Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sit...
Saved in:
Published in | Geobiology Vol. 10; no. 6; pp. 518 - 530 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro‐organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate‐reducing bacteria (SRB) are an important component of this ‘alkalinity engine.’ The activity of SRB often peaks in layers where CaCO3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. |
---|---|
AbstractList | Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on E arth. Two factors that contribute to carbonate mineral precipitation are the saturation index ( SI ) and the presence of nucleation sites. Both of these can be influenced by micro‐organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances ( EPS ) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI . Sulfate‐reducing bacteria ( SRB ) are an important component of this ‘alkalinity engine.’ The activity of SRB often peaks in layers where CaCO 3 precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH , alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH , but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH . The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation. |
Author | Kading, T. J. Braissant, O. Gallagher, K. L. Visscher, P. T. Dupraz, C. |
Author_xml | – sequence: 1 givenname: K. L. surname: Gallagher fullname: Gallagher, K. L. organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA – sequence: 2 givenname: T. J. surname: Kading fullname: Kading, T. J. organization: Woods Hole Oceanographic Institute, MA, Falmouth, USA – sequence: 3 givenname: O. surname: Braissant fullname: Braissant, O. organization: Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA – sequence: 4 givenname: C. surname: Dupraz fullname: Dupraz, C. organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA – sequence: 5 givenname: P. T. surname: Visscher fullname: Visscher, P. T. email: visscher@uconn.edu organization: Department of Marine Sciences, University of Connecticut, Groton, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22925453$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuP0zAUhS00iHnAX0BZsknwI4kThJBgBKXS8FgMQmJj2el1cce1O7YjWsSPx2mHLljVGx_5fudYuucSnTnvAKGC4Irk83JVkZrTsm7bvqKY0ApjVtNq-whdHAdnR835ObqMcYUxrRtGnqBzSnvaZH2B_sxdNAso0k8opL2T1jiTdgW4pXHwav8cvIXC6wIsDCl4Vyy88yEWxu3HPiyl8-uMh-z-LZPJyMYncMlIOxnjaLVMUAZYjINxy0LJIUEw8il6rKWN8OzhvkLfPry_vf5Y3nyZza_f3pRDgxtayq7FXcNaKjF0Q68aThWWlBBNZac6XfdcKaZq2oBUoIeWdazWrNek1gpjya7Qi0PuJvj7EWISaxMHsFY68GMUhHDS8YYzfAJKKKsxIzyjzx_QUa1hITbBrGXYiX_LzUB3AIbgYwygjwjBUxARKzFVJKa6xNSj2Pcottn65j_rYNJ-tSlIY08JeH0I-GUs7E7-WMzezbPI9vJgNzHB9miX4U60nPFGfP88E19vMSU_PvWCs7-kbcac |
CitedBy_id | crossref_primary_10_1016_j_gca_2021_09_024 crossref_primary_10_3389_fmicb_2016_01064 crossref_primary_10_1016_j_scitotenv_2024_173469 crossref_primary_10_1016_j_tim_2020_06_004 crossref_primary_10_3390_min9070409 crossref_primary_10_1016_j_jhazmat_2017_03_005 crossref_primary_10_1016_j_epsl_2019_04_044 crossref_primary_10_3389_fmicb_2015_01531 crossref_primary_10_1021_es500344s crossref_primary_10_3389_fmicb_2022_909494 crossref_primary_10_1007_s00343_017_5345_9 crossref_primary_10_1016_j_cej_2025_161759 crossref_primary_10_3389_fmicb_2018_00040 crossref_primary_10_1021_acsestwater_4c00540 crossref_primary_10_1016_j_oregeorev_2021_104524 crossref_primary_10_1080_01490451_2019_1709107 crossref_primary_10_1111_sed_12936 crossref_primary_10_1016_j_earscirev_2019_103065 crossref_primary_10_1111_1462_2920_14374 crossref_primary_10_1016_j_sedgeo_2014_12_002 crossref_primary_10_1016_j_gca_2018_09_018 crossref_primary_10_1016_j_jop_2025_03_003 crossref_primary_10_1016_j_marmicro_2024_102363 crossref_primary_10_1051_mattech_2023004 crossref_primary_10_1007_s10498_018_9333_2 crossref_primary_10_1111_gbi_12272 crossref_primary_10_3389_fmicb_2015_00797 crossref_primary_10_1016_j_gloplacha_2024_104658 crossref_primary_10_1111_sed_12927 crossref_primary_10_1002_dep2_16 crossref_primary_10_1016_j_sedgeo_2014_08_006 crossref_primary_10_4491_eer_2020_333 crossref_primary_10_3389_fmicb_2017_00602 crossref_primary_10_1038_s41598_024_52626_y crossref_primary_10_1130_G34639C_1 crossref_primary_10_1016_j_chemgeo_2021_120395 crossref_primary_10_1016_j_marchem_2014_05_003 crossref_primary_10_1111_1462_2920_13094 crossref_primary_10_3389_feart_2021_618311 crossref_primary_10_3389_fmicb_2019_00862 crossref_primary_10_3390_min10030276 crossref_primary_10_1021_acs_est_8b07055 crossref_primary_10_1111_gbi_12281 crossref_primary_10_1111_sed_13053 crossref_primary_10_3389_fmicb_2014_00331 crossref_primary_10_1080_01490451_2023_2219261 crossref_primary_10_3390_life5010744 crossref_primary_10_1016_j_gca_2019_02_002 crossref_primary_10_1007_s12517_020_05750_8 crossref_primary_10_1016_j_chemgeo_2015_03_017 crossref_primary_10_1038_s41598_017_14781_3 crossref_primary_10_1016_j_petsci_2023_08_012 crossref_primary_10_1029_2023AV000950 crossref_primary_10_3389_fmars_2020_00407 crossref_primary_10_1038_s43247_020_00025_2 crossref_primary_10_1016_j_margeo_2020_106284 crossref_primary_10_1016_j_margeo_2016_10_010 crossref_primary_10_2138_am_2020_7381 crossref_primary_10_3389_fmicb_2015_00966 crossref_primary_10_1080_01490451_2017_1421727 crossref_primary_10_1016_j_sedgeo_2024_106638 crossref_primary_10_5194_bg_19_1723_2022 crossref_primary_10_3389_fmicb_2018_01464 crossref_primary_10_3389_feart_2016_00068 crossref_primary_10_3389_fmicb_2018_00998 crossref_primary_10_1016_j_scitotenv_2024_171362 crossref_primary_10_1016_j_scitotenv_2016_09_107 crossref_primary_10_1016_j_precamres_2022_106899 crossref_primary_10_1111_1462_2920_15252 crossref_primary_10_1111_gbi_12102 crossref_primary_10_1016_j_ibiod_2018_03_016 crossref_primary_10_1134_S199507802001005X crossref_primary_10_1016_j_earscirev_2017_06_015 crossref_primary_10_1111_gbi_12461 crossref_primary_10_1016_j_scitotenv_2020_139074 crossref_primary_10_1111_gbi_12063 crossref_primary_10_3389_fmicb_2021_610389 crossref_primary_10_1038_s41598_019_56144_0 crossref_primary_10_1186_s42501_021_00087_z crossref_primary_10_2110_jsr_2020_7 crossref_primary_10_1016_j_palaeo_2020_110152 crossref_primary_10_1016_j_apgeochem_2017_01_010 crossref_primary_10_1038_srep12601 crossref_primary_10_3390_min12050646 crossref_primary_10_1016_j_chemgeo_2021_120254 crossref_primary_10_1016_j_scitotenv_2022_153767 crossref_primary_10_1016_j_chemgeo_2019_119415 crossref_primary_10_1155_2023_1737181 crossref_primary_10_1093_ismeco_ycae139 crossref_primary_10_1016_j_chemgeo_2021_120261 crossref_primary_10_1111_gbi_12355 crossref_primary_10_1038_srep31495 crossref_primary_10_1130_G35240Y_1 crossref_primary_10_1080_01490451_2020_1836086 crossref_primary_10_3390_su15064858 crossref_primary_10_1016_j_sedgeo_2022_106296 crossref_primary_10_1038_s41396_018_0208_8 crossref_primary_10_1016_j_chemgeo_2018_09_016 crossref_primary_10_1016_j_hydromet_2024_106341 crossref_primary_10_1016_j_surfcoat_2018_03_032 crossref_primary_10_1016_j_chemgeo_2017_05_019 crossref_primary_10_1111_let_12120 crossref_primary_10_3389_fmicb_2017_00922 crossref_primary_10_3390_min4010145 crossref_primary_10_1016_j_gca_2018_06_019 crossref_primary_10_3390_min5030488 crossref_primary_10_1016_j_jobe_2024_111124 crossref_primary_10_1111_gbi_12400 crossref_primary_10_1016_j_precamres_2016_03_010 crossref_primary_10_3390_geosciences12080304 crossref_primary_10_1002_lno_11323 crossref_primary_10_1038_ismej_2015_87 crossref_primary_10_1111_1462_2920_13456 crossref_primary_10_3390_min12121562 crossref_primary_10_1371_journal_pone_0186867 crossref_primary_10_1016_j_sedgeo_2019_105540 crossref_primary_10_32604_jrm_2021_015878 crossref_primary_10_1007_s00792_021_01232_1 crossref_primary_10_1111_gbi_12097 crossref_primary_10_1016_j_palaeo_2024_112549 crossref_primary_10_3390_ijms15010850 crossref_primary_10_1016_j_chemgeo_2016_04_022 crossref_primary_10_1371_journal_pone_0262939 crossref_primary_10_3389_fmicb_2020_547458 crossref_primary_10_1007_s12665_023_11273_8 crossref_primary_10_1089_ast_2016_1563 crossref_primary_10_3390_coatings14091105 crossref_primary_10_1016_j_gca_2018_06_011 crossref_primary_10_1039_D4EM00185K crossref_primary_10_3389_feart_2021_601194 crossref_primary_10_1666_13002 crossref_primary_10_1016_j_chemgeo_2021_120403 |
Cites_doi | 10.1126/science.148.3666.27 10.1111/j.1574-6941.2008.00614.x 10.1128/aem.57.6.1758-1763.1991 10.1007/978-1-4615-2812-8_37 10.1038/nature04764 10.1038/326891a0 10.1130/G24755A.1 10.1016/j.chemgeo.2010.09.008 10.1038/ismej.2011.142 10.1016/j.femsec.2004.12.005 10.1111/j.1574-6941.1998.tb00462.x 10.1016/0168-6496(95)00017-5 10.1130/G22986A.1 10.1016/j.earscirev.2008.10.005 10.1098/rsta.1993.0072 10.1021/cr050358j 10.1016/j.precamres.2007.04.009 10.1016/0025-3227(93)90146-M 10.1080/09670269910001736402 10.1126/science.1057204 10.1016/j.tim.2005.07.008 10.4319/lo.1983.28.6.1075 10.1111/j.1472-4669.2006.00076.x 10.1016/j.sedgeo.2005.12.008 10.1128/9781555815882.ch41 10.1007/0-387-30742-7_22 10.1016/j.marchem.2006.12.012 10.1016/j.sedgeo.2005.12.022 10.1071/MF9790753 10.1038/ismej.2011.120 10.1016/S0037-0738(99)00037-8 10.1111/j.1472-4677.2004.00024.x 10.4319/lo.1977.22.4.0657 10.1111/j.1472-4669.2007.00117.x 10.1126/science.289.5485.1703 10.1038/35023158 10.1016/j.palaeo.2004.10.016 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2 10.2307/3515096 10.1111/j.1365-3091.2004.00649.x 10.4319/lo.1989.34.5.0793 10.1111/j.1469-8137.1995.tb03051.x 10.4319/lo.2005.50.6.1836 10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2 10.1007/BF00406470 10.1128/AEM.58.1.70-77.1992 10.1130/G22859A.1 10.1016/j.gca.2008.10.007 10.1128/JB.149.2.606-611.1982 10.1016/S0168-6496(02)00464-6 10.1007/978-1-4613-9263-7_2 10.1111/j.1574-6976.2000.tb00567.x 10.1023/A:1021323425591 10.1128/AEM.65.8.3272-3278.1999 10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2 10.1111/j.1365-3091.2005.00732.x 10.1046/j.1365-3091.2003.00550.x 10.1007/978-1-4684-7612-5_12 10.1111/j.1472-4677.2004.00019.x 10.1128/AEM.65.10.4611-4617.1999 10.1515/9781400849079 10.1016/S0037-0738(99)00028-7 10.1146/annurev.micro.54.1.827 10.2138/am-1998-11-1236 10.2307/1543552 10.1111/j.1574-6941.1994.tb00077.x 10.1038/nature02888 10.1130/0091-7613(1984)12<623:COCMIS>2.0.CO;2 10.1007/978-3-642-76884-2_34 10.4319/lo.1977.22.4.0635 10.1111/j.1574-6941.1992.tb01763.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2012 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2012 Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QL C1K F1W H95 L.G |
DOI | 10.1111/j.1472-4669.2012.00342.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1472-4669 |
EndPage | 530 |
ExternalDocumentID | 22925453 10_1111_j_1472_4669_2012_00342_x GBI342 ark_67375_WNG_PT021ZM9_7 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: EAR 1052974; EAR 0311929 – fundername: NASA Exobiology funderid: NNX09A057G |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7QL C1K F1W H95 L.G |
ID | FETCH-LOGICAL-c5052-a86085362a0e8c9b572b0a211f2a8b8f497bb3b425eabefc63834f39f14fb00a3 |
IEDL.DBID | DR2 |
ISSN | 1472-4677 1472-4669 |
IngestDate | Thu Jul 10 16:59:47 EDT 2025 Thu Jul 10 17:08:30 EDT 2025 Mon Jul 21 06:04:47 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 01:09:02 EDT 2025 Wed Jan 22 16:25:32 EST 2025 Wed Oct 30 09:56:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5052-a86085362a0e8c9b572b0a211f2a8b8f497bb3b425eabefc63834f39f14fb00a3 |
Notes | ArticleID:GBI342 istex:27C988701BDB3406E98EC76F564F57F4DECF5E2E ark:/67375/WNG-PT021ZM9-7 National Science Foundation - No. EAR 1052974; No. EAR 0311929 NASA Exobiology - No. NNX09A057G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22925453 |
PQID | 1112340317 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1171875730 proquest_miscellaneous_1112340317 pubmed_primary_22925453 crossref_primary_10_1111_j_1472_4669_2012_00342_x crossref_citationtrail_10_1111_j_1472_4669_2012_00342_x wiley_primary_10_1111_j_1472_4669_2012_00342_x_GBI342 istex_primary_ark_67375_WNG_PT021ZM9_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2012 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: November 2012 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Geobiology |
PublicationTitleAlternate | Geobiology |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Applied and Environment Microbiology, 57, 1758-1763. Castanier S, Le Metayer-Levrel G, Perthuisot J (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedimentary Geology, 126, 9-23. Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography, 28, 1075-1093. Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 9, 283-294. Cypionka H (2000) Oxygen Respiration by Desulfovibrio Species. Annual Reviews Microbiology, 54, 827-848. Fründ C, Cohen Y (1992) Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Applied and Environmental Microbiology, 58, 70-77. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131-145. Graue J, Engelen B, Cypionka H (2012) Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME Journal, 6, 660-669. Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973-976. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science, 292, 1701-1704. Dupraz C, Reid RP, Braissant O, Decho A, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162. Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12, 623-626. Cloud P (1965) Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148, 27-35. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412, 324-327. Deng S, Dong H, Lv G, Jiang H, Yu SH, Bishop ME (2010) Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278, 151-159. Stumm W, Morgan J (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley and Sons, New York. Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philosophical Transactions of Royal Society London A, 344, 27-36. Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147-166. Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. European Journal of Phycology, 34, 339-348. Widdel F, Pfennig N (1981) Studies on Dissimilatory Sulfate-reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate-Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology, 129, 395-400. Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography, 22, 657-666. Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, Visscher PT (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiology Ecology, 52, 377-395. Morse JW, Arvidson RS, Luttge A (2007) Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342-381. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews, 24, 691-710. Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME Journal, 6, 863-874. Allwood A, Walter M, Kamber B, Marshall C, Burch I (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714-718. Tice M, Lowe D (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431, 549-552. Bontognali T, Vasconcelos C, Warthmann R, Dupraz C, Bernasconi S, Mckenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663-666. Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history. Geochimica Et Cosmochimica Acta, 72, 6037-6060. Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89-96. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin, 204, 160-167. Des Marais DJ (2000) Evolution - When did photosynthesis emerge on earth? Science, 289, 1703-1705. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429-438. Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 10, 578-596. Warthmann R, van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff A (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091-1094. Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounts. Nature, 326, 891-892. Vasconcelos C, Warthmann R, Mckenzie JA, Visscher PT, Bittermann AG, van Lith Y (2006) Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics? Sedimentary Geology, 185, 175-183. Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Applied and Environment Microbiology, 65, 4611-4617. Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635-656. Wright DT (1999) The Role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147-157. Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, De Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). FEMS Microbiology Ecology, 44, 175-189. de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiology Ecology, 17, 117-136. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeography Palaeoclimatology Palaeoecology, 219, 87-100. Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919-922. Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes. Bulletin de l'Institut Océanographique (Monaco), 13, 61-117. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre LG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989-992. Canfield D, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science, New Series, 251, 1471-1473. Weast RC (1973) CRC Handbook of Chemistry and Physics. CRC Press, Cleveland, OH. Braissant O, Decho A, Przekop K, Gallagher K, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology, 67, 293-307. Jørgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 13, 303-312. van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237-245. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401-411. Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52, 987-1008. Aloisi G, Gloter A, Kruger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017-1020. Soetaert K, Hofmann A, Middleburg J, Meysman F, Greenwood J (2007) The effect of biogeochemical processes on pH. Marine Chemistry, 105, 30-51. Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Co 2007; 107 1990; 11 1965; 148 2007; 105 2006; 34 1991; 57 2008; 36 2005; 219 1973 1977; 22 1992; 58 1982; 149 2004; 2 1998; 83 2008; 72 1995; 131 1979; 30 2003; 50 1999; 126 1992; 9 2009; 96 1989; 34 2003; 204 1987; 41 2000; 289 2001 2001; 292 2000; 54 1984; 12 2010; 278 2000; 406 1984 2007; 5 1983; 28 2001; 412 2006; 441 2003; 44 1988 2009; 67 1991; 251 2000; 28 1995; 17 1987; 326 2000; 24 1995; 10 2007 1996 1999; 65 2006 2006; 4 1993 2004 1992 1981; 129 1993; 344 2003; 31 1998; 25 2007; 158 2004; 431 2004; 51 2002; 485 2006; 185 2005; 52 1999; 34 1994; 13 1960 2005; 50 2012; 6 1993; 113 2005; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Stumm W (e_1_2_7_61_1) 1996 e_1_2_7_7_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Lie TJ (e_1_2_7_46_1) 1999; 65 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Ward DM (e_1_2_7_74_1) 1987; 41 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 Pachmayr F (e_1_2_7_53_1) 1960 e_1_2_7_16_1 Des Marais DJ (e_1_2_7_26_1) 2000; 289 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 Weast RC (e_1_2_7_76_1) 1973 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Zeebe R (e_1_2_7_82_1) 2001 Cohen Y (e_1_2_7_22_1) 1984 Kempe S (e_1_2_7_43_1) 1994; 13 Megonigal JP (e_1_2_7_51_1) 2004 Visscher PT (e_1_2_7_68_1) 1991; 57 Widdel F (e_1_2_7_77_1) 1988 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Canfield D (e_1_2_7_19_1) 1991; 251 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Visscher PT (e_1_2_7_71_1) 1999; 65 |
References_xml | – reference: Braissant O, Cailleau G, Aragno M, Verrecchia EP (2004) Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59-66. – reference: Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401-411. – reference: Bontognali T, Vasconcelos C, Warthmann R, Dupraz C, Bernasconi S, Mckenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663-666. – reference: van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237-245. – reference: Jørgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 13, 303-312. – reference: Zeebe R, Wolf-Gladrow D (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam. – reference: Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973-976. – reference: Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, Visscher PT (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiology Ecology, 52, 377-395. – reference: Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. American Mineralogist, 83, 1482-1493. – reference: Vasconcelos C, Warthmann R, Mckenzie JA, Visscher PT, Bittermann AG, van Lith Y (2006) Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics? Sedimentary Geology, 185, 175-183. – reference: Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history. Geochimica Et Cosmochimica Acta, 72, 6037-6060. – reference: Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Applied and Environment Microbiology, 57, 1758-1763. – reference: Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews, 24, 691-710. – reference: Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser, University of Munich, Munich, Germany. – reference: Weast RC (1973) CRC Handbook of Chemistry and Physics. CRC Press, Cleveland, OH. – reference: Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. European Journal of Phycology, 34, 339-348. – reference: Bosak T, Newman DK (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577-580. – reference: Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52, 987-1008. – reference: Aloisi G, Gloter A, Kruger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017-1020. – reference: Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131-145. – reference: Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philosophical Transactions of Royal Society London A, 344, 27-36. – reference: Cloud P (1965) Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148, 27-35. – reference: van Gemerden H (1993) Microbial mats: a joint venture. Marine Geology, 113, 3-25. – reference: Sarmiento JL, Gruber N (2006) Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ. – reference: Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919-922. – reference: Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounts. Nature, 326, 891-892. – reference: Widdel F, Pfennig N (1981) Studies on Dissimilatory Sulfate-reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate-Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology, 129, 395-400. – reference: Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes. Bulletin de l'Institut Océanographique (Monaco), 13, 61-117. – reference: Ludwig R, Al-Horani F, de Beer D, Jonkers HM (2005) Photosynthesis controlled calcification in a hypersaline microbial mat. Limnology and Oceanography, 50, 1836-1843. – reference: Wright DT (1999) The Role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147-157. – reference: Warthmann R, van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff A (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091-1094. – reference: Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin, 204, 160-167. – reference: Tice M, Lowe D (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431, 549-552. – reference: Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635-656. – reference: Cypionka H (2000) Oxygen Respiration by Desulfovibrio Species. Annual Reviews Microbiology, 54, 827-848. – reference: Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89-96. – reference: Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155. – reference: Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: Is the precambrian the key to the Permian? Palaios, 10, 578-596. – reference: Allwood A, Walter M, Kamber B, Marshall C, Burch I (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714-718. – reference: Soetaert K, Hofmann A, Middleburg J, Meysman F, Greenwood J (2007) The effect of biogeochemical processes on pH. Marine Chemistry, 105, 30-51. – reference: Stal LJ (1995) Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131, 1-32. – reference: Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412, 324-327. – reference: Thode-Andersen S, Jørgensen BB (1989) Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments. Limnology and Oceanography, 34, 793-806. – reference: Bauld J, Chambers LA, Skyring GW (1979) Primary productivity, sulfate reduction and sulfer isotope fractionation in algal mats and sediments of Hamelin pool, Shark Bay, WA. Australian Journal of Marine and Freshwater Research, 30, 753-764. – reference: Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeography Palaeoclimatology Palaeoecology, 219, 87-100. – reference: Fründ C, Cohen Y (1992) Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Applied and Environmental Microbiology, 58, 70-77. – reference: Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME Journal, 6, 863-874. – reference: Stumm W, Morgan J (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley and Sons, New York. – reference: Canfield D, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science, New Series, 251, 1471-1473. – reference: Graue J, Engelen B, Cypionka H (2012) Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME Journal, 6, 660-669. – reference: Skyring GW, Bauld J (1990) Microbial mats in Australian coastal environments. Microbial Ecology, 11, 461-498. – reference: Dupraz C, Reid RP, Braissant O, Decho A, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162. – reference: Castanier S, Le Metayer-Levrel G, Perthuisot J (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sedimentary Geology, 126, 9-23. – reference: de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiology Ecology, 17, 117-136. – reference: Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography, 28, 1075-1093. – reference: Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 9, 283-294. – reference: Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science, 292, 1701-1704. – reference: Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12, 623-626. – reference: Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure and interactions among community members in hot spring cyanobacterial mats. In Symposium of the Society for General Microbiology (eds Fletcher M, Gray TRG, Jones JG) Ecology of Microbial Communities, vol. 41, Cambridge University Press, Cambridge, UK, pp.179-210. – reference: Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429-438. – reference: van Lith Y, Vasconcelos C, Warthmann R, Martins JCF, Mckenzie JA (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485, 35-49. – reference: Morse JW, Arvidson RS, Luttge A (2007) Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342-381. – reference: Deng S, Dong H, Lv G, Jiang H, Yu SH, Bishop ME (2010) Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278, 151-159. – reference: Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Applied and Environment Microbiology, 65, 4611-4617. – reference: Visscher PT, Gritzer RF, Leadbetter ER (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Applied and Environmental Microbiology, 65, 3272-3278. – reference: Braissant O, Decho A, Przekop K, Gallagher K, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology, 67, 293-307. – reference: Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography, 22, 657-666. – reference: Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre LG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989-992. – reference: Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, De Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). FEMS Microbiology Ecology, 44, 175-189. – reference: Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745-765. – reference: Traore AS, Hatchikian CE, Le Gall J, Belaich JP (1982) Microcalorimetric studies of the growth of sulfate-reducing bacteria: comparison of the growth parameters of some Desulfovibrio species. Journal of Bacteriology, 149, 606-611. – reference: Des Marais DJ (2000) Evolution - When did photosynthesis emerge on earth? Science, 289, 1703-1705. – reference: Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147-166. – volume: 30 start-page: 753 year: 1979 end-page: 764 article-title: Primary productivity, sulfate reduction and sulfer isotope fractionation in algal mats and sediments of Hamelin pool, Shark Bay, WA publication-title: Australian Journal of Marine and Freshwater Research – start-page: 317 year: 2004 end-page: 424 – volume: 22 start-page: 657 year: 1977 end-page: 666 article-title: Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats publication-title: Limnology and Oceanography – start-page: 469 year: 1988 end-page: 585 – volume: 28 start-page: 1091 year: 2000 end-page: 1094 article-title: Bacterially induced dolomite precipitation in anoxic culture experiments publication-title: Geology – volume: 204 start-page: 160 year: 2003 end-page: 167 article-title: Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere publication-title: Biological Bulletin – volume: 28 start-page: 1075 year: 1983 end-page: 1093 article-title: Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities publication-title: Limnology and Oceanography – volume: 22 start-page: 635 year: 1977 end-page: 656 article-title: Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats publication-title: Limnology and Oceanography – volume: 5 start-page: 401 year: 2007 end-page: 411 article-title: Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals publication-title: Geobiology – volume: 278 start-page: 151 year: 2010 end-page: 159 article-title: Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China publication-title: Chemical Geology – year: 2001 – volume: 10 start-page: 578 year: 1995 end-page: 596 article-title: Anomalous carbonate precipitates: Is the precambrian the key to the Permian? publication-title: Palaios – volume: 11 start-page: 461 year: 1990 end-page: 498 article-title: Microbial mats in Australian coastal environments publication-title: Microbial Ecology – start-page: 21 year: 1993 end-page: 40 – volume: 292 start-page: 1701 year: 2001 end-page: 1704 article-title: Photosynthesis‐induced biofilm calcification and calcium concentrations in phanerozoic oceans publication-title: Science – volume: 129 start-page: 395 year: 1981 end-page: 400 article-title: Studies on Dissimilatory Sulfate‐reducing Bacteria that Decompose Fatty Acids: I. Isolation of New Sulfate‐Reducing Bacteria Enriched with Acetate from Saline Environments. Description of Desulfobacter postgatei gen. nov., sp. nov publication-title: Archives of Microbiology – volume: 126 start-page: 147 year: 1999 end-page: 157 article-title: The Role of sulphate‐reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia publication-title: Sedimentary Geology – volume: 65 start-page: 3272 year: 1999 end-page: 3278 article-title: Low‐molecular‐weight sulfonates, a major substrate for sulfate reducers in marine microbial mats publication-title: Applied and Environmental Microbiology – volume: 50 start-page: 237 year: 2003 end-page: 245 article-title: Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation publication-title: Sedimentology – volume: 126 start-page: 9 year: 1999 end-page: 23 article-title: Ca‐carbonates precipitation and limestone genesis‐the microbiogeologist point of view publication-title: Sedimentary Geology – volume: 185 start-page: 131 year: 2006 end-page: 145 article-title: Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries publication-title: Sedimentary Geology – volume: 13 start-page: 61 year: 1994 end-page: 117 article-title: The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes publication-title: Bulletin de l'Institut Océanographique (Monaco) – volume: 34 start-page: 973 year: 2006 end-page: 976 article-title: Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites publication-title: Geology – volume: 54 start-page: 827 year: 2000 end-page: 848 article-title: Oxygen Respiration by Species publication-title: Annual Reviews Microbiology – volume: 107 start-page: 342 year: 2007 end-page: 381 article-title: Calcium carbonate formation and dissolution publication-title: Chemical Reviews – volume: 51 start-page: 745 year: 2004 end-page: 765 article-title: Microbe‐mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas) publication-title: Sedimentology – volume: 72 start-page: 6037 year: 2008 end-page: 6060 article-title: The calcium carbonate saturation state in cyanobacterial mats throughout Earth's history publication-title: Geochimica Et Cosmochimica Acta – volume: 113 start-page: 3 year: 1993 end-page: 25 article-title: Microbial mats: a joint venture publication-title: Marine Geology – volume: 406 start-page: 989 year: 2000 end-page: 992 article-title: The role of microbes in accretion, lamination and early lithification of modern marine stromatolites publication-title: Nature – volume: 24 start-page: 691 year: 2000 end-page: 710 article-title: Life at the oxic‐anoxic interface: microbial activities and adaptations publication-title: FEMS Microbiology Reviews – volume: 28 start-page: 919 year: 2000 end-page: 922 article-title: Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites publication-title: Geology – volume: 158 start-page: 141 year: 2007 end-page: 155 article-title: Evidence of archean life: stromatolites and microfossils publication-title: Precambrian Research – volume: 36 start-page: 663 year: 2008 end-page: 666 article-title: Microbes produce nanobacteria‐like structures, avoiding cell entombment publication-title: Geology – start-page: 672 year: 1993 end-page: 693 – volume: 58 start-page: 70 year: 1992 end-page: 77 article-title: Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats publication-title: Applied and Environmental Microbiology – volume: 485 start-page: 35 year: 2002 end-page: 49 article-title: Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil) publication-title: Hydrobiologia – volume: 431 start-page: 549 year: 2004 end-page: 552 article-title: Photosynthetic microbial mats in the 3,416‐Myr‐old ocean publication-title: Nature – volume: 96 start-page: 141 year: 2009 end-page: 162 article-title: Processes of carbonate precipitation in modern microbial mats publication-title: Earth‐Science Reviews – volume: 13 start-page: 303 year: 1994 end-page: 312 article-title: Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle publication-title: FEMS Microbiology Ecology – volume: 219 start-page: 87 year: 2005 end-page: 100 article-title: Microbial mats as bioreactors: populations, processes, and products publication-title: Palaeogeography Palaeoclimatology Palaeoecology – volume: 2 start-page: 59 year: 2004 end-page: 66 article-title: Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment publication-title: Geobiology – year: 1960 – volume: 17 start-page: 117 year: 1995 end-page: 136 article-title: Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities publication-title: FEMS Microbiology Ecology – volume: 105 start-page: 30 year: 2007 end-page: 51 article-title: The effect of biogeochemical processes on pH publication-title: Marine Chemistry – volume: 9 start-page: 283 year: 1992 end-page: 294 article-title: Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat publication-title: FEMS Microbiology Ecology – volume: 6 start-page: 660 year: 2012 end-page: 669 article-title: Degradation of cyanobacterial biomass in anoxic tidal‐flat sediments: a microcosm study of metabolic processes and community changes publication-title: ISME Journal – volume: 41 start-page: 179 year: 1987 end-page: 210 article-title: Community structure and interactions among community members in hot spring cyanobacterial mats publication-title: Symposium of the Society for General Microbiology – volume: 4 start-page: 147 year: 2006 end-page: 166 article-title: Cyanobacterial calcification and its rock‐building potential during 3.5 billion years of Earth history publication-title: Geobiology – volume: 34 start-page: 339 year: 1999 end-page: 348 article-title: Early cyanobacterial fossil record: preservation, palaeoenvironments and identification publication-title: European Journal of Phycology – start-page: 435 year: 1984 end-page: 441 – volume: 412 start-page: 324 year: 2001 end-page: 327 article-title: The role of microbial mats in the production of reduced gases on the early Earth publication-title: Nature – volume: 344 start-page: 27 year: 1993 end-page: 36 article-title: Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry publication-title: Philosophical Transactions of Royal Society London A – volume: 251 start-page: 1471 year: 1991 end-page: 1473 article-title: Aerobic sulfate reduction in microbial mats publication-title: Science, New Series – volume: 65 start-page: 4611 year: 1999 end-page: 4617 article-title: Sulfonates as terminal electron acceptors for growth of sulfite‐reducing bacteria ( spp.) and sulfate‐reducing bacteria: effects of inhibitors of sulfidogenesis publication-title: Applied and Environment Microbiology – volume: 441 start-page: 714 year: 2006 end-page: 718 article-title: Stromatolite reef from the Early Archaean era of Australia publication-title: Nature – volume: 148 start-page: 27 year: 1965 end-page: 35 article-title: Significance of the Gunflint (Precambrian) Microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas publication-title: Science – year: 1973 – year: 1996 – volume: 185 start-page: 175 year: 2006 end-page: 183 article-title: Lithifying microbial mats in Lagoa Vermelba, Brazil: modern Precambrian relics? publication-title: Sedimentary Geology – volume: 34 start-page: 793 year: 1989 end-page: 806 article-title: Sulfate reduction and the formation of S‐labeled FeS, FeS , and S in coastal marine sediments publication-title: Limnology and Oceanography – volume: 52 start-page: 987 year: 2005 end-page: 1008 article-title: Precipitation of dolomite using sulphate‐reducing bacteria from the Coorong Region, South Australia: significance and implications publication-title: Sedimentology – volume: 131 start-page: 1 year: 1995 end-page: 32 article-title: Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities publication-title: New Phytologist – volume: 34 start-page: 1017 year: 2006 end-page: 1020 article-title: Nucleation of calcium carbonate on bacterial nanoglobules publication-title: Geology – volume: 6 start-page: 863 year: 2012 end-page: 874 article-title: Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay publication-title: ISME Journal – volume: 83 start-page: 1482 year: 1998 end-page: 1493 article-title: Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling publication-title: American Mineralogist – volume: 57 start-page: 1758 year: 1991 end-page: 1763 article-title: Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium publication-title: Applied and Environment Microbiology – volume: 289 start-page: 1703 year: 2000 end-page: 1705 article-title: Evolution – When did photosynthesis emerge on earth? publication-title: Science – start-page: 659 year: 2006 end-page: 768 – volume: 52 start-page: 377 year: 2005 end-page: 395 article-title: Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat publication-title: FEMS Microbiology Ecology – volume: 25 start-page: 89 year: 1998 end-page: 96 article-title: Strategies of sulfate‐reducing bacteria to escape oxygen stress in a cyanobacterial mat publication-title: FEMS Microbiology Ecology – volume: 149 start-page: 606 year: 1982 end-page: 611 article-title: Microcalorimetric studies of the growth of sulfate‐reducing bacteria: comparison of the growth parameters of some species publication-title: Journal of Bacteriology – start-page: 618 year: 2007 end-page: 639 – year: 2006 – volume: 67 start-page: 293 year: 2009 end-page: 307 article-title: Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat publication-title: FEMS Microbiology Ecology – volume: 13 start-page: 429 year: 2005 end-page: 438 article-title: Microbial lithification in marine stromatolites and hypersaline mats publication-title: Trends in Microbiology – start-page: 435 year: 1992 end-page: 449 – volume: 12 start-page: 623 year: 1984 end-page: 626 article-title: Calcification of cyanobacterial mats in Solar Lake, Sinai publication-title: Geology, – volume: 44 start-page: 175 year: 2003 end-page: 189 article-title: Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain) publication-title: FEMS Microbiology Ecology – volume: 31 start-page: 577 year: 2003 end-page: 580 article-title: Microbial nucleation of calcium carbonate in the Precambrian publication-title: Geology – volume: 326 start-page: 891 year: 1987 end-page: 892 article-title: A novel type of energy metabolism involving fermentation of inorganic sulphur compounts publication-title: Nature – volume: 50 start-page: 1836 year: 2005 end-page: 1843 article-title: Photosynthesis controlled calcification in a hypersaline microbial mat publication-title: Limnology and Oceanography – ident: e_1_2_7_21_1 doi: 10.1126/science.148.3666.27 – ident: e_1_2_7_16_1 doi: 10.1111/j.1574-6941.2008.00614.x – volume: 41 start-page: 179 year: 1987 ident: e_1_2_7_74_1 article-title: Community structure and interactions among community members in hot spring cyanobacterial mats publication-title: Symposium of the Society for General Microbiology – volume: 57 start-page: 1758 year: 1991 ident: e_1_2_7_68_1 article-title: Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium publication-title: Applied and Environment Microbiology doi: 10.1128/aem.57.6.1758-1763.1991 – volume-title: CRC Handbook of Chemistry and Physics year: 1973 ident: e_1_2_7_76_1 – volume-title: Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser year: 1960 ident: e_1_2_7_53_1 – ident: e_1_2_7_67_1 doi: 10.1007/978-1-4615-2812-8_37 – ident: e_1_2_7_2_1 doi: 10.1038/nature04764 – ident: e_1_2_7_9_1 doi: 10.1038/326891a0 – ident: e_1_2_7_12_1 doi: 10.1130/G24755A.1 – ident: e_1_2_7_25_1 doi: 10.1016/j.chemgeo.2010.09.008 – ident: e_1_2_7_18_1 doi: 10.1038/ismej.2011.142 – ident: e_1_2_7_24_1 doi: 10.1016/j.femsec.2004.12.005 – ident: e_1_2_7_44_1 doi: 10.1111/j.1574-6941.1998.tb00462.x – ident: e_1_2_7_79_1 doi: 10.1016/0168-6496(95)00017-5 – ident: e_1_2_7_4_1 doi: 10.1130/G22986A.1 – ident: e_1_2_7_30_1 doi: 10.1016/j.earscirev.2008.10.005 – volume-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters year: 1996 ident: e_1_2_7_61_1 – ident: e_1_2_7_73_1 doi: 10.1098/rsta.1993.0072 – volume: 251 start-page: 1471 year: 1991 ident: e_1_2_7_19_1 article-title: Aerobic sulfate reduction in microbial mats publication-title: Science, New Series – ident: e_1_2_7_52_1 doi: 10.1021/cr050358j – ident: e_1_2_7_57_1 doi: 10.1016/j.precamres.2007.04.009 – ident: e_1_2_7_32_1 doi: 10.1016/0025-3227(93)90146-M – ident: e_1_2_7_33_1 doi: 10.1080/09670269910001736402 – volume-title: CO2 in Seawater: Equilibrium, Kinetics, Isotopes year: 2001 ident: e_1_2_7_82_1 – ident: e_1_2_7_7_1 doi: 10.1126/science.1057204 – ident: e_1_2_7_28_1 doi: 10.1016/j.tim.2005.07.008 – ident: e_1_2_7_42_1 doi: 10.4319/lo.1983.28.6.1075 – ident: e_1_2_7_5_1 doi: 10.1111/j.1472-4669.2006.00076.x – ident: e_1_2_7_11_1 doi: 10.1016/j.sedgeo.2005.12.008 – start-page: 317 volume-title: Biogeochemistry year: 2004 ident: e_1_2_7_51_1 – ident: e_1_2_7_37_1 doi: 10.1128/9781555815882.ch41 – ident: e_1_2_7_54_1 doi: 10.1007/0-387-30742-7_22 – ident: e_1_2_7_59_1 doi: 10.1016/j.marchem.2006.12.012 – ident: e_1_2_7_65_1 doi: 10.1016/j.sedgeo.2005.12.022 – ident: e_1_2_7_10_1 doi: 10.1071/MF9790753 – ident: e_1_2_7_34_1 doi: 10.1038/ismej.2011.120 – ident: e_1_2_7_80_1 doi: 10.1016/S0037-0738(99)00037-8 – ident: e_1_2_7_38_1 doi: 10.1111/j.1472-4677.2004.00024.x – ident: e_1_2_7_41_1 doi: 10.4319/lo.1977.22.4.0657 – ident: e_1_2_7_15_1 doi: 10.1111/j.1472-4669.2007.00117.x – volume: 289 start-page: 1703 year: 2000 ident: e_1_2_7_26_1 article-title: Evolution – When did photosynthesis emerge on earth? publication-title: Science doi: 10.1126/science.289.5485.1703 – ident: e_1_2_7_55_1 doi: 10.1038/35023158 – ident: e_1_2_7_66_1 doi: 10.1016/j.palaeo.2004.10.016 – ident: e_1_2_7_72_1 doi: 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2 – ident: e_1_2_7_35_1 doi: 10.2307/3515096 – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-3091.2004.00649.x – ident: e_1_2_7_62_1 doi: 10.4319/lo.1989.34.5.0793 – ident: e_1_2_7_60_1 doi: 10.1111/j.1469-8137.1995.tb03051.x – ident: e_1_2_7_49_1 doi: 10.4319/lo.2005.50.6.1836 – ident: e_1_2_7_75_1 doi: 10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2 – ident: e_1_2_7_78_1 doi: 10.1007/BF00406470 – ident: e_1_2_7_31_1 doi: 10.1128/AEM.58.1.70-77.1992 – volume: 13 start-page: 61 year: 1994 ident: e_1_2_7_43_1 article-title: The role of alkalinity in the evolution of ocean chemistry, organization of living systems,and biocalcification processes publication-title: Bulletin de l'Institut Océanographique (Monaco) – ident: e_1_2_7_6_1 doi: 10.1130/G22859A.1 – ident: e_1_2_7_3_1 doi: 10.1016/j.gca.2008.10.007 – ident: e_1_2_7_64_1 doi: 10.1128/JB.149.2.606-611.1982 – ident: e_1_2_7_39_1 doi: 10.1016/S0168-6496(02)00464-6 – start-page: 435 volume-title: Current Perspectives in Microbial Ecology year: 1984 ident: e_1_2_7_22_1 – ident: e_1_2_7_36_1 doi: 10.1007/978-1-4613-9263-7_2 – ident: e_1_2_7_17_1 doi: 10.1111/j.1574-6976.2000.tb00567.x – ident: e_1_2_7_47_1 doi: 10.1023/A:1021323425591 – volume: 65 start-page: 3272 year: 1999 ident: e_1_2_7_71_1 article-title: Low‐molecular‐weight sulfonates, a major substrate for sulfate reducers in marine microbial mats publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.65.8.3272-3278.1999 – ident: e_1_2_7_13_1 doi: 10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2 – ident: e_1_2_7_81_1 doi: 10.1111/j.1365-3091.2005.00732.x – ident: e_1_2_7_48_1 doi: 10.1046/j.1365-3091.2003.00550.x – start-page: 469 volume-title: Biology of Anaerobic Microorganisms year: 1988 ident: e_1_2_7_77_1 – ident: e_1_2_7_58_1 doi: 10.1007/978-1-4684-7612-5_12 – ident: e_1_2_7_14_1 doi: 10.1111/j.1472-4677.2004.00019.x – volume: 65 start-page: 4611 year: 1999 ident: e_1_2_7_46_1 article-title: Sulfonates as terminal electron acceptors for growth of sulfite‐reducing bacteria (Desulfitobacterium spp.) and sulfate‐reducing bacteria: effects of inhibitors of sulfidogenesis publication-title: Applied and Environment Microbiology doi: 10.1128/AEM.65.10.4611-4617.1999 – ident: e_1_2_7_56_1 doi: 10.1515/9781400849079 – ident: e_1_2_7_20_1 doi: 10.1016/S0037-0738(99)00028-7 – ident: e_1_2_7_23_1 doi: 10.1146/annurev.micro.54.1.827 – ident: e_1_2_7_70_1 doi: 10.2138/am-1998-11-1236 – ident: e_1_2_7_27_1 doi: 10.2307/1543552 – ident: e_1_2_7_40_1 doi: 10.1111/j.1574-6941.1994.tb00077.x – ident: e_1_2_7_63_1 doi: 10.1038/nature02888 – ident: e_1_2_7_50_1 doi: 10.1130/0091-7613(1984)12<623:COCMIS>2.0.CO;2 – ident: e_1_2_7_8_1 doi: 10.1007/978-3-642-76884-2_34 – ident: e_1_2_7_45_1 doi: 10.4319/lo.1977.22.4.0635 – ident: e_1_2_7_69_1 doi: 10.1111/j.1574-6941.1992.tb01763.x |
SSID | ssj0024531 |
Score | 2.3694532 |
Snippet | Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 518 |
SubjectTerms | Bacteria - metabolism Calcium Carbonate - metabolism Chemical Precipitation Environmental Microbiology Hydrogen-Ion Concentration Models, Biological Models, Theoretical Oxidation-Reduction Sulfates - metabolism |
Title | Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria |
URI | https://api.istex.fr/ark:/67375/WNG-PT021ZM9-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1472-4669.2012.00342.x https://www.ncbi.nlm.nih.gov/pubmed/22925453 https://www.proquest.com/docview/1112340317 https://www.proquest.com/docview/1171875730 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CSqGXvtKH-wgqlN68rCXLsntrS_OChBISGnoRki1B2K0ddr2Q5BDyE_Ib-0s6I3u32RBKKL0Z2yPZ8szokzzzDcD7tFK58ImMZcUrXKBUaHM8q2JpvDVDlwwrR_sdu3vZ1mG6cySP-vgnyoXp-CEWG25kGcFfk4EbO71h5IrHaZZRvglt6RGb3YDwJIVuET7a539o92QoTdiLKLUc1HNrQ0sz1T0a9NPbYOgyqg3T0sYjGM1fqItGGQ1mrR2U5ze4Hv_PGz-Ghz16ZZ86dXsCK65-Cve7epZna3CxHap_MgSVzIxHhrIu2zPmAufhx3CaohlZ49m8_A6rmrqZTNlxHS6HIlPNz-PAhd2niLKTpqWYJuwYBaezsUd8_OvyakKsszjzMtsxTptncLjx9eDLVtwXeIhLqp8XmzxDxIdTKGpFXhZWKm6HBpeknpvc5j4tlLXColtxxjpfoq8QqReFT1KP7sKI57BaN7V7Cazy3HFpi8R4omTLjHKJsAiOhPLKJD4CNf-YuuzZz6kIx1hfXwUprml0NY2uDqOrTyNIFpInHQPIHWQ-BH1ZCJjJiCLolNTf9zb1twNEVj92C60ieDdXKI12TT9rTO2a2ZTa5yJFl_vXexBZKIlOOoIXnTYueuS8wLW_FBHIoFN3fna9-XkbD179o9xreEBnu3TNN7DaTmbuLeK21q4Hi_wNRbkz4w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEB2hVgheuFPMdZEQb47itddr88atTaCJEEpFxctq196VqgS7Shyp5QHxCXwjX8LM2gmkqlCFeIscjx2vZ2bPbmbOAXiWlDKLXSRCUfISFyglxhxPy1BoZ3TfRv3S0n7HaJwODpJ3h-KwkwOiXpiWH2K94UaR4fM1BThtSJ-JcsnDJE2p4YT29IjOroeAcpsEvolI_81H_pt4T3hxws5Gys2ynnOvtDFXbdOwn5wHRDdxrZ-Ydq_DbPVIbT3KtLdsTK_4eobt8T898w241gFY9rL1uJtwyVa34HIraXl6G74NvQAoQ1zJ9GyqqfGyOWXW0x6-8IepoJHVjq0UeFhZV_V8wY4q_7XXmaq_HHk67K5LlB3XDZU14Y3RcLGcOYTIP7__mBPxLE6-zLSk0_oOHOy-nbwehJ3GQ1iQhF6osxRBH86i6BhZkRshuelrXJU6rjOTuSSXxsQGM4vVxroC00WcuDh3UeIwY-j4LmxVdWXvASsdt1yYPNKOWNlSLW0UG8RHsXRSRy4AuXqbqugI0EmHY6b-XAhJrmh0FY2u8qOrTgKI1pbHLQnIBWyee4dZG-j5lIropFCfxnvqwwTB1edRrmQAT1cepTC06f8aXdl6uaDr8zjBrPvXcxBcSIF5OoCd1h3Xd-Q8x-W_iAMQ3qku_NvV3qshfrj_j3ZP4MpgMtpX-8Px-wdwlc5ouzcfwlYzX9pHCOMa89iH5y-Avzf_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJhAvjG8yvoyEeEvV2HGc8AaMbgVWTWgTEy-WHdvS1JJUbSptPCB-Ar-RX8K9TlroNKEJ8ValuUnj3Ht97N57DiHPUytz7hMRC8ssLFAsxBzLbCy0N7rvkr51uN-xP8r2jtJ3x-K4q3_CXpiWH2K14YaREfI1BvjU-nNBLlmcZhn2m-CWHrLZ9QBPbqZZv0AZh52P7DfvngjahJ2NlOtVPRdeaW2q2sRRP70Ih67D2jAvDbbIePlEbTnKuLdoTK_8eo7s8f888k1yo4Ov9FXrb7fIFVfdJldbQcuzO-TbMMh_UkCVVE_GGtsumzPqAunhy3AYyxlp7elSf4fauqpnc3pSha-DylT95SSQYXc9onRaN1jUBDcGw_li4gEg__z-Y4a0szD1UtNSTuu75Gjw9vDNXtwpPMQlCujFOs8A8sEcCm6Rl4URkpm-hjWpZzo3uU8LaQw3kFecNs6XkCx46nnhk9RDvtD8Htmo6so9INR65pgwRaI9crJlWrqEG0BHXHqpEx8RuXyZquzoz1GFY6L-XAZJpnB0FY6uCqOrTiOSrCynLQXIJWxeBH9ZGejZGEvopFCfRrvq4BCg1ef9QsmIPFs6lILAxn9rdOXqxRyvz3gKOfev5wC0kAKydETut964uiNjBSz-BY-ICD516d-udl8P4cP2P9o9JdcOdgbqw3D0_iG5jie0rZuPyEYzW7jHgOEa8yQE5y-aHjau |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inside+the+alkalinity+engine%3A+the+role+of+electron+donors+in+the+organomineralization+potential+of+sulfate%E2%80%90reducing+bacteria&rft.jtitle=Geobiology&rft.au=Gallagher%2C+K.+L.&rft.au=Kading%2C+T.+J.&rft.au=Braissant%2C+O.&rft.au=Dupraz%2C+C.&rft.date=2012-11-01&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=10&rft.issue=6&rft.spage=518&rft.epage=530&rft_id=info:doi/10.1111%2Fj.1472-4669.2012.00342.x&rft.externalDBID=10.1111%252Fj.1472-4669.2012.00342.x&rft.externalDocID=GBI342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon |