Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route

Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to co...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 6
Main Authors Zhu, Zonglong, Chueh, Chu‐Chen, Li, Nan, Mao, Chengyi, Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2–TMA complexes (Y = I−, F−) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2–TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. High‐performance FASnI3 perovskite solar cells (PVSCs) are realized for the first time by a two‐step deposition technique. Trimethylamine (TMA) is used as an additive to improve the morphology, enabling a dense and compact FASnI3 film with large crystalline domains (>1 μm). Consequently, high PCEs of 4.34% and 7.09% can be successfully realized in both conventional and inverted PVSCs with improved stability.
AbstractList Not provided.
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI 2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY 2 –TMA complexes (Y = I − , F − ) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI 2 (+SnF 2 ) layer by effectively forming intermediate SnY 2 –TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI 2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI 3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2 -TMA complexes (Y = I- , F- ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2 ) layer by effectively forming intermediate SnY2 -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2 -TMA complexes (Y = I- , F- ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2 ) layer by effectively forming intermediate SnY2 -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY -TMA complexes (Y = I , F ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI (+SnF ) layer by effectively forming intermediate SnY -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2–TMA complexes (Y = I−, F−) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2–TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. High‐performance FASnI3 perovskite solar cells (PVSCs) are realized for the first time by a two‐step deposition technique. Trimethylamine (TMA) is used as an additive to improve the morphology, enabling a dense and compact FASnI3 film with large crystalline domains (>1 μm). Consequently, high PCEs of 4.34% and 7.09% can be successfully realized in both conventional and inverted PVSCs with improved stability.
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2-TMA complexes (Y = I-, F-) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2-TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.
Author Li, Nan
Chueh, Chu‐Chen
Mao, Chengyi
Zhu, Zonglong
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Zonglong
  orcidid: 0000-0002-8285-9665
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: University of Washington
– sequence: 2
  givenname: Chu‐Chen
  surname: Chueh
  fullname: Chueh, Chu‐Chen
  organization: National Taiwan University
– sequence: 3
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  organization: Tsinghua University
– sequence: 4
  givenname: Chengyi
  surname: Mao
  fullname: Mao, Chengyi
  organization: University of Washington
– sequence: 5
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: ajen@uw.edu
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29250846$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1537363$$D View this record in Osti.gov
BookMark eNqFkc1u1DAURi1URKeFLUtkwYZNhuu_JF6Oph1AGgRqh3XksW_AJYkHOykqKx6BZ-RJ8GhKkSohVt6cc32_-52QoyEMSMhTBnMGwF8Z15s5B1aBqAEekBlTnBUStDoiM9BCFbqU9TE5SekKAHQJ5SNyzDVXUMtyRsYLNJ3_7odP9LxtvfU4jHSNxv368XMVEekqxN703vnBTz3d-IFuovfBeYf0A8Zwnb74Eell6EykS-y6RK-9oYZe4tcpD_Omo2e4C8mPPgz0IkwjPiYPW9MlfHL7npKPq_PN8k2xfv_67XKxLqwCBYXFkmnZWkDpnJVCsVJbXpdCim1ppDOIgknDeaV05Szwqmpx6xTAVvJ6a8QpeX6YG9Lom2TzovazDcOAdmyYEpUoRYZeHqBdDHnjNDa9TzYHMQOGKTVMV7VgtVAqoy_uoVdhikOOkCmtGWccykw9u6WmbY-u2UXfm3jT_Dl6BuYHwMaQUsT2DmHQ7Ftt9q02d61mQd4TchSzv-cYje_-remD9s13ePOfT5rF2bvFX_c38iq2uQ
CitedBy_id crossref_primary_10_1063_1_5109704
crossref_primary_10_1016_j_cej_2020_125133
crossref_primary_10_1002_adma_201905362
crossref_primary_10_1021_acsenergylett_2c01010
crossref_primary_10_1039_C8TA05916K
crossref_primary_10_1002_adfm_201807696
crossref_primary_10_1002_aenm_202102131
crossref_primary_10_1002_solr_201900285
crossref_primary_10_1002_solr_202000153
crossref_primary_10_1021_acsenergylett_9b01179
crossref_primary_10_1039_D4DT02751E
crossref_primary_10_1021_acsphotonics_0c00497
crossref_primary_10_3390_inorganics10110181
crossref_primary_10_1007_s10311_023_01616_z
crossref_primary_10_3390_nano13030585
crossref_primary_10_1016_j_ccr_2020_213633
crossref_primary_10_1039_D1EE00890K
crossref_primary_10_1021_acsenergylett_0c01887
crossref_primary_10_1039_D1SE00160D
crossref_primary_10_1002_er_8277
crossref_primary_10_3390_ijms24032201
crossref_primary_10_1021_acs_jpclett_4c02032
crossref_primary_10_1002_adom_202400398
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1016_j_joule_2023_08_002
crossref_primary_10_1002_solr_202000606
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1039_D0CC01106A
crossref_primary_10_1002_sstr_202100102
crossref_primary_10_1002_adma_201903721
crossref_primary_10_1002_pssa_202100823
crossref_primary_10_1002_adma_202206684
crossref_primary_10_1016_j_nxmate_2024_100425
crossref_primary_10_1021_acsenergylett_0c00526
crossref_primary_10_3390_buildings10070129
crossref_primary_10_1002_adma_201803230
crossref_primary_10_1002_anie_202209464
crossref_primary_10_1021_acsaem_2c01437
crossref_primary_10_1038_s41467_021_22864_z
crossref_primary_10_3762_bjnano_9_207
crossref_primary_10_1039_D4TC01556H
crossref_primary_10_2139_ssrn_3279417
crossref_primary_10_1002_adma_202107729
crossref_primary_10_1039_D3EE00202K
crossref_primary_10_1088_1361_6528_abcf6d
crossref_primary_10_1002_nano_202100059
crossref_primary_10_1002_anie_202422217
crossref_primary_10_1021_acsenergylett_1c01170
crossref_primary_10_1088_1361_6641_acb16a
crossref_primary_10_1016_j_orgel_2018_06_049
crossref_primary_10_1039_D4EL00034J
crossref_primary_10_1016_j_solmat_2019_04_023
crossref_primary_10_1021_acsami_2c18235
crossref_primary_10_1007_s40820_023_01143_0
crossref_primary_10_1021_acsenergylett_0c01190
crossref_primary_10_1002_aenm_201800525
crossref_primary_10_1002_ange_202422217
crossref_primary_10_1021_acsaem_0c00628
crossref_primary_10_1002_eom2_12352
crossref_primary_10_1016_j_solener_2020_12_065
crossref_primary_10_1021_acs_langmuir_4c01681
crossref_primary_10_1002_solr_202200088
crossref_primary_10_1016_j_cej_2023_142635
crossref_primary_10_1021_acsenergylett_0c01796
crossref_primary_10_1007_s42247_022_00394_8
crossref_primary_10_1002_advs_201903213
crossref_primary_10_15541_jim20220710
crossref_primary_10_1039_D1TA05248A
crossref_primary_10_1038_s41565_020_0765_7
crossref_primary_10_1051_epjap_2023230099
crossref_primary_10_1002_adfm_201903621
crossref_primary_10_1002_adom_202000290
crossref_primary_10_1002_solr_201900403
crossref_primary_10_3390_mi14040806
crossref_primary_10_1002_adma_202105844
crossref_primary_10_1021_acsami_0c11253
crossref_primary_10_1002_aenm_201902584
crossref_primary_10_1021_acs_jpcc_1c02993
crossref_primary_10_1039_C9TA02835H
crossref_primary_10_1016_j_jechem_2020_06_044
crossref_primary_10_1021_acsenergylett_0c02656
crossref_primary_10_1021_acsomega_1c00767
crossref_primary_10_1007_s40843_020_1581_4
crossref_primary_10_1002_aenm_201902467
crossref_primary_10_1002_pssb_202400217
crossref_primary_10_1039_D3NA00309D
crossref_primary_10_1039_D1NR06802D
crossref_primary_10_1002_aenm_202102213
crossref_primary_10_1002_ange_201902418
crossref_primary_10_1016_j_nanoen_2018_05_006
crossref_primary_10_1002_solr_202100212
crossref_primary_10_1002_slct_202405119
crossref_primary_10_1016_j_scib_2020_04_028
crossref_primary_10_1002_adma_201803792
crossref_primary_10_1021_acsaem_1c03767
crossref_primary_10_1021_acsami_0c02575
crossref_primary_10_1016_j_solener_2020_11_038
crossref_primary_10_1109_TED_2021_3078063
crossref_primary_10_1002_advs_202100552
crossref_primary_10_1002_adfm_202100931
crossref_primary_10_1007_s40843_018_9355_0
crossref_primary_10_1021_acsenergylett_0c00577
crossref_primary_10_3390_nano11082066
crossref_primary_10_1002_aenm_202202209
crossref_primary_10_1002_solr_202200789
crossref_primary_10_1007_s40843_021_1670_0
crossref_primary_10_1016_j_snb_2024_136188
crossref_primary_10_1039_D3TC04411D
crossref_primary_10_3390_nano12224055
crossref_primary_10_1021_acsenergylett_1c02651
crossref_primary_10_1002_solr_202101007
crossref_primary_10_1002_solr_202100713
crossref_primary_10_1021_acs_jpclett_5c00200
crossref_primary_10_1002_aelm_202100771
crossref_primary_10_1002_anie_201808385
crossref_primary_10_1002_aenm_201802774
crossref_primary_10_1063_1_5083624
crossref_primary_10_1039_D2TC03355K
crossref_primary_10_1016_j_ceramint_2021_11_184
crossref_primary_10_1002_anie_201811539
crossref_primary_10_1002_adfm_202108832
crossref_primary_10_1039_D0EE04007J
crossref_primary_10_1002_adma_202008574
crossref_primary_10_1007_s11172_023_3828_1
crossref_primary_10_1002_advs_201800793
crossref_primary_10_1007_s10853_019_03768_2
crossref_primary_10_1007_s40820_020_00578_z
crossref_primary_10_1002_solr_202100034
crossref_primary_10_3390_nano13060983
crossref_primary_10_1002_anie_202421637
crossref_primary_10_1021_acsaem_0c00407
crossref_primary_10_1021_acs_jpcc_0c03401
crossref_primary_10_1039_D1TA07121A
crossref_primary_10_1021_acsami_1c01408
crossref_primary_10_1002_anie_201902418
crossref_primary_10_1021_acs_jpclett_0c00686
crossref_primary_10_1039_D0QM01002B
crossref_primary_10_1039_D0CS01488E
crossref_primary_10_1002_solr_201800136
crossref_primary_10_1021_acs_jpcc_3c02750
crossref_primary_10_1002_nano_202000249
crossref_primary_10_1002_adfm_202404792
crossref_primary_10_1021_acsenergylett_2c02776
crossref_primary_10_1016_j_joule_2021_03_001
crossref_primary_10_3390_en13195092
crossref_primary_10_1002_crat_202300340
crossref_primary_10_1002_solr_202100800
crossref_primary_10_1021_acsenergylett_1c01217
crossref_primary_10_1039_C9TA08679J
crossref_primary_10_1002_adfm_201808059
crossref_primary_10_1039_D0QM01036G
crossref_primary_10_1002_advs_201903540
crossref_primary_10_1002_eom2_12004
crossref_primary_10_1021_acsami_0c01311
crossref_primary_10_1021_acsami_1c20045
crossref_primary_10_1002_solr_201900213
crossref_primary_10_1016_j_xcrp_2022_101060
crossref_primary_10_1002_solr_201900457
crossref_primary_10_1007_s40243_024_00255_w
crossref_primary_10_1039_D4CS00838C
crossref_primary_10_1002_ange_201811539
crossref_primary_10_1016_j_xcrp_2021_100690
crossref_primary_10_1021_acs_jpclett_9b02191
crossref_primary_10_1021_acs_jpclett_8b03194
crossref_primary_10_1088_1361_6463_aae2ab
crossref_primary_10_3390_molecules28093787
crossref_primary_10_1002_solr_201900245
crossref_primary_10_1016_j_solener_2023_111825
crossref_primary_10_1002_adma_202001591
crossref_primary_10_1021_accountsmr_1c00099
crossref_primary_10_7498_aps_70_20201678
crossref_primary_10_1016_j_jechem_2021_09_013
crossref_primary_10_1039_D2TA07687J
crossref_primary_10_1002_solr_202100069
crossref_primary_10_1002_solr_202000616
crossref_primary_10_1002_aenm_201901891
crossref_primary_10_1002_ange_202421637
crossref_primary_10_1002_adfm_201807024
crossref_primary_10_1002_advs_201903047
crossref_primary_10_1021_acsaem_0c01422
crossref_primary_10_1016_j_ijleo_2018_11_028
crossref_primary_10_1002_ange_202209464
crossref_primary_10_1007_s11082_021_03175_5
crossref_primary_10_1002_pip_3794
crossref_primary_10_1016_j_chempr_2021_11_010
crossref_primary_10_1002_smll_202200036
crossref_primary_10_1002_ange_201808385
crossref_primary_10_1002_adma_202300503
crossref_primary_10_1109_JPHOTOV_2023_3241793
crossref_primary_10_1016_j_progsolidstchem_2024_100463
crossref_primary_10_1039_D4TC04420G
crossref_primary_10_1016_j_matt_2019_10_006
crossref_primary_10_1021_acs_jpclett_0c01859
crossref_primary_10_1002_adfm_202000794
crossref_primary_10_1002_adfm_202310530
crossref_primary_10_1021_jacs_0c13069
crossref_primary_10_1016_j_matlet_2023_135485
crossref_primary_10_1016_j_mtphys_2021_100513
crossref_primary_10_1002_adma_202110241
crossref_primary_10_1039_D2QI00802E
crossref_primary_10_1039_D0EE03368E
crossref_primary_10_1016_j_solener_2024_112761
crossref_primary_10_1002_advs_202200242
crossref_primary_10_1007_s11172_023_3721_5
crossref_primary_10_1016_j_jechem_2020_08_053
crossref_primary_10_1002_aenm_202200305
crossref_primary_10_1002_advs_202203749
crossref_primary_10_1002_adma_202006691
Cites_doi 10.1126/science.286.5441.945
10.1021/acsami.6b14375
10.1021/nn5036476
10.1021/acs.accounts.5b00229
10.1002/adma.201600619
10.1038/nphoton.2014.82
10.1002/adma.201300580
10.1002/adma.201401641
10.1039/C5TA08963H
10.1021/acs.jpclett.5b02651
10.1038/nnano.2015.90
10.1039/C4EE01138D
10.1021/acs.accounts.5b00465
10.1038/nphoton.2014.134
10.1039/c3dt50743b
10.1021/jacs.7b01815
10.1039/C6EE01987K
10.1002/adma.201205098
10.1038/nature12340
10.1002/anie.201511792
10.1002/adma.201601418
10.1126/science.aan2301
10.1021/jacs.5b06658
10.1016/0040-6031(94)85042-9
10.1126/science.aah5557
10.1002/adma.201401991
10.1021/jacs.6b09257
10.1021/jacs.5b06444
10.1126/science.aaf8060
10.1021/acs.jpclett.6b00322
10.1021/jacs.6b00142
10.1021/ar990144m
10.1021/acs.jpclett.6b00118
10.1039/C4TA05033A
10.1038/srep35705
10.1002/smll.201402767
10.1002/aenm.201601353
10.1021/acs.accounts.5b00411
10.1002/aenm.201601307
10.1039/c2jm30755c
10.1002/adfm.201505127
10.1038/nature11067
10.1002/adma.201402276
10.1021/ic50176a022
10.1002/adma.201400231
10.1021/acs.accounts.5b00455
10.1021/acsenergylett.6b00402
10.1002/adfm.201400850
10.1002/adma.201404598
10.1021/jacs.6b06291
10.1002/aenm.201601130
10.1126/science.aaf9717
10.1126/science.aaa9272
10.1039/C4CS00458B
10.1002/adma.201602696
10.1002/adma.201602992
10.1039/C5TA00190K
10.1002/aenm.201500963
10.1039/C5TA09661H
10.1039/C4EE01076K
10.1021/jacs.5b13470
10.1002/adma.201606964
10.1021/acs.accounts.5b00440
10.1021/ed074p575
10.1039/C4EE00942H
10.1039/C6CP04553G
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201703800
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1537363
29250846
10_1002_adma_201703800
ADMA201703800
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1608279
– fundername: Boeing‐Johnson Foundation
– fundername: Department of Energy SunShot program
  funderid: DE‐EE0006710
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2260
– fundername: Asian Office of Aerospace R&D
  funderid: FA2386‐15‐1‐4106
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5050-ce6194fc0e4ddc435169c286343b6a4daee314a227597dc0277febd500b428ba3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri May 19 02:14:11 EDT 2023
Fri Jul 11 08:49:35 EDT 2025
Sun Jul 13 04:50:00 EDT 2025
Thu Apr 03 08:16:45 EDT 2025
Tue Jul 01 00:44:37 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 17:06:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords solar cells
sequential deposition
formamidinium
tin-based perovskites
morphology control
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5050-ce6194fc0e4ddc435169c286343b6a4daee314a227597dc0277febd500b428ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0006710
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0002-8285-9665
0000000282859665
PMID 29250846
PQID 1999121206
PQPubID 2045203
PageCount 9
ParticipantIDs osti_scitechconnect_1537363
proquest_miscellaneous_1978318355
proquest_journals_1999121206
pubmed_primary_29250846
crossref_primary_10_1002_adma_201703800
crossref_citationtrail_10_1002_adma_201703800
wiley_primary_10_1002_adma_201703800_ADMA201703800
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Feb
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 1994 1997; 243 74
2015; 3
2015 2013; 348 499
2017 2014; 7 7
2014 2014; 26 26
2016 2016 2014 2015 2015; 49 18 8 11 10
2014 2013; 26 25
2016 2015; 49 48
2014; 26
2017; 29
2016 2016 2015; 353 354 5
2017; 356
2017; 9
2017; 139
2016; 55
2013 2000; 25 33
2016 2016; 138 28
2016; 6
2016; 7
2016 2014; 9 24
2015; 137
2016 2014 2016; 49 7 7
2012 2016 2013; 485 1 42
2015 2016 2016; 27 4 4
1977; 16
1999 2016; 286 28
2016; 354
2016
2016; 138
2015 2016; 3 26
2014; 8
2016; 28
2014; 7
2016; 49
2012; 22
2016; 45
2016 2016; 7 138
e_1_2_5_27_1
e_1_2_5_27_2
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_2
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_36_2
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_5_3
e_1_2_5_7_1
e_1_2_5_5_2
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_2
e_1_2_5_1_3
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_26_2
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_22_2
e_1_2_5_22_3
e_1_2_5_24_1
e_1_2_5_22_1
e_1_2_5_28_2
e_1_2_5_28_3
e_1_2_5_41_2
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_37_2
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_6_5
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_6_4
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_6_3
e_1_2_5_8_1
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
References_xml – volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 27 4 4
  start-page: 1241 6755 6693
  year: 2015 2016 2016
  publication-title: Adv. Mater. J. Mater. Chem. A J. Mater. Chem. A
– volume: 3 26
  start-page: 8926 3417
  year: 2015 2016
  publication-title: J. Mater. Chem. A Adv. Funct. Mater.
– volume: 286 28
  start-page: 945 8191
  year: 1999 2016
  publication-title: Science Adv. Mater.
– volume: 49 18 8 11 10
  start-page: 339 27026 506 10 391
  year: 2016 2016 2014 2015 2015
  publication-title: Acc. Chem. Res. Phys. Chem. Chem. Phys. Nat. Photonics Small Nat. Nanotechnol.
– volume: 138 28
  start-page: 11833 6478
  year: 2016 2016
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 26 26
  start-page: 6454 3748
  year: 2014 2014
  publication-title: Adv. Mater. Adv. Mater.
– volume: 22
  start-page: 8574
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 7 138
  start-page: 1321 2941
  year: 2016 2016
  publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc.
– volume: 348 499
  start-page: 1234 316
  year: 2015 2013
  publication-title: Science Nature
– volume: 9
  start-page: 1136
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 49 48
  start-page: 146 2791
  year: 2016 2015
  publication-title: Acc. Chem. Res. Acc. Chem. Res.
– start-page: 1601130
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 26 25
  start-page: 6262 4425
  year: 2014 2013
  publication-title: Adv. Mater. Adv. Mater.
– volume: 7 7
  start-page: 1601307 2619
  year: 2017 2014
  publication-title: Adv. Energy Mater. Energy Environ. Sci.
– volume: 138
  start-page: 3974
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1606964
  year: 2017
  publication-title: Adv. Mater.
– volume: 9 24
  start-page: 3424 6252
  year: 2016 2014
  publication-title: Energy Environ. Sci. Adv. Funct. Mater.
– volume: 7
  start-page: 776
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 243 74
  start-page: 95 575
  year: 1994 1997
  publication-title: Thermochim. Acta J. Chem. Educ.
– volume: 49
  start-page: 311
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 353 354 5
  start-page: 58 206 1500963
  year: 2016 2016 2015
  publication-title: Science Science Adv. Energy Mater.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 2529
  year: 1977
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 485 1 42
  start-page: 486 1028 8364
  year: 2012 2016 2013
  publication-title: Nature ACS Energy Lett. Dalton Trans.
– volume: 25 33
  start-page: 4663 695
  year: 2013 2000
  publication-title: Adv. Mater. Acc. Chem. Res.
– volume: 8
  start-page: 9815
  year: 2014
  publication-title: ACS Nano
– volume: 139
  start-page: 6693
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 35705
  year: 2016
  publication-title: Sci. Rep.
– volume: 26
  start-page: 7122
  year: 2014
  publication-title: Adv. Mater.
– start-page: 14750
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 10399
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9333
  year: 2016
  publication-title: Adv. Mater.
– volume: 55
  start-page: 3447
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 49 7 7
  start-page: 330 2448 811
  year: 2016 2014 2016
  publication-title: Acc. Chem. Res. Energy Environ. Sci. J. Phys. Chem. Lett.
– volume: 3
  start-page: 14996
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1601353
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 11445
  year: 2015
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_5_16_1
  doi: 10.1126/science.286.5441.945
– ident: e_1_2_5_39_1
  doi: 10.1021/acsami.6b14375
– ident: e_1_2_5_33_1
  doi: 10.1021/nn5036476
– ident: e_1_2_5_3_2
  doi: 10.1021/acs.accounts.5b00229
– ident: e_1_2_5_36_2
  doi: 10.1002/adma.201600619
– ident: e_1_2_5_7_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_5_38_2
  doi: 10.1002/adma.201300580
– ident: e_1_2_5_37_1
  doi: 10.1002/adma.201401641
– ident: e_1_2_5_28_3
  doi: 10.1039/C5TA08963H
– ident: e_1_2_5_1_3
  doi: 10.1021/acs.jpclett.5b02651
– ident: e_1_2_5_6_5
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_5_27_2
  doi: 10.1039/C4EE01138D
– ident: e_1_2_5_6_1
  doi: 10.1021/acs.accounts.5b00465
– ident: e_1_2_5_6_3
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_5_22_3
  doi: 10.1039/c3dt50743b
– ident: e_1_2_5_25_1
  doi: 10.1021/jacs.7b01815
– ident: e_1_2_5_40_1
  doi: 10.1039/C6EE01987K
– ident: e_1_2_5_41_1
  doi: 10.1002/adma.201205098
– ident: e_1_2_5_26_2
  doi: 10.1038/nature12340
– ident: e_1_2_5_24_1
  doi: 10.1002/anie.201511792
– ident: e_1_2_5_16_2
  doi: 10.1002/adma.201601418
– ident: e_1_2_5_4_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_5_20_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_5_35_1
  doi: 10.1016/0040-6031(94)85042-9
– ident: e_1_2_5_5_2
  doi: 10.1126/science.aah5557
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201401991
– ident: e_1_2_5_17_1
  doi: 10.1021/jacs.6b09257
– ident: e_1_2_5_31_1
  doi: 10.1021/jacs.5b06444
– ident: e_1_2_5_5_1
  doi: 10.1126/science.aaf8060
– ident: e_1_2_5_10_1
  doi: 10.1021/acs.jpclett.6b00322
– ident: e_1_2_5_19_1
  doi: 10.1021/jacs.6b00142
– ident: e_1_2_5_41_2
  doi: 10.1021/ar990144m
– ident: e_1_2_5_21_1
  doi: 10.1021/acs.jpclett.6b00118
– ident: e_1_2_5_9_1
  doi: 10.1039/C4TA05033A
– ident: e_1_2_5_30_1
  doi: 10.1038/srep35705
– ident: e_1_2_5_6_4
  doi: 10.1002/smll.201402767
– ident: e_1_2_5_14_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.accounts.5b00411
– ident: e_1_2_5_27_1
  doi: 10.1002/aenm.201601307
– ident: e_1_2_5_42_1
  doi: 10.1039/c2jm30755c
– ident: e_1_2_5_9_2
  doi: 10.1002/adfm.201505127
– ident: e_1_2_5_22_1
  doi: 10.1038/nature11067
– ident: e_1_2_5_38_1
  doi: 10.1002/adma.201402276
– ident: e_1_2_5_34_1
  doi: 10.1021/ic50176a022
– ident: e_1_2_5_37_2
  doi: 10.1002/adma.201400231
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.accounts.5b00455
– ident: e_1_2_5_22_2
  doi: 10.1021/acsenergylett.6b00402
– ident: e_1_2_5_40_2
  doi: 10.1002/adfm.201400850
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201404598
– ident: e_1_2_5_36_1
  doi: 10.1021/jacs.6b06291
– ident: e_1_2_5_11_1
  doi: 10.1002/aenm.201601130
– ident: e_1_2_5_13_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_5_26_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_5_2_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201602992
– ident: e_1_2_5_23_1
  doi: 10.1039/C5TA00190K
– ident: e_1_2_5_5_3
  doi: 10.1002/aenm.201500963
– ident: e_1_2_5_28_2
  doi: 10.1039/C5TA09661H
– ident: e_1_2_5_8_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_5_10_2
  doi: 10.1021/jacs.5b13470
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.201606964
– ident: e_1_2_5_32_1
  doi: 10.1021/acs.accounts.5b00440
– ident: e_1_2_5_35_2
  doi: 10.1021/ed074p575
– ident: e_1_2_5_1_2
  doi: 10.1039/C4EE00942H
– ident: e_1_2_5_6_2
  doi: 10.1039/C6CP04553G
SSID ssj0009606
Score 2.6259816
Snippet Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct...
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct...
Not provided.
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Chemistry
Crystallization
Deposition
Energy conversion efficiency
formamidinium
Halides
Lead free
Lewis acid
Lewis base
Materials Science
morphology control
Photovoltaic cells
Physics
Science & Technology - Other Topics
sequential deposition
Solar cells
tin‐based perovskites
Trimethylamine
Title Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703800
https://www.ncbi.nlm.nih.gov/pubmed/29250846
https://www.proquest.com/docview/1999121206
https://www.proquest.com/docview/1978318355
https://www.osti.gov/biblio/1537363
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9wwEMdF2VN76PvhJi0qFHpSYlvy67gkWUIhpSQbyE3oMQbTjV12vTnk1I-Qz5hP0hl77WRLS6G92VgCWZ7R_CSN_2LsoyxBepBORKXPhEqNF6Y0oShD56HI4ywyNFE8-ZIen6vPF8nFvb_4e32IccGNPKMbr8nBjV3t34mGGt_pBkVosgg9OAhTwhZR0emdfhTheSe2JxNRpCofVBvDeH-7-lZUmjToXb8jzm2A7SLQ7AkzQ9v7xJNve-vW7rnrX2Qd_-flnrLHGzzl096enrEHUD9nj-6JFr5g7SmyZXWN1_yo05_AsMXppM7bHzezJQCfEQZfVhgUq_Uln1c1ny-rqvGVB_4Vls3VilaM-RlNqvkBLBYrflUZbvhZl9aNQ86CH8KQTcYpZwlesvPZ0fzgWGzObhAOmSoUDmh5pHQhKO8dMlmUFi7OU6mkTY3yBkBGysRxhjMa72gnuQTrkzC0OCGyRr5ik7qp4Q3jSExgEVshz5zCMiaSyvk8sUVZFipPAyaGb6fdRticztdY6F6SOdbUm3rszYB9Gst_7yU9_lhyh0xBI4yQoq6j1CPXagwSmUxlwHYHC9Ebx19pUnWIEAdCbNaH8TG6LO3DmBqaNZXJchpKkyRgr3vLGhsSF8ikyIQBizv7-EsL9fTwZDrevf2XSjvsIV7nfSb6Lpu0yzW8Q9Bq7fvOmX4ClLcgIQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgOQCHlldpaAEjIXFKm8TO67hqu1qgW6F2K3GzHHsiRWwTtJvtoSd-Ar-RX9KZZJN2KxAS3PKYSI4z4_lmPPmGsfciB2FBGNfPbezKSFtX59pzc89YSJMg9jUFipOTaHwuP30Nu2pC-hem5YfoE25kGc16TQZOCen9G9ZQbRviIB91FlHPffaA2no3UdXpDYMUAfSGbk-EbhrJpONt9IL99efX_NKgQvv6HeZch7CNDxptsqwbfVt68m1vWWd75uoOseN_vd4TtrFCqHzYqtRTdg_KZ-zxLd7C56w-RXhZXOExP2ooKNBzcWrW-evHz9EcgI8ICV8U6BeL5QWfFiWfzouisoUF_gXm1eWCksb8jOJqfgCz2YJfFpprftZUduOqM-OH0BWUcSpbghfsfHQ0PRi7q_YNrkFY5bkGKEOSGw-ktQZhmR-lJkgiIUUWaWk1gPClDoIYgxpraDM5h8yGnpdhTJRpscUGZVXCNuMImiBD5ApJbCTKaF9IY5MwS_M8lUnkMLf7eMqsuM2pxcZMtazMgaLZVP1sOuxDL_-9ZfX4o-QO6YJCPEKkuoaqj0yt0E_EIhIO2-1URK1sf6GI2MFHRODhsN71t9FqaStGl1AtSSZOaDUNQ4e9bFWrH0iQIixFWOiwoFGQv4xQDQ8nw_7s1b889JY9HE8nx-r448nnHfYIrydtYfouG9TzJbxG3FVnbxrLugaJpyQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctWCQEh_KmoQWMhMQpbRI7r-Oq26g8WlXtVurNcuyJFLFNqt1sDz3xEfiMfBJmkk3aRSAkuOXhSI4z4_nZnvzN2HtRgLAgjOsXNnZlpK2rC-25hWcspEkQ-5oGiodH0cGZ_HQent_6i7_Thxgm3Mgz2v6aHPzSFrs3oqHatrpBPposQs9ddk9GXkJ2PTm5EZAiPm_V9kToppFMetlGL9hdf34tLI1qdK_fIec6wbYhKHvEdF_5LvPk686yyXfM9S-6jv_zdo_ZxopP-bgzqCfsDlRP2cNbqoXPWHOCcFle4zHfbwUoMG5x2qrzx7fv2RyAZ8TBFyVGxXJ5wadlxafzsqxtaYEfw7y-WtCUMT-lUTXfg9lswa9KzTU_bfO6sc-Z8Qn06WSckpbgOTvL9qd7B-5q8wbXIFR5rgGaHymMB9Jag1DmR6kJkkhIkUdaWg0gfKmDIMYhjTW0lFxAbkPPy3FElGvxgo2quoJNxhGZIEduhSQ2EstoX0hjkzBPiyKVSeQwt_92yqyUzWmDjZnqNJkDRa2phtZ02Ieh_GWn6fHHkltkCgpphCR1DeUemUZhlIhFJBy23VuIWnn-QpGsg4884GG13g230WdpIUZXUC-pTJxQXxqGDnvZWdZQkSBFKEUodFjQ2sdfaqjGk8PxcPbqXx56y-4fTzL15ePR5y32AC8nXVb6Nhs18yW8Ruhq8jetX_0EGR0i9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+Efficient+Lead-Free+Formamidinium+Tin+Triiodide+Perovskite+Solar+Cells+via+a+Sequential+Deposition+Route&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Zonglong&rft.au=Chueh%2C+Chu-Chen&rft.au=Li%2C+Nan&rft.au=Mao%2C+Chengyi&rft.date=2018-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.201703800&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon