006.12.023
– ident: e_1_2_10_35_1
  doi: 10.1021/ac102179j
– ident: e_1_2_10_13_1
  doi: 10.1007/BF02664935
– ident: e_1_2_10_95_1
  doi: 10.1073/pnas.0608659104
– ident: e_1_2_10_14_1
  doi: 10.1183/09031936.00028209
– ident: e_1_2_10_55_1
  doi: 10.1021/pr034086h
– ident: e_1_2_10_87_1
  doi: 10.1038/nmeth778
– ident: e_1_2_10_70_1
  doi: 10.1038/nbt.1546
– ident: e_1_2_10_54_1
  doi: 10.1021/ac901447h
– ident: e_1_2_10_47_1
  doi: 10.1002/prca.200900217
– ident: e_1_2_10_33_1
  doi: 10.1038/nbt1275
– ident: e_1_2_10_42_1
  doi: 10.1186/1471-2105-12-78
– ident: e_1_2_10_12_1
  doi: 10.1038/sj.bjc.6605473
– ident: e_1_2_10_32_1
  doi: 10.1038/nbt.1524
– ident: e_1_2_10_82_1
  doi: 10.1021/pr1006203
– ident: e_1_2_10_29_1
  doi: 10.1038/embor.2008.56
– ident: e_1_2_10_63_1
  doi: 10.1016/j.jprot.2009.03.007
– ident: e_1_2_10_21_1
  doi: 10.1074/mcp.M800540-MCP200
– ident: e_1_2_10_58_1
  doi: 10.1074/mcp.M800446-MCP200
– ident: e_1_2_10_18_1
  doi: 10.1002/jps.22612
– ident: e_1_2_10_64_1
  doi: 10.1007/978-1-61779-148-2_7
– ident: e_1_2_10_85_1
  doi: 10.1073/pnas.0608638104
– ident: e_1_2_10_31_1
  doi: 10.1093/nar/gkm1021
– ident: e_1_2_10_89_1
  doi: 10.1073/pnas.96.26.14694
– ident: e_1_2_10_4_1
  doi: 10.3816/CCC.2009.n.018
– ident: e_1_2_10_73_1
  doi: 10.1038/nprot.2006.129
– ident: e_1_2_10_78_1
  doi: 10.1074/mcp.R800015-MCP200
– ident: e_1_2_10_27_1
  doi: 10.1373/clinchem.2008.109652
– ident: e_1_2_10_49_1
  doi: 10.1074/mcp.M800540-MCP200
– ident: e_1_2_10_45_1
  doi: 10.1002/elps.201000502
– ident: e_1_2_10_61_1
  doi: 10.1021/ac900204f
– ident: e_1_2_10_91_1
  doi: 10.1038/nchembio707
– ident: e_1_2_10_23_1
  doi: 10.1038/nprot.2010.196
– ident: e_1_2_10_56_1
  doi: 10.1373/clinchem.2010.152264
– ident: e_1_2_10_6_1
  doi: 10.1080/07388550802688847
– ident: e_1_2_10_84_1
  doi: 10.1002/prca.201000115
– ident: e_1_2_10_25_1
  doi: 10.1373/clinchem.2009.127878
– ident: e_1_2_10_26_1
  doi: 10.1074/mcp.M900140-MCP200
– ident: e_1_2_10_62_1
  doi: 10.1021/pr900269s
– ident: e_1_2_10_92_1
  doi: 10.1038/nchembio859
– ident: e_1_2_10_24_1
  doi: 10.1074/mcp.M700354-MCP200
– ident: e_1_2_10_46_1
  doi: 10.1074/mcp.M900140-MCP200
– ident: e_1_2_10_3_1
  doi: 10.1002/jms.1585
– ident: e_1_2_10_67_1
  doi: 10.1002/jms.1692
– ident: e_1_2_10_94_1
  doi: 10.1073/pnas.0402323101
– volume: 21
  start-page: S33
  year: 2010
  ident: e_1_2_10_38_1
  article-title: Increased long term retention time stability in scheduled MRM peptide assays using chip based chromatography
  publication-title: J. Biomol. Tech
  contributor:
    fullname: Young B.
– ident: e_1_2_10_48_1
  doi: 10.1021/pr901013d
– ident: e_1_2_10_74_1
  doi: 10.1373/clinchem.2009.140087
– ident: e_1_2_10_19_1
  doi: 10.1002/prca.201000057
– ident: e_1_2_10_44_1
  doi: 10.1373/clinchem.2009.138420
– ident: e_1_2_10_75_1
  doi: 10.1038/nmeth.1408
– ident: e_1_2_10_71_1
  doi: 10.1016/j.jim.2009.11.017
– ident: e_1_2_10_90_1
  doi: 10.1038/nchembio781
– ident: e_1_2_10_39_1
  doi: 10.1074/mcp.M700504-MCP200
– ident: e_1_2_10_22_1
  doi: 10.1016/j.jprot.2011.04.011
– volume: 1
  start-page: 1
  year: 2007
  ident: e_1_2_10_16_1
  article-title: A list of candidate cancer biomarkers for targeted proteomics
  publication-title: Biomark. Insights
  contributor:
    fullname: Polanski M.
– ident: e_1_2_10_8_1
  doi: 10.2478/v10042-010-0014-2
– ident: e_1_2_10_52_1
  doi: 10.1373/clinchem.2009.123935
– ident: e_1_2_10_69_1
  doi: 10.1002/pmic.201000736
– ident: e_1_2_10_72_1
  doi: 10.1016/j.jim.2009.06.003
– ident: e_1_2_10_7_1
  doi: 10.1073/pnas.1018157108
– ident: e_1_2_10_11_1
  doi: 10.1074/mcp.M800008-MCP200
– ident: e_1_2_10_17_1
  doi: 10.1373/clinchem.2009.126706
– ident: e_1_2_10_34_1
  doi: 10.1186/1471-2105-8-S7-S23
– ident: e_1_2_10_81_1
  doi: 10.1073/pnas.1019203108
– ident: e_1_2_10_77_1
  doi: 10.1038/nmeth.1408
– ident: e_1_2_10_10_1
  doi: 10.1021/pr900158n
– ident: e_1_2_10_59_1
  doi: 10.1074/mcp.M110.005645
– ident: e_1_2_10_30_1
  doi: 10.1021/pr049882h
– ident: e_1_2_10_80_1
  doi: 10.1016/j.ccr.2009.12.020
– ident: e_1_2_10_96_1
  doi: 10.1002/mc.20177
– ident: e_1_2_10_50_1
  doi: 10.1038/nbt.1899
– ident: e_1_2_10_51_1
  doi: 10.1074/mcp.R200007-MCP200
– ident: e_1_2_10_88_1
  doi: 10.1016/j.chembiol.2004.03.012
– ident: e_1_2_10_9_1
  doi: 10.1373/clinchem.2009.135087
– ident: e_1_2_10_68_1
  doi: 10.1038/nmeth.1333
– ident: e_1_2_10_65_1
  doi: 10.1016/j.jasms.2010.01.024
– ident: e_1_2_10_40_1
  doi: 10.1093/bioinformatics/btq054
– ident: e_1_2_10_93_1
  doi: 10.1021/bi062142x
– ident: e_1_2_10_41_1
  doi: 10.1038/nmeth1108-913
– ident: e_1_2_10_97_1
  doi: 10.1002/jms.1895
– ident: e_1_2_10_79_1
  doi: 10.1038/nature07385
SSID ssj0017897
Score 2.4659035
SecondaryResourceType review_article
Snippet Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1093
SubjectTerms Biomarker verification
Biomarkers - analysis
Databases, Protein
High-Throughput Screening Assays
Humans
Ions
Mass spectrometry
Mass Spectrometry - instrumentation
Mass Spectrometry - methods
Mass Spectrometry - standards
Multiple reaction monitoring mass spectrometry
Posttranslational modifications
Protein Processing, Post-Translational
Protein quantitation
Proteins
Proteins - analysis
Proteomics
Proteomics - instrumentation
Proteomics - methods
Proteomics - standards
Reference Standards
Reproducibility of Results
Scientific imaging
Sensitivity and Specificity
Software
Systems biology
Technology
Title Mass spectrometry-based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins
URI https://api.istex.fr/ark:/67375/WNG-Z3B8RPR4-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201100387
https://www.ncbi.nlm.nih.gov/pubmed/22577011
https://www.proquest.com/docview/1517446897
https://search.proquest.com/docview/1012749014
https://search.proquest.com/docview/1529957692
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOBbY8AgUZCZVT2sRx4oTbUlFWSK2qFRUVF8uxHbEqzbbNLgJO_AR-I7-EGXs3dBECIW5RbEt-zOOzPfMZ4KkWps6zIo0rLZJYVM7FtZG4caW0zrTIjWsoG3n_oBgdidfH-fGlLP7AD9EfuJFmeHtNCq7rbucnaejZ6cR4Ck663KJ0cmLTI1Q07vmjUlmG11XQbccVOqYla2PCd1abr3ilqzTBn34HOVcRrHdBezdBLzsfIk9Otuezett8-YXX8X9GdwvWF_iUDYNA3YYrrh3AxrDFvfnpZ7bFfMSoP4ofwLXd5WtxA7hxidhwAz7uIyZnPouT6BCwxvev38hhWhZCz_HjfK5bn-GG9pZ5ughKkO6es6F5P3F0zsE6iq735bq1jPg3iZ52Un9wzLqZDyJr2bQJrSdtdweO9l6-2R3FixceYoPIS8TSltKaMrFpYcsm16LRNi9KYY2w3IhUovXLZKJNneRcV3niNK5y0zQIqspE8-wurLXT1t0HVlairlNuNW6ohGm4RmEzMrNGEttpVkTwbLnC6iwQeahA2cwVTbbqJzuCLS8AfTV9cULhbzJXbw9eqXfZi3J8OBZqFMHmUkLUQvM7lRL1tyhQ8CJ40hfjYtBFjG7ddN5RWB2Xgi6w_1AnR6CAm8GKR3AvSF_fIbTBUmJ3I4i9DP1lQOoQNRotu3jwj_UfwnX8yUOg0iaszS7m7hFisFn92OvZD5t4K7A
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygceGyBBgoYCZVT2jycOOG2FMoC3VW1agXiYjm2I1Zts6XZRcCJn8Bv5Jcw42wCixAIcYvkseTY87L9zWeAh4rrIonT0M8VD3yeW-sXWuDGlco6wzTRtqRq5OEoHRzxl2-SFk1ItTANP0R34EaW4fw1GTgdSO_8YA09O51ox8FJt1viIqyizSdkm0_HHYNUKLLmfRUM3H6OoanlbQyineX-S3Fplab44--SzuUc1gWhvatQtMNvsCfH2_NZsa0__8Ls-F__dw2uLFJU1m906jpcsFUP1vsVbs9PP7Et5kCj7jS-B2u77YNxPbj8E7fhOnwYYlrOXCEnMSKgxLcvXylmGtagz_Hj_VxVrsgNXS5zjBFUI10_Zn39bmLpqIPVBLB37aoyjCg4iaF2UpxYZuzM4cgqNi2b3pOqvgFHe88Odwf-4pEHX2PyxX1hMmF0FpgwNVmZKF4qk6QZN5qbSPNQoAOMRaB0ESSRypPAqjDOyrLEvCoLVBTfhJVqWtkNYFnOiyKMjMI9FddlpFDftIiNFkR4GqcePGqXWJ41XB6yYW2OJE227Cbbgy2nAZ2YOj8mBJxI5OvRc_k2fpKND8ZcDjzYbFVELoy_liGxf_MUNc-DB10zLgbdxajKTuc1IesiwekO-w8yCeYKuB_MIw9uNerXDQjdsBA4XA98p0R_-SF5gEaNzp3f_kf5-7A2OBzuy_0Xo1d34BIKRA1uaRNWZudzexdTsllxzxndd0piL9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTeLywKXjEhhgJDSesiWOEye8lY1SLquqimkTL5ZjO6IaS8vaIuCJn8Bv5JdwbDdhRQiEeItkW3Lsc7W_8xngkWSqTJMsDgvJopAVxoSl4pi42rLOOEuVqWw18v4g6x-wl0fp0Zkqfs8P0R64Wc1w9toq-FRXOz9JQ6cnY-UoOO3lFj8P6yxLqE2_9kYtgVTMc_-8CvrtsEDP1NA2RnRndfyKW1q3K_zpdzHnagjrfFDvKshm9h56cry9mJfb6ssvxI7_83vX4MoyQCVdL1HX4ZypO7DRrTE5P_lMtoiDjLqz-A5c3G2ei-vA5TPMhhvwcR-DcuLKOC0fAvb4_vWb9ZiaeOw5fnxYyNqVuKHBJY4vwlZIz56Qrno3Nvagg8wsvN61y1oTS8Bp-WnH5XtDtJk7FFlNJpUfPa5nN-Cg9-zNbj9cPvEQKgy9WMh1zrXKIx1nOq9SySqp0yxnWjFNFYs5mr-ER1KVUUplkUZGxkleVRVGVXkkaXIT1upJbW4DyQtWljHVEjMqpioqUdoUT7Tilu40yQJ43OywmHomD-E5m6mwiy3axQ5gywlA202eHlv8G0_F4eC5eJs8zUfDERP9ADYbCRFL1Z-J2HJ_swwFL4CHbTNuhr2JkbWZLGYWV0c5szfYf-iTYqSA2WBBA7jlpa-dEBphznG6AYROhv7yQ2KIKo2mnd35x_4P4MJwrydevxi8uguXsJ160NImrM1PF-YexmPz8r5TuR-Xry5_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometry-based+targeted+quantitative+proteomics%3A+Achieving+sensitive+and+reproducible+detection+of+proteins&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Boja%2C+Emily+S&rft.au=Rodriguez%2C+Henry&rft.date=2012-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-9853&rft.eissn=1615-9861&rft.volume=12&rft.issue=8&rft.spage=1093&rft_id=info:doi/10.1002%2Fpmic.201100387&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3278831231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon