Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy

Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs,...

Full description

Saved in:
Bibliographic Details
Published inProteomics. Clinical applications Vol. 8; no. 5-6; pp. 454 - 463
Main Authors Hamson, Elizabeth J., Keane, Fiona M., Tholen, Stefan, Schilling, Oliver, Gorrell, Mark D.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.06.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes.
AbstractList Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post‐proline bond. FAP expression is difficult to detect in non‐diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes.
Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. [PUBLICATION ABSTRACT]
Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes.Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes.
Author Hamson, Elizabeth J.
Gorrell, Mark D.
Keane, Fiona M.
Schilling, Oliver
Tholen, Stefan
Author_xml – sequence: 1
  givenname: Elizabeth J.
  surname: Hamson
  fullname: Hamson, Elizabeth J.
  organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
– sequence: 2
  givenname: Fiona M.
  surname: Keane
  fullname: Keane, Fiona M.
  organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
– sequence: 3
  givenname: Stefan
  surname: Tholen
  fullname: Tholen, Stefan
  organization: Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
– sequence: 4
  givenname: Oliver
  surname: Schilling
  fullname: Schilling, Oliver
  organization: Faculty of Biology, University of Freiburg, Freiburg, Germany
– sequence: 5
  givenname: Mark D.
  surname: Gorrell
  fullname: Gorrell, Mark D.
  email: m.gorrell@centenary.usyd.edu.au
  organization: Molecular Hepatology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24470260$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v0zAYhy00xD7gyhFF4jKkpfg76W6lYgOpGtXGhMTFcpzXwyN1gu1s639P0o4edhknv4fn-dmvf4doz7ceEHpL8IRgTD92wegJxYRhjKfiBTogpaR5yQTf281c7qPDGG8xFpwW-BXap5wXmEp8gO6ufQ0hJu1r528y66rQVo2OKdMmuTudXOuzLrQJnM-Oz2bLD6fZVV_FFHSCeLKlXHLjDA9dgBhHY4jLkg43kDapbciM9gZCln5B0N36NXppdRPhzeN5hK7PPn-ff8kX386_zmeL3AgsWF5yWddS8IJZUloDBArQRclrzhljRpaguSGcmgpLqpmx0lpmTVlXtqw5nrIjdLzNHVb400NMauWigabRHto-KiI4pkxSRv4DZbyY4ikfU98_QW_bPvhhkQ1FKRWYDdS7R6qvVlCrLriVDmv17_MHYLIFTGhjDGB3CMFqbFeN7apdu4PAnwjGpU1FQx2ueVa7dw2sn7lELS_nMyLo-P58q7mY4GGn6fBbyYIVQv24OFdXlwv26WK5UD_ZX8M1yC4
CitedBy_id crossref_primary_10_3390_molecules26195992
crossref_primary_10_1002_1878_0261_12680
crossref_primary_10_1021_acs_jmedchem_2c00455
crossref_primary_10_1016_j_bbapap_2014_03_015
crossref_primary_10_1016_j_ejrad_2020_109021
crossref_primary_10_1007_s40291_024_00756_4
crossref_primary_10_1080_19420862_2021_1913791
crossref_primary_10_2147_OTT_S243417
crossref_primary_10_1007_s00259_021_05307_1
crossref_primary_10_1007_s00259_021_05576_w
crossref_primary_10_1016_j_pathol_2023_05_003
crossref_primary_10_3390_pharmaceutics14040720
crossref_primary_10_2174_1566524023666230530095305
crossref_primary_10_3390_ph18020277
crossref_primary_10_1016_j_semradonc_2020_07_010
crossref_primary_10_2967_jnumed_123_266798
crossref_primary_10_3390_ph17091141
crossref_primary_10_1097_MOH_0000000000000590
crossref_primary_10_1002_ijc_31953
crossref_primary_10_3389_fonc_2025_1470132
crossref_primary_10_1021_acs_molpharmaceut_2c00551
crossref_primary_10_37174_2587_7593_2023_6_4_99_104
crossref_primary_10_1007_s13346_023_01397_6
crossref_primary_10_1016_j_remn_2021_03_003
crossref_primary_10_1080_14728222_2017_1370455
crossref_primary_10_2967_jnumed_120_244806
crossref_primary_10_1007_s00259_019_04444_y
crossref_primary_10_1016_j_ejmech_2016_12_056
crossref_primary_10_3390_antib12020029
crossref_primary_10_1007_s00259_022_05758_0
crossref_primary_10_1097_MNM_0000000000001495
crossref_primary_10_1007_s12410_023_09583_3
crossref_primary_10_1053_j_semnuclmed_2023_07_004
crossref_primary_10_1016_j_ejmech_2024_117115
crossref_primary_10_1021_acs_molpharmaceut_1c00566
crossref_primary_10_1074_mcp_RA118_001046
crossref_primary_10_1007_s00330_023_09952_y
crossref_primary_10_1016_j_jcmgh_2022_12_005
crossref_primary_10_18632_oncotarget_6679
crossref_primary_10_3389_fonc_2023_1210245
crossref_primary_10_1002_slct_202301826
crossref_primary_10_1016_j_pharmthera_2022_108231
crossref_primary_10_3389_fonc_2023_1210004
crossref_primary_10_1007_s00709_017_1129_5
crossref_primary_10_1007_s12149_023_01852_x
crossref_primary_10_3390_ijms24021079
crossref_primary_10_1016_j_advms_2015_04_006
crossref_primary_10_1007_s11307_024_01935_9
crossref_primary_10_1016_j_cpet_2021_03_012
crossref_primary_10_1016_j_cpet_2023_02_008
crossref_primary_10_4049_jimmunol_2000113
crossref_primary_10_1016_j_isci_2020_100868
crossref_primary_10_12677_WJCR_2024_141004
crossref_primary_10_1016_j_critrevonc_2024_104377
crossref_primary_10_3389_fmed_2024_1464779
crossref_primary_10_1038_s41598_020_77978_z
crossref_primary_10_1021_acssensors_1c01316
crossref_primary_10_20340_mv_mn_2023_31_3__794
crossref_primary_10_1016_j_yjmcc_2015_10_005
crossref_primary_10_2967_jnumed_122_264638
crossref_primary_10_1055_a_0879_2968
crossref_primary_10_1097_JP9_0000000000000090
crossref_primary_10_1186_s12964_023_01151_y
crossref_primary_10_3390_nano12234181
crossref_primary_10_1038_s41413_022_00243_8
crossref_primary_10_3892_mmr_2022_12687
crossref_primary_10_3390_biomedicines10030523
crossref_primary_10_1016_j_yexcr_2016_02_020
crossref_primary_10_1021_acs_molpharmaceut_2c01094
crossref_primary_10_1093_ecco_jcc_jjaa009
crossref_primary_10_2967_jnumed_121_262533
crossref_primary_10_1007_s00259_021_05203_8
crossref_primary_10_2174_0929867327666191223121211
crossref_primary_10_1097_RLU_0000000000004523
crossref_primary_10_1007_s00259_021_05378_0
crossref_primary_10_1016_j_ejrad_2021_109875
crossref_primary_10_1021_acsmedchemlett_9b00191
crossref_primary_10_1007_s00259_022_05955_x
crossref_primary_10_2147_IJN_S447350
crossref_primary_10_3390_diagnostics13040597
crossref_primary_10_3389_fbioe_2023_1291824
crossref_primary_10_3390_ph16081138
crossref_primary_10_1148_radiol_212430
crossref_primary_10_3389_fimmu_2023_1183440
crossref_primary_10_1038_s42003_024_05772_y
crossref_primary_10_1093_hropen_hoaf003
crossref_primary_10_3389_fonc_2021_758958
crossref_primary_10_1039_D1CS00525A
crossref_primary_10_1210_clinem_dgad583
crossref_primary_10_1021_acs_bioconjchem_4c00426
crossref_primary_10_3389_fonc_2021_797960
crossref_primary_10_1007_s00418_014_1292_0
crossref_primary_10_3390_ph16030423
crossref_primary_10_1097_RLU_0000000000004641
crossref_primary_10_1186_s12885_023_11544_4
crossref_primary_10_1002_prca_201470035
crossref_primary_10_3390_biomedicines13040775
crossref_primary_10_1007_s11307_022_01759_5
crossref_primary_10_1053_j_semnuclmed_2024_01_001
crossref_primary_10_1007_s11307_023_01872_z
crossref_primary_10_3390_cancers15061889
crossref_primary_10_1016_j_bbamcr_2014_11_029
crossref_primary_10_1016_j_ejrad_2021_109867
crossref_primary_10_1080_07391102_2023_2237594
crossref_primary_10_1021_acs_bioconjchem_1c00305
crossref_primary_10_1016_j_dld_2021_07_011
crossref_primary_10_3390_ijms222011192
crossref_primary_10_3390_ph15111411
crossref_primary_10_1007_s00259_021_05554_2
crossref_primary_10_3390_pharmaceutics16030345
crossref_primary_10_1021_acs_jmedchem_4c00031
crossref_primary_10_1016_j_isci_2023_108541
crossref_primary_10_1007_s40336_023_00548_6
crossref_primary_10_1097_RLU_0000000000003856
crossref_primary_10_1016_j_celrep_2020_108252
crossref_primary_10_1208_s12248_019_0333_y
crossref_primary_10_1016_j_cpet_2022_03_001
crossref_primary_10_18632_aging_204707
crossref_primary_10_3389_fcvm_2022_1064157
crossref_primary_10_1007_s00259_021_05336_w
crossref_primary_10_1259_bjr_20230038
crossref_primary_10_1016_j_ab_2022_114859
crossref_primary_10_1038_s41574_020_0386_0
crossref_primary_10_1016_j_cpet_2022_03_005
crossref_primary_10_1007_s00261_024_04266_z
crossref_primary_10_2967_jnumed_123_266403
crossref_primary_10_1007_s13346_023_01308_9
crossref_primary_10_1097_RLU_0000000000004021
crossref_primary_10_1177_10732748221078470
crossref_primary_10_1007_s00259_024_06703_z
crossref_primary_10_1021_acs_analchem_1c00413
crossref_primary_10_1080_14737140_2023_2213890
crossref_primary_10_1007_s00259_023_06144_0
crossref_primary_10_1016_j_matbio_2018_04_006
crossref_primary_10_1007_s00259_023_06436_5
crossref_primary_10_1016_j_semcancer_2020_03_015
crossref_primary_10_1186_s12885_020_07541_6
crossref_primary_10_3390_ph15050590
crossref_primary_10_3390_cancers14112609
crossref_primary_10_2967_jnumed_120_258467
crossref_primary_10_1007_s40336_024_00656_x
crossref_primary_10_3390_biomedicines12030545
crossref_primary_10_3389_fonc_2024_1373286
crossref_primary_10_1007_s11596_023_2740_7
crossref_primary_10_3390_cancers14174253
crossref_primary_10_1371_journal_pone_0178987
crossref_primary_10_1002_ird3_46
crossref_primary_10_1007_s00595_025_03024_y
crossref_primary_10_4274_nts_galenos_2024_0011
crossref_primary_10_1007_s00259_022_05839_0
crossref_primary_10_1021_acs_molpharmaceut_1c00712
crossref_primary_10_1111_hel_12538
crossref_primary_10_1007_s12149_021_01616_5
crossref_primary_10_1093_biolre_ioad065
crossref_primary_10_3389_fcell_2021_539893
crossref_primary_10_2967_jnumed_123_267151
crossref_primary_10_1016_j_diabres_2015_02_024
crossref_primary_10_2967_jnumed_121_261925
crossref_primary_10_3390_ph17030296
crossref_primary_10_1038_s41586_024_07461_6
crossref_primary_10_1111_odi_14602
crossref_primary_10_1097_MNM_0000000000001702
crossref_primary_10_3390_ijms21010170
crossref_primary_10_1021_acs_molpharmaceut_3c00248
crossref_primary_10_1186_s41181_020_00102_z
crossref_primary_10_1097_MD_0000000000034629
crossref_primary_10_3390_cancers16040839
crossref_primary_10_1007_s11307_022_01715_3
crossref_primary_10_3390_life13091821
crossref_primary_10_3390_cancers15123147
crossref_primary_10_1111_1756_185X_13031
crossref_primary_10_1097_RLU_0000000000003990
crossref_primary_10_1002_smll_202309279
crossref_primary_10_1161_CIRCRESAHA_121_318005
crossref_primary_10_2967_jnumed_119_241232
crossref_primary_10_1016_j_imbio_2016_09_007
crossref_primary_10_2967_jnumed_123_266393
crossref_primary_10_3390_jcm12186033
crossref_primary_10_3389_fonc_2022_834350
crossref_primary_10_1515_bams_2021_0169
crossref_primary_10_3390_ph15060729
crossref_primary_10_3390_molecules27206790
crossref_primary_10_1073_pnas_2209815120
crossref_primary_10_3390_cancers13184543
crossref_primary_10_1016_j_remnie_2021_04_006
crossref_primary_10_1002_cbic_201800429
crossref_primary_10_3390_cancers14133167
crossref_primary_10_1097_MD_0000000000034166
crossref_primary_10_2967_jnumed_119_227967
crossref_primary_10_1016_j_bioorg_2023_106878
crossref_primary_10_37336_2707_0700_2019_4_5
crossref_primary_10_37336_2707_0700_2019_4_6
crossref_primary_10_1038_s41598_023_30806_6
crossref_primary_10_2967_jnumed_118_214361
crossref_primary_10_1016_j_biochi_2019_08_003
crossref_primary_10_1007_s00259_022_05706_y
crossref_primary_10_1016_j_bbamcr_2015_07_013
crossref_primary_10_3390_ph14121212
crossref_primary_10_1053_j_semnuclmed_2022_04_002
crossref_primary_10_3390_ph14101023
crossref_primary_10_4103_ijnm_ijnm_70_24
crossref_primary_10_1002_EXP_20210106
crossref_primary_10_1007_s00259_022_05754_4
crossref_primary_10_1038_s41467_022_29186_8
crossref_primary_10_1007_s00259_023_06282_5
crossref_primary_10_1021_acs_jmedchem_9b00642
crossref_primary_10_1186_s41181_019_0069_0
crossref_primary_10_1016_j_ejmech_2023_115993
crossref_primary_10_3390_cancers13225744
crossref_primary_10_1111_febs_13371
crossref_primary_10_1016_j_cpet_2023_12_008
crossref_primary_10_1038_s41388_018_0275_3
crossref_primary_10_1038_s41392_024_02041_6
crossref_primary_10_1007_s12029_019_00224_x
crossref_primary_10_1007_s12350_020_02307_w
crossref_primary_10_1097_RLU_0000000000003968
crossref_primary_10_1259_bjr_20220994
crossref_primary_10_1016_j_radonc_2021_02_015
crossref_primary_10_1016_j_lfs_2023_121970
crossref_primary_10_1007_s00259_022_05962_y
crossref_primary_10_1186_s41181_021_00142_z
crossref_primary_10_1016_j_cpet_2022_03_010
crossref_primary_10_1080_14728222_2020_1751819
crossref_primary_10_2147_ITT_S291767
crossref_primary_10_1007_s11307_023_01817_6
crossref_primary_10_3389_fimmu_2022_871661
crossref_primary_10_1042_BJ20151085
crossref_primary_10_1007_s11033_020_05853_1
crossref_primary_10_1016_j_critrevonc_2025_104705
crossref_primary_10_1016_j_bcp_2024_116604
crossref_primary_10_3390_vaccines4040041
crossref_primary_10_1038_s41416_022_01748_z
crossref_primary_10_3390_molecules27010264
crossref_primary_10_1007_s12149_021_01672_x
crossref_primary_10_1007_s11010_024_05134_6
crossref_primary_10_1016_j_matbio_2019_07_007
crossref_primary_10_1016_j_peptides_2015_11_004
crossref_primary_10_1016_j_cpet_2019_11_004
crossref_primary_10_1038_s41598_024_66196_6
crossref_primary_10_3390_bioengineering10050521
crossref_primary_10_22328_2079_5343_2022_13_4_27_37
crossref_primary_10_1021_acsanm_3c05525
crossref_primary_10_3389_fimmu_2024_1352615
crossref_primary_10_1371_journal_pone_0171194
crossref_primary_10_1007_s00259_022_05799_5
crossref_primary_10_3390_molecules25163672
crossref_primary_10_3389_fimmu_2018_00262
crossref_primary_10_1016_j_oraloncology_2022_106024
crossref_primary_10_2967_jnumed_118_215913
crossref_primary_10_3390_ijms24043863
crossref_primary_10_52601_bpr_2024_240022
crossref_primary_10_1021_acsbiomaterials_9b00425
crossref_primary_10_1016_j_ygyno_2025_01_010
crossref_primary_10_1007_s10967_022_08624_3
crossref_primary_10_1016_j_omtm_2024_101378
crossref_primary_10_1016_j_molmet_2016_07_003
crossref_primary_10_1097_RLU_0000000000004438
crossref_primary_10_3389_fonc_2021_802676
crossref_primary_10_3390_ijms252212296
crossref_primary_10_1016_j_cpet_2024_05_002
crossref_primary_10_1007_s12149_022_01742_8
crossref_primary_10_3389_fbioe_2023_1167329
crossref_primary_10_1016_j_molonc_2015_08_001
crossref_primary_10_1007_s00259_022_05836_3
crossref_primary_10_1016_j_biomaterials_2019_119745
crossref_primary_10_1016_j_pathol_2024_12_637
crossref_primary_10_1021_acs_jmedchem_3c02402
crossref_primary_10_1007_s00261_022_03764_2
crossref_primary_10_1038_s41378_022_00370_6
crossref_primary_10_1039_D4CB00267A
crossref_primary_10_1016_j_acra_2024_04_017
crossref_primary_10_3390_cancers15041193
crossref_primary_10_1016_j_bbamem_2016_05_001
crossref_primary_10_3390_ph17060726
crossref_primary_10_1007_s11033_022_07603_x
crossref_primary_10_2967_jnumed_118_220566
crossref_primary_10_1007_s12149_021_01673_w
crossref_primary_10_1002_adbi_202200111
crossref_primary_10_1158_2767_9764_CRC_24_0601
crossref_primary_10_3390_ani12070873
crossref_primary_10_3390_ph15081000
crossref_primary_10_1002_VIW_20230029
crossref_primary_10_1016_j_semcancer_2022_04_008
crossref_primary_10_1007_s00259_022_06067_2
crossref_primary_10_1016_j_cej_2024_154173
crossref_primary_10_1002_pro6_1245
crossref_primary_10_1007_s00259_022_06021_2
crossref_primary_10_1016_j_eprac_2020_10_001
crossref_primary_10_1007_s40336_021_00470_9
crossref_primary_10_1007_s00259_022_06095_y
crossref_primary_10_18821_0208_0613_2016_34_3_90_97
crossref_primary_10_1007_s00259_021_05194_6
crossref_primary_10_1007_s43032_022_01064_0
crossref_primary_10_1371_journal_pone_0294564
crossref_primary_10_1007_s00259_020_04769_z
crossref_primary_10_1016_j_canlet_2015_10_021
crossref_primary_10_2967_jnumed_119_236786
crossref_primary_10_1016_j_ijcard_2014_10_091
crossref_primary_10_1007_s00261_022_03512_6
crossref_primary_10_1021_acs_jmedchem_4c00772
crossref_primary_10_3389_fonc_2022_875081
crossref_primary_10_2967_jnumed_118_210435
crossref_primary_10_1093_ibd_izx008
crossref_primary_10_1007_s00432_024_06075_9
crossref_primary_10_1007_s00259_020_04940_6
crossref_primary_10_1074_jbc_M115_710582
crossref_primary_10_1097_RLU_0000000000005662
crossref_primary_10_1097_RLU_0000000000005783
crossref_primary_10_1161_CIRCRESAHA_122_320781
crossref_primary_10_1158_1535_7163_MCT_24_0125
crossref_primary_10_1016_j_bcp_2023_115914
crossref_primary_10_3390_jcm12030968
crossref_primary_10_1134_S1607672916050033
crossref_primary_10_1093_rheumatology_keae225
crossref_primary_10_1055_a_1715_5069
crossref_primary_10_1016_j_cpet_2024_09_009
crossref_primary_10_1007_s00259_023_06482_z
crossref_primary_10_1007_s00330_022_09321_1
crossref_primary_10_3389_fonc_2024_1445191
crossref_primary_10_2214_AJR_20_23794
crossref_primary_10_3390_cancers13215495
crossref_primary_10_33145_2304_8336_2023_28_49_64
crossref_primary_10_1007_s00259_022_06096_x
crossref_primary_10_1021_acs_jmedchem_4c00544
crossref_primary_10_2967_jnumed_123_266345
crossref_primary_10_3390_cancers13194946
crossref_primary_10_1186_s12967_022_03559_5
Cites_doi 10.1074/jbc.C500092200
10.1016/j.febslet.2012.06.015
10.1186/ar2080
10.1073/pnas.1117158109
10.1172/JCI38988
10.1126/science.1195300
10.1074/jbc.M111.252718
10.1186/ar1877
10.1371/journal.pone.0058860
10.1038/nrm2120
10.1002/med.20137
10.1016/j.febslet.2006.01.087
10.1034/j.1600-0676.2002.01503.x
10.1074/mcp.M111.009233
10.1021/jm400351a
10.1158/1541-7786.MCR-13-0272
10.1111/j.1742-4658.2011.08051.x
10.1002/hep.20853
10.1021/bi900257m
10.3109/1061186X.2010.511225
10.1097/MPA.0b013e31816618ce
10.1055/s-0037-1613388
10.1182/blood-2003-12-4240
10.1139/y03-006
10.1074/mcp.R800012-MCP200
10.1111/j.1742-4658.2009.07526.x
10.1074/mcp.M000050-MCP201
10.1128/MCB.20.3.1089-1094.2000
10.1016/j.abb.2006.11.006
10.1182/blood-2005-08-3452
10.1084/jem.20122344
10.1038/nbt.1611
10.1074/jbc.274.51.36505
10.2174/156652412803833607
10.1158/1535-7163.MCT-11-0340
10.1093/eurheartj/ehq519
10.1023/A:1025493605850
10.1073/pnas.93.5.1924
10.1038/nchembio.126
10.1002/(SICI)1097-0215(19970502)71:3<383::AID-IJC14>3.0.CO;2-H
10.1002/hep.510290631
10.1021/ja909524e
10.1074/jbc.M511112200
10.1158/1535-7163.MCT-08-1170
10.1016/B978-0-12-382219-2.00750-X
10.1021/ml300410d
10.1016/S1047-8477(02)00576-2
10.1242/jcs.072900
10.1038/nrm858
10.1093/jnci/djs336
10.1084/jem.20130110
10.1021/bi701921b
10.1242/jcs.023820
10.1073/pnas.87.18.7235
10.1159/000069863
10.1038/mt.2013.110
10.1111/j.1538-7836.2011.04195.x
10.1073/pnas.85.9.3110
10.1074/jbc.M112.445841
10.1593/neo.121850
10.1016/j.fob.2013.12.001
10.1515/BC.2011.162
10.1042/CS20040302
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
7QO
DOI 10.1002/prca.201300095
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList CrossRef
Genetics Abstracts
MEDLINE
MEDLINE - Academic
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1862-8354
EndPage 463
ExternalDocumentID 3329236941
24470260
10_1002_prca_201300095
PRCA1523
ark_67375_WNG_SRL3BNPL_Z
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Health and Medical Research Council (Australia)
  funderid: 632822
GroupedDBID ---
05W
0R~
123
1OC
33P
3SF
3WU
4.4
52U
52V
53G
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O66
O9-
P2W
P4E
PQQKQ
RNS
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
WYJ
XV2
~S-
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
K9.
P64
RC3
7X8
7QO
ID FETCH-LOGICAL-c5053-846dd65473f18fce1e7ea784d44333c68ea4c142cb062a3cf6ff3fc8dbf8d4093
IEDL.DBID DR2
ISSN 1862-8346
1862-8354
IngestDate Fri Jul 11 08:20:11 EDT 2025
Fri Jul 11 03:31:11 EDT 2025
Fri Jul 25 12:27:22 EDT 2025
Thu Apr 03 07:04:42 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 02:14:11 EDT 2025
Wed Jan 22 16:52:14 EST 2025
Wed Oct 30 09:56:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Degradomics
Protease
Collagen
Endopeptidase
Exosite
Dipeptidyl peptidase
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5053-846dd65473f18fce1e7ea784d44333c68ea4c142cb062a3cf6ff3fc8dbf8d4093
Notes ArticleID:PRCA1523
National Health and Medical Research Council (Australia) - No. 632822
istex:8437D00829D5673D3C2A4182D40068367BB7C96C
ark:/67375/WNG-SRL3BNPL-Z
See the article online to view Figs. 1–4 in colour.
Colour Online
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24470260
PQID 1534222503
PQPubID 1016438
PageCount 10
ParticipantIDs proquest_miscellaneous_1540236231
proquest_miscellaneous_1534790949
proquest_journals_1534222503
pubmed_primary_24470260
crossref_primary_10_1002_prca_201300095
crossref_citationtrail_10_1002_prca_201300095
wiley_primary_10_1002_prca_201300095_PRCA1523
istex_primary_ark_67375_WNG_SRL3BNPL_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Proteomics. Clinical applications
PublicationTitleAlternate Prot. Clin. Appl
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Keane, F. M., Chowdhury, S., Yao, T.-W., Nadvi, N. A. et al., in: Dunn, B. (Ed.), Proteinases as Drug Targets, Royal Society of Chemistry, Cambridge, UK 2012, pp. 119-145.
Gao, M. Q., Kim, B. G., Kang, S., Choi, Y. P. et al., Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J. Cell Sci. 2010, 123, 3507-3514.
Brennen, W. N., Isaacs, J. T., Denmeade, S. R., Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 2012, 11, 257-266.
Aggarwal, S., Brennen, W. N., Kole, T. P., Schneider, E. et al., Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008, 47, 1076-1086.
Levy, M. T., McCaughan, G. W., Abbott, C. A., Park, J. E. et al., Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999, 29, 1768-1778.
Wang, X. M., Yu, D. M. T., McCaughan, G. W., Gorrell, M. D., Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX-2 human stellate cell line. Hepatology 2005, 42, 935-945.
Tinoco, A. D., Tagore, D. M., Saghatelian, A., Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform. J. Am. Chem. Soc. 2010, 132, 3819-3830.
Edosada, C. Y., Quan, C., Wiesmann, C., Tran, T. et al., Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 2006, 281, 7437-7444.
Niedermeyer, J., Garin-Chesa, P., Kriz, M., Hilberg, F. et al., Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 2001, 45, 445-447.
Scott, A. M., Wiseman, G., Welt, S., Adjei, A. et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003, 9, 1639-1647.
Santos, A. M., Jung, J., Aziz, N., Kissil, J. L., Pure, E., Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 2010, 119, 3613-3626.
Roberts, E. W., Deonarine, A., Jones, J. O., Denton, A. E. et al., Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 2013, 210, 1137-1151.
Jambunathan, K., Watson, D. S., Endsley, A. N., Kodukula, K., Galande, A. K., Comparative analysis of the substrate preferences of two post-proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha. FEBS Lett. 2012, 586, 2507-2512.
Bauer, S., Jendro, M. C., Wadle, A., Kleber, S. et al., Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 2006, 8, R171.
Starr, A. E., Overall, C. M., in: Handel, T. M., Hamel, D. L. (Eds), Methods in Enzymology, Academic Press, New York, 2009, pp. 281-307.
Park, J. E., Lenter, M. C., Zimmermann, R. N., Garin-Chesa, P. et al., Fibroblast activation protein: a dual-specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999, 274, 36505-36512.
Cohen, S. J., Alpaugh, R. K., Palazzo, I., Meropol, N. J. et al., Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 2008, 37, 154-158.
Kleifeld, O., Doucet, A., Keller, U. a. d., Prudova, A. et al., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 2010, 28, 281-291.
Lee, K. N., Jackson, K. W., Christiansen, V. J., Chung, K. H., McKee, P. A., A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004, 103, 3783-3788.
Keane, F., Yao, T.-W., Seelk, S., Gall, M. G. et al., Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144-AMC. FEBS Open Bio. 2014, 4, 43-54.
Huang, S., Fang, R., Xu, J., Qui, S. et al., Evaluation of the tumor targeting of a FAPalpha-based doxorubicin prodrug. J. Drug Target. 2011, 19, 487-496.
Tholen, S., Biniossek, M. L., Gessler, A., Mueller, S. et al., Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol. Chem. 2011, 392, 961-971.
Zukowska, Z., Pons, J., Lee, E. W., Li, L., Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? Can. J. Physiol. Pharmacol. 2003, 81, 89-94.
Cox, G., Kable, E., Jones, A., Fraser, I. et al., 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 2003, 141, 53-62.
Tran, E., Chinnasamy, D., Yu, Z., Morgan, R. A. et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 2013, 210, 1125-1135.
Niedermeyer, J., Scanlan, M. J., Garin-Chesa, P., Daiber, C. et al., Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int. J. Cancer 1997, 71, 383-389.
Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A., Overall, C. M., Metadegradomics. Mol. Cell. Proteomics 2008, 7, 1925-1951.
Brokopp, C. E., Schoenauer, R., Richards, P., Bauer, S. et al., Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur. Heart J. 2011, 32, 2713-2722.
López-Otin, C., Overall, C. M., Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 2002, 3, 509-519.
Agard, N. J., Mahrus, S., Trinidad, J. C., Lynn, A. et al., Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc. Natl Acad. Sci. USA 2012, 109, 1913-1918.
Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., Denmeade, S. R., Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 2012, 104, 1320-1334.
Lee, K. N., Jackson, K. W., Christiansen, V. J., Lee, C. S. et al., Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397-1404.
Poplawski, S. E., Lai, J. H., Li, Y., Jin, Z. et al., Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 2013, 56, 3467-3477.
Hofheinz, R., Al-Batran, S., Hartmann, F., Hartung, G. et al., Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003, 26, 44-48.
Aertgeerts, K., Levin, I., Shi, L., Snell, G. P. et al., Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha. J. Biol. Chem. 2005, 280, 19441-19444.
Overall, C. M., Blobel, C. P., In search of partners: linking extracellular proteases to substrates. Nature Rev. Mol. Cell. Biol. 2007, 8, 245-257.
Lee, K. N., Jackson, K. W., Terzyan, S., Christiansen, V. J., McKee, P. A., Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor deisgn. Biochemistry 2009, 48, 5149-5158.
Walsh, M. P., Duncan, B., Larabee, S., Krauss, A. et al., Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS ONE 2013, 8, e58860.
Zhang, H., Chen, Y., Keane, F. M., Gorrell, M. D., Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 2013, 11, 1487-1496.
Garin-Chesa, P., Old, L. J., Rettig, W. J., Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 1990, 87, 7235-7239.
Cheng, J. D., Dunbrack, R. L., Valianou, M., Rogatko, A. et al., Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 2002, 62, 4767-4772.
Milner, J. M., Kevorkian, L., Young, D. A., Jones, D. et al., Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res. Ther. 2006, 8, R23.
Frantz, C., Stewart, K. M., Weaver, V. M., The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195-4200.
Gorrell, M. D., Park, J. E., in: Rawlings, N. L., Salvesen, G. (Eds.), Handbook of Proteolytic Enzymes, 3rd edition, Elsevier, San Diego 2013, pp. 3395-3401.
Prudova, A., auf dem Keller, U., Butler, G. S., Overall, C. M., Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 2010, 9, 894-911.
Niedermeyer, J., Kriz, M., Hilberg, F., Garin-Chesa, P. et al., Targeted disruption of mouse fibroblast activation protein. Mol. Cell. Biol. 2000, 20, 1089-1094.
Kakarla, S., Chow, K. K. H., Mata, M., Schaffer, D. R. et al., Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma. Molec. Ther. 2013, 21, 1611-1620.
Becker-Pauly, C., Barre, O., Schilling, O., auf dem Keller, U. et al., Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol. Cell. Proteomics 2011, 10, 1-19.
Jefferson, T., Causevic, M., Keller, U. a. d., Schilling, O. et al., Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J. Biol. Chem. 2011, 286, 27741-27750.
Chen, Y., Hu, L., Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2008, 29, 29-64.
Edosada, C. Y., Quan, C., Tran, T., Pham, V. et al., Peptide substrate profiling defines fibroblast activation protein as an endopeptidase
2011; 278
2013; 4
2013; 21
2013; 288
2008; 37
2008; 7
2011; 10
2001; 45
2013; 8
2011; 19
2012; 12
2011; 392
2012; 11
2009; 48
1990; 87
2013; 15
2014; 4
2007; 457
2013; 11
2010; 119
2013; 56
2010; 28
2008; 29
2010; 277
2003; 9
2007; 8
2005; 108
1988; 85
2006; 281
2010; 9
2011; 286
2003; 89
2004; 103
2012; 586
2003; 81
2012
1999; 29
2010; 123
2000; 20
2009
1996; 93
2006; 8
2005; 42
2002; 3
2011; 32
2012; 104
2012; 109
2011; 9
2005; 280
1997; 71
2002; 62
2002; 22
2008; 47
1999; 274
2010; 330
2010; 132
2006; 580
2013; 210
2003; 26
2009; 8
2009; 5
2013
2006; 107
2003; 20
2003; 141
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Cheng J. D. (e_1_2_9_43_1) 2002; 62
Keane F. M. (e_1_2_9_34_1) 2012
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Scott A. M. (e_1_2_9_56_1) 2003; 9
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Niedermeyer J. (e_1_2_9_21_1) 2001; 45
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Starr A. E. (e_1_2_9_67_1) 2009
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – reference: Gorrell, M. D., Park, J. E., in: Rawlings, N. L., Salvesen, G. (Eds.), Handbook of Proteolytic Enzymes, 3rd edition, Elsevier, San Diego 2013, pp. 3395-3401.
– reference: Edosada, C. Y., Quan, C., Wiesmann, C., Tran, T. et al., Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 2006, 281, 7437-7444.
– reference: Keane, F., Yao, T.-W., Seelk, S., Gall, M. G. et al., Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144-AMC. FEBS Open Bio. 2014, 4, 43-54.
– reference: Cox, G., Kable, E., Jones, A., Fraser, I. et al., 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 2003, 141, 53-62.
– reference: Gao, M. Q., Kim, B. G., Kang, S., Choi, Y. P. et al., Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J. Cell Sci. 2010, 123, 3507-3514.
– reference: Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W. et al., Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-{alpha}. Science 2010, 330, 827-830.
– reference: Aertgeerts, K., Levin, I., Shi, L., Snell, G. P. et al., Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha. J. Biol. Chem. 2005, 280, 19441-19444.
– reference: López-Otin, C., Overall, C. M., Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 2002, 3, 509-519.
– reference: Walsh, M. P., Duncan, B., Larabee, S., Krauss, A. et al., Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS ONE 2013, 8, e58860.
– reference: Milner, J. M., Kevorkian, L., Young, D. A., Jones, D. et al., Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res. Ther. 2006, 8, R23.
– reference: Edosada, C. Y., Quan, C., Tran, T., Pham, V. et al., Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett. 2006, 580, 1581-1586.
– reference: Park, J. E., Lenter, M. C., Zimmermann, R. N., Garin-Chesa, P. et al., Fibroblast activation protein: a dual-specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999, 274, 36505-36512.
– reference: Brown, D. D., Wang, Z., Furlow, J. D., Kanamori, A. et al., The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 1996, 93, 1924-1929.
– reference: Lee, K. N., Jackson, K. W., Terzyan, S., Christiansen, V. J., McKee, P. A., Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor deisgn. Biochemistry 2009, 48, 5149-5158.
– reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Dolence, E. K., McKee, P. A., Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor alpha2-antiplasmin. J. Thromb. Haemost. 2011, 9, 987-996.
– reference: Aimes, R. T., Zijlstra, A., Hooper, J. D., Ogbourne, S. M. et al., Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 2003, 89, 561-572.
– reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Chung, K. H., McKee, P. A., A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004, 103, 3783-3788.
– reference: LeBeau, A. M., Brennen, W. N., Aggarwal, S., Denmeade, S. R., Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009, 8, 1378-1386.
– reference: Yu, D. M. T., Yao, T.-W., Chowdhury, S., Nadvi, N. A. et al., The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J. 2010, 277, 1126-1144.
– reference: Goodman, J., Rozypal, T., Kelly, T., Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin. Exp. Metastasis 2003, 20, 459-470.
– reference: Niedermeyer, J., Scanlan, M. J., Garin-Chesa, P., Daiber, C. et al., Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int. J. Cancer 1997, 71, 383-389.
– reference: Jansen, K., Heirbaut, L., Cheng, J. D., Joossens, J. et al., Selective inhibitors of fibroblast activation protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med. Chem. Lett. 2013, 4, 491-496.
– reference: Agard, N. J., Mahrus, S., Trinidad, J. C., Lynn, A. et al., Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc. Natl Acad. Sci. USA 2012, 109, 1913-1918.
– reference: Niedermeyer, J., Kriz, M., Hilberg, F., Garin-Chesa, P. et al., Targeted disruption of mouse fibroblast activation protein. Mol. Cell. Biol. 2000, 20, 1089-1094.
– reference: Zhang, H., Chen, Y., Keane, F. M., Gorrell, M. D., Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 2013, 11, 1487-1496.
– reference: Huang, S., Fang, R., Xu, J., Qui, S. et al., Evaluation of the tumor targeting of a FAPalpha-based doxorubicin prodrug. J. Drug Target. 2011, 19, 487-496.
– reference: Prudova, A., auf dem Keller, U., Butler, G. S., Overall, C. M., Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 2010, 9, 894-911.
– reference: Garin-Chesa, P., Old, L. J., Rettig, W. J., Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 1990, 87, 7235-7239.
– reference: Rettig, W. J., Garin-Chesa, P., Beresford, H. R., Oettegen, H. F. et al., Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl Acad. Sci. USA 1988, 85, 3110-3114.
– reference: Cheng, J. D., Dunbrack, R. L., Valianou, M., Rogatko, A. et al., Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 2002, 62, 4767-4772.
– reference: Kakarla, S., Chow, K. K. H., Mata, M., Schaffer, D. R. et al., Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma. Molec. Ther. 2013, 21, 1611-1620.
– reference: Tholen, S., Biniossek, M. L., Gessler, A., Mueller, S. et al., Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol. Chem. 2011, 392, 961-971.
– reference: Bauer, S., Jendro, M. C., Wadle, A., Kleber, S. et al., Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 2006, 8, R171.
– reference: Wilson, C. H., Inadarto, D., Doucet, A., Pogson, L. D. et al., Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism. J. Biol. Chem. 2013, 288, 13936-13949.
– reference: Hofheinz, R., Al-Batran, S., Hartmann, F., Hartung, G. et al., Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003, 26, 44-48.
– reference: Cohen, S. J., Alpaugh, R. K., Palazzo, I., Meropol, N. J. et al., Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 2008, 37, 154-158.
– reference: Gorrell, M. D., Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin. Sci. 2005, 108, 277-292.
– reference: Brennen, W. N., Isaacs, J. T., Denmeade, S. R., Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 2012, 11, 257-266.
– reference: Wang, X. M., Yu, D. M. T., McCaughan, G. W., Gorrell, M. D., Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX-2 human stellate cell line. Hepatology 2005, 42, 935-945.
– reference: Levy, M. T., McCaughan, G. W., Abbott, C. A., Park, J. E. et al., Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999, 29, 1768-1778.
– reference: Tagore, D. M., Nolte, W., Neveu, J., Rangel, R. et al., Peptidase substrates via global peptide profiling. Nat. Chem. Biol. 2009, 5, 23-25.
– reference: Roberts, E. W., Deonarine, A., Jones, J. O., Denton, A. E. et al., Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 2013, 210, 1137-1151.
– reference: Jacob, M., Chang, L., Puré, E., Fibroblast activation protein in remodeling tissues. Curr. Mol. Med. 2012, 12, 1220-1243.
– reference: Keane, F. M., Nadvi, N. A., Yao, T.-W., Gorrell, M. D., Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-α. FEBS J. 2011, 278, 1316-1332.
– reference: Niedermeyer, J., Garin-Chesa, P., Kriz, M., Hilberg, F. et al., Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 2001, 45, 445-447.
– reference: Christiansen, V. J., Jackson, K. W., Lee, K. N., McKee, P. A., Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch. Biochem. Biophys. 2007, 457, 177-186.
– reference: Zukowska, Z., Pons, J., Lee, E. W., Li, L., Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? Can. J. Physiol. Pharmacol. 2003, 81, 89-94.
– reference: Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A., Overall, C. M., Metadegradomics. Mol. Cell. Proteomics 2008, 7, 1925-1951.
– reference: Poplawski, S. E., Lai, J. H., Li, Y., Jin, Z. et al., Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 2013, 56, 3467-3477.
– reference: Jambunathan, K., Watson, D. S., Endsley, A. N., Kodukula, K., Galande, A. K., Comparative analysis of the substrate preferences of two post-proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha. FEBS Lett. 2012, 586, 2507-2512.
– reference: Aggarwal, S., Brennen, W. N., Kole, T. P., Schneider, E. et al., Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008, 47, 1076-1086.
– reference: Overall, C. M., Blobel, C. P., In search of partners: linking extracellular proteases to substrates. Nature Rev. Mol. Cell. Biol. 2007, 8, 245-257.
– reference: Christiansen, V. J., Jackson, K., Lee, K., Downs, T., McKee, P. A., Targeting inhibition of fibroblast activation protein-alpha and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments. Neoplasia 2013, 15, 348-358.
– reference: Jefferson, T., Causevic, M., Keller, U. a. d., Schilling, O. et al., Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J. Biol. Chem. 2011, 286, 27741-27750.
– reference: Lee, K. N., Jackson, K. W., Christiansen, V. J., Lee, C. S. et al., Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397-1404.
– reference: Keane, F. M., Chowdhury, S., Yao, T.-W., Nadvi, N. A. et al., in: Dunn, B. (Ed.), Proteinases as Drug Targets, Royal Society of Chemistry, Cambridge, UK 2012, pp. 119-145.
– reference: Kleifeld, O., Doucet, A., Keller, U. a. d., Prudova, A. et al., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 2010, 28, 281-291.
– reference: Tran, E., Chinnasamy, D., Yu, Z., Morgan, R. A. et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 2013, 210, 1125-1135.
– reference: Chen, Y., Hu, L., Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2008, 29, 29-64.
– reference: Becker-Pauly, C., Barre, O., Schilling, O., auf dem Keller, U. et al., Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol. Cell. Proteomics 2011, 10, 1-19.
– reference: Brokopp, C. E., Schoenauer, R., Richards, P., Bauer, S. et al., Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur. Heart J. 2011, 32, 2713-2722.
– reference: Levy, M. T., McCaughan, G. W., Marinos, G., Gorrell, M. D., Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver Internat. 2002, 22, 93-101.
– reference: Santos, A. M., Jung, J., Aziz, N., Kissil, J. L., Pure, E., Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 2010, 119, 3613-3626.
– reference: Tinoco, A. D., Tagore, D. M., Saghatelian, A., Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform. J. Am. Chem. Soc. 2010, 132, 3819-3830.
– reference: Scott, A. M., Wiseman, G., Welt, S., Adjei, A. et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003, 9, 1639-1647.
– reference: Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., Denmeade, S. R., Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 2012, 104, 1320-1334.
– reference: Starr, A. E., Overall, C. M., in: Handel, T. M., Hamel, D. L. (Eds), Methods in Enzymology, Academic Press, New York, 2009, pp. 281-307.
– reference: Frantz, C., Stewart, K. M., Weaver, V. M., The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195-4200.
– start-page: 119
  year: 2012
  end-page: 145
– volume: 141
  start-page: 53
  year: 2003
  end-page: 62
  article-title: 3‐dimensional imaging of collagen using second harmonic generation
  publication-title: J. Struct. Biol.
– volume: 103
  start-page: 3783
  year: 2004
  end-page: 3788
  article-title: A novel plasma proteinase potentiates alpha2‐antiplasmin inhibition of fibrin digestion
  publication-title: Blood
– volume: 277
  start-page: 1126
  year: 2010
  end-page: 1144
  article-title: The dipeptidyl peptidase IV family in cancer and cell biology
  publication-title: FEBS J.
– volume: 22
  start-page: 93
  year: 2002
  end-page: 101
  article-title: Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection
  publication-title: Liver Internat.
– volume: 132
  start-page: 3819
  year: 2010
  end-page: 3830
  article-title: Expanding the dipeptidyl peptidase 4‐regulated peptidome via an optimized peptidomics platform
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 43
  year: 2014
  end-page: 54
  article-title: Quantitation of fibroblast activation protein (FAP)‐specific protease activity in mouse, baboon and human fluids and organs using novel substrate 3144‐AMC
  publication-title: FEBS Open Bio
– volume: 28
  start-page: 281
  year: 2010
  end-page: 291
  article-title: Isotopic labeling of terminal amines in complex samples identifies protein N‐termini and protease cleavage products
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 1378
  year: 2009
  end-page: 1386
  article-title: Targeting the cancer stroma with a fibroblast activation protein‐activated promelittin protoxin
  publication-title: Mol. Cancer Ther.
– volume: 104
  start-page: 1320
  year: 2012
  end-page: 1334
  article-title: Targeting carcinoma‐associated fibroblasts within the tumour stroma with a fibroblast activation protein‐activated prodrug
  publication-title: J. Natl. Cancer Inst.
– volume: 12
  start-page: 1220
  year: 2012
  end-page: 1243
  article-title: Fibroblast activation protein in remodeling tissues
  publication-title: Curr. Mol. Med.
– volume: 280
  start-page: 19441
  year: 2005
  end-page: 19444
  article-title: Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein Alpha
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 277
  year: 2005
  end-page: 292
  article-title: Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders
  publication-title: Clin. Sci.
– volume: 15
  start-page: 348
  year: 2013
  end-page: 358
  article-title: Targeting inhibition of fibroblast activation protein‐alpha and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments
  publication-title: Neoplasia
– volume: 11
  start-page: 257
  year: 2012
  end-page: 266
  article-title: Rationale behind targeting fibroblast activation protein‐expressing carcinoma‐associated fibroblasts as a novel chemotherapeutic strategy
  publication-title: Mol. Cancer Ther.
– volume: 9
  start-page: 987
  year: 2011
  end-page: 996
  article-title: Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor alpha2‐antiplasmin
  publication-title: J. Thromb. Haemost.
– volume: 4
  start-page: 491
  year: 2013
  end-page: 496
  article-title: Selective inhibitors of fibroblast activation protein (FAP) with a (4‐Quinolinoyl)‐glycyl‐2‐cyanopyrrolidine scaffold
  publication-title: ACS Med. Chem. Lett.
– volume: 29
  start-page: 29
  year: 2008
  end-page: 64
  article-title: Design of anticancer prodrugs for reductive activation
  publication-title: Med. Res. Rev.
– volume: 81
  start-page: 89
  year: 2003
  end-page: 94
  article-title: Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system
  publication-title: Can. J. Physiol. Pharmacol.
– volume: 580
  start-page: 1581
  year: 2006
  end-page: 1586
  article-title: Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)‐Pro(1)‐cleaving specificity
  publication-title: FEBS Lett.
– volume: 87
  start-page: 7235
  year: 1990
  end-page: 7239
  article-title: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: R171
  year: 2006
  article-title: Fibroblast activation protein is expressed by rheumatoid myofibroblast‐like synoviocytes
  publication-title: Arthritis Res. Ther.
– volume: 330
  start-page: 827
  year: 2010
  end-page: 830
  article-title: Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein‐{alpha}
  publication-title: Science
– volume: 89
  start-page: 561
  year: 2003
  end-page: 572
  article-title: Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis
  publication-title: Thromb. Haemost.
– volume: 278
  start-page: 1316
  year: 2011
  end-page: 1332
  article-title: Neuropeptide Y, B‐type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein‐α
  publication-title: FEBS J.
– volume: 93
  start-page: 1924
  year: 1996
  end-page: 1929
  article-title: The thyroid hormone‐induced tail resorption program during metamorphosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 1913
  year: 2012
  end-page: 1918
  article-title: Global kinetic analysis of proteolysis via quantitative targeted proteomics
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 3
  start-page: 509
  year: 2002
  end-page: 519
  article-title: Protease degradomics: a new challenge for proteomics
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 56
  start-page: 3467
  year: 2013
  end-page: 3477
  article-title: Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase
  publication-title: J. Med. Chem.
– volume: 11
  start-page: 1487
  year: 2013
  end-page: 1496
  article-title: Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9
  publication-title: Mol. Cancer Res.
– volume: 286
  start-page: 27741
  year: 2011
  end-page: 27750
  article-title: Metalloprotease meprin beta generates nontoxic N‐terminal amyloid precursor protein fragments in vivo
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 2713
  year: 2011
  end-page: 2722
  article-title: Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin‐cap fibroatheromata
  publication-title: Eur. Heart J.
– volume: 210
  start-page: 1125
  year: 2013
  end-page: 1135
  article-title: Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia
  publication-title: J. Exp. Med.
– volume: 107
  start-page: 1397
  year: 2006
  end-page: 1404
  article-title: Antiplasmin‐cleaving enzyme is a soluble form of fibroblast activation protein
  publication-title: Blood
– volume: 210
  start-page: 1137
  year: 2013
  end-page: 1151
  article-title: Depletion of stromal cells expressing fibroblast activation protein‐alpha from skeletal muscle and bone marrow results in cachexia and anemia
  publication-title: J. Exp. Med.
– volume: 9
  start-page: 1639
  year: 2003
  end-page: 1647
  article-title: A phase I dose‐escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein‐positive cancer
  publication-title: Clin. Cancer Res.
– volume: 29
  start-page: 1768
  year: 1999
  end-page: 1778
  article-title: Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis
  publication-title: Hepatology
– volume: 20
  start-page: 1089
  year: 2000
  end-page: 1094
  article-title: Targeted disruption of mouse fibroblast activation protein
  publication-title: Mol. Cell. Biol.
– volume: 9
  start-page: 894
  year: 2010
  end-page: 911
  article-title: Multiplex N‐terminome analysis of MMP‐2 and MMP‐9 substrate degradomes by iTRAQ‐TAILS quantitative proteomics
  publication-title: Mol. Cell. Proteomics
– volume: 42
  start-page: 935
  year: 2005
  end-page: 945
  article-title: Fibroblast activation protein increases apoptosis, cell adhesion and migration by the LX‐2 human stellate cell line
  publication-title: Hepatology
– volume: 85
  start-page: 3110
  year: 1988
  end-page: 3114
  article-title: Cell‐surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 123
  start-page: 4195
  year: 2010
  end-page: 4200
  article-title: The extracellular matrix at a glance
  publication-title: J. Cell Sci.
– volume: 7
  start-page: 1925
  year: 2008
  end-page: 1951
  article-title: Metadegradomics
  publication-title: Mol. Cell. Proteomics
– volume: 8
  start-page: R23
  year: 2006
  article-title: Fibroblast activation protein alpha is expressed by chondrocytes following a pro‐inflammatory stimulus and is elevated in osteoarthritis
  publication-title: Arthritis Res. Ther.
– volume: 48
  start-page: 5149
  year: 2009
  end-page: 5158
  article-title: Using substrate specificity of antiplasmin‐cleaving enzyme for fibroblast activation protein inhibitor deisgn
  publication-title: Biochemistry
– volume: 392
  start-page: 961
  year: 2011
  end-page: 971
  article-title: Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts
  publication-title: Biol. Chem.
– volume: 119
  start-page: 3613
  year: 2010
  end-page: 3626
  article-title: Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice
  publication-title: J. Clin. Invest.
– volume: 123
  start-page: 3507
  year: 2010
  end-page: 3514
  article-title: Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial‐mesenchymal transition‐like state in breast cancer cells in vitro
  publication-title: J. Cell Sci.
– volume: 457
  start-page: 177
  year: 2007
  end-page: 186
  article-title: Effect of fibroblast activation protein and alpha2‐antiplasmin cleaving enzyme on collagen types I, III, and IV
  publication-title: Arch. Biochem. Biophys.
– volume: 5
  start-page: 23
  year: 2009
  end-page: 25
  article-title: Peptidase substrates via global peptide profiling
  publication-title: Nat. Chem. Biol.
– volume: 21
  start-page: 1611
  year: 2013
  end-page: 1620
  article-title: Antitumour effects of chimeric receptor engineered human T cells directed to tumour stroma
  publication-title: Molec. Ther.
– start-page: 3395
  year: 2013
  end-page: 3401
– volume: 288
  start-page: 13936
  year: 2013
  end-page: 13949
  article-title: Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 459
  year: 2003
  end-page: 470
  article-title: Seprase, a membrane‐bound protease, alleviates the serum growth requirement of human breast cancer cells
  publication-title: Clin. Exp. Metastasis
– volume: 26
  start-page: 44
  year: 2003
  end-page: 48
  article-title: Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer
  publication-title: Onkologie
– volume: 8
  start-page: 245
  year: 2007
  end-page: 257
  article-title: In search of partners: linking extracellular proteases to substrates
  publication-title: Nature Rev. Mol. Cell. Biol.
– volume: 8
  start-page: e58860
  year: 2013
  article-title: Val‐BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors
  publication-title: PLoS ONE
– volume: 586
  start-page: 2507
  year: 2012
  end-page: 2512
  article-title: Comparative analysis of the substrate preferences of two post‐proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein alpha
  publication-title: FEBS Lett.
– start-page: 281
  year: 2009
  end-page: 307
– volume: 62
  start-page: 4767
  year: 2002
  end-page: 4772
  article-title: Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model
  publication-title: Cancer Res.
– volume: 47
  start-page: 1076
  year: 2008
  end-page: 1086
  article-title: Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites
  publication-title: Biochemistry
– volume: 281
  start-page: 7437
  year: 2006
  end-page: 7444
  article-title: Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 154
  year: 2008
  end-page: 158
  article-title: Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma
  publication-title: Pancreas
– volume: 71
  start-page: 383
  year: 1997
  end-page: 389
  article-title: Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers
  publication-title: Int. J. Cancer
– volume: 19
  start-page: 487
  year: 2011
  end-page: 496
  article-title: Evaluation of the tumor targeting of a FAPalpha‐based doxorubicin prodrug
  publication-title: J. Drug Target.
– volume: 274
  start-page: 36505
  year: 1999
  end-page: 36512
  article-title: Fibroblast activation protein: a dual‐specificity serine protease expressed in reactive human tumor stromal fibroblasts
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 445
  year: 2001
  end-page: 447
  article-title: Expression of the fibroblast activation protein during mouse embryo development
  publication-title: Int. J. Dev. Biol.
– volume: 10
  start-page: 1
  year: 2011
  end-page: 19
  article-title: Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates
  publication-title: Mol. Cell. Proteomics
– ident: e_1_2_9_5_1
  doi: 10.1074/jbc.C500092200
– start-page: 119
  volume-title: Proteinases as Drug Targets
  year: 2012
  ident: e_1_2_9_34_1
– ident: e_1_2_9_9_1
  doi: 10.1016/j.febslet.2012.06.015
– ident: e_1_2_9_26_1
  doi: 10.1186/ar2080
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1117158109
– ident: e_1_2_9_35_1
  doi: 10.1172/JCI38988
– ident: e_1_2_9_38_1
  doi: 10.1126/science.1195300
– ident: e_1_2_9_62_1
  doi: 10.1074/jbc.M111.252718
– ident: e_1_2_9_27_1
  doi: 10.1186/ar1877
– ident: e_1_2_9_48_1
  doi: 10.1371/journal.pone.0058860
– ident: e_1_2_9_57_1
  doi: 10.1038/nrm2120
– volume: 45
  start-page: 445
  year: 2001
  ident: e_1_2_9_21_1
  article-title: Expression of the fibroblast activation protein during mouse embryo development
  publication-title: Int. J. Dev. Biol.
– ident: e_1_2_9_50_1
  doi: 10.1002/med.20137
– ident: e_1_2_9_8_1
  doi: 10.1016/j.febslet.2006.01.087
– ident: e_1_2_9_30_1
  doi: 10.1034/j.1600-0676.2002.01503.x
– ident: e_1_2_9_63_1
  doi: 10.1074/mcp.M111.009233
– ident: e_1_2_9_47_1
  doi: 10.1021/jm400351a
– volume: 62
  start-page: 4767
  year: 2002
  ident: e_1_2_9_43_1
  article-title: Promotion of tumour growth by murine fibroblast activation protein, a serine protease, in an animal model
  publication-title: Cancer Res.
– ident: e_1_2_9_3_1
  doi: 10.1158/1541-7786.MCR-13-0272
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1742-4658.2011.08051.x
– ident: e_1_2_9_29_1
  doi: 10.1002/hep.20853
– ident: e_1_2_9_6_1
  doi: 10.1021/bi900257m
– ident: e_1_2_9_10_1
  doi: 10.3109/1061186X.2010.511225
– ident: e_1_2_9_42_1
  doi: 10.1097/MPA.0b013e31816618ce
– start-page: 281
  volume-title: Methods in Enzymology
  year: 2009
  ident: e_1_2_9_67_1
– ident: e_1_2_9_39_1
  doi: 10.1055/s-0037-1613388
– ident: e_1_2_9_15_1
  doi: 10.1182/blood-2003-12-4240
– ident: e_1_2_9_41_1
  doi: 10.1139/y03-006
– ident: e_1_2_9_68_1
  doi: 10.1074/mcp.R800012-MCP200
– ident: e_1_2_9_69_1
  doi: 10.1111/j.1742-4658.2009.07526.x
– ident: e_1_2_9_60_1
  doi: 10.1074/mcp.M000050-MCP201
– ident: e_1_2_9_23_1
  doi: 10.1128/MCB.20.3.1089-1094.2000
– ident: e_1_2_9_18_1
  doi: 10.1016/j.abb.2006.11.006
– ident: e_1_2_9_19_1
  doi: 10.1182/blood-2005-08-3452
– ident: e_1_2_9_54_1
  doi: 10.1084/jem.20122344
– ident: e_1_2_9_59_1
  doi: 10.1038/nbt.1611
– ident: e_1_2_9_13_1
  doi: 10.1074/jbc.274.51.36505
– ident: e_1_2_9_20_1
  doi: 10.2174/156652412803833607
– ident: e_1_2_9_36_1
  doi: 10.1158/1535-7163.MCT-11-0340
– volume: 9
  start-page: 1639
  year: 2003
  ident: e_1_2_9_56_1
  article-title: A phase I dose‐escalation study of sibrotuzumab in patients with advanced or metastic fibroblast activation protein‐positive cancer
  publication-title: Clin. Cancer Res.
– ident: e_1_2_9_28_1
  doi: 10.1093/eurheartj/ehq519
– ident: e_1_2_9_40_1
  doi: 10.1023/A:1025493605850
– ident: e_1_2_9_22_1
  doi: 10.1073/pnas.93.5.1924
– ident: e_1_2_9_66_1
  doi: 10.1038/nchembio.126
– ident: e_1_2_9_24_1
  doi: 10.1002/(SICI)1097-0215(19970502)71:3<383::AID-IJC14>3.0.CO;2-H
– ident: e_1_2_9_14_1
  doi: 10.1002/hep.510290631
– ident: e_1_2_9_65_1
  doi: 10.1021/ja909524e
– ident: e_1_2_9_7_1
  doi: 10.1074/jbc.M511112200
– ident: e_1_2_9_49_1
  doi: 10.1158/1535-7163.MCT-08-1170
– ident: e_1_2_9_4_1
  doi: 10.1016/B978-0-12-382219-2.00750-X
– ident: e_1_2_9_46_1
  doi: 10.1021/ml300410d
– ident: e_1_2_9_31_1
  doi: 10.1016/S1047-8477(02)00576-2
– ident: e_1_2_9_37_1
  doi: 10.1242/jcs.072900
– ident: e_1_2_9_58_1
  doi: 10.1038/nrm858
– ident: e_1_2_9_51_1
  doi: 10.1093/jnci/djs336
– ident: e_1_2_9_53_1
  doi: 10.1084/jem.20130110
– ident: e_1_2_9_11_1
  doi: 10.1021/bi701921b
– ident: e_1_2_9_17_1
  doi: 10.1242/jcs.023820
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.87.18.7235
– ident: e_1_2_9_55_1
  doi: 10.1159/000069863
– ident: e_1_2_9_52_1
  doi: 10.1038/mt.2013.110
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1538-7836.2011.04195.x
– ident: e_1_2_9_25_1
  doi: 10.1073/pnas.85.9.3110
– ident: e_1_2_9_64_1
  doi: 10.1074/jbc.M112.445841
– ident: e_1_2_9_33_1
  doi: 10.1593/neo.121850
– ident: e_1_2_9_44_1
  doi: 10.1016/j.fob.2013.12.001
– ident: e_1_2_9_61_1
  doi: 10.1515/BC.2011.162
– ident: e_1_2_9_2_1
  doi: 10.1042/CS20040302
SSID ssj0054270
Score 2.5129411
SecondaryResourceType review_article
Snippet Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 454
SubjectTerms Animals
Biomarkers, Tumor - metabolism
Collagen
Degradomics
Dipeptidyl peptidase
Endopeptidase
Exosite
Gelatinases - metabolism
Gene Expression Regulation, Neoplastic
Humans
Membrane Proteins - metabolism
Molecular Targeted Therapy - methods
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Protease
Proteomics
Serine Endopeptidases - metabolism
Title Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy
URI https://api.istex.fr/ark:/67375/WNG-SRL3BNPL-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprca.201300095
https://www.ncbi.nlm.nih.gov/pubmed/24470260
https://www.proquest.com/docview/1534222503
https://www.proquest.com/docview/1534790949
https://www.proquest.com/docview/1540236231
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELam7WUvwH4AYWMyEhogLVsTO4nDW5nopmmrqkLFxIvlOLY0DdIpbaeNv547Ow0rGiC01-TixM7d-fP5_B0hrxMjOLOwTE0zloS87GShyrUOixzxQx4JrTGgf9ZPj0f85Dw5v3OK3_NDtAE3tAznr9HAVTE5-EUaelVr5A3C7RiACeCEMWELUdGw5Y9KeOyqxUUA20PBeDpnbezEB4uPL8xKKzjAN_dBzkUE66ag3mOi5h_vM08u92fTYl__-I3X8SG9e0IeNfiUdr1CrZElU62TjW4Fa_Pvt3SXuoxRF4rfINejuydjqIUXjgtA41OKpyV8rJc6IoiLir7tdQfv3lN0VI4Qd7LnpRyj6x41N01GbkWhOeoT1F2r45pqVM2a-rNit5tk1Pv4-fA4bOo4hBrwFQsB4pSlK3JsI2G1iUxmVCZ4yTljTKfCKK4jHuuik8aKaZtay6wWZWFFCetP9pQsV-PKPCcUVAsBXWLzUnMB0DAubZ6bVKeJAretAhLO_6PUDck51tr4Jj09cyxxYGU7sAF508pfeXqPP0ruOrVoxVR9iUlxWSK_9I_kp-Ep-9AfnMqvAdme641s_MFEwryCsbakwwLyqr0NlozbM6oy45mXyXJYbud_k-FI-Q-gPCDPvE62HwRALUOGOBgDp1n_6JAcDA-7gN7Yi_-U3yKrcJH7fLltsjytZ-YlILNpseOs7ycGcTCo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B9gAv42N8BAYYCQ2Qlq2JnS_eykQp0FVVWTXEi5U4tjQN0ilr0cZfz52dBIr4EOI5F8e-nO3fnc-_A3gS6VRwg25qnPDIF2Uv8fNMKb_ICD9kQaoUBfQPxvFwJt5-iNpsQroL4_ghuoAbzQy7XtMEp4D03nfW0NNaEXEQnccgTrgM61TW23pV045BKhKhrRcXIHD3Uy7ilrexF-6tvr-yL62Tis9_BTpXMazdhAbXoGi773JPTnaXi2JXff2J2fG_xncdNhqIyvrOpm7AJV3dhM1-he755wu2zWzSqI3Gb8KX2Y-XY5jBL84LBOQLRhcmXLiXWS6I44o9G_Qnz18wWqssJ-7ZjpOypK47TJ83SbkVw-aYy1G3rc5rpsg6a-aui13cgtng1eH-0G9KOfgKIRb3EeWUpa1zbILUKB3oROdJKkohOOcqTnUuVCBCVfTiMOfKxMZwo9KyMGmJLii_DWvVvNJ3gaF1EaaLTFYqkSI6DEuTZTpWcZTjyp174Lc_UqqG55zKbXySjqE5lKRY2SnWg6ed_Klj-Pit5La1i04sr08oLy6J5NH4tXw_HfGX48lIfvRgqzUc2SwJZxK3Fgq3RT3uwePuMU5mOqHJKz1fOpkkQ487-5OMINZ_xOUe3HFG2XUIsVpCJHGoA2tafxmQnEz3-wjg-L1_lH8EV4aHByM5ejN-dx-uooBw6XNbsLaol_oBArVF8dBOxW_35DTD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJiFe-BofgQFGQgOkZUtix3F4KxtlQKmqsoqJFytxbAkN0ipr0cZfz9lOw4r4EOI5F8e-3J1_Pp9_BnicasGowWUqz2gasirKwiJXKixzix_yWChlE_rvhvxgwt4cpUfnTvF7fogu4WY9w8Vr6-Czyuz-IA2dNcryBtntGIQJF2Gd8UhYu94fdwRSKUvcdXEx4vZQUMaXtI1Rsrv6_sq0tG41fPorzLkKYd0c1L8KxbL3vvTkeGcxL3fUt5-IHf9neNfgSgtQSc9b1HW4oOsbsNGrcXH-5YxsEVcy6nLxG_B1cv5oDDH4wWmJcHxO7HEJn-wljgniU02e9nujZ8-JjVSOEfdk20s5Stdtok_bktyaYHPEV6i7VqcNUdY2G-IPi53dhEn_5eHeQdhe5BAqBFg0RIxTVe6WYxMLo3SsM11kglWMUUoVF7pgKmaJKiOeFFQZbgw1SlSlERUuQOktWKuntb4DBG3LIrrU5JViArFhUpk811zxtMC4XQQQLv-jVC3Lub1s47P0_MyJtIqVnWIDeNLJzzy_x28lt5xZdGJFc2yr4rJUfhi-ku_HA_piOBrIjwFsLu1GtgHhROLEYpNtaUQDeNQ9Rle2-zNFracLL5PluN7O_yTDLOc_ovIAbnub7DqESC2zFHGoA2dZfxmQHI33egjf6N1_lH8Il0b7fTl4PXx7Dy7jc-Zr5zZhbd4s9H1EafPygXPE70x3M3s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+fibroblast+activation+protein+%28FAP%29%3A+Substrates%2C+activities%2C+expression+and+targeting+for+cancer+therapy&rft.jtitle=Proteomics.+Clinical+applications&rft.au=Hamson%2C+Elizabeth+J&rft.au=Keane%2C+Fiona+M&rft.au=Tholen%2C+Stefan&rft.au=Schilling%2C+Oliver&rft.date=2014-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-8346&rft.eissn=1862-8354&rft.volume=8&rft.issue=5-6&rft.spage=454&rft_id=info:doi/10.1002%2Fprca.201300095&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3329236941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-8346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-8346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-8346&client=summon