Disilane Cleavage with Selected Alkali and Alkaline Earth Metal Salts

The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes MenSi2Cl6‐n (n=1–6). Great research efforts have been devoted to the recycling of these disilanes into m...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 25; no. 57; pp. 13202 - 13207
Main Authors Santowski, Tobias, Sturm, Alexander G., Lewis, Kenrick M., Felder, Thorsten, Holthausen, Max C., Auner, Norbert
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.10.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes MenSi2Cl6‐n (n=1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes (n>3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride. Too valuable for disposal or incineration: Simple recycling of the Müller–Rochow Direct Process residue with LiH yields monosilanes suitable for the reintroduction into the silicone production chain.
AbstractList The industry-scale production of methylchloromonosilanes in the Müller-Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes Me Si Cl (n=1-6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono- and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes (n>3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride.
The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes MenSi2Cl6‐n (n=1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes (n>3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride. Too valuable for disposal or incineration: Simple recycling of the Müller–Rochow Direct Process residue with LiH yields monosilanes suitable for the reintroduction into the silicone production chain.
Abstract The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes Me n Si 2 Cl 6‐ n ( n =1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes ( n >3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride.
The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes Me n Si 2 Cl 6‐ n ( n =1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes ( n >3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride. Too valuable for disposal or incineration : Simple recycling of the Müller–Rochow Direct Process residue with LiH yields monosilanes suitable for the reintroduction into the silicone production chain.
The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes MenSi2Cl6‐n (n=1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes (n>3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride.
Author Auner, Norbert
Santowski, Tobias
Sturm, Alexander G.
Holthausen, Max C.
Lewis, Kenrick M.
Felder, Thorsten
AuthorAffiliation 1 Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt/Main Germany
2 Momentive Performance Materials Inc. 769 Old Saw Mill River Rd Tarrytown NY 10591 USA
3 Momentive Performance Materials GmbH, Chempark 51368 Leverkusen Germany
AuthorAffiliation_xml – name: 3 Momentive Performance Materials GmbH, Chempark 51368 Leverkusen Germany
– name: 1 Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt/Main Germany
– name: 2 Momentive Performance Materials Inc. 769 Old Saw Mill River Rd Tarrytown NY 10591 USA
Author_xml – sequence: 1
  givenname: Tobias
  surname: Santowski
  fullname: Santowski, Tobias
  organization: Goethe-Universität
– sequence: 2
  givenname: Alexander G.
  surname: Sturm
  fullname: Sturm, Alexander G.
  organization: Goethe-Universität
– sequence: 3
  givenname: Kenrick M.
  surname: Lewis
  fullname: Lewis, Kenrick M.
  organization: Momentive Performance Materials Inc
– sequence: 4
  givenname: Thorsten
  surname: Felder
  fullname: Felder, Thorsten
  organization: Momentive Performance Materials GmbH, Chempark
– sequence: 5
  givenname: Max C.
  orcidid: 0000-0001-7283-8329
  surname: Holthausen
  fullname: Holthausen, Max C.
  email: max.holthausen@chemie.uni-frankfurt.de
  organization: Goethe-Universität
– sequence: 6
  givenname: Norbert
  orcidid: 0000-0002-4645-5292
  surname: Auner
  fullname: Auner, Norbert
  email: auner@chemie.uni-frankfurt.de
  organization: Goethe-Universität
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31355503$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFPGzEQRq0KVAL02mO1Ui9cNozHa-_6goRCKJVAPYSeLcc7S0ydXbreBPHvcZSQtlx6Gkvz_DQz3zE7aLuWGPvMYcwB8NwtaDlG4BqwRPzARlwiz0Wp5AEbgS7KXEmhj9hxjI8AoJUQH9mR4EJKCWLEplc--mBbyiaB7No-UPbsh0U2o0BuoDq7DL9s8Jlt354Jndo-IXc02JDNbBjiKTtsbIj0aVdP2M_r6f3kJr_98e375PI2dxIk5spBiSCsmmsn66ZCqUEJrgtui6quVTlvqAQtuOWlsuAQJTZYOj6HBos0-wm72HqfVvMl1Y7aobfBPPV-afsX01lv_u20fmEeurVRlVQVYBKc7QR993tFcTBLHx2FzQW6VTSISgkJSuqEfn2HPnarvk3rGRRQpNNWxYYabynXdzH21OyH4WA2CZlNQmafUPrw5e8V9vhbJAnQW-DZB3r5j85MbqZ3f-Svd0ic-A
CitedBy_id crossref_primary_10_1002_ange_202011738
crossref_primary_10_1002_cssc_202201953
crossref_primary_10_1021_acs_organomet_2c00141
crossref_primary_10_1002_anie_202011738
Cites_doi 10.1021/ie50593a033
10.1002/chem.201003654
10.1016/0022-1902(66)80169-0
10.1246/bcsj.51.1913
10.1016/S0022-328X(00)83264-7
10.1163/156856707781749964
10.1002/ange.201605198
10.1016/S0020-1693(02)01576-1
10.1016/S0022-328X(00)83025-9
10.1021/ja01465a013
10.1021/ic50047a022
10.1021/om9010017
10.1246/cl.170659
10.1021/acs.inorgchem.8b02336
10.1039/C4RA17281G
10.1002/(SICI)1521-3749(200002)626:2<400::AID-ZAAC400>3.0.CO;2-5
10.1002/chem.201901881
10.1007/978-1-4020-8172-9
10.1016/0022-328X(95)05398-9
10.1002/9783527619894.ch7
10.1002/anie.201412050
10.1070/RC1975v044n03ABEH002263
10.1016/S0022-328X(00)84055-3
10.1021/cr900201r
10.1002/chem.201803921
10.1023/A:1015593612827
10.1002/anie.201510477
10.1021/ic50053a030
10.1002/zaac.19905910125
10.1039/C7CC09063C
10.1002/anie.201700324
10.1021/ja01504a008
10.1002/chem.201805787
10.1016/S0040-4039(00)70129-8
10.1002/ejoc.200800950
10.1002/ange.201700324
10.1021/ic00310a032
10.1016/B978-1-4831-9722-7.50004-2
10.1021/ja01222a026
10.1002/anie.201605198
10.1016/S0022-328X(00)86815-1
10.1002/chem.201602724
10.1002/chem.201504927
10.1016/S0022-328X(00)87445-8
10.1016/0022-328X(95)05847-I
10.1016/0022-1902(78)80039-6
10.1016/0022-328X(95)05762-E
10.1016/j.jorganchem.2018.05.024
10.1002/ange.201510477
10.1021/jacs.8b05950
10.1021/om50001a014
10.1016/S0022-328X(00)90598-9
10.1002/ange.201412050
10.1016/j.ccr.2005.02.025
10.1016/0022-328X(95)05927-H
10.1016/S0926-860X(00)00599-8
10.1002/chem.201402655
10.1021/ar7001655
10.1002/chem.201603842
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/chem.201902722
DatabaseName Wiley Open Access
Wiley Online Library
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 13207
ExternalDocumentID 10_1002_chem_201902722
31355503
CHEM201902722
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c5052-6c07203a6b9c5df82590631941a48dd67bfe70931a176a0c2252f27c1b0f24963
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Tue Sep 17 21:26:10 EDT 2024
Fri Aug 16 07:20:28 EDT 2024
Fri Sep 13 03:42:57 EDT 2024
Fri Aug 23 02:24:53 EDT 2024
Sat Sep 28 08:25:55 EDT 2024
Sat Aug 24 01:10:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 57
Keywords disilane cleavage
lithium chloride
lithium hydride
monosilanes
alkali and alkaline earth metal salts
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5052-6c07203a6b9c5df82590631941a48dd67bfe70931a176a0c2252f27c1b0f24963
Notes Dedicated to Professor Bernhard Rieger on the occasion of his 60th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7283-8329
0000-0002-4645-5292
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902722
PMID 31355503
PQID 2304947849
PQPubID 986340
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856802
proquest_miscellaneous_2266350659
proquest_journals_2304947849
crossref_primary_10_1002_chem_201902722
pubmed_primary_31355503
wiley_primary_10_1002_chem_201902722_CHEM201902722
PublicationCentury 2000
PublicationDate October 11, 2019
PublicationDateYYYYMMDD 2019-10-11
PublicationDate_xml – month: 10
  year: 2019
  text: October 11, 2019
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1964; 2
1996; 508
1996; 507
1983; 2
2017; 46
1982; 225
2011; 17
1995; 494
2007; 33
1978
1977
2003; 350
2014; 20
1960; 82
1966; 28
2010; 29
2019; 25
2010; 110
1986
1970; 21
2015 2015; 54 127
1961; 83
1975; 44
1978; 148
1981
1950; 2
1989
1991; 4
2015; 5
2018; 140
2011
2002; 75
1978; 51
1966; 7
1954
2009
1997
1952
1996
1995
1994
2018; 869
2002
1981; 206
2017 2017; 56 129
2001; 206
1958
1989; 28
1999
1955
2018; 24
1967; 6
1959; 51
1963; 1
2016 2016; 55 128
1978; 40
2000; 626
2005; 249
1945; 67
2014
2008; 41
1996; 511
2018; 54
1969
1968
1967
1990; 591
2016; 22
2018; 57
e_1_2_7_108_1
e_1_2_7_104_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_100_1
e_1_2_7_83_2
e_1_2_7_15_2
e_1_2_7_87_1
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_1
Herzog U. (e_1_2_7_38_2) 1999
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_79_2
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_98_3
(e_1_2_7_67_2) 2011
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_82_2
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_1
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_48_1
e_1_2_7_29_2
e_1_2_7_93_2
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_2
e_1_2_7_97_2
e_1_2_7_32_1
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_36_3
e_1_2_7_5_2
e_1_2_7_9_2
e_1_2_7_102_1
e_1_2_7_17_2
e_1_2_7_81_1
Müller R. (e_1_2_7_3_2) 1950; 2
e_1_2_7_62_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_77_2
e_1_2_7_58_1
e_1_2_7_39_2
Kornev A. N. (e_1_2_7_52_1) 1991; 4
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_84_1
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_1
e_1_2_7_27_1
Kumada M. (e_1_2_7_106_2) 1968
e_1_2_7_91_1
e_1_2_7_72_2
e_1_2_7_53_1
e_1_2_7_99_1
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_57_1
e_1_2_7_34_2
References_xml – year: 2011
– volume: 28
  start-page: 2177
  year: 1989
  end-page: 2180
  publication-title: Inorg. Chem.
– year: 2009
– volume: 56 129
  start-page: 2260 2298
  year: 2017 2017
  end-page: 2294 2335
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 507
  start-page: 221
  year: 1996
  end-page: 228
  publication-title: J. Organomet. Chem.
– volume: 28
  start-page: 1373
  year: 1966
  end-page: 1376
  publication-title: J. Inorg. Nucl. Chem.
– year: 1981
– volume: 51
  start-page: 665
  year: 1959
  end-page: 668
  publication-title: Ind. Eng. Chem.
– volume: 249
  start-page: 2374
  year: 2005
  end-page: 2390
  publication-title: Coord. Chem. Rev.
– volume: 41
  start-page: 349
  year: 2008
  end-page: 358
  publication-title: Acc. Chem. Res.
– volume: 67
  start-page: 963
  year: 1945
  end-page: 965
  publication-title: J. Am. Chem. Soc.
– start-page: 55
  year: 1995
  end-page: 62
– year: 1989
– volume: 57
  start-page: 13822
  year: 2018
  end-page: 13828
  publication-title: Inorg. Chem.
– start-page: 19
  year: 1968
  end-page: 117
– year: 1952
– volume: 51
  start-page: 1913
  year: 1978
  end-page: 1914
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 46
  start-page: 1532
  year: 2017
  end-page: 1534
  publication-title: Chem. Lett.
– volume: 56 129
  start-page: 4744 4822
  year: 2017 2017
  end-page: 4748 4826
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 8499
  year: 2019
  end-page: 8502
  publication-title: Chem. Eur. J.
– year: 2014
– year: 1994
– volume: 2
  start-page: 41
  year: 1950
  end-page: 50
  publication-title: Chem. Tech.
– volume: 83
  start-page: 802
  year: 1961
  end-page: 805
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5493
  year: 1966
  end-page: 5497
  publication-title: Tetrahedron Lett.
– volume: 1
  start-page: 153
  year: 1963
  end-page: 159
  publication-title: J. Organomet. Chem.
– year: 1986
– volume: 17
  start-page: 4715
  year: 2011
  end-page: 4719
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 9234
  year: 2014
  end-page: 9239
  publication-title: Chem. Eur. J.
– year: 1969
– volume: 25
  start-page: 3809
  year: 2019
  end-page: 3815
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 212
  year: 1975
  end-page: 226
  publication-title: Russ. Chem. Rev.
– volume: 24
  start-page: 17796
  year: 2018
  end-page: 17801
  publication-title: Chem. Eur. J.
– year: 1997
– volume: 508
  start-page: 147
  year: 1996
  end-page: 152
  publication-title: J. Organomet. Chem.
– year: 1955
– volume: 6
  start-page: 100
  year: 1967
  end-page: 102
  publication-title: Inorg. Chem.
– year: 1958
– volume: 591
  start-page: 209
  year: 1990
  end-page: 213
  publication-title: Z. Anorg. Allg. Chem.
– start-page: 19
  year: 1999
  end-page: 34
– volume: 2
  start-page: 859
  year: 1983
  end-page: 864
  publication-title: Organometallics
– volume: 869
  start-page: 75
  year: 2018
  end-page: 80
  publication-title: J. Organomet. Chem.
– volume: 148
  start-page: 119
  year: 1978
  end-page: 125
  publication-title: J. Organomet. Chem.
– volume: 54 127
  start-page: 5429 5519
  year: 2015 2015
  end-page: 5433 5523
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1429
  year: 1967
  end-page: 1431
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 1397
  year: 2018
  end-page: 1412
  publication-title: Chem. Commun.
– volume: 140
  start-page: 9696
  year: 2018
  end-page: 9708
  publication-title: J. Am. Chem. Soc.
– year: 1996
– volume: 626
  start-page: 400
  year: 2000
  end-page: 407
  publication-title: Z. Anorg. Allg. Chem.
– volume: 494
  start-page: 143
  year: 1995
  end-page: 147
  publication-title: J. Organomet. Chem.
– volume: 22
  start-page: 14328
  year: 2016
  end-page: 14335
  publication-title: Chem. Eur. J.
– volume: 82
  start-page: 5042
  year: 1960
  end-page: 5044
  publication-title: J. Am. Chem. Soc.
– year: 1954
– volume: 4
  start-page: 420
  year: 1991
  end-page: 422
  publication-title: J. Org. Chem. USSR
– year: 1977
– volume: 206
  start-page: 279
  year: 1981
  end-page: 286
  publication-title: J. Organomet. Chem.
– volume: 2
  start-page: 478
  year: 1964
  end-page: 484
  publication-title: J. Organomet. Chem.
– volume: 29
  start-page: 618
  year: 2010
  end-page: 623
  publication-title: Organometallics
– volume: 511
  start-page: 85
  year: 1996
  end-page: 91
  publication-title: J. Organomet. Chem.
– volume: 22
  start-page: 5010
  year: 2016
  end-page: 5016
  publication-title: Chem. Eur. J.
– volume: 55 128
  start-page: 1782 1814
  year: 2016 2016
  end-page: 1786 1818
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 110
  start-page: 2081
  year: 2010
  end-page: 2173
  publication-title: Chem. Rev.
– year: 1967
– year: 2002
– volume: 21
  start-page: 95
  year: 1970
  end-page: 101
  publication-title: J. Organomet. Chem.
– year: 1995
– volume: 350
  start-page: 407
  year: 2003
  end-page: 413
  publication-title: Inorg. Chim. Acta
– volume: 5
  start-page: 20603
  year: 2015
  end-page: 20616
  publication-title: RSC Adv.
– year: 1978
– volume: 40
  start-page: 1305
  year: 1978
  end-page: 1308
  publication-title: J. Inorg. Nucl. Chem.
– volume: 22
  start-page: 17165
  year: 2016
  end-page: 17168
  publication-title: Chem. Eur. J.
– volume: 225
  start-page: 117
  year: 1982
  end-page: 130
  publication-title: J. Organomet. Chem.
– volume: 206
  start-page: 257
  year: 2001
  end-page: 265
  publication-title: Appl. Catal. A
– volume: 33
  start-page: 613
  year: 2007
  end-page: 622
  publication-title: Res. Chem. Intermed.
– year: 1999
– volume: 75
  start-page: 127
  year: 2002
  end-page: 134
  publication-title: Russ. J. Appl. Chem.
– ident: e_1_2_7_87_1
– ident: e_1_2_7_54_2
  doi: 10.1021/ie50593a033
– ident: e_1_2_7_41_2
  doi: 10.1002/chem.201003654
– ident: e_1_2_7_82_2
  doi: 10.1016/0022-1902(66)80169-0
– ident: e_1_2_7_21_2
  doi: 10.1246/bcsj.51.1913
– ident: e_1_2_7_49_1
  doi: 10.1016/S0022-328X(00)83264-7
– ident: e_1_2_7_56_1
– ident: e_1_2_7_16_2
  doi: 10.1163/156856707781749964
– ident: e_1_2_7_100_1
– ident: e_1_2_7_62_3
  doi: 10.1002/ange.201605198
– ident: e_1_2_7_46_2
– ident: e_1_2_7_95_2
– ident: e_1_2_7_27_1
  doi: 10.1016/S0020-1693(02)01576-1
– ident: e_1_2_7_60_1
– ident: e_1_2_7_58_1
  doi: 10.1016/S0022-328X(00)83025-9
– start-page: 19
  volume-title: Advances in Organometallic Chemistry, Vol. 6
  year: 1968
  ident: e_1_2_7_106_2
  contributor:
    fullname: Kumada M.
– ident: e_1_2_7_8_1
– ident: e_1_2_7_83_2
  doi: 10.1021/ja01465a013
– ident: e_1_2_7_84_1
  doi: 10.1021/ic50047a022
– ident: e_1_2_7_45_2
– ident: e_1_2_7_92_2
  doi: 10.1021/om9010017
– ident: e_1_2_7_43_1
– ident: e_1_2_7_77_2
  doi: 10.1246/cl.170659
– ident: e_1_2_7_76_2
  doi: 10.1021/acs.inorgchem.8b02336
– ident: e_1_2_7_64_2
  doi: 10.1039/C4RA17281G
– ident: e_1_2_7_40_2
  doi: 10.1002/(SICI)1521-3749(200002)626:2<400::AID-ZAAC400>3.0.CO;2-5
– ident: e_1_2_7_89_2
– ident: e_1_2_7_48_1
  doi: 10.1002/chem.201901881
– ident: e_1_2_7_108_1
– ident: e_1_2_7_61_2
  doi: 10.1007/978-1-4020-8172-9
– start-page: 19
  volume-title: Main Group Metal Chemistry,
  year: 1999
  ident: e_1_2_7_38_2
  contributor:
    fullname: Herzog U.
– ident: e_1_2_7_13_2
– ident: e_1_2_7_70_1
– ident: e_1_2_7_72_2
  doi: 10.1016/0022-328X(95)05398-9
– ident: e_1_2_7_19_2
– ident: e_1_2_7_71_2
  doi: 10.1002/9783527619894.ch7
– ident: e_1_2_7_98_2
  doi: 10.1002/anie.201412050
– ident: e_1_2_7_18_2
– volume: 2
  start-page: 41
  year: 1950
  ident: e_1_2_7_3_2
  publication-title: Chem. Tech.
  contributor:
    fullname: Müller R.
– ident: e_1_2_7_109_1
– ident: e_1_2_7_86_1
– ident: e_1_2_7_5_2
  doi: 10.1070/RC1975v044n03ABEH002263
– volume-title: Advances in Polymer Science, Vol. 235
  year: 2011
  ident: e_1_2_7_67_2
– ident: e_1_2_7_26_2
  doi: 10.1016/S0022-328X(00)84055-3
– ident: e_1_2_7_68_2
  doi: 10.1021/cr900201r
– ident: e_1_2_7_80_1
  doi: 10.1002/chem.201803921
– ident: e_1_2_7_22_2
– ident: e_1_2_7_25_2
– ident: e_1_2_7_94_2
  doi: 10.1023/A:1015593612827
– ident: e_1_2_7_99_1
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.201510477
– ident: e_1_2_7_47_2
– ident: e_1_2_7_85_1
  doi: 10.1021/ic50053a030
– ident: e_1_2_7_10_2
  doi: 10.1002/zaac.19905910125
– ident: e_1_2_7_101_1
  doi: 10.1039/C7CC09063C
– ident: e_1_2_7_44_2
– ident: e_1_2_7_79_1
  doi: 10.1002/anie.201700324
– ident: e_1_2_7_35_2
  doi: 10.1021/ja01504a008
– ident: e_1_2_7_103_1
  doi: 10.1002/chem.201805787
– ident: e_1_2_7_51_1
– ident: e_1_2_7_96_1
– ident: e_1_2_7_105_1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_90_2
  doi: 10.1016/S0040-4039(00)70129-8
– ident: e_1_2_7_9_2
– ident: e_1_2_7_24_2
  doi: 10.1002/ejoc.200800950
– ident: e_1_2_7_79_2
  doi: 10.1002/ange.201700324
– ident: e_1_2_7_69_1
  doi: 10.1021/ic00310a032
– ident: e_1_2_7_57_1
  doi: 10.1016/B978-1-4831-9722-7.50004-2
– ident: e_1_2_7_2_2
  doi: 10.1021/ja01222a026
– ident: e_1_2_7_32_1
– ident: e_1_2_7_62_2
  doi: 10.1002/anie.201605198
– ident: e_1_2_7_15_2
  doi: 10.1016/S0022-328X(00)86815-1
– ident: e_1_2_7_42_2
  doi: 10.1002/chem.201602724
– ident: e_1_2_7_81_1
– ident: e_1_2_7_30_2
  doi: 10.1002/chem.201504927
– ident: e_1_2_7_37_1
– ident: e_1_2_7_107_2
  doi: 10.1016/S0022-328X(00)87445-8
– ident: e_1_2_7_73_2
  doi: 10.1016/0022-328X(95)05847-I
– ident: e_1_2_7_59_1
– ident: e_1_2_7_29_2
  doi: 10.1016/0022-1902(78)80039-6
– ident: e_1_2_7_39_2
  doi: 10.1016/0022-328X(95)05762-E
– volume: 4
  start-page: 420
  year: 1991
  ident: e_1_2_7_52_1
  publication-title: J. Org. Chem. USSR
  contributor:
    fullname: Kornev A. N.
– ident: e_1_2_7_28_1
– ident: e_1_2_7_78_2
  doi: 10.1016/j.jorganchem.2018.05.024
– ident: e_1_2_7_110_1
– ident: e_1_2_7_6_2
– ident: e_1_2_7_1_1
– ident: e_1_2_7_36_3
  doi: 10.1002/ange.201510477
– ident: e_1_2_7_20_2
– ident: e_1_2_7_102_1
  doi: 10.1021/jacs.8b05950
– ident: e_1_2_7_91_1
– ident: e_1_2_7_34_2
  doi: 10.1021/om50001a014
– ident: e_1_2_7_55_2
  doi: 10.1016/S0022-328X(00)90598-9
– ident: e_1_2_7_66_1
– ident: e_1_2_7_14_2
– ident: e_1_2_7_75_1
– ident: e_1_2_7_98_3
  doi: 10.1002/ange.201412050
– ident: e_1_2_7_63_2
  doi: 10.1016/j.ccr.2005.02.025
– ident: e_1_2_7_93_2
  doi: 10.1016/0022-328X(95)05927-H
– ident: e_1_2_7_11_2
– ident: e_1_2_7_88_1
– ident: e_1_2_7_7_2
  doi: 10.1016/S0926-860X(00)00599-8
– ident: e_1_2_7_97_2
  doi: 10.1002/chem.201402655
– ident: e_1_2_7_53_1
– ident: e_1_2_7_33_2
– ident: e_1_2_7_50_1
– ident: e_1_2_7_65_2
  doi: 10.1021/ar7001655
– ident: e_1_2_7_74_2
– ident: e_1_2_7_17_2
– ident: e_1_2_7_23_2
  doi: 10.1002/chem.201603842
– ident: e_1_2_7_104_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_31_1
SSID ssj0009633
Score 2.3738732
Snippet The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process...
The industry-scale production of methylchloromonosilanes in the Müller-Rochow Direct Process is accompanied by the formation of a residue, the direct process...
Abstract The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13202
SubjectTerms alkali and alkaline earth metal salts
Alkali metals
Alkaline earth metals
Chemistry
Chlorine
Cleavage
disilane cleavage
Disproportionation
Earth
Lithium
Lithium chloride
lithium hydride
Lithium hydrides
Metal hydrides
Metals
monosilanes
Reduction
Reintroduction
Salts
Siloxanes
Title Disilane Cleavage with Selected Alkali and Alkaline Earth Metal Salts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902722
https://www.ncbi.nlm.nih.gov/pubmed/31355503
https://www.proquest.com/docview/2304947849/abstract/
https://search.proquest.com/docview/2266350659
https://pubmed.ncbi.nlm.nih.gov/PMC6856802
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VLuUCpeURoMhIlTgFbMex4yPaLkKVqFApErfIcRyx2lWoursc-PXMJJvAlgMSvTmyrdgznvHn1zcA37xPAy4LkthWzsdKiyx2spJxqKSusmCDzOg18uVPfXGjftymty9e8bf8EP2GG1lG46_JwF0xPX0mDcU-0UtynNCkkeSEiU2PUNGvZ_4oHF1tLHllYuJg7VgbuTxdrr48K72Cmq9vTL5Ess1UdL4BrutEewNlfDKfFSf-8R9-x__p5SdYX-BUdtYOrE34EOrP8HHQhYf7AsPvo-mIbsqywSS4B3RLjPZ02XUTWCeU7GwyRozPXN0lsegQB-oduwyI-Nm1m8ymW3BzPvw9uIgXMRliTyHvYu05Hdw6XViflhWuLy2CHGGVcCorS22KKhhuE-GE0Y57dBeoeuNFwStc6elkG1br-zrsAguYwYVXnpfNstKi60gzh5CiqExpTQTHnU7yPy31Rt6SLMucxJL3YongoFNZvjDBad4cICqTKRvBUZ-NQqITEZTO_RzLSAJcdLQcwU6r4f5XiUAolvIkArOk-74AEXMv59Sju4agW2epzjg2SzaqfaP1OZFf9F9776m0D2uUpjlViANYnf2dh68IlmbFIaxIdXXYmMUTacsK3g
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VcKCXlpZSQik1UqWeAraT2PERbRdtW5ZDAam3yHEcsWIVKnaXA7--M84mdMsBid6S2FZsj2f8xh9vAD47l3l0C5LY1NbFqRJ5bGUtY19LVefeeJnTbeTxmRpdpt9_Zd1pQroL0_JD9AtupBnBXpOC04L00QNrKDaKrpLjjCa1RCu8jjqfBa_q5wODFI6vNpp8qmNiYe14G7k8Wi2_Oi89ApuPz0z-jWXDZHTyGsquGe0ZlOvDxbw8dPf_MDz-Vzs34dUSqrLjdmy9gRe-eQsbgy5C3BYMv05mEzosywZTb-_QMjFa1mXnIbaOr9jx9BphPrNN94hZhzhWr9jYI-hn53Y6n72Dy5PhxWAUL8MyxI6i3sXKcdq7tao0LqtqdDEN4hxhUmHTvKqULmuvuUmEFVpZ7tBioPS1EyWv0dlTyTasNTeN3wHmMYELlzpeBc_SoPXIcouooqx1ZXQEXzqhFL9b9o2i5VmWBXVL0XdLBHudzIqlFs6KsIeY6jw1ERz0ydhJtCmCvXOzwDySMBftLkfwvhVx_6tEIBrLeBKBXhF-n4G4uVdTmslV4OhWeaZyjtWSQbZP1L4g_ov-bfc5hT7BxuhifFqcfjv78QFe0neaYoXYg7X57cJ_ROw0L_eDdvwB5BwOKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9wgEB5VqdT20vfDbdpSqVJPTgBjMMdoH0ofiaqmkXKzMAZllZUTdXdzyK_vjL12ss2hUnuzDcjADMMHA98AfPQ-D7gsyFIbnU-VFkXqZJRpiFLHItggC7qNfHCo94_Vl5P85MYt_o4fYthwo5HR2msa4Bd13L0mDcU20U1ynNCkkWiE7yqdSdLr8Y9rAilUry6YvDIpkbD2tI1c7m6W35yWbmHN20cmb0LZdi6aPgLXt6I7gnK2s1pWO_7qD4LH_2nmY3i4Bqpsr9OsJ3AnNE_h_qiPD_cMJuPZYkZHZdloHtwl2iVGm7rsqI2sE2q2Nz9DkM9c0z9i1glq6ik7CAj52ZGbLxfP4Xg6-TnaT9dBGVJPMe9S7Tl5bp2urM_riAtMiyhHWCWcKupamyoGw20mnDDacY_2AmVvvKh4xKWezl7AVnPehFfAAiZw4ZXndbuutGg78sIhpqiiqa1J4FMvk_Ki494oO5ZlWVK3lEO3JLDdi6xcj8FF2XoQlSmUTeDDkIydRC4R7J3zFeaRhLjIt5zAy07Cw68ygVgs51kCZkP2QwZi5t5MaWanLUO3LnJdcKyWbEX7l9qXxH4xvL3-l0Lv4d738bT89vnw6xt4QJ9pfhViG7aWv1bhLQKnZfWuHRu_AaYcDNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disilane+Cleavage+with+Selected+Alkali+and+Alkaline+Earth+Metal+Salts&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Santowski%2C+Tobias&rft.au=Sturm%2C+Alexander+G.&rft.au=Lewis%2C+Kenrick+M.&rft.au=Felder%2C+Thorsten&rft.date=2019-10-11&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=57&rft.spage=13202&rft.epage=13207&rft_id=info:doi/10.1002%2Fchem.201902722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201902722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon