Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy
Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs,...
Saved in:
Published in | Proteomics. Clinical applications Vol. 8; no. 5-6; pp. 454 - 463 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.06.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. |
---|---|
AbstractList | Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. [PUBLICATION ABSTRACT] Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes.Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. |
Author | Hamson, Elizabeth J. Gorrell, Mark D. Keane, Fiona M. Schilling, Oliver Tholen, Stefan |
Author_xml | – sequence: 1 givenname: Elizabeth J. surname: Hamson fullname: Hamson, Elizabeth J. organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia – sequence: 2 givenname: Fiona M. surname: Keane fullname: Keane, Fiona M. organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia – sequence: 3 givenname: Stefan surname: Tholen fullname: Tholen, Stefan organization: Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany – sequence: 4 givenname: Oliver surname: Schilling fullname: Schilling, Oliver organization: Faculty of Biology, University of Freiburg, Freiburg, Germany – sequence: 5 givenname: Mark D. surname: Gorrell fullname: Gorrell, Mark D. email: m.gorrell@centenary.usyd.edu.au organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24470260$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v0zAYhy00xD7gyhFF4jKkpfg76W6lYgOpGtXGhMTFcpzXwyN1gu1s639P0o4edhknv4fn-dmvf4doz7ceEHpL8IRgTD92wegJxYRhjKfiBTogpaR5yQTf281c7qPDGG8xFpwW-BXap5wXmEp8gO6ufQ0hJu1r528y66rQVo2OKdMmuTudXOuzLrQJnM-Oz2bLD6fZVV_FFHSCeLKlXHLjDA9dgBhHY4jLkg43kDapbciM9gZCln5B0N36NXppdRPhzeN5hK7PPn-ff8kX386_zmeL3AgsWF5yWddS8IJZUloDBArQRclrzhljRpaguSGcmgpLqpmx0lpmTVlXtqw5nrIjdLzNHVb400NMauWigabRHto-KiI4pkxSRv4DZbyY4ikfU98_QW_bPvhhkQ1FKRWYDdS7R6qvVlCrLriVDmv17_MHYLIFTGhjDGB3CMFqbFeN7apdu4PAnwjGpU1FQx2ueVa7dw2sn7lELS_nMyLo-P58q7mY4GGn6fBbyYIVQv24OFdXlwv26WK5UD_ZX8M1yC4 |
CitedBy_id | crossref_primary_10_3390_molecules26195992 crossref_primary_10_1002_1878_0261_12680 crossref_primary_10_1021_acs_jmedchem_2c00455 crossref_primary_10_1016_j_bbapap_2014_03_015 crossref_primary_10_1016_j_ejrad_2020_109021 crossref_primary_10_1007_s40291_024_00756_4 crossref_primary_10_1080_19420862_2021_1913791 crossref_primary_10_2147_OTT_S243417 crossref_primary_10_1007_s00259_021_05307_1 crossref_primary_10_1007_s00259_021_05576_w crossref_primary_10_1016_j_pathol_2023_05_003 crossref_primary_10_3390_pharmaceutics14040720 crossref_primary_10_2174_1566524023666230530095305 crossref_primary_10_3390_ph18020277 crossref_primary_10_1016_j_semradonc_2020_07_010 crossref_primary_10_2967_jnumed_123_266798 crossref_primary_10_3390_ph17091141 crossref_primary_10_1097_MOH_0000000000000590 crossref_primary_10_1002_ijc_31953 crossref_primary_10_3389_fonc_2025_1470132 crossref_primary_10_1021_acs_molpharmaceut_2c00551 crossref_primary_10_37174_2587_7593_2023_6_4_99_104 crossref_primary_10_1007_s13346_023_01397_6 crossref_primary_10_1016_j_remn_2021_03_003 crossref_primary_10_1080_14728222_2017_1370455 crossref_primary_10_2967_jnumed_120_244806 crossref_primary_10_1007_s00259_019_04444_y crossref_primary_10_1016_j_ejmech_2016_12_056 crossref_primary_10_3390_antib12020029 crossref_primary_10_1007_s00259_022_05758_0 crossref_primary_10_1097_MNM_0000000000001495 crossref_primary_10_1007_s12410_023_09583_3 crossref_primary_10_1053_j_semnuclmed_2023_07_004 crossref_primary_10_1016_j_ejmech_2024_117115 crossref_primary_10_1021_acs_molpharmaceut_1c00566 crossref_primary_10_1074_mcp_RA118_001046 crossref_primary_10_1007_s00330_023_09952_y crossref_primary_10_1016_j_jcmgh_2022_12_005 crossref_primary_10_18632_oncotarget_6679 crossref_primary_10_3389_fonc_2023_1210245 crossref_primary_10_1002_slct_202301826 crossref_primary_10_1016_j_pharmthera_2022_108231 crossref_primary_10_3389_fonc_2023_1210004 crossref_primary_10_1007_s00709_017_1129_5 crossref_primary_10_1007_s12149_023_01852_x crossref_primary_10_3390_ijms24021079 crossref_primary_10_1016_j_advms_2015_04_006 crossref_primary_10_1007_s11307_024_01935_9 crossref_primary_10_1016_j_cpet_2021_03_012 crossref_primary_10_1016_j_cpet_2023_02_008 crossref_primary_10_4049_jimmunol_2000113 crossref_primary_10_1016_j_isci_2020_100868 crossref_primary_10_12677_WJCR_2024_141004 crossref_primary_10_1016_j_critrevonc_2024_104377 crossref_primary_10_3389_fmed_2024_1464779 crossref_primary_10_1038_s41598_020_77978_z crossref_primary_10_1021_acssensors_1c01316 crossref_primary_10_20340_mv_mn_2023_31_3__794 crossref_primary_10_1016_j_yjmcc_2015_10_005 crossref_primary_10_2967_jnumed_122_264638 crossref_primary_10_1055_a_0879_2968 crossref_primary_10_1097_JP9_0000000000000090 crossref_primary_10_1186_s12964_023_01151_y crossref_primary_10_3390_nano12234181 crossref_primary_10_1038_s41413_022_00243_8 crossref_primary_10_3892_mmr_2022_12687 crossref_primary_10_3390_biomedicines10030523 crossref_primary_10_1016_j_yexcr_2016_02_020 crossref_primary_10_1021_acs_molpharmaceut_2c01094 crossref_primary_10_1093_ecco_jcc_jjaa009 crossref_primary_10_2967_jnumed_121_262533 crossref_primary_10_1007_s00259_021_05203_8 crossref_primary_10_2174_0929867327666191223121211 crossref_primary_10_1097_RLU_0000000000004523 crossref_primary_10_1007_s00259_021_05378_0 crossref_primary_10_1016_j_ejrad_2021_109875 crossref_primary_10_1021_acsmedchemlett_9b00191 crossref_primary_10_1007_s00259_022_05955_x crossref_primary_10_2147_IJN_S447350 crossref_primary_10_3390_diagnostics13040597 crossref_primary_10_3389_fbioe_2023_1291824 crossref_primary_10_3390_ph16081138 crossref_primary_10_1148_radiol_212430 crossref_primary_10_3389_fimmu_2023_1183440 crossref_primary_10_1038_s42003_024_05772_y crossref_primary_10_1093_hropen_hoaf003 crossref_primary_10_3389_fonc_2021_758958 crossref_primary_10_1039_D1CS00525A crossref_primary_10_1210_clinem_dgad583 crossref_primary_10_1021_acs_bioconjchem_4c00426 crossref_primary_10_3389_fonc_2021_797960 crossref_primary_10_1007_s00418_014_1292_0 crossref_primary_10_3390_ph16030423 crossref_primary_10_1097_RLU_0000000000004641 crossref_primary_10_1186_s12885_023_11544_4 crossref_primary_10_1002_prca_201470035 crossref_primary_10_3390_biomedicines13040775 crossref_primary_10_1007_s11307_022_01759_5 crossref_primary_10_1053_j_semnuclmed_2024_01_001 crossref_primary_10_1007_s11307_023_01872_z crossref_primary_10_3390_cancers15061889 crossref_primary_10_1016_j_bbamcr_2014_11_029 crossref_primary_10_1016_j_ejrad_2021_109867 crossref_primary_10_1080_07391102_2023_2237594 crossref_primary_10_1021_acs_bioconjchem_1c00305 crossref_primary_10_1016_j_dld_2021_07_011 crossref_primary_10_3390_ijms222011192 crossref_primary_10_3390_ph15111411 crossref_primary_10_1007_s00259_021_05554_2 crossref_primary_10_3390_pharmaceutics16030345 crossref_primary_10_1021_acs_jmedchem_4c00031 crossref_primary_10_1016_j_isci_2023_108541 crossref_primary_10_1007_s40336_023_00548_6 crossref_primary_10_1097_RLU_0000000000003856 crossref_primary_10_1016_j_celrep_2020_108252 crossref_primary_10_1208_s12248_019_0333_y crossref_primary_10_1016_j_cpet_2022_03_001 crossref_primary_10_18632_aging_204707 crossref_primary_10_3389_fcvm_2022_1064157 crossref_primary_10_1007_s00259_021_05336_w crossref_primary_10_1259_bjr_20230038 crossref_primary_10_1016_j_ab_2022_114859 crossref_primary_10_1038_s41574_020_0386_0 crossref_primary_10_1016_j_cpet_2022_03_005 crossref_primary_10_1007_s00261_024_04266_z crossref_primary_10_2967_jnumed_123_266403 crossref_primary_10_1007_s13346_023_01308_9 crossref_primary_10_1097_RLU_0000000000004021 crossref_primary_10_1177_10732748221078470 crossref_primary_10_1007_s00259_024_06703_z crossref_primary_10_1021_acs_analchem_1c00413 crossref_primary_10_1080_14737140_2023_2213890 crossref_primary_10_1007_s00259_023_06144_0 crossref_primary_10_1016_j_matbio_2018_04_006 crossref_primary_10_1007_s00259_023_06436_5 crossref_primary_10_1016_j_semcancer_2020_03_015 crossref_primary_10_1186_s12885_020_07541_6 crossref_primary_10_3390_ph15050590 crossref_primary_10_3390_cancers14112609 crossref_primary_10_2967_jnumed_120_258467 crossref_primary_10_1007_s40336_024_00656_x crossref_primary_10_3390_biomedicines12030545 crossref_primary_10_3389_fonc_2024_1373286 crossref_primary_10_1007_s11596_023_2740_7 crossref_primary_10_3390_cancers14174253 crossref_primary_10_1371_journal_pone_0178987 crossref_primary_10_1002_ird3_46 crossref_primary_10_1007_s00595_025_03024_y crossref_primary_10_4274_nts_galenos_2024_0011 crossref_primary_10_1007_s00259_022_05839_0 crossref_primary_10_1021_acs_molpharmaceut_1c00712 crossref_primary_10_1111_hel_12538 crossref_primary_10_1007_s12149_021_01616_5 crossref_primary_10_1093_biolre_ioad065 crossref_primary_10_3389_fcell_2021_539893 crossref_primary_10_2967_jnumed_123_267151 crossref_primary_10_1016_j_diabres_2015_02_024 crossref_primary_10_2967_jnumed_121_261925 crossref_primary_10_3390_ph17030296 crossref_primary_10_1038_s41586_024_07461_6 crossref_primary_10_1111_odi_14602 crossref_primary_10_1097_MNM_0000000000001702 crossref_primary_10_3390_ijms21010170 crossref_primary_10_1021_acs_molpharmaceut_3c00248 crossref_primary_10_1186_s41181_020_00102_z crossref_primary_10_1097_MD_0000000000034629 crossref_primary_10_3390_cancers16040839 crossref_primary_10_1007_s11307_022_01715_3 crossref_primary_10_3390_life13091821 crossref_primary_10_3390_cancers15123147 crossref_primary_10_1111_1756_185X_13031 crossref_primary_10_1097_RLU_0000000000003990 crossref_primary_10_1002_smll_202309279 crossref_primary_10_1161_CIRCRESAHA_121_318005 crossref_primary_10_2967_jnumed_119_241232 crossref_primary_10_1016_j_imbio_2016_09_007 crossref_primary_10_2967_jnumed_123_266393 crossref_primary_10_3390_jcm12186033 crossref_primary_10_3389_fonc_2022_834350 crossref_primary_10_1515_bams_2021_0169 crossref_primary_10_3390_ph15060729 crossref_primary_10_3390_molecules27206790 crossref_primary_10_1073_pnas_2209815120 crossref_primary_10_3390_cancers13184543 crossref_primary_10_1016_j_remnie_2021_04_006 crossref_primary_10_1002_cbic_201800429 crossref_primary_10_3390_cancers14133167 crossref_primary_10_1097_MD_0000000000034166 crossref_primary_10_2967_jnumed_119_227967 crossref_primary_10_1016_j_bioorg_2023_106878 crossref_primary_10_37336_2707_0700_2019_4_5 crossref_primary_10_37336_2707_0700_2019_4_6 crossref_primary_10_1038_s41598_023_30806_6 crossref_primary_10_2967_jnumed_118_214361 crossref_primary_10_1016_j_biochi_2019_08_003 crossref_primary_10_1007_s00259_022_05706_y crossref_primary_10_1016_j_bbamcr_2015_07_013 crossref_primary_10_3390_ph14121212 crossref_primary_10_1053_j_semnuclmed_2022_04_002 crossref_primary_10_3390_ph14101023 crossref_primary_10_4103_ijnm_ijnm_70_24 crossref_primary_10_1002_EXP_20210106 crossref_primary_10_1007_s00259_022_05754_4 crossref_primary_10_1038_s41467_022_29186_8 crossref_primary_10_1007_s00259_023_06282_5 crossref_primary_10_1021_acs_jmedchem_9b00642 crossref_primary_10_1186_s41181_019_0069_0 crossref_primary_10_1016_j_ejmech_2023_115993 crossref_primary_10_3390_cancers13225744 crossref_primary_10_1111_febs_13371 crossref_primary_10_1016_j_cpet_2023_12_008 crossref_primary_10_1038_s41388_018_0275_3 crossref_primary_10_1038_s41392_024_02041_6 crossref_primary_10_1007_s12029_019_00224_x crossref_primary_10_1007_s12350_020_02307_w crossref_primary_10_1097_RLU_0000000000003968 crossref_primary_10_1259_bjr_20220994 crossref_primary_10_1016_j_radonc_2021_02_015 crossref_primary_10_1016_j_lfs_2023_121970 crossref_primary_10_1007_s00259_022_05962_y crossref_primary_10_1186_s41181_021_00142_z crossref_primary_10_1016_j_cpet_2022_03_010 crossref_primary_10_1080_14728222_2020_1751819 crossref_primary_10_2147_ITT_S291767 crossref_primary_10_1007_s11307_023_01817_6 crossref_primary_10_3389_fimmu_2022_871661 crossref_primary_10_1042_BJ20151085 crossref_primary_10_1007_s11033_020_05853_1 crossref_primary_10_1016_j_critrevonc_2025_104705 crossref_primary_10_1016_j_bcp_2024_116604 crossref_primary_10_3390_vaccines4040041 crossref_primary_10_1038_s41416_022_01748_z crossref_primary_10_3390_molecules27010264 crossref_primary_10_1007_s12149_021_01672_x crossref_primary_10_1007_s11010_024_05134_6 crossref_primary_10_1016_j_matbio_2019_07_007 crossref_primary_10_1016_j_peptides_2015_11_004 crossref_primary_10_1016_j_cpet_2019_11_004 crossref_primary_10_1038_s41598_024_66196_6 crossref_primary_10_3390_bioengineering10050521 crossref_primary_10_22328_2079_5343_2022_13_4_27_37 crossref_primary_10_1021_acsanm_3c05525 crossref_primary_10_3389_fimmu_2024_1352615 crossref_primary_10_1371_journal_pone_0171194 crossref_primary_10_1007_s00259_022_05799_5 crossref_primary_10_3390_molecules25163672 crossref_primary_10_3389_fimmu_2018_00262 crossref_primary_10_1016_j_oraloncology_2022_106024 crossref_primary_10_2967_jnumed_118_215913 crossref_primary_10_3390_ijms24043863 crossref_primary_10_52601_bpr_2024_240022 crossref_primary_10_1021_acsbiomaterials_9b00425 crossref_primary_10_1016_j_ygyno_2025_01_010 crossref_primary_10_1007_s10967_022_08624_3 crossref_primary_10_1016_j_omtm_2024_101378 crossref_primary_10_1016_j_molmet_2016_07_003 crossref_primary_10_1097_RLU_0000000000004438 crossref_primary_10_3389_fonc_2021_802676 crossref_primary_10_3390_ijms252212296 crossref_primary_10_1016_j_cpet_2024_05_002 crossref_primary_10_1007_s12149_022_01742_8 crossref_primary_10_3389_fbioe_2023_1167329 crossref_primary_10_1016_j_molonc_2015_08_001 crossref_primary_10_1007_s00259_022_05836_3 crossref_primary_10_1016_j_biomaterials_2019_119745 crossref_primary_10_1016_j_pathol_2024_12_637 crossref_primary_10_1021_acs_jmedchem_3c02402 crossref_primary_10_1007_s00261_022_03764_2 crossref_primary_10_1038_s41378_022_00370_6 crossref_primary_10_1039_D4CB00267A crossref_primary_10_1016_j_acra_2024_04_017 crossref_primary_10_3390_cancers15041193 crossref_primary_10_1016_j_bbamem_2016_05_001 crossref_primary_10_3390_ph17060726 crossref_primary_10_1007_s11033_022_07603_x crossref_primary_10_2967_jnumed_118_220566 crossref_primary_10_1007_s12149_021_01673_w crossref_primary_10_1002_adbi_202200111 crossref_primary_10_1158_2767_9764_CRC_24_0601 crossref_primary_10_3390_ani12070873 crossref_primary_10_3390_ph15081000 crossref_primary_10_1002_VIW_20230029 crossref_primary_10_1016_j_semcancer_2022_04_008 crossref_primary_10_1007_s00259_022_06067_2 crossref_primary_10_1016_j_cej_2024_154173 crossref_primary_10_1002_pro6_1245 crossref_primary_10_1007_s00259_022_06021_2 crossref_primary_10_1016_j_eprac_2020_10_001 crossref_primary_10_1007_s40336_021_00470_9 crossref_primary_10_1007_s00259_022_06095_y crossref_primary_10_18821_0208_0613_2016_34_3_90_97 crossref_primary_10_1007_s00259_021_05194_6 crossref_primary_10_1007_s43032_022_01064_0 crossref_primary_10_1371_journal_pone_0294564 crossref_primary_10_1007_s00259_020_04769_z crossref_primary_10_1016_j_canlet_2015_10_021 crossref_primary_10_2967_jnumed_119_236786 crossref_primary_10_1016_j_ijcard_2014_10_091 crossref_primary_10_1007_s00261_022_03512_6 crossref_primary_10_1021_acs_jmedchem_4c00772 crossref_primary_10_3389_fonc_2022_875081 crossref_primary_10_2967_jnumed_118_210435 crossref_primary_10_1093_ibd_izx008 crossref_primary_10_1007_s00432_024_06075_9 crossref_primary_10_1007_s00259_020_04940_6 crossref_primary_10_1074_jbc_M115_710582 crossref_primary_10_1097_RLU_0000000000005662 crossref_primary_10_1097_RLU_0000000000005783 crossref_primary_10_1161_CIRCRESAHA_122_320781 crossref_primary_10_1158_1535_7163_MCT_24_0125 crossref_primary_10_1016_j_bcp_2023_115914 crossref_primary_10_3390_jcm12030968 crossref_primary_10_1134_S1607672916050033 crossref_primary_10_1093_rheumatology_keae225 crossref_primary_10_1055_a_1715_5069 crossref_primary_10_1016_j_cpet_2024_09_009 crossref_primary_10_1007_s00259_023_06482_z crossref_primary_10_1007_s00330_022_09321_1 crossref_primary_10_3389_fonc_2024_1445191 crossref_primary_10_2214_AJR_20_23794 crossref_primary_10_3390_cancers13215495 crossref_primary_10_33145_2304_8336_2023_28_49_64 crossref_primary_10_1007_s00259_022_06096_x crossref_primary_10_1021_acs_jmedchem_4c00544 crossref_primary_10_2967_jnumed_123_266345 crossref_primary_10_3390_cancers13194946 crossref_primary_10_1186_s12967_022_03559_5 |
Cites_doi | 10.1074/jbc.C500092200 10.1016/j.febslet.2012.06.015 10.1186/ar2080 10.1073/pnas.1117158109 10.1172/JCI38988 10.1126/science.1195300 10.1074/jbc.M111.252718 10.1186/ar1877 10.1371/journal.pone.0058860 10.1038/nrm2120 10.1002/med.20137 10.1016/j.febslet.2006.01.087 10.1034/j.1600-0676.2002.01503.x 10.1074/mcp.M111.009233 10.1021/jm400351a 10.1158/1541-7786.MCR-13-0272 10.1111/j.1742-4658.2011.08051.x 10.1002/hep.20853 10.1021/bi900257m 10.3109/1061186X.2010.511225 10.1097/MPA.0b013e31816618ce 10.1055/s-0037-1613388 10.1182/blood-2003-12-4240 10.1139/y03-006 10.1074/mcp.R800012-MCP200 10.1111/j.1742-4658.2009.07526.x 10.1074/mcp.M000050-MCP201 10.1128/MCB.20.3.1089-1094.2000 10.1016/j.abb.2006.11.006 10.1182/blood-2005-08-3452 10.1084/jem.20122344 10.1038/nbt.1611 10.1074/jbc.274.51.36505 10.2174/156652412803833607 10.1158/1535-7163.MCT-11-0340 10.1093/eurheartj/ehq519 10.1023/A:1025493605850 10.1073/pnas.93.5.1924 10.1038/nchembio.126 10.1002/(SICI)1097-0215(19970502)71:3<383::AID-IJC14>3.0.CO;2-H 10.1002/hep.510290631 10.1021/ja909524e 10.1074/jbc.M511112200 10.1158/1535-7163.MCT-08-1170 10.1016/B978-0-12-382219-2.00750-X 10.1021/ml300410d 10.1016/S1047-8477(02)00576-2 10.1242/jcs.072900 10.1038/nrm858 10.1093/jnci/djs336 10.1084/jem.20130110 10.1021/bi701921b 10.1242/jcs.023820 10.1073/pnas.87.18.7235 10.1159/000069863 10.1038/mt.2013.110 10.1111/j.1538-7836.2011.04195.x 10.1073/pnas.85.9.3110 10.1074/jbc.M112.445841 10.1593/neo.121850 10.1016/j.fob.2013.12.001 10.1515/BC.2011.162 10.1042/CS20040302 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 7QO |
DOI | 10.1002/prca.201300095 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1862-8354 |
EndPage | 463 |
ExternalDocumentID | 3329236941 24470260 10_1002_prca_201300095 PRCA1523 ark_67375_WNG_SRL3BNPL_Z |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Health and Medical Research Council (Australia) funderid: 632822 |
GroupedDBID | --- 05W 0R~ 123 1OC 33P 3SF 3WU 4.4 52U 52V 53G 8-1 8UM A00 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BHBCM BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HF~ HGLYW HVGLF HZ~ IX1 KBYEO LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O66 O9- P2W P4E PQQKQ RNS ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WNSPC WOHZO WXSBR WYISQ WYJ XV2 ~S- AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7TM 7TO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. P64 RC3 7X8 7QO |
ID | FETCH-LOGICAL-c5053-846dd65473f18fce1e7ea784d44333c68ea4c142cb062a3cf6ff3fc8dbf8d4093 |
IEDL.DBID | DR2 |
ISSN | 1862-8346 1862-8354 |
IngestDate | Fri Jul 11 08:20:11 EDT 2025 Fri Jul 11 03:31:11 EDT 2025 Fri Jul 25 12:27:22 EDT 2025 Thu Apr 03 07:04:42 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 02:14:11 EDT 2025 Wed Jan 22 16:52:14 EST 2025 Wed Oct 30 09:56:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Degradomics Protease Collagen Endopeptidase Exosite Dipeptidyl peptidase |
Language | English |
License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5053-846dd65473f18fce1e7ea784d44333c68ea4c142cb062a3cf6ff3fc8dbf8d4093 |
Notes | ArticleID:PRCA1523 National Health and Medical Research Council (Australia) - No. 632822 istex:8437D00829D5673D3C2A4182D40068367BB7C96C ark:/67375/WNG-SRL3BNPL-Z See the article online to view Figs. 1–4 in colour. Colour Online ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24470260 |
PQID | 1534222503 |
PQPubID | 1016438 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1540236231 proquest_miscellaneous_1534790949 proquest_journals_1534222503 pubmed_primary_24470260 crossref_primary_10_1002_prca_201300095 crossref_citationtrail_10_1002_prca_201300095 wiley_primary_10_1002_prca_201300095_PRCA1523 istex_primary_ark_67375_WNG_SRL3BNPL_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Proteomics. Clinical applications |
PublicationTitleAlternate | Prot. Clin. Appl |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Keane, F. M., Chowdhury, S., Yao, T.-W., Nadvi, N. A. et al., in: Dunn, B. (Ed.), Proteinases as Drug Targets, Royal Society of Chemistry, Cambridge, UK 2012, pp. 119-145. Gao, M. Q., Kim, B. G., Kang, S., Choi, Y. P. et al., Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J. Cell Sci. 2010, 123, 3507-3514. Brennen, W. N., Isaacs, J. T., Denmeade, S. R., Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 2012, 11, 257-266. Aggarwal, S., Brennen, W. N., Kole, T. P., Schneider, E. et al., Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008, 47, 1076-1086. Levy, M. T., McCaughan, G. W., Abbott, C. A., Park, J. E. et al., Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999, 29, 1768-1778. Wang, X. M., Yu, D. M. T., McCaughan, G. W., Gorrell, M. D., Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX-2 human stellate cell line. Hepatology 2005, 42, 935-945. Tinoco, A. D., Tagore, D. M., Saghatelian, A., Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform. J. Am. Chem. Soc. 2010, 132, 3819-3830. Edosada, C. Y., Quan, C., Wiesmann, C., Tran, T. et al., Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 2006, 281, 7437-7444. Niedermeyer, J., Garin-Chesa, P., Kriz, M., Hilberg, F. et al., Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 2001, 45, 445-447. Scott, A. M., Wiseman, G., Welt, S., Adjei, A. et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003, 9, 1639-1647. Santos, A. M., Jung, J., Aziz, N., Kissil, J. L., Pure, E., Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 2010, 119, 3613-3626. Roberts, E. W., Deonarine, A., Jones, J. O., Denton, A. E. et al., Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 2013, 210, 1137-1151. Jambunathan, K., Watson, D. S., Endsley, A. N., Kodukula, K., Galande, A. K., Comparative analysis of the substrate preferences of two post-proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha. FEBS Lett. 2012, 586, 2507-2512. Bauer, S., Jendro, M. C., Wadle, A., Kleber, S. et al., Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 2006, 8, R171. Starr, A. E., Overall, C. M., in: Handel, T. M., Hamel, D. L. (Eds), Methods in Enzymology, Academic Press, New York, 2009, pp. 281-307. Park, J. E., Lenter, M. C., Zimmermann, R. N., Garin-Chesa, P. et al., Fibroblast activation protein: a dual-specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999, 274, 36505-36512. Cohen, S. J., Alpaugh, R. K., Palazzo, I., Meropol, N. J. et al., Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 2008, 37, 154-158. Kleifeld, O., Doucet, A., Keller, U. a. d., Prudova, A. et al., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 2010, 28, 281-291. Lee, K. N., Jackson, K. W., Christiansen, V. J., Chung, K. H., McKee, P. A., A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004, 103, 3783-3788. Keane, F., Yao, T.-W., Seelk, S., Gall, M. G. et al., Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144-AMC. FEBS Open Bio. 2014, 4, 43-54. Huang, S., Fang, R., Xu, J., Qui, S. et al., Evaluation of the tumor targeting of a FAPalpha-based doxorubicin prodrug. J. Drug Target. 2011, 19, 487-496. Tholen, S., Biniossek, M. L., Gessler, A., Mueller, S. et al., Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol. Chem. 2011, 392, 961-971. Zukowska, Z., Pons, J., Lee, E. W., Li, L., Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? Can. J. Physiol. Pharmacol. 2003, 81, 89-94. Cox, G., Kable, E., Jones, A., Fraser, I. et al., 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 2003, 141, 53-62. Tran, E., Chinnasamy, D., Yu, Z., Morgan, R. A. et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 2013, 210, 1125-1135. Niedermeyer, J., Scanlan, M. J., Garin-Chesa, P., Daiber, C. et al., Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int. J. Cancer 1997, 71, 383-389. Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A., Overall, C. M., Metadegradomics. Mol. Cell. Proteomics 2008, 7, 1925-1951. Brokopp, C. E., Schoenauer, R., Richards, P., Bauer, S. et al., Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur. Heart J. 2011, 32, 2713-2722. López-Otin, C., Overall, C. M., Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 2002, 3, 509-519. Agard, N. J., Mahrus, S., Trinidad, J. C., Lynn, A. et al., Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc. Natl Acad. Sci. USA 2012, 109, 1913-1918. Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., Denmeade, S. R., Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 2012, 104, 1320-1334. Lee, K. N., Jackson, K. W., Christiansen, V. J., Lee, C. S. et al., Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397-1404. Poplawski, S. E., Lai, J. H., Li, Y., Jin, Z. et al., Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 2013, 56, 3467-3477. Hofheinz, R., Al-Batran, S., Hartmann, F., Hartung, G. et al., Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003, 26, 44-48. Aertgeerts, K., Levin, I., Shi, L., Snell, G. P. et al., Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha. J. Biol. Chem. 2005, 280, 19441-19444. Overall, C. M., Blobel, C. P., In search of partners: linking extracellular proteases to substrates. Nature Rev. Mol. Cell. Biol. 2007, 8, 245-257. Lee, K. N., Jackson, K. W., Terzyan, S., Christiansen, V. J., McKee, P. A., Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor deisgn. Biochemistry 2009, 48, 5149-5158. Walsh, M. P., Duncan, B., Larabee, S., Krauss, A. et al., Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS ONE 2013, 8, e58860. Zhang, H., Chen, Y., Keane, F. M., Gorrell, M. D., Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 2013, 11, 1487-1496. Garin-Chesa, P., Old, L. J., Rettig, W. J., Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 1990, 87, 7235-7239. Cheng, J. D., Dunbrack, R. L., Valianou, M., Rogatko, A. et al., Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 2002, 62, 4767-4772. Milner, J. M., Kevorkian, L., Young, D. A., Jones, D. et al., Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res. Ther. 2006, 8, R23. Frantz, C., Stewart, K. M., Weaver, V. M., The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195-4200. Gorrell, M. D., Park, J. E., in: Rawlings, N. L., Salvesen, G. (Eds.), Handbook of Proteolytic Enzymes, 3rd edition, Elsevier, San Diego 2013, pp. 3395-3401. Prudova, A., auf dem Keller, U., Butler, G. S., Overall, C. M., Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 2010, 9, 894-911. Niedermeyer, J., Kriz, M., Hilberg, F., Garin-Chesa, P. et al., Targeted disruption of mouse fibroblast activation protein. Mol. Cell. Biol. 2000, 20, 1089-1094. Kakarla, S., Chow, K. K. H., Mata, M., Schaffer, D. R. et al., Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma. Molec. Ther. 2013, 21, 1611-1620. Becker-Pauly, C., Barre, O., Schilling, O., auf dem Keller, U. et al., Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol. Cell. Proteomics 2011, 10, 1-19. Jefferson, T., Causevic, M., Keller, U. a. d., Schilling, O. et al., Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J. Biol. Chem. 2011, 286, 27741-27750. Chen, Y., Hu, L., Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2008, 29, 29-64. Edosada, C. Y., Quan, C., Tran, T., Pham, V. et al., Peptide substrate profiling defines fibroblast activation protein as an endopeptidase 2011; 278 2013; 4 2013; 21 2013; 288 2008; 37 2008; 7 2011; 10 2001; 45 2013; 8 2011; 19 2012; 12 2011; 392 2012; 11 2009; 48 1990; 87 2013; 15 2014; 4 2007; 457 2013; 11 2010; 119 2013; 56 2010; 28 2008; 29 2010; 277 2003; 9 2007; 8 2005; 108 1988; 85 2006; 281 2010; 9 2011; 286 2003; 89 2004; 103 2012; 586 2003; 81 2012 1999; 29 2010; 123 2000; 20 2009 1996; 93 2006; 8 2005; 42 2002; 3 2011; 32 2012; 104 2012; 109 2011; 9 2005; 280 1997; 71 2002; 62 2002; 22 2008; 47 1999; 274 2010; 330 2010; 132 2006; 580 2013; 210 2003; 26 2009; 8 2009; 5 2013 2006; 107 2003; 20 2003; 141 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Cheng J. D. (e_1_2_9_43_1) 2002; 62 Keane F. M. (e_1_2_9_34_1) 2012 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Scott A. M. (e_1_2_9_56_1) 2003; 9 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Niedermeyer J. (e_1_2_9_21_1) 2001; 45 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Starr A. E. (e_1_2_9_67_1) 2009 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – reference: Gorrell, M. D., Park, J. E., in: Rawlings, N. L., Salvesen, G. (Eds.), Handbook of Proteolytic Enzymes, 3rd edition, Elsevier, San Diego 2013, pp. 3395-3401. – reference: Edosada, C. Y., Quan, C., Wiesmann, C., Tran, T. et al., Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 2006, 281, 7437-7444. – reference: Keane, F., Yao, T.-W., Seelk, S., Gall, M. G. et al., Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144-AMC. FEBS Open Bio. 2014, 4, 43-54. – reference: Cox, G., Kable, E., Jones, A., Fraser, I. et al., 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 2003, 141, 53-62. – reference: Gao, M. Q., Kim, B. G., Kang, S., Choi, Y. P. et al., Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J. Cell Sci. 2010, 123, 3507-3514. – reference: Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W. et al., Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-{alpha}. Science 2010, 330, 827-830. – reference: Aertgeerts, K., Levin, I., Shi, L., Snell, G. P. et al., Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha. J. Biol. Chem. 2005, 280, 19441-19444. – reference: López-Otin, C., Overall, C. M., Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 2002, 3, 509-519. – reference: Walsh, M. P., Duncan, B., Larabee, S., Krauss, A. et al., Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS ONE 2013, 8, e58860. – reference: Milner, J. M., Kevorkian, L., Young, D. A., Jones, D. et al., Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res. Ther. 2006, 8, R23. – reference: Edosada, C. Y., Quan, C., Tran, T., Pham, V. et al., Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett. 2006, 580, 1581-1586. – reference: Park, J. E., Lenter, M. C., Zimmermann, R. N., Garin-Chesa, P. et al., Fibroblast activation protein: a dual-specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999, 274, 36505-36512. – reference: Brown, D. D., Wang, Z., Furlow, J. D., Kanamori, A. et al., The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 1996, 93, 1924-1929. – reference: Lee, K. N., Jackson, K. W., Terzyan, S., Christiansen, V. J., McKee, P. A., Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor deisgn. Biochemistry 2009, 48, 5149-5158. – reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Dolence, E. K., McKee, P. A., Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor alpha2-antiplasmin. J. Thromb. Haemost. 2011, 9, 987-996. – reference: Aimes, R. T., Zijlstra, A., Hooper, J. D., Ogbourne, S. M. et al., Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 2003, 89, 561-572. – reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Chung, K. H., McKee, P. A., A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004, 103, 3783-3788. – reference: LeBeau, A. M., Brennen, W. N., Aggarwal, S., Denmeade, S. R., Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009, 8, 1378-1386. – reference: Yu, D. M. T., Yao, T.-W., Chowdhury, S., Nadvi, N. A. et al., The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J. 2010, 277, 1126-1144. – reference: Goodman, J., Rozypal, T., Kelly, T., Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin. Exp. Metastasis 2003, 20, 459-470. – reference: Niedermeyer, J., Scanlan, M. J., Garin-Chesa, P., Daiber, C. et al., Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int. J. Cancer 1997, 71, 383-389. – reference: Jansen, K., Heirbaut, L., Cheng, J. D., Joossens, J. et al., Selective inhibitors of fibroblast activation protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med. Chem. Lett. 2013, 4, 491-496. – reference: Agard, N. J., Mahrus, S., Trinidad, J. C., Lynn, A. et al., Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc. Natl Acad. Sci. USA 2012, 109, 1913-1918. – reference: Niedermeyer, J., Kriz, M., Hilberg, F., Garin-Chesa, P. et al., Targeted disruption of mouse fibroblast activation protein. Mol. Cell. Biol. 2000, 20, 1089-1094. – reference: Zhang, H., Chen, Y., Keane, F. M., Gorrell, M. D., Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 2013, 11, 1487-1496. – reference: Huang, S., Fang, R., Xu, J., Qui, S. et al., Evaluation of the tumor targeting of a FAPalpha-based doxorubicin prodrug. J. Drug Target. 2011, 19, 487-496. – reference: Prudova, A., auf dem Keller, U., Butler, G. S., Overall, C. M., Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 2010, 9, 894-911. – reference: Garin-Chesa, P., Old, L. J., Rettig, W. J., Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 1990, 87, 7235-7239. – reference: Rettig, W. J., Garin-Chesa, P., Beresford, H. R., Oettegen, H. F. et al., Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl Acad. Sci. USA 1988, 85, 3110-3114. – reference: Cheng, J. D., Dunbrack, R. L., Valianou, M., Rogatko, A. et al., Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 2002, 62, 4767-4772. – reference: Kakarla, S., Chow, K. K. H., Mata, M., Schaffer, D. R. et al., Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma. Molec. Ther. 2013, 21, 1611-1620. – reference: Tholen, S., Biniossek, M. L., Gessler, A., Mueller, S. et al., Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol. Chem. 2011, 392, 961-971. – reference: Bauer, S., Jendro, M. C., Wadle, A., Kleber, S. et al., Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 2006, 8, R171. – reference: Wilson, C. H., Inadarto, D., Doucet, A., Pogson, L. D. et al., Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism. J. Biol. Chem. 2013, 288, 13936-13949. – reference: Hofheinz, R., Al-Batran, S., Hartmann, F., Hartung, G. et al., Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003, 26, 44-48. – reference: Cohen, S. J., Alpaugh, R. K., Palazzo, I., Meropol, N. J. et al., Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 2008, 37, 154-158. – reference: Gorrell, M. D., Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin. Sci. 2005, 108, 277-292. – reference: Brennen, W. N., Isaacs, J. T., Denmeade, S. R., Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 2012, 11, 257-266. – reference: Wang, X. M., Yu, D. M. T., McCaughan, G. W., Gorrell, M. D., Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX-2 human stellate cell line. Hepatology 2005, 42, 935-945. – reference: Levy, M. T., McCaughan, G. W., Abbott, C. A., Park, J. E. et al., Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999, 29, 1768-1778. – reference: Tagore, D. M., Nolte, W., Neveu, J., Rangel, R. et al., Peptidase substrates via global peptide profiling. Nat. Chem. Biol. 2009, 5, 23-25. – reference: Roberts, E. W., Deonarine, A., Jones, J. O., Denton, A. E. et al., Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 2013, 210, 1137-1151. – reference: Jacob, M., Chang, L., Puré, E., Fibroblast activation protein in remodeling tissues. Curr. Mol. Med. 2012, 12, 1220-1243. – reference: Keane, F. M., Nadvi, N. A., Yao, T.-W., Gorrell, M. D., Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-α. FEBS J. 2011, 278, 1316-1332. – reference: Niedermeyer, J., Garin-Chesa, P., Kriz, M., Hilberg, F. et al., Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 2001, 45, 445-447. – reference: Christiansen, V. J., Jackson, K. W., Lee, K. N., McKee, P. A., Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch. Biochem. Biophys. 2007, 457, 177-186. – reference: Zukowska, Z., Pons, J., Lee, E. W., Li, L., Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? Can. J. Physiol. Pharmacol. 2003, 81, 89-94. – reference: Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A., Overall, C. M., Metadegradomics. Mol. Cell. Proteomics 2008, 7, 1925-1951. – reference: Poplawski, S. E., Lai, J. H., Li, Y., Jin, Z. et al., Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 2013, 56, 3467-3477. – reference: Jambunathan, K., Watson, D. S., Endsley, A. N., Kodukula, K., Galande, A. K., Comparative analysis of the substrate preferences of two post-proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha. FEBS Lett. 2012, 586, 2507-2512. – reference: Aggarwal, S., Brennen, W. N., Kole, T. P., Schneider, E. et al., Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008, 47, 1076-1086. – reference: Overall, C. M., Blobel, C. P., In search of partners: linking extracellular proteases to substrates. Nature Rev. Mol. Cell. Biol. 2007, 8, 245-257. – reference: Christiansen, V. J., Jackson, K., Lee, K., Downs, T., McKee, P. A., Targeting inhibition of fibroblast activation protein-alpha and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments. Neoplasia 2013, 15, 348-358. – reference: Jefferson, T., Causevic, M., Keller, U. a. d., Schilling, O. et al., Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J. Biol. Chem. 2011, 286, 27741-27750. – reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Lee, C. S. et al., Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397-1404. – reference: Keane, F. M., Chowdhury, S., Yao, T.-W., Nadvi, N. A. et al., in: Dunn, B. (Ed.), Proteinases as Drug Targets, Royal Society of Chemistry, Cambridge, UK 2012, pp. 119-145. – reference: Kleifeld, O., Doucet, A., Keller, U. a. d., Prudova, A. et al., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 2010, 28, 281-291. – reference: Tran, E., Chinnasamy, D., Yu, Z., Morgan, R. A. et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 2013, 210, 1125-1135. – reference: Chen, Y., Hu, L., Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2008, 29, 29-64. – reference: Becker-Pauly, C., Barre, O., Schilling, O., auf dem Keller, U. et al., Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol. Cell. Proteomics 2011, 10, 1-19. – reference: Brokopp, C. E., Schoenauer, R., Richards, P., Bauer, S. et al., Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur. Heart J. 2011, 32, 2713-2722. – reference: Levy, M. T., McCaughan, G. W., Marinos, G., Gorrell, M. D., Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver Internat. 2002, 22, 93-101. – reference: Santos, A. M., Jung, J., Aziz, N., Kissil, J. L., Pure, E., Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 2010, 119, 3613-3626. – reference: Tinoco, A. D., Tagore, D. M., Saghatelian, A., Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform. J. Am. Chem. Soc. 2010, 132, 3819-3830. – reference: Scott, A. M., Wiseman, G., Welt, S., Adjei, A. et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003, 9, 1639-1647. – reference: Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., Denmeade, S. R., Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 2012, 104, 1320-1334. – reference: Starr, A. E., Overall, C. M., in: Handel, T. M., Hamel, D. L. (Eds), Methods in Enzymology, Academic Press, New York, 2009, pp. 281-307. – reference: Frantz, C., Stewart, K. M., Weaver, V. M., The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195-4200. – start-page: 119 year: 2012 end-page: 145 – volume: 141 start-page: 53 year: 2003 end-page: 62 article-title: 3‐dimensional imaging of collagen using second harmonic generation publication-title: J. Struct. Biol. – volume: 103 start-page: 3783 year: 2004 end-page: 3788 article-title: A novel plasma proteinase potentiates alpha2‐antiplasmin inhibition of fibrin digestion publication-title: Blood – volume: 277 start-page: 1126 year: 2010 end-page: 1144 article-title: The dipeptidyl peptidase IV family in cancer and cell biology publication-title: FEBS J. – volume: 22 start-page: 93 year: 2002 end-page: 101 article-title: Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection publication-title: Liver Internat. – volume: 132 start-page: 3819 year: 2010 end-page: 3830 article-title: Expanding the dipeptidyl peptidase 4‐regulated peptidome via an optimized peptidomics platform publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 43 year: 2014 end-page: 54 article-title: Quantitation of fibroblast activation protein (FAP)‐specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144‐AMC publication-title: FEBS Open Bio – volume: 28 start-page: 281 year: 2010 end-page: 291 article-title: Isotopic labeling of terminal amines in complex samples identifies protein N‐termini and protease cleavage products publication-title: Nat. Biotechnol. – volume: 8 start-page: 1378 year: 2009 end-page: 1386 article-title: Targeting the cancer stroma with a fibroblast activation protein‐activated promelittin protoxin publication-title: Mol. Cancer Ther. – volume: 104 start-page: 1320 year: 2012 end-page: 1334 article-title: Targeting carcinoma‐associated fibroblasts within the tumour stroma with a fibroblast activation protein‐activated prodrug publication-title: J. Natl. Cancer Inst. – volume: 12 start-page: 1220 year: 2012 end-page: 1243 article-title: Fibroblast activation protein in remodeling tissues publication-title: Curr. Mol. Med. – volume: 280 start-page: 19441 year: 2005 end-page: 19444 article-title: Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha publication-title: J. Biol. Chem. – volume: 108 start-page: 277 year: 2005 end-page: 292 article-title: Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders publication-title: Clin. Sci. – volume: 15 start-page: 348 year: 2013 end-page: 358 article-title: Targeting inhibition of fibroblast activation protein‐alpha and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments publication-title: Neoplasia – volume: 11 start-page: 257 year: 2012 end-page: 266 article-title: Rationale behind targeting fibroblast activation protein‐expressing carcinoma‐associated fibroblasts as a novel chemotherapeutic strategy publication-title: Mol. Cancer Ther. – volume: 9 start-page: 987 year: 2011 end-page: 996 article-title: Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor alpha2‐antiplasmin publication-title: J. Thromb. Haemost. – volume: 4 start-page: 491 year: 2013 end-page: 496 article-title: Selective inhibitors of fibroblast activation protein (FAP) with a (4‐Quinolinoyl)‐glycyl‐2‐cyanopyrrolidine scaffold publication-title: ACS Med. Chem. Lett. – volume: 29 start-page: 29 year: 2008 end-page: 64 article-title: Design of anticancer prodrugs for reductive activation publication-title: Med. Res. Rev. – volume: 81 start-page: 89 year: 2003 end-page: 94 article-title: Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system publication-title: Can. J. Physiol. Pharmacol. – volume: 580 start-page: 1581 year: 2006 end-page: 1586 article-title: Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)‐Pro(1)‐cleaving specificity publication-title: FEBS Lett. – volume: 87 start-page: 7235 year: 1990 end-page: 7239 article-title: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: R171 year: 2006 article-title: Fibroblast activation protein is expressed by rheumatoid myofibroblast‐like synoviocytes publication-title: Arthritis Res. Ther. – volume: 330 start-page: 827 year: 2010 end-page: 830 article-title: Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein‐{alpha} publication-title: Science – volume: 89 start-page: 561 year: 2003 end-page: 572 article-title: Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis publication-title: Thromb. Haemost. – volume: 278 start-page: 1316 year: 2011 end-page: 1332 article-title: Neuropeptide Y, B‐type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein‐α publication-title: FEBS J. – volume: 93 start-page: 1924 year: 1996 end-page: 1929 article-title: The thyroid hormone‐induced tail resorption program during metamorphosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 1913 year: 2012 end-page: 1918 article-title: Global kinetic analysis of proteolysis via quantitative targeted proteomics publication-title: Proc. Natl Acad. Sci. USA – volume: 3 start-page: 509 year: 2002 end-page: 519 article-title: Protease degradomics: a new challenge for proteomics publication-title: Nat. Rev. Mol. Cell Biol. – volume: 56 start-page: 3467 year: 2013 end-page: 3477 article-title: Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase publication-title: J. Med. Chem. – volume: 11 start-page: 1487 year: 2013 end-page: 1496 article-title: Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9 publication-title: Mol. Cancer Res. – volume: 286 start-page: 27741 year: 2011 end-page: 27750 article-title: Metalloprotease meprin beta generates nontoxic N‐terminal amyloid precursor protein fragments in vivo publication-title: J. Biol. Chem. – volume: 32 start-page: 2713 year: 2011 end-page: 2722 article-title: Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin‐cap fibroatheromata publication-title: Eur. Heart J. – volume: 210 start-page: 1125 year: 2013 end-page: 1135 article-title: Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia publication-title: J. Exp. Med. – volume: 107 start-page: 1397 year: 2006 end-page: 1404 article-title: Antiplasmin‐cleaving enzyme is a soluble form of fibroblast activation protein publication-title: Blood – volume: 210 start-page: 1137 year: 2013 end-page: 1151 article-title: Depletion of stromal cells expressing fibroblast activation protein‐alpha from skeletal muscle and bone marrow results in cachexia and anemia publication-title: J. Exp. Med. – volume: 9 start-page: 1639 year: 2003 end-page: 1647 article-title: A phase I dose‐escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein‐positive cancer publication-title: Clin. Cancer Res. – volume: 29 start-page: 1768 year: 1999 end-page: 1778 article-title: Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis publication-title: Hepatology – volume: 20 start-page: 1089 year: 2000 end-page: 1094 article-title: Targeted disruption of mouse fibroblast activation protein publication-title: Mol. Cell. Biol. – volume: 9 start-page: 894 year: 2010 end-page: 911 article-title: Multiplex N‐terminome analysis of MMP‐2 and MMP‐9 substrate degradomes by iTRAQ‐TAILS quantitative proteomics publication-title: Mol. Cell. Proteomics – volume: 42 start-page: 935 year: 2005 end-page: 945 article-title: Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX‐2 human stellate cell line publication-title: Hepatology – volume: 85 start-page: 3110 year: 1988 end-page: 3114 article-title: Cell‐surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells publication-title: Proc. Natl Acad. Sci. USA – volume: 123 start-page: 4195 year: 2010 end-page: 4200 article-title: The extracellular matrix at a glance publication-title: J. Cell Sci. – volume: 7 start-page: 1925 year: 2008 end-page: 1951 article-title: Metadegradomics publication-title: Mol. Cell. Proteomics – volume: 8 start-page: R23 year: 2006 article-title: Fibroblast activation protein alpha is expressed by chondrocytes following a pro‐inflammatory stimulus and is elevated in osteoarthritis publication-title: Arthritis Res. Ther. – volume: 48 start-page: 5149 year: 2009 end-page: 5158 article-title: Using substrate specificity of antiplasmin‐cleaving enzyme for fibroblast activation protein inhibitor deisgn publication-title: Biochemistry – volume: 392 start-page: 961 year: 2011 end-page: 971 article-title: Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts publication-title: Biol. Chem. – volume: 119 start-page: 3613 year: 2010 end-page: 3626 article-title: Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice publication-title: J. Clin. Invest. – volume: 123 start-page: 3507 year: 2010 end-page: 3514 article-title: Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial‐mesenchymal transition‐like state in breast cancer cells in vitro publication-title: J. Cell Sci. – volume: 457 start-page: 177 year: 2007 end-page: 186 article-title: Effect of fibroblast activation protein and alpha2‐antiplasmin cleaving enzyme on collagen types I, III, and IV publication-title: Arch. Biochem. Biophys. – volume: 5 start-page: 23 year: 2009 end-page: 25 article-title: Peptidase substrates via global peptide profiling publication-title: Nat. Chem. Biol. – volume: 21 start-page: 1611 year: 2013 end-page: 1620 article-title: Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma publication-title: Molec. Ther. – start-page: 3395 year: 2013 end-page: 3401 – volume: 288 start-page: 13936 year: 2013 end-page: 13949 article-title: Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism publication-title: J. Biol. Chem. – volume: 20 start-page: 459 year: 2003 end-page: 470 article-title: Seprase, a membrane‐bound protease, alleviates the serum growth requirement of human breast cancer cells publication-title: Clin. Exp. Metastasis – volume: 26 start-page: 44 year: 2003 end-page: 48 article-title: Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer publication-title: Onkologie – volume: 8 start-page: 245 year: 2007 end-page: 257 article-title: In search of partners: linking extracellular proteases to substrates publication-title: Nature Rev. Mol. Cell. Biol. – volume: 8 start-page: e58860 year: 2013 article-title: Val‐BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors publication-title: PLoS ONE – volume: 586 start-page: 2507 year: 2012 end-page: 2512 article-title: Comparative analysis of the substrate preferences of two post‐proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha publication-title: FEBS Lett. – start-page: 281 year: 2009 end-page: 307 – volume: 62 start-page: 4767 year: 2002 end-page: 4772 article-title: Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model publication-title: Cancer Res. – volume: 47 start-page: 1076 year: 2008 end-page: 1086 article-title: Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites publication-title: Biochemistry – volume: 281 start-page: 7437 year: 2006 end-page: 7444 article-title: Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity publication-title: J. Biol. Chem. – volume: 37 start-page: 154 year: 2008 end-page: 158 article-title: Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma publication-title: Pancreas – volume: 71 start-page: 383 year: 1997 end-page: 389 article-title: Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers publication-title: Int. J. Cancer – volume: 19 start-page: 487 year: 2011 end-page: 496 article-title: Evaluation of the tumor targeting of a FAPalpha‐based doxorubicin prodrug publication-title: J. Drug Target. – volume: 274 start-page: 36505 year: 1999 end-page: 36512 article-title: Fibroblast activation protein: a dual‐specificity serine protease expressed in reactive human tumor stromal fibroblasts publication-title: J. Biol. Chem. – volume: 45 start-page: 445 year: 2001 end-page: 447 article-title: Expression of the fibroblast activation protein during mouse embryo development publication-title: Int. J. Dev. Biol. – volume: 10 start-page: 1 year: 2011 end-page: 19 article-title: Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates publication-title: Mol. Cell. Proteomics – ident: e_1_2_9_5_1 doi: 10.1074/jbc.C500092200 – start-page: 119 volume-title: Proteinases as Drug Targets year: 2012 ident: e_1_2_9_34_1 – ident: e_1_2_9_9_1 doi: 10.1016/j.febslet.2012.06.015 – ident: e_1_2_9_26_1 doi: 10.1186/ar2080 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.1117158109 – ident: e_1_2_9_35_1 doi: 10.1172/JCI38988 – ident: e_1_2_9_38_1 doi: 10.1126/science.1195300 – ident: e_1_2_9_62_1 doi: 10.1074/jbc.M111.252718 – ident: e_1_2_9_27_1 doi: 10.1186/ar1877 – ident: e_1_2_9_48_1 doi: 10.1371/journal.pone.0058860 – ident: e_1_2_9_57_1 doi: 10.1038/nrm2120 – volume: 45 start-page: 445 year: 2001 ident: e_1_2_9_21_1 article-title: Expression of the fibroblast activation protein during mouse embryo development publication-title: Int. J. Dev. Biol. – ident: e_1_2_9_50_1 doi: 10.1002/med.20137 – ident: e_1_2_9_8_1 doi: 10.1016/j.febslet.2006.01.087 – ident: e_1_2_9_30_1 doi: 10.1034/j.1600-0676.2002.01503.x – ident: e_1_2_9_63_1 doi: 10.1074/mcp.M111.009233 – ident: e_1_2_9_47_1 doi: 10.1021/jm400351a – volume: 62 start-page: 4767 year: 2002 ident: e_1_2_9_43_1 article-title: Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model publication-title: Cancer Res. – ident: e_1_2_9_3_1 doi: 10.1158/1541-7786.MCR-13-0272 – ident: e_1_2_9_12_1 doi: 10.1111/j.1742-4658.2011.08051.x – ident: e_1_2_9_29_1 doi: 10.1002/hep.20853 – ident: e_1_2_9_6_1 doi: 10.1021/bi900257m – ident: e_1_2_9_10_1 doi: 10.3109/1061186X.2010.511225 – ident: e_1_2_9_42_1 doi: 10.1097/MPA.0b013e31816618ce – start-page: 281 volume-title: Methods in Enzymology year: 2009 ident: e_1_2_9_67_1 – ident: e_1_2_9_39_1 doi: 10.1055/s-0037-1613388 – ident: e_1_2_9_15_1 doi: 10.1182/blood-2003-12-4240 – ident: e_1_2_9_41_1 doi: 10.1139/y03-006 – ident: e_1_2_9_68_1 doi: 10.1074/mcp.R800012-MCP200 – ident: e_1_2_9_69_1 doi: 10.1111/j.1742-4658.2009.07526.x – ident: e_1_2_9_60_1 doi: 10.1074/mcp.M000050-MCP201 – ident: e_1_2_9_23_1 doi: 10.1128/MCB.20.3.1089-1094.2000 – ident: e_1_2_9_18_1 doi: 10.1016/j.abb.2006.11.006 – ident: e_1_2_9_19_1 doi: 10.1182/blood-2005-08-3452 – ident: e_1_2_9_54_1 doi: 10.1084/jem.20122344 – ident: e_1_2_9_59_1 doi: 10.1038/nbt.1611 – ident: e_1_2_9_13_1 doi: 10.1074/jbc.274.51.36505 – ident: e_1_2_9_20_1 doi: 10.2174/156652412803833607 – ident: e_1_2_9_36_1 doi: 10.1158/1535-7163.MCT-11-0340 – volume: 9 start-page: 1639 year: 2003 ident: e_1_2_9_56_1 article-title: A phase I dose‐escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein‐positive cancer publication-title: Clin. Cancer Res. – ident: e_1_2_9_28_1 doi: 10.1093/eurheartj/ehq519 – ident: e_1_2_9_40_1 doi: 10.1023/A:1025493605850 – ident: e_1_2_9_22_1 doi: 10.1073/pnas.93.5.1924 – ident: e_1_2_9_66_1 doi: 10.1038/nchembio.126 – ident: e_1_2_9_24_1 doi: 10.1002/(SICI)1097-0215(19970502)71:3<383::AID-IJC14>3.0.CO;2-H – ident: e_1_2_9_14_1 doi: 10.1002/hep.510290631 – ident: e_1_2_9_65_1 doi: 10.1021/ja909524e – ident: e_1_2_9_7_1 doi: 10.1074/jbc.M511112200 – ident: e_1_2_9_49_1 doi: 10.1158/1535-7163.MCT-08-1170 – ident: e_1_2_9_4_1 doi: 10.1016/B978-0-12-382219-2.00750-X – ident: e_1_2_9_46_1 doi: 10.1021/ml300410d – ident: e_1_2_9_31_1 doi: 10.1016/S1047-8477(02)00576-2 – ident: e_1_2_9_37_1 doi: 10.1242/jcs.072900 – ident: e_1_2_9_58_1 doi: 10.1038/nrm858 – ident: e_1_2_9_51_1 doi: 10.1093/jnci/djs336 – ident: e_1_2_9_53_1 doi: 10.1084/jem.20130110 – ident: e_1_2_9_11_1 doi: 10.1021/bi701921b – ident: e_1_2_9_17_1 doi: 10.1242/jcs.023820 – ident: e_1_2_9_32_1 doi: 10.1073/pnas.87.18.7235 – ident: e_1_2_9_55_1 doi: 10.1159/000069863 – ident: e_1_2_9_52_1 doi: 10.1038/mt.2013.110 – ident: e_1_2_9_16_1 doi: 10.1111/j.1538-7836.2011.04195.x – ident: e_1_2_9_25_1 doi: 10.1073/pnas.85.9.3110 – ident: e_1_2_9_64_1 doi: 10.1074/jbc.M112.445841 – ident: e_1_2_9_33_1 doi: 10.1593/neo.121850 – ident: e_1_2_9_44_1 doi: 10.1016/j.fob.2013.12.001 – ident: e_1_2_9_61_1 doi: 10.1515/BC.2011.162 – ident: e_1_2_9_2_1 doi: 10.1042/CS20040302 |
SSID | ssj0054270 |
Score | 2.5129411 |
SecondaryResourceType | review_article |
Snippet | Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 454 |
SubjectTerms | Animals Biomarkers, Tumor - metabolism Collagen Degradomics Dipeptidyl peptidase Endopeptidase Exosite Gelatinases - metabolism Gene Expression Regulation, Neoplastic Humans Membrane Proteins - metabolism Molecular Targeted Therapy - methods Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Protease Proteomics Serine Endopeptidases - metabolism |
Title | Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy |
URI | https://api.istex.fr/ark:/67375/WNG-SRL3BNPL-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprca.201300095 https://www.ncbi.nlm.nih.gov/pubmed/24470260 https://www.proquest.com/docview/1534222503 https://www.proquest.com/docview/1534790949 https://www.proquest.com/docview/1540236231 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELam7WUvwH4AYWMyEhogLVsTO4nDW5nopmmrqkLFxIvlOLY0DdIpbaeNv547Ow0rGiC01-TixM7d-fP5_B0hrxMjOLOwTE0zloS87GShyrUOixzxQx4JrTGgf9ZPj0f85Dw5v3OK3_NDtAE3tAznr9HAVTE5-EUaelVr5A3C7RiACeCEMWELUdGw5Y9KeOyqxUUA20PBeDpnbezEB4uPL8xKKzjAN_dBzkUE66ag3mOi5h_vM08u92fTYl__-I3X8SG9e0IeNfiUdr1CrZElU62TjW4Fa_Pvt3SXuoxRF4rfINejuydjqIUXjgtA41OKpyV8rJc6IoiLir7tdQfv3lN0VI4Qd7LnpRyj6x41N01GbkWhOeoT1F2r45pqVM2a-rNit5tk1Pv4-fA4bOo4hBrwFQsB4pSlK3JsI2G1iUxmVCZ4yTljTKfCKK4jHuuik8aKaZtay6wWZWFFCetP9pQsV-PKPCcUVAsBXWLzUnMB0DAubZ6bVKeJAretAhLO_6PUDck51tr4Jj09cyxxYGU7sAF508pfeXqPP0ruOrVoxVR9iUlxWSK_9I_kp-Ep-9AfnMqvAdme641s_MFEwryCsbakwwLyqr0NlozbM6oy45mXyXJYbud_k-FI-Q-gPCDPvE62HwRALUOGOBgDp1n_6JAcDA-7gN7Yi_-U3yKrcJH7fLltsjytZ-YlILNpseOs7ycGcTCo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B9gAv42N8BAYYCQ2Qlq2JnS_eykQp0FVVWTXEi5U4tjQN0ilr0cZfz52dBIr4EOI5F8e-nO3fnc-_A3gS6VRwg25qnPDIF2Uv8fNMKb_ICD9kQaoUBfQPxvFwJt5-iNpsQroL4_ghuoAbzQy7XtMEp4D03nfW0NNaEXEQnccgTrgM61TW23pV045BKhKhrRcXIHD3Uy7ilrexF-6tvr-yL62Tis9_BTpXMazdhAbXoGi773JPTnaXi2JXff2J2fG_xncdNhqIyvrOpm7AJV3dhM1-he755wu2zWzSqI3Gb8KX2Y-XY5jBL84LBOQLRhcmXLiXWS6I44o9G_Qnz18wWqssJ-7ZjpOypK47TJ83SbkVw-aYy1G3rc5rpsg6a-aui13cgtng1eH-0G9KOfgKIRb3EeWUpa1zbILUKB3oROdJKkohOOcqTnUuVCBCVfTiMOfKxMZwo9KyMGmJLii_DWvVvNJ3gaF1EaaLTFYqkSI6DEuTZTpWcZTjyp174Lc_UqqG55zKbXySjqE5lKRY2SnWg6ed_Klj-Pit5La1i04sr08oLy6J5NH4tXw_HfGX48lIfvRgqzUc2SwJZxK3Fgq3RT3uwePuMU5mOqHJKz1fOpkkQ487-5OMINZ_xOUe3HFG2XUIsVpCJHGoA2tafxmQnEz3-wjg-L1_lH8EV4aHByM5ejN-dx-uooBw6XNbsLaol_oBArVF8dBOxW_35DTD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJiFe-BofgQFGQgOkZUtix3F4KxtlQKmqsoqJFytxbAkN0ipr0cZfz9lOw4r4EOI5F8e-3J1_Pp9_BnicasGowWUqz2gasirKwiJXKixzix_yWChlE_rvhvxgwt4cpUfnTvF7fogu4WY9w8Vr6-Czyuz-IA2dNcryBtntGIQJF2Gd8UhYu94fdwRSKUvcdXEx4vZQUMaXtI1Rsrv6_sq0tG41fPorzLkKYd0c1L8KxbL3vvTkeGcxL3fUt5-IHf9neNfgSgtQSc9b1HW4oOsbsNGrcXH-5YxsEVcy6nLxG_B1cv5oDDH4wWmJcHxO7HEJn-wljgniU02e9nujZ8-JjVSOEfdk20s5Stdtok_bktyaYHPEV6i7VqcNUdY2G-IPi53dhEn_5eHeQdhe5BAqBFg0RIxTVe6WYxMLo3SsM11kglWMUUoVF7pgKmaJKiOeFFQZbgw1SlSlERUuQOktWKuntb4DBG3LIrrU5JViArFhUpk811zxtMC4XQQQLv-jVC3Lub1s47P0_MyJtIqVnWIDeNLJzzy_x28lt5xZdGJFc2yr4rJUfhi-ku_HA_piOBrIjwFsLu1GtgHhROLEYpNtaUQDeNQ9Rle2-zNFracLL5PluN7O_yTDLOc_ovIAbnub7DqESC2zFHGoA2dZfxmQHI33egjf6N1_lH8Il0b7fTl4PXx7Dy7jc-Zr5zZhbd4s9H1EafPygXPE70x3M3s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+fibroblast+activation+protein+%28FAP%29%3A+Substrates%2C+activities%2C+expression+and+targeting+for+cancer+therapy&rft.jtitle=Proteomics.+Clinical+applications&rft.au=Hamson%2C+Elizabeth+J&rft.au=Keane%2C+Fiona+M&rft.au=Tholen%2C+Stefan&rft.au=Schilling%2C+Oliver&rft.date=2014-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-8346&rft.eissn=1862-8354&rft.volume=8&rft.issue=5-6&rft.spage=454&rft_id=info:doi/10.1002%2Fprca.201300095&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3329236941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-8346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-8346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-8346&client=summon |