Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria

Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sit...

Full description

Saved in:
Bibliographic Details
Published inGeobiology Vol. 10; no. 6; pp. 518 - 530
Main Authors Gallagher, K. L., Kading, T. J., Braissant, O., Dupraz, C., Visscher, P. T.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro‐organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate‐reducing bacteria (SRB) are an important component of this ‘alkalinity engine.’ The activity of SRB often peaks in layers where CaCO3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
AbstractList Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on E arth. Two factors that contribute to carbonate mineral precipitation are the saturation index ( SI ) and the presence of nucleation sites. Both of these can be influenced by micro‐organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances ( EPS ) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI . Sulfate‐reducing bacteria ( SRB ) are an important component of this ‘alkalinity engine.’ The activity of SRB often peaks in layers where CaCO 3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH , alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH , but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH . The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Author Kading, T. J.
Braissant, O.
Gallagher, K. L.
Visscher, P. T.
Dupraz, C.
Author_xml – sequence: 1
  givenname: K. L.
  surname: Gallagher
  fullname: Gallagher, K. L.
  organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA
– sequence: 2
  givenname: T. J.
  surname: Kading
  fullname: Kading, T. J.
  organization: Woods Hole Oceanographic Institute, MA, Falmouth, USA
– sequence: 3
  givenname: O.
  surname: Braissant
  fullname: Braissant, O.
  organization: Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA
– sequence: 4
  givenname: C.
  surname: Dupraz
  fullname: Dupraz, C.
  organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA
– sequence: 5
  givenname: P. T.
  surname: Visscher
  fullname: Visscher, P. T.
  email: visscher@uconn.edu
  organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22925453$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuP0zAUhS00iHnAX0BZsknwI4kThJBgBKXS8FgMQmJj2el1cce1O7YjWsSPx2mHLljVGx_5fudYuucSnTnvAKGC4Irk83JVkZrTsm7bvqKY0ApjVtNq-whdHAdnR835ObqMcYUxrRtGnqBzSnvaZH2B_sxdNAso0k8opL2T1jiTdgW4pXHwav8cvIXC6wIsDCl4Vyy88yEWxu3HPiyl8-uMh-z-LZPJyMYncMlIOxnjaLVMUAZYjINxy0LJIUEw8il6rKWN8OzhvkLfPry_vf5Y3nyZza_f3pRDgxtayq7FXcNaKjF0Q68aThWWlBBNZac6XfdcKaZq2oBUoIeWdazWrNek1gpjya7Qi0PuJvj7EWISaxMHsFY68GMUhHDS8YYzfAJKKKsxIzyjzx_QUa1hITbBrGXYiX_LzUB3AIbgYwygjwjBUxARKzFVJKa6xNSj2Pcottn65j_rYNJ-tSlIY08JeH0I-GUs7E7-WMzezbPI9vJgNzHB9miX4U60nPFGfP88E19vMSU_PvWCs7-kbcac
CitedBy_id crossref_primary_10_1016_j_gca_2021_09_024
crossref_primary_10_3389_fmicb_2016_01064
crossref_primary_10_1016_j_scitotenv_2024_173469
crossref_primary_10_1016_j_tim_2020_06_004
crossref_primary_10_3390_min9070409
crossref_primary_10_1016_j_jhazmat_2017_03_005
crossref_primary_10_1016_j_epsl_2019_04_044
crossref_primary_10_3389_fmicb_2015_01531
crossref_primary_10_1021_es500344s
crossref_primary_10_3389_fmicb_2022_909494
crossref_primary_10_1007_s00343_017_5345_9
crossref_primary_10_1016_j_cej_2025_161759
crossref_primary_10_3389_fmicb_2018_00040
crossref_primary_10_1021_acsestwater_4c00540
crossref_primary_10_1016_j_oregeorev_2021_104524
crossref_primary_10_1080_01490451_2019_1709107
crossref_primary_10_1111_sed_12936
crossref_primary_10_1016_j_earscirev_2019_103065
crossref_primary_10_1111_1462_2920_14374
crossref_primary_10_1016_j_sedgeo_2014_12_002
crossref_primary_10_1016_j_gca_2018_09_018
crossref_primary_10_1016_j_jop_2025_03_003
crossref_primary_10_1016_j_marmicro_2024_102363
crossref_primary_10_1051_mattech_2023004
crossref_primary_10_1007_s10498_018_9333_2
crossref_primary_10_1111_gbi_12272
crossref_primary_10_3389_fmicb_2015_00797
crossref_primary_10_1016_j_gloplacha_2024_104658
crossref_primary_10_1111_sed_12927
crossref_primary_10_1002_dep2_16
crossref_primary_10_1016_j_sedgeo_2014_08_006
crossref_primary_10_4491_eer_2020_333
crossref_primary_10_3389_fmicb_2017_00602
crossref_primary_10_1038_s41598_024_52626_y
crossref_primary_10_1130_G34639C_1
crossref_primary_10_1016_j_chemgeo_2021_120395
crossref_primary_10_1016_j_marchem_2014_05_003
crossref_primary_10_1111_1462_2920_13094
crossref_primary_10_3389_feart_2021_618311
crossref_primary_10_3389_fmicb_2019_00862
crossref_primary_10_3390_min10030276
crossref_primary_10_1021_acs_est_8b07055
crossref_primary_10_1111_gbi_12281
crossref_primary_10_1111_sed_13053
crossref_primary_10_3389_fmicb_2014_00331
crossref_primary_10_1080_01490451_2023_2219261
crossref_primary_10_3390_life5010744
crossref_primary_10_1016_j_gca_2019_02_002
crossref_primary_10_1007_s12517_020_05750_8
crossref_primary_10_1016_j_chemgeo_2015_03_017
crossref_primary_10_1038_s41598_017_14781_3
crossref_primary_10_1016_j_petsci_2023_08_012
crossref_primary_10_1029_2023AV000950
crossref_primary_10_3389_fmars_2020_00407
crossref_primary_10_1038_s43247_020_00025_2
crossref_primary_10_1016_j_margeo_2020_106284
crossref_primary_10_1016_j_margeo_2016_10_010
crossref_primary_10_2138_am_2020_7381
crossref_primary_10_3389_fmicb_2015_00966
crossref_primary_10_1080_01490451_2017_1421727
crossref_primary_10_1016_j_sedgeo_2024_106638
crossref_primary_10_5194_bg_19_1723_2022
crossref_primary_10_3389_fmicb_2018_01464
crossref_primary_10_3389_feart_2016_00068
crossref_primary_10_3389_fmicb_2018_00998
crossref_primary_10_1016_j_scitotenv_2024_171362
crossref_primary_10_1016_j_scitotenv_2016_09_107
crossref_primary_10_1016_j_precamres_2022_106899
crossref_primary_10_1111_1462_2920_15252
crossref_primary_10_1111_gbi_12102
crossref_primary_10_1016_j_ibiod_2018_03_016
crossref_primary_10_1134_S199507802001005X
crossref_primary_10_1016_j_earscirev_2017_06_015
crossref_primary_10_1111_gbi_12461
crossref_primary_10_1016_j_scitotenv_2020_139074
crossref_primary_10_1111_gbi_12063
crossref_primary_10_3389_fmicb_2021_610389
crossref_primary_10_1038_s41598_019_56144_0
crossref_primary_10_1186_s42501_021_00087_z
crossref_primary_10_2110_jsr_2020_7
crossref_primary_10_1016_j_palaeo_2020_110152
crossref_primary_10_1016_j_apgeochem_2017_01_010
crossref_primary_10_1038_srep12601
crossref_primary_10_3390_min12050646
crossref_primary_10_1016_j_chemgeo_2021_120254
crossref_primary_10_1016_j_scitotenv_2022_153767
crossref_primary_10_1016_j_chemgeo_2019_119415
crossref_primary_10_1155_2023_1737181
crossref_primary_10_1093_ismeco_ycae139
crossref_primary_10_1016_j_chemgeo_2021_120261
crossref_primary_10_1111_gbi_12355
crossref_primary_10_1038_srep31495
crossref_primary_10_1130_G35240Y_1
crossref_primary_10_1080_01490451_2020_1836086
crossref_primary_10_3390_su15064858
crossref_primary_10_1016_j_sedgeo_2022_106296
crossref_primary_10_1038_s41396_018_0208_8
crossref_primary_10_1016_j_chemgeo_2018_09_016
crossref_primary_10_1016_j_hydromet_2024_106341
crossref_primary_10_1016_j_surfcoat_2018_03_032
crossref_primary_10_1016_j_chemgeo_2017_05_019
crossref_primary_10_1111_let_12120
crossref_primary_10_3389_fmicb_2017_00922
crossref_primary_10_3390_min4010145
crossref_primary_10_1016_j_gca_2018_06_019
crossref_primary_10_3390_min5030488
crossref_primary_10_1016_j_jobe_2024_111124
crossref_primary_10_1111_gbi_12400
crossref_primary_10_1016_j_precamres_2016_03_010
crossref_primary_10_3390_geosciences12080304
crossref_primary_10_1002_lno_11323
crossref_primary_10_1038_ismej_2015_87
crossref_primary_10_1111_1462_2920_13456
crossref_primary_10_3390_min12121562
crossref_primary_10_1371_journal_pone_0186867
crossref_primary_10_1016_j_sedgeo_2019_105540
crossref_primary_10_32604_jrm_2021_015878
crossref_primary_10_1007_s00792_021_01232_1
crossref_primary_10_1111_gbi_12097
crossref_primary_10_1016_j_palaeo_2024_112549
crossref_primary_10_3390_ijms15010850
crossref_primary_10_1016_j_chemgeo_2016_04_022
crossref_primary_10_1371_journal_pone_0262939
crossref_primary_10_3389_fmicb_2020_547458
crossref_primary_10_1007_s12665_023_11273_8
crossref_primary_10_1089_ast_2016_1563
crossref_primary_10_3390_coatings14091105
crossref_primary_10_1016_j_gca_2018_06_011
crossref_primary_10_1039_D4EM00185K
crossref_primary_10_3389_feart_2021_601194
crossref_primary_10_1666_13002
crossref_primary_10_1016_j_chemgeo_2021_120403
Cites_doi 10.1126/science.148.3666.27
10.1111/j.1574-6941.2008.00614.x
10.1128/aem.57.6.1758-1763.1991
10.1007/978-1-4615-2812-8_37
10.1038/nature04764
10.1038/326891a0
10.1130/G24755A.1
10.1016/j.chemgeo.2010.09.008
10.1038/ismej.2011.142
10.1016/j.femsec.2004.12.005
10.1111/j.1574-6941.1998.tb00462.x
10.1016/0168-6496(95)00017-5
10.1130/G22986A.1
10.1016/j.earscirev.2008.10.005
10.1098/rsta.1993.0072
10.1021/cr050358j
10.1016/j.precamres.2007.04.009
10.1016/0025-3227(93)90146-M
10.1080/09670269910001736402
10.1126/science.1057204
10.1016/j.tim.2005.07.008
10.4319/lo.1983.28.6.1075
10.1111/j.1472-4669.2006.00076.x
10.1016/j.sedgeo.2005.12.008
10.1128/9781555815882.ch41
10.1007/0-387-30742-7_22
10.1016/j.marchem.2006.12.012
10.1016/j.sedgeo.2005.12.022
10.1071/MF9790753
10.1038/ismej.2011.120
10.1016/S0037-0738(99)00037-8
10.1111/j.1472-4677.2004.00024.x
10.4319/lo.1977.22.4.0657
10.1111/j.1472-4669.2007.00117.x
10.1126/science.289.5485.1703
10.1038/35023158
10.1016/j.palaeo.2004.10.016
10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2
10.2307/3515096
10.1111/j.1365-3091.2004.00649.x
10.4319/lo.1989.34.5.0793
10.1111/j.1469-8137.1995.tb03051.x
10.4319/lo.2005.50.6.1836
10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2
10.1007/BF00406470
10.1128/AEM.58.1.70-77.1992
10.1130/G22859A.1
10.1016/j.gca.2008.10.007
10.1128/JB.149.2.606-611.1982
10.1016/S0168-6496(02)00464-6
10.1007/978-1-4613-9263-7_2
10.1111/j.1574-6976.2000.tb00567.x
10.1023/A:1021323425591
10.1128/AEM.65.8.3272-3278.1999
10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2
10.1111/j.1365-3091.2005.00732.x
10.1046/j.1365-3091.2003.00550.x
10.1007/978-1-4684-7612-5_12
10.1111/j.1472-4677.2004.00019.x
10.1128/AEM.65.10.4611-4617.1999
10.1515/9781400849079
10.1016/S0037-0738(99)00028-7
10.1146/annurev.micro.54.1.827
10.2138/am-1998-11-1236
10.2307/1543552
10.1111/j.1574-6941.1994.tb00077.x
10.1038/nature02888
10.1130/0091-7613(1984)12<623:COCMIS>2.0.CO;2
10.1007/978-3-642-76884-2_34
10.4319/lo.1977.22.4.0635
10.1111/j.1574-6941.1992.tb01763.x
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2012 Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2012 Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
C1K
F1W
H95
L.G
DOI 10.1111/j.1472-4669.2012.00342.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1472-4669
EndPage 530
ExternalDocumentID 22925453
10_1111_j_1472_4669_2012_00342_x
GBI342
ark_67375_WNG_PT021ZM9_7
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: EAR 1052974; EAR 0311929
– fundername: NASA Exobiology
  funderid: NNX09A057G
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
C1K
F1W
H95
L.G
ID FETCH-LOGICAL-c5052-a86085362a0e8c9b572b0a211f2a8b8f497bb3b425eabefc63834f39f14fb00a3
IEDL.DBID DR2
ISSN 1472-4677
1472-4669
IngestDate Thu Jul 10 16:59:47 EDT 2025
Thu Jul 10 17:08:30 EDT 2025
Mon Jul 21 06:04:47 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 01:09:02 EDT 2025
Wed Jan 22 16:25:32 EST 2025
Wed Oct 30 09:56:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5052-a86085362a0e8c9b572b0a211f2a8b8f497bb3b425eabefc63834f39f14fb00a3
Notes ArticleID:GBI342
istex:27C988701BDB3406E98EC76F564F57F4DECF5E2E
ark:/67375/WNG-PT021ZM9-7
National Science Foundation - No. EAR 1052974; No. EAR 0311929
NASA Exobiology - No. NNX09A057G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22925453
PQID 1112340317
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1171875730
proquest_miscellaneous_1112340317
pubmed_primary_22925453
crossref_primary_10_1111_j_1472_4669_2012_00342_x
crossref_citationtrail_10_1111_j_1472_4669_2012_00342_x
wiley_primary_10_1111_j_1472_4669_2012_00342_x_GBI342
istex_primary_ark_67375_WNG_PT021ZM9_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2012
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Geobiology
PublicationTitleAlternate Geobiology
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Applied and Environment Microbiology, 57, 1758-1763.
Castanier S, Le Metayer-Levrel G, Perthuisot J (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedimentary Geology, 126, 9-23.
Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography, 28, 1075-1093.
Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 9, 283-294.
Cypionka H (2000) Oxygen Respiration by Desulfovibrio Species. Annual Reviews Microbiology, 54, 827-848.
Fründ C, Cohen Y (1992) Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Applied and Environmental Microbiology, 58, 70-77.
Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131-145.
Graue J, Engelen B, Cypionka H (2012) Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME Journal, 6, 660-669.
Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973-976.
Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science, 292, 1701-1704.
Dupraz C, Reid RP, Braissant O, Decho A, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162.
Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12, 623-626.
Cloud P (1965) Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148, 27-35.
Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412, 324-327.
Deng S, Dong H, Lv G, Jiang H, Yu SH, Bishop ME (2010) Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278, 151-159.
Stumm W, Morgan J (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley and Sons, New York.
Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philosophical Transactions of Royal Society London A, 344, 27-36.
Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147-166.
Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. European Journal of Phycology, 34, 339-348.
Widdel F, Pfennig N (1981) Studies on Dissimilatory Sulfate-reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate-Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology, 129, 395-400.
Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography, 22, 657-666.
Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, Visscher PT (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiology Ecology, 52, 377-395.
Morse JW, Arvidson RS, Luttge A (2007) Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342-381.
Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews, 24, 691-710.
Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME Journal, 6, 863-874.
Allwood A, Walter M, Kamber B, Marshall C, Burch I (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714-718.
Tice M, Lowe D (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431, 549-552.
Bontognali T, Vasconcelos C, Warthmann R, Dupraz C, Bernasconi S, Mckenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663-666.
Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history. Geochimica Et Cosmochimica Acta, 72, 6037-6060.
Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89-96.
Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin, 204, 160-167.
Des Marais DJ (2000) Evolution - When did photosynthesis emerge on earth? Science, 289, 1703-1705.
Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429-438.
Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 10, 578-596.
Warthmann R, van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff A (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091-1094.
Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounts. Nature, 326, 891-892.
Vasconcelos C, Warthmann R, Mckenzie JA, Visscher PT, Bittermann AG, van Lith Y (2006) Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics? Sedimentary Geology, 185, 175-183.
Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Applied and Environment Microbiology, 65, 4611-4617.
Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635-656.
Wright DT (1999) The Role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147-157.
Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, De Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). FEMS Microbiology Ecology, 44, 175-189.
de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiology Ecology, 17, 117-136.
Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155.
Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeography Palaeoclimatology Palaeoecology, 219, 87-100.
Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919-922.
Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes. Bulletin de l'Institut Océanographique (Monaco), 13, 61-117.
Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre LG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989-992.
Canfield D, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science, New Series, 251, 1471-1473.
Weast RC (1973) CRC Handbook of Chemistry and Physics. CRC Press, Cleveland, OH.
Braissant O, Decho A, Przekop K, Gallagher K, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology, 67, 293-307.
Jørgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 13, 303-312.
van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237-245.
Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401-411.
Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52, 987-1008.
Aloisi G, Gloter A, Kruger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017-1020.
Soetaert K, Hofmann A, Middleburg J, Meysman F, Greenwood J (2007) The effect of biogeochemical processes on pH. Marine Chemistry, 105, 30-51.
Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Co
2007; 107
1990; 11
1965; 148
2007; 105
2006; 34
1991; 57
2008; 36
2005; 219
1973
1977; 22
1992; 58
1982; 149
2004; 2
1998; 83
2008; 72
1995; 131
1979; 30
2003; 50
1999; 126
1992; 9
2009; 96
1989; 34
2003; 204
1987; 41
2000; 289
2001
2001; 292
2000; 54
1984; 12
2010; 278
2000; 406
1984
2007; 5
1983; 28
2001; 412
2006; 441
2003; 44
1988
2009; 67
1991; 251
2000; 28
1995; 17
1987; 326
2000; 24
1995; 10
2007
1996
1999; 65
2006
2006; 4
1993
2004
1992
1981; 129
1993; 344
2003; 31
1998; 25
2007; 158
2004; 431
2004; 51
2002; 485
2006; 185
2005; 52
1999; 34
1994; 13
1960
2005; 50
2012; 6
1993; 113
2005; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Stumm W (e_1_2_7_61_1) 1996
e_1_2_7_7_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Lie TJ (e_1_2_7_46_1) 1999; 65
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Ward DM (e_1_2_7_74_1) 1987; 41
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
Pachmayr F (e_1_2_7_53_1) 1960
e_1_2_7_16_1
Des Marais DJ (e_1_2_7_26_1) 2000; 289
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
Weast RC (e_1_2_7_76_1) 1973
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Zeebe R (e_1_2_7_82_1) 2001
Cohen Y (e_1_2_7_22_1) 1984
Kempe S (e_1_2_7_43_1) 1994; 13
Megonigal JP (e_1_2_7_51_1) 2004
Visscher PT (e_1_2_7_68_1) 1991; 57
Widdel F (e_1_2_7_77_1) 1988
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Canfield D (e_1_2_7_19_1) 1991; 251
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Visscher PT (e_1_2_7_71_1) 1999; 65
References_xml – reference: Braissant O, Cailleau G, Aragno M, Verrecchia EP (2004) Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59-66.
– reference: Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401-411.
– reference: Bontognali T, Vasconcelos C, Warthmann R, Dupraz C, Bernasconi S, Mckenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663-666.
– reference: van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237-245.
– reference: Jørgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 13, 303-312.
– reference: Zeebe R, Wolf-Gladrow D (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam.
– reference: Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973-976.
– reference: Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, Visscher PT (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiology Ecology, 52, 377-395.
– reference: Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. American Mineralogist, 83, 1482-1493.
– reference: Vasconcelos C, Warthmann R, Mckenzie JA, Visscher PT, Bittermann AG, van Lith Y (2006) Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics? Sedimentary Geology, 185, 175-183.
– reference: Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history. Geochimica Et Cosmochimica Acta, 72, 6037-6060.
– reference: Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Applied and Environment Microbiology, 57, 1758-1763.
– reference: Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews, 24, 691-710.
– reference: Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser, University of Munich, Munich, Germany.
– reference: Weast RC (1973) CRC Handbook of Chemistry and Physics. CRC Press, Cleveland, OH.
– reference: Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. European Journal of Phycology, 34, 339-348.
– reference: Bosak T, Newman DK (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577-580.
– reference: Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52, 987-1008.
– reference: Aloisi G, Gloter A, Kruger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017-1020.
– reference: Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131-145.
– reference: Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philosophical Transactions of Royal Society London A, 344, 27-36.
– reference: Cloud P (1965) Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148, 27-35.
– reference: van Gemerden H (1993) Microbial mats: a joint venture. Marine Geology, 113, 3-25.
– reference: Sarmiento JL, Gruber N (2006) Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ.
– reference: Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919-922.
– reference: Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounts. Nature, 326, 891-892.
– reference: Widdel F, Pfennig N (1981) Studies on Dissimilatory Sulfate-reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate-Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology, 129, 395-400.
– reference: Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes. Bulletin de l'Institut Océanographique (Monaco), 13, 61-117.
– reference: Ludwig R, Al-Horani F, de Beer D, Jonkers HM (2005) Photosynthesis controlled calcification in a hypersaline microbial mat. Limnology and Oceanography, 50, 1836-1843.
– reference: Wright DT (1999) The Role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147-157.
– reference: Warthmann R, van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff A (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091-1094.
– reference: Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin, 204, 160-167.
– reference: Tice M, Lowe D (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431, 549-552.
– reference: Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635-656.
– reference: Cypionka H (2000) Oxygen Respiration by Desulfovibrio Species. Annual Reviews Microbiology, 54, 827-848.
– reference: Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89-96.
– reference: Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155.
– reference: Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 10, 578-596.
– reference: Allwood A, Walter M, Kamber B, Marshall C, Burch I (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714-718.
– reference: Soetaert K, Hofmann A, Middleburg J, Meysman F, Greenwood J (2007) The effect of biogeochemical processes on pH. Marine Chemistry, 105, 30-51.
– reference: Stal LJ (1995) Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131, 1-32.
– reference: Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412, 324-327.
– reference: Thode-Andersen S, Jørgensen BB (1989) Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments. Limnology and Oceanography, 34, 793-806.
– reference: Bauld J, Chambers LA, Skyring GW (1979) Primary productivity, sulfate reduction and sulfer isotope fractionation in algal mats and sediments of Hamelin pool, Shark Bay, WA. Australian Journal of Marine and Freshwater Research, 30, 753-764.
– reference: Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeography Palaeoclimatology Palaeoecology, 219, 87-100.
– reference: Fründ C, Cohen Y (1992) Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Applied and Environmental Microbiology, 58, 70-77.
– reference: Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME Journal, 6, 863-874.
– reference: Stumm W, Morgan J (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley and Sons, New York.
– reference: Canfield D, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science, New Series, 251, 1471-1473.
– reference: Graue J, Engelen B, Cypionka H (2012) Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME Journal, 6, 660-669.
– reference: Skyring GW, Bauld J (1990) Microbial mats in Australian coastal environments. Microbial Ecology, 11, 461-498.
– reference: Dupraz C, Reid RP, Braissant O, Decho A, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162.
– reference: Castanier S, Le Metayer-Levrel G, Perthuisot J (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedimentary Geology, 126, 9-23.
– reference: de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiology Ecology, 17, 117-136.
– reference: Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography, 28, 1075-1093.
– reference: Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 9, 283-294.
– reference: Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science, 292, 1701-1704.
– reference: Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12, 623-626.
– reference: Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure and interactions among community members in hot spring cyanobacterial mats. In Symposium of the Society for General Microbiology (eds Fletcher M, Gray TRG, Jones JG) Ecology of Microbial Communities, vol. 41, Cambridge University Press, Cambridge, UK, pp.179-210.
– reference: Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429-438.
– reference: van Lith Y, Vasconcelos C, Warthmann R, Martins JCF, Mckenzie JA (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485, 35-49.
– reference: Morse JW, Arvidson RS, Luttge A (2007) Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342-381.
– reference: Deng S, Dong H, Lv G, Jiang H, Yu SH, Bishop ME (2010) Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278, 151-159.
– reference: Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Applied and Environment Microbiology, 65, 4611-4617.
– reference: Visscher PT, Gritzer RF, Leadbetter ER (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Applied and Environmental Microbiology, 65, 3272-3278.
– reference: Braissant O, Decho A, Przekop K, Gallagher K, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology, 67, 293-307.
– reference: Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography, 22, 657-666.
– reference: Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre LG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989-992.
– reference: Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, De Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). FEMS Microbiology Ecology, 44, 175-189.
– reference: Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745-765.
– reference: Traore AS, Hatchikian CE, Le Gall J, Belaich JP (1982) Microcalorimetric studies of the growth of sulfate-reducing bacteria: comparison of the growth parameters of some Desulfovibrio species. Journal of Bacteriology, 149, 606-611.
– reference: Des Marais DJ (2000) Evolution - When did photosynthesis emerge on earth? Science, 289, 1703-1705.
– reference: Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147-166.
– volume: 30
  start-page: 753
  year: 1979
  end-page: 764
  article-title: Primary productivity, sulfate reduction and sulfer isotope fractionation in algal mats and sediments of Hamelin pool, Shark Bay, WA
  publication-title: Australian Journal of Marine and Freshwater Research
– start-page: 317
  year: 2004
  end-page: 424
– volume: 22
  start-page: 657
  year: 1977
  end-page: 666
  article-title: Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats
  publication-title: Limnology and Oceanography
– start-page: 469
  year: 1988
  end-page: 585
– volume: 28
  start-page: 1091
  year: 2000
  end-page: 1094
  article-title: Bacterially induced dolomite precipitation in anoxic culture experiments
  publication-title: Geology
– volume: 204
  start-page: 160
  year: 2003
  end-page: 167
  article-title: Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere
  publication-title: Biological Bulletin
– volume: 28
  start-page: 1075
  year: 1983
  end-page: 1093
  article-title: Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities
  publication-title: Limnology and Oceanography
– volume: 22
  start-page: 635
  year: 1977
  end-page: 656
  article-title: Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats
  publication-title: Limnology and Oceanography
– volume: 5
  start-page: 401
  year: 2007
  end-page: 411
  article-title: Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals
  publication-title: Geobiology
– volume: 278
  start-page: 151
  year: 2010
  end-page: 159
  article-title: Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China
  publication-title: Chemical Geology
– year: 2001
– volume: 10
  start-page: 578
  year: 1995
  end-page: 596
  article-title: Anomalous carbonate precipitates: Is the precambrian the key to the Permian?
  publication-title: Palaios
– volume: 11
  start-page: 461
  year: 1990
  end-page: 498
  article-title: Microbial mats in Australian coastal environments
  publication-title: Microbial Ecology
– start-page: 21
  year: 1993
  end-page: 40
– volume: 292
  start-page: 1701
  year: 2001
  end-page: 1704
  article-title: Photosynthesis‐induced biofilm calcification and calcium concentrations in phanerozoic oceans
  publication-title: Science
– volume: 129
  start-page: 395
  year: 1981
  end-page: 400
  article-title: Studies on Dissimilatory Sulfate‐reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate‐Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov
  publication-title: Archives of Microbiology
– volume: 126
  start-page: 147
  year: 1999
  end-page: 157
  article-title: The Role of sulphate‐reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia
  publication-title: Sedimentary Geology
– volume: 65
  start-page: 3272
  year: 1999
  end-page: 3278
  article-title: Low‐molecular‐weight sulfonates, a major substrate for sulfate reducers in marine microbial mats
  publication-title: Applied and Environmental Microbiology
– volume: 50
  start-page: 237
  year: 2003
  end-page: 245
  article-title: Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation
  publication-title: Sedimentology
– volume: 126
  start-page: 9
  year: 1999
  end-page: 23
  article-title: Ca‐carbonates precipitation and limestone genesis‐the microbiogeologist point of view
  publication-title: Sedimentary Geology
– volume: 185
  start-page: 131
  year: 2006
  end-page: 145
  article-title: Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries
  publication-title: Sedimentary Geology
– volume: 13
  start-page: 61
  year: 1994
  end-page: 117
  article-title: The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes
  publication-title: Bulletin de l'Institut Océanographique (Monaco)
– volume: 34
  start-page: 973
  year: 2006
  end-page: 976
  article-title: Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites
  publication-title: Geology
– volume: 54
  start-page: 827
  year: 2000
  end-page: 848
  article-title: Oxygen Respiration by Species
  publication-title: Annual Reviews Microbiology
– volume: 107
  start-page: 342
  year: 2007
  end-page: 381
  article-title: Calcium carbonate formation and dissolution
  publication-title: Chemical Reviews
– volume: 51
  start-page: 745
  year: 2004
  end-page: 765
  article-title: Microbe‐mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)
  publication-title: Sedimentology
– volume: 72
  start-page: 6037
  year: 2008
  end-page: 6060
  article-title: The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history
  publication-title: Geochimica Et Cosmochimica Acta
– volume: 113
  start-page: 3
  year: 1993
  end-page: 25
  article-title: Microbial mats: a joint venture
  publication-title: Marine Geology
– volume: 406
  start-page: 989
  year: 2000
  end-page: 992
  article-title: The role of microbes in accretion, lamination and early lithification of modern marine stromatolites
  publication-title: Nature
– volume: 24
  start-page: 691
  year: 2000
  end-page: 710
  article-title: Life at the oxic‐anoxic interface: microbial activities and adaptations
  publication-title: FEMS Microbiology Reviews
– volume: 28
  start-page: 919
  year: 2000
  end-page: 922
  article-title: Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites
  publication-title: Geology
– volume: 158
  start-page: 141
  year: 2007
  end-page: 155
  article-title: Evidence of archean life: stromatolites and microfossils
  publication-title: Precambrian Research
– volume: 36
  start-page: 663
  year: 2008
  end-page: 666
  article-title: Microbes produce nanobacteria‐like structures, avoiding cell entombment
  publication-title: Geology
– start-page: 672
  year: 1993
  end-page: 693
– volume: 58
  start-page: 70
  year: 1992
  end-page: 77
  article-title: Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats
  publication-title: Applied and Environmental Microbiology
– volume: 485
  start-page: 35
  year: 2002
  end-page: 49
  article-title: Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil)
  publication-title: Hydrobiologia
– volume: 431
  start-page: 549
  year: 2004
  end-page: 552
  article-title: Photosynthetic microbial mats in the 3,416‐Myr‐old ocean
  publication-title: Nature
– volume: 96
  start-page: 141
  year: 2009
  end-page: 162
  article-title: Processes of carbonate precipitation in modern microbial mats
  publication-title: Earth‐Science Reviews
– volume: 13
  start-page: 303
  year: 1994
  end-page: 312
  article-title: Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle
  publication-title: FEMS Microbiology Ecology
– volume: 219
  start-page: 87
  year: 2005
  end-page: 100
  article-title: Microbial mats as bioreactors: populations, processes, and products
  publication-title: Palaeogeography Palaeoclimatology Palaeoecology
– volume: 2
  start-page: 59
  year: 2004
  end-page: 66
  article-title: Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment
  publication-title: Geobiology
– year: 1960
– volume: 17
  start-page: 117
  year: 1995
  end-page: 136
  article-title: Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities
  publication-title: FEMS Microbiology Ecology
– volume: 105
  start-page: 30
  year: 2007
  end-page: 51
  article-title: The effect of biogeochemical processes on pH
  publication-title: Marine Chemistry
– volume: 9
  start-page: 283
  year: 1992
  end-page: 294
  article-title: Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat
  publication-title: FEMS Microbiology Ecology
– volume: 6
  start-page: 660
  year: 2012
  end-page: 669
  article-title: Degradation of cyanobacterial biomass in anoxic tidal‐flat sediments: a microcosm study of metabolic processes and community changes
  publication-title: ISME Journal
– volume: 41
  start-page: 179
  year: 1987
  end-page: 210
  article-title: Community structure and interactions among community members in hot spring cyanobacterial mats
  publication-title: Symposium of the Society for General Microbiology
– volume: 4
  start-page: 147
  year: 2006
  end-page: 166
  article-title: Cyanobacterial calcification and its rock‐building potential during 3.5 billion years of Earth history
  publication-title: Geobiology
– volume: 34
  start-page: 339
  year: 1999
  end-page: 348
  article-title: Early cyanobacterial fossil record: preservation, palaeoenvironments and identification
  publication-title: European Journal of Phycology
– start-page: 435
  year: 1984
  end-page: 441
– volume: 412
  start-page: 324
  year: 2001
  end-page: 327
  article-title: The role of microbial mats in the production of reduced gases on the early Earth
  publication-title: Nature
– volume: 344
  start-page: 27
  year: 1993
  end-page: 36
  article-title: Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry
  publication-title: Philosophical Transactions of Royal Society London A
– volume: 251
  start-page: 1471
  year: 1991
  end-page: 1473
  article-title: Aerobic sulfate reduction in microbial mats
  publication-title: Science, New Series
– volume: 65
  start-page: 4611
  year: 1999
  end-page: 4617
  article-title: Sulfonates as terminal electron acceptors for growth of sulfite‐reducing bacteria ( spp.) and sulfate‐reducing bacteria: effects of inhibitors of sulfidogenesis
  publication-title: Applied and Environment Microbiology
– volume: 441
  start-page: 714
  year: 2006
  end-page: 718
  article-title: Stromatolite reef from the Early Archaean era of Australia
  publication-title: Nature
– volume: 148
  start-page: 27
  year: 1965
  end-page: 35
  article-title: Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas
  publication-title: Science
– year: 1973
– year: 1996
– volume: 185
  start-page: 175
  year: 2006
  end-page: 183
  article-title: Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics?
  publication-title: Sedimentary Geology
– volume: 34
  start-page: 793
  year: 1989
  end-page: 806
  article-title: Sulfate reduction and the formation of S‐labeled FeS, FeS , and S in coastal marine sediments
  publication-title: Limnology and Oceanography
– volume: 52
  start-page: 987
  year: 2005
  end-page: 1008
  article-title: Precipitation of dolomite using sulphate‐reducing bacteria from the Coorong Region, South Australia: significance and implications
  publication-title: Sedimentology
– volume: 131
  start-page: 1
  year: 1995
  end-page: 32
  article-title: Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities
  publication-title: New Phytologist
– volume: 34
  start-page: 1017
  year: 2006
  end-page: 1020
  article-title: Nucleation of calcium carbonate on bacterial nanoglobules
  publication-title: Geology
– volume: 6
  start-page: 863
  year: 2012
  end-page: 874
  article-title: Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay
  publication-title: ISME Journal
– volume: 83
  start-page: 1482
  year: 1998
  end-page: 1493
  article-title: Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling
  publication-title: American Mineralogist
– volume: 57
  start-page: 1758
  year: 1991
  end-page: 1763
  article-title: Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium
  publication-title: Applied and Environment Microbiology
– volume: 289
  start-page: 1703
  year: 2000
  end-page: 1705
  article-title: Evolution – When did photosynthesis emerge on earth?
  publication-title: Science
– start-page: 659
  year: 2006
  end-page: 768
– volume: 52
  start-page: 377
  year: 2005
  end-page: 395
  article-title: Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat
  publication-title: FEMS Microbiology Ecology
– volume: 25
  start-page: 89
  year: 1998
  end-page: 96
  article-title: Strategies of sulfate‐reducing bacteria to escape oxygen stress in a cyanobacterial mat
  publication-title: FEMS Microbiology Ecology
– volume: 149
  start-page: 606
  year: 1982
  end-page: 611
  article-title: Microcalorimetric studies of the growth of sulfate‐reducing bacteria: comparison of the growth parameters of some species
  publication-title: Journal of Bacteriology
– start-page: 618
  year: 2007
  end-page: 639
– year: 2006
– volume: 67
  start-page: 293
  year: 2009
  end-page: 307
  article-title: Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat
  publication-title: FEMS Microbiology Ecology
– volume: 13
  start-page: 429
  year: 2005
  end-page: 438
  article-title: Microbial lithification in marine stromatolites and hypersaline mats
  publication-title: Trends in Microbiology
– start-page: 435
  year: 1992
  end-page: 449
– volume: 12
  start-page: 623
  year: 1984
  end-page: 626
  article-title: Calcification of cyanobacterial mats in Solar Lake, Sinai
  publication-title: Geology,
– volume: 44
  start-page: 175
  year: 2003
  end-page: 189
  article-title: Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain)
  publication-title: FEMS Microbiology Ecology
– volume: 31
  start-page: 577
  year: 2003
  end-page: 580
  article-title: Microbial nucleation of calcium carbonate in the Precambrian
  publication-title: Geology
– volume: 326
  start-page: 891
  year: 1987
  end-page: 892
  article-title: A novel type of energy metabolism involving fermentation of inorganic sulphur compounts
  publication-title: Nature
– volume: 50
  start-page: 1836
  year: 2005
  end-page: 1843
  article-title: Photosynthesis controlled calcification in a hypersaline microbial mat
  publication-title: Limnology and Oceanography
– ident: e_1_2_7_21_1
  doi: 10.1126/science.148.3666.27
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1574-6941.2008.00614.x
– volume: 41
  start-page: 179
  year: 1987
  ident: e_1_2_7_74_1
  article-title: Community structure and interactions among community members in hot spring cyanobacterial mats
  publication-title: Symposium of the Society for General Microbiology
– volume: 57
  start-page: 1758
  year: 1991
  ident: e_1_2_7_68_1
  article-title: Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium
  publication-title: Applied and Environment Microbiology
  doi: 10.1128/aem.57.6.1758-1763.1991
– volume-title: CRC Handbook of Chemistry and Physics
  year: 1973
  ident: e_1_2_7_76_1
– volume-title: Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser
  year: 1960
  ident: e_1_2_7_53_1
– ident: e_1_2_7_67_1
  doi: 10.1007/978-1-4615-2812-8_37
– ident: e_1_2_7_2_1
  doi: 10.1038/nature04764
– ident: e_1_2_7_9_1
  doi: 10.1038/326891a0
– ident: e_1_2_7_12_1
  doi: 10.1130/G24755A.1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.chemgeo.2010.09.008
– ident: e_1_2_7_18_1
  doi: 10.1038/ismej.2011.142
– ident: e_1_2_7_24_1
  doi: 10.1016/j.femsec.2004.12.005
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1574-6941.1998.tb00462.x
– ident: e_1_2_7_79_1
  doi: 10.1016/0168-6496(95)00017-5
– ident: e_1_2_7_4_1
  doi: 10.1130/G22986A.1
– ident: e_1_2_7_30_1
  doi: 10.1016/j.earscirev.2008.10.005
– volume-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
  year: 1996
  ident: e_1_2_7_61_1
– ident: e_1_2_7_73_1
  doi: 10.1098/rsta.1993.0072
– volume: 251
  start-page: 1471
  year: 1991
  ident: e_1_2_7_19_1
  article-title: Aerobic sulfate reduction in microbial mats
  publication-title: Science, New Series
– ident: e_1_2_7_52_1
  doi: 10.1021/cr050358j
– ident: e_1_2_7_57_1
  doi: 10.1016/j.precamres.2007.04.009
– ident: e_1_2_7_32_1
  doi: 10.1016/0025-3227(93)90146-M
– ident: e_1_2_7_33_1
  doi: 10.1080/09670269910001736402
– volume-title: CO2 in Seawater: Equilibrium, Kinetics, Isotopes
  year: 2001
  ident: e_1_2_7_82_1
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1057204
– ident: e_1_2_7_28_1
  doi: 10.1016/j.tim.2005.07.008
– ident: e_1_2_7_42_1
  doi: 10.4319/lo.1983.28.6.1075
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1472-4669.2006.00076.x
– ident: e_1_2_7_11_1
  doi: 10.1016/j.sedgeo.2005.12.008
– start-page: 317
  volume-title: Biogeochemistry
  year: 2004
  ident: e_1_2_7_51_1
– ident: e_1_2_7_37_1
  doi: 10.1128/9781555815882.ch41
– ident: e_1_2_7_54_1
  doi: 10.1007/0-387-30742-7_22
– ident: e_1_2_7_59_1
  doi: 10.1016/j.marchem.2006.12.012
– ident: e_1_2_7_65_1
  doi: 10.1016/j.sedgeo.2005.12.022
– ident: e_1_2_7_10_1
  doi: 10.1071/MF9790753
– ident: e_1_2_7_34_1
  doi: 10.1038/ismej.2011.120
– ident: e_1_2_7_80_1
  doi: 10.1016/S0037-0738(99)00037-8
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1472-4677.2004.00024.x
– ident: e_1_2_7_41_1
  doi: 10.4319/lo.1977.22.4.0657
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1472-4669.2007.00117.x
– volume: 289
  start-page: 1703
  year: 2000
  ident: e_1_2_7_26_1
  article-title: Evolution – When did photosynthesis emerge on earth?
  publication-title: Science
  doi: 10.1126/science.289.5485.1703
– ident: e_1_2_7_55_1
  doi: 10.1038/35023158
– ident: e_1_2_7_66_1
  doi: 10.1016/j.palaeo.2004.10.016
– ident: e_1_2_7_72_1
  doi: 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.2307/3515096
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-3091.2004.00649.x
– ident: e_1_2_7_62_1
  doi: 10.4319/lo.1989.34.5.0793
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1469-8137.1995.tb03051.x
– ident: e_1_2_7_49_1
  doi: 10.4319/lo.2005.50.6.1836
– ident: e_1_2_7_75_1
  doi: 10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2
– ident: e_1_2_7_78_1
  doi: 10.1007/BF00406470
– ident: e_1_2_7_31_1
  doi: 10.1128/AEM.58.1.70-77.1992
– volume: 13
  start-page: 61
  year: 1994
  ident: e_1_2_7_43_1
  article-title: The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes
  publication-title: Bulletin de l'Institut Océanographique (Monaco)
– ident: e_1_2_7_6_1
  doi: 10.1130/G22859A.1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.gca.2008.10.007
– ident: e_1_2_7_64_1
  doi: 10.1128/JB.149.2.606-611.1982
– ident: e_1_2_7_39_1
  doi: 10.1016/S0168-6496(02)00464-6
– start-page: 435
  volume-title: Current Perspectives in Microbial Ecology
  year: 1984
  ident: e_1_2_7_22_1
– ident: e_1_2_7_36_1
  doi: 10.1007/978-1-4613-9263-7_2
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1574-6976.2000.tb00567.x
– ident: e_1_2_7_47_1
  doi: 10.1023/A:1021323425591
– volume: 65
  start-page: 3272
  year: 1999
  ident: e_1_2_7_71_1
  article-title: Low‐molecular‐weight sulfonates, a major substrate for sulfate reducers in marine microbial mats
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.65.8.3272-3278.1999
– ident: e_1_2_7_13_1
  doi: 10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2
– ident: e_1_2_7_81_1
  doi: 10.1111/j.1365-3091.2005.00732.x
– ident: e_1_2_7_48_1
  doi: 10.1046/j.1365-3091.2003.00550.x
– start-page: 469
  volume-title: Biology of Anaerobic Microorganisms
  year: 1988
  ident: e_1_2_7_77_1
– ident: e_1_2_7_58_1
  doi: 10.1007/978-1-4684-7612-5_12
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1472-4677.2004.00019.x
– volume: 65
  start-page: 4611
  year: 1999
  ident: e_1_2_7_46_1
  article-title: Sulfonates as terminal electron acceptors for growth of sulfite‐reducing bacteria (Desulfitobacterium spp.) and sulfate‐reducing bacteria: effects of inhibitors of sulfidogenesis
  publication-title: Applied and Environment Microbiology
  doi: 10.1128/AEM.65.10.4611-4617.1999
– ident: e_1_2_7_56_1
  doi: 10.1515/9781400849079
– ident: e_1_2_7_20_1
  doi: 10.1016/S0037-0738(99)00028-7
– ident: e_1_2_7_23_1
  doi: 10.1146/annurev.micro.54.1.827
– ident: e_1_2_7_70_1
  doi: 10.2138/am-1998-11-1236
– ident: e_1_2_7_27_1
  doi: 10.2307/1543552
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1574-6941.1994.tb00077.x
– ident: e_1_2_7_63_1
  doi: 10.1038/nature02888
– ident: e_1_2_7_50_1
  doi: 10.1130/0091-7613(1984)12<623:COCMIS>2.0.CO;2
– ident: e_1_2_7_8_1
  doi: 10.1007/978-3-642-76884-2_34
– ident: e_1_2_7_45_1
  doi: 10.4319/lo.1977.22.4.0635
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1574-6941.1992.tb01763.x
SSID ssj0024531
Score 2.3694532
Snippet Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 518
SubjectTerms Bacteria - metabolism
Calcium Carbonate - metabolism
Chemical Precipitation
Environmental Microbiology
Hydrogen-Ion Concentration
Models, Biological
Models, Theoretical
Oxidation-Reduction
Sulfates - metabolism
Title Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria
URI https://api.istex.fr/ark:/67375/WNG-PT021ZM9-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1472-4669.2012.00342.x
https://www.ncbi.nlm.nih.gov/pubmed/22925453
https://www.proquest.com/docview/1112340317
https://www.proquest.com/docview/1171875730
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CSqGXvtKH-wgqlN68rCXLsntrS_OChBISGnoRki1B2K0ddr2Q5BDyE_Ib-0s6I3u32RBKKL0Z2yPZ8szokzzzDcD7tFK58ImMZcUrXKBUaHM8q2JpvDVDlwwrR_sdu3vZ1mG6cySP-vgnyoXp-CEWG25kGcFfk4EbO71h5IrHaZZRvglt6RGb3YDwJIVuET7a539o92QoTdiLKLUc1HNrQ0sz1T0a9NPbYOgyqg3T0sYjGM1fqItGGQ1mrR2U5ze4Hv_PGz-Ghz16ZZ86dXsCK65-Cve7epZna3CxHap_MgSVzIxHhrIu2zPmAufhx3CaohlZ49m8_A6rmrqZTNlxHS6HIlPNz-PAhd2niLKTpqWYJuwYBaezsUd8_OvyakKsszjzMtsxTptncLjx9eDLVtwXeIhLqp8XmzxDxIdTKGpFXhZWKm6HBpeknpvc5j4tlLXColtxxjpfoq8QqReFT1KP7sKI57BaN7V7Cazy3HFpi8R4omTLjHKJsAiOhPLKJD4CNf-YuuzZz6kIx1hfXwUprml0NY2uDqOrTyNIFpInHQPIHWQ-BH1ZCJjJiCLolNTf9zb1twNEVj92C60ieDdXKI12TT9rTO2a2ZTa5yJFl_vXexBZKIlOOoIXnTYueuS8wLW_FBHIoFN3fna9-XkbD179o9xreEBnu3TNN7DaTmbuLeK21q4Hi_wNRbkz4w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEB2hVgheuFPMdZEQb47itddr88atTaCJEEpFxctq196VqgS7Shyp5QHxCXwjX8LM2gmkqlCFeIscjx2vZ2bPbmbOAXiWlDKLXSRCUfISFyglxhxPy1BoZ3TfRv3S0n7HaJwODpJ3h-KwkwOiXpiWH2K94UaR4fM1BThtSJ-JcsnDJE2p4YT29IjOroeAcpsEvolI_81H_pt4T3hxws5Gys2ynnOvtDFXbdOwn5wHRDdxrZ-Ydq_DbPVIbT3KtLdsTK_4eobt8T898w241gFY9rL1uJtwyVa34HIraXl6G74NvQAoQ1zJ9GyqqfGyOWXW0x6-8IepoJHVjq0UeFhZV_V8wY4q_7XXmaq_HHk67K5LlB3XDZU14Y3RcLGcOYTIP7__mBPxLE6-zLSk0_oOHOy-nbwehJ3GQ1iQhF6osxRBH86i6BhZkRshuelrXJU6rjOTuSSXxsQGM4vVxroC00WcuDh3UeIwY-j4LmxVdWXvASsdt1yYPNKOWNlSLW0UG8RHsXRSRy4AuXqbqugI0EmHY6b-XAhJrmh0FY2u8qOrTgKI1pbHLQnIBWyee4dZG-j5lIropFCfxnvqwwTB1edRrmQAT1cepTC06f8aXdl6uaDr8zjBrPvXcxBcSIF5OoCd1h3Xd-Q8x-W_iAMQ3qku_NvV3qshfrj_j3ZP4MpgMtpX-8Px-wdwlc5ouzcfwlYzX9pHCOMa89iH5y-Avzf_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJhAvjG8yvoyEeEvV2HGc8AaMbgVWTWgTEy-WHdvS1JJUbSptPCB-Ar-RX8K9TlroNKEJ8ValuUnj3Ht97N57DiHPUytz7hMRC8ssLFAsxBzLbCy0N7rvkr51uN-xP8r2jtJ3x-K4q3_CXpiWH2K14YaREfI1BvjU-nNBLlmcZhn2m-CWHrLZ9QBPbqZZv0AZh52P7DfvngjahJ2NlOtVPRdeaW2q2sRRP70Ih67D2jAvDbbIePlEbTnKuLdoTK_8eo7s8f888k1yo4Ov9FXrb7fIFVfdJldbQcuzO-TbMMh_UkCVVE_GGtsumzPqAunhy3AYyxlp7elSf4fauqpnc3pSha-DylT95SSQYXc9onRaN1jUBDcGw_li4gEg__z-Y4a0szD1UtNSTuu75Gjw9vDNXtwpPMQlCujFOs8A8sEcCm6Rl4URkpm-hjWpZzo3uU8LaQw3kFecNs6XkCx46nnhk9RDvtD8Htmo6so9INR65pgwRaI9crJlWrqEG0BHXHqpEx8RuXyZquzoz1GFY6L-XAZJpnB0FY6uCqOrTiOSrCynLQXIJWxeBH9ZGejZGEvopFCfRrvq4BCg1ef9QsmIPFs6lILAxn9rdOXqxRyvz3gKOfev5wC0kAKydETut964uiNjBSz-BY-ICD516d-udl8P4cP2P9o9JdcOdgbqw3D0_iG5jie0rZuPyEYzW7jHgOEa8yQE5y-aHjau
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inside+the+alkalinity+engine%3A+the+role+of+electron+donors+in+the+organomineralization+potential+of+sulfate%E2%80%90reducing+bacteria&rft.jtitle=Geobiology&rft.au=Gallagher%2C+K.+L.&rft.au=Kading%2C+T.+J.&rft.au=Braissant%2C+O.&rft.au=Dupraz%2C+C.&rft.date=2012-11-01&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=10&rft.issue=6&rft.spage=518&rft.epage=530&rft_id=info:doi/10.1111%2Fj.1472-4669.2012.00342.x&rft.externalDBID=10.1111%252Fj.1472-4669.2012.00342.x&rft.externalDocID=GBI342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon