Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route
Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to co...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2–TMA complexes (Y = I−, F−) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2–TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.
High‐performance FASnI3 perovskite solar cells (PVSCs) are realized for the first time by a two‐step deposition technique. Trimethylamine (TMA) is used as an additive to improve the morphology, enabling a dense and compact FASnI3 film with large crystalline domains (>1 μm). Consequently, high PCEs of 4.34% and 7.09% can be successfully realized in both conventional and inverted PVSCs with improved stability. |
---|---|
AbstractList | Not provided. Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI 2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY 2 –TMA complexes (Y = I − , F − ) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI 2 (+SnF 2 ) layer by effectively forming intermediate SnY 2 –TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI 2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI 3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2 -TMA complexes (Y = I- , F- ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2 ) layer by effectively forming intermediate SnY2 -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2 -TMA complexes (Y = I- , F- ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2 ) layer by effectively forming intermediate SnY2 -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY -TMA complexes (Y = I , F ) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI (+SnF ) layer by effectively forming intermediate SnY -TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2–TMA complexes (Y = I−, F−) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2–TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. High‐performance FASnI3 perovskite solar cells (PVSCs) are realized for the first time by a two‐step deposition technique. Trimethylamine (TMA) is used as an additive to improve the morphology, enabling a dense and compact FASnI3 film with large crystalline domains (>1 μm). Consequently, high PCEs of 4.34% and 7.09% can be successfully realized in both conventional and inverted PVSCs with improved stability. Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid-base adduct in the SnI2 deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2-TMA complexes (Y = I-, F-) in the first-step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2 (+SnF2) layer by effectively forming intermediate SnY2-TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2 than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3 film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively. |
Author | Li, Nan Chueh, Chu‐Chen Mao, Chengyi Zhu, Zonglong Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Zonglong orcidid: 0000-0002-8285-9665 surname: Zhu fullname: Zhu, Zonglong organization: University of Washington – sequence: 2 givenname: Chu‐Chen surname: Chueh fullname: Chueh, Chu‐Chen organization: National Taiwan University – sequence: 3 givenname: Nan surname: Li fullname: Li, Nan organization: Tsinghua University – sequence: 4 givenname: Chengyi surname: Mao fullname: Mao, Chengyi organization: University of Washington – sequence: 5 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. email: ajen@uw.edu organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29250846$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1537363$$D View this record in Osti.gov |
BookMark | eNqFkc1u1DAURi1URKeFLUtkwYZNhuu_JF6Oph1AGgRqh3XksW_AJYkHOykqKx6BZ-RJ8GhKkSohVt6cc32_-52QoyEMSMhTBnMGwF8Z15s5B1aBqAEekBlTnBUStDoiM9BCFbqU9TE5SekKAHQJ5SNyzDVXUMtyRsYLNJ3_7odP9LxtvfU4jHSNxv368XMVEekqxN703vnBTz3d-IFuovfBeYf0A8Zwnb74Eell6EykS-y6RK-9oYZe4tcpD_Omo2e4C8mPPgz0IkwjPiYPW9MlfHL7npKPq_PN8k2xfv_67XKxLqwCBYXFkmnZWkDpnJVCsVJbXpdCim1ppDOIgknDeaV05Szwqmpx6xTAVvJ6a8QpeX6YG9Lom2TzovazDcOAdmyYEpUoRYZeHqBdDHnjNDa9TzYHMQOGKTVMV7VgtVAqoy_uoVdhikOOkCmtGWccykw9u6WmbY-u2UXfm3jT_Dl6BuYHwMaQUsT2DmHQ7Ftt9q02d61mQd4TchSzv-cYje_-remD9s13ePOfT5rF2bvFX_c38iq2uQ |
CitedBy_id | crossref_primary_10_1063_1_5109704 crossref_primary_10_1016_j_cej_2020_125133 crossref_primary_10_1002_adma_201905362 crossref_primary_10_1021_acsenergylett_2c01010 crossref_primary_10_1039_C8TA05916K crossref_primary_10_1002_adfm_201807696 crossref_primary_10_1002_aenm_202102131 crossref_primary_10_1002_solr_201900285 crossref_primary_10_1002_solr_202000153 crossref_primary_10_1021_acsenergylett_9b01179 crossref_primary_10_1039_D4DT02751E crossref_primary_10_1021_acsphotonics_0c00497 crossref_primary_10_3390_inorganics10110181 crossref_primary_10_1007_s10311_023_01616_z crossref_primary_10_3390_nano13030585 crossref_primary_10_1016_j_ccr_2020_213633 crossref_primary_10_1039_D1EE00890K crossref_primary_10_1021_acsenergylett_0c01887 crossref_primary_10_1039_D1SE00160D crossref_primary_10_1002_er_8277 crossref_primary_10_3390_ijms24032201 crossref_primary_10_1021_acs_jpclett_4c02032 crossref_primary_10_1002_adom_202400398 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1016_j_joule_2023_08_002 crossref_primary_10_1002_solr_202000606 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1039_D0CC01106A crossref_primary_10_1002_sstr_202100102 crossref_primary_10_1002_adma_201903721 crossref_primary_10_1002_pssa_202100823 crossref_primary_10_1002_adma_202206684 crossref_primary_10_1016_j_nxmate_2024_100425 crossref_primary_10_1021_acsenergylett_0c00526 crossref_primary_10_3390_buildings10070129 crossref_primary_10_1002_adma_201803230 crossref_primary_10_1002_anie_202209464 crossref_primary_10_1021_acsaem_2c01437 crossref_primary_10_1038_s41467_021_22864_z crossref_primary_10_3762_bjnano_9_207 crossref_primary_10_1039_D4TC01556H crossref_primary_10_2139_ssrn_3279417 crossref_primary_10_1002_adma_202107729 crossref_primary_10_1039_D3EE00202K crossref_primary_10_1088_1361_6528_abcf6d crossref_primary_10_1002_nano_202100059 crossref_primary_10_1002_anie_202422217 crossref_primary_10_1021_acsenergylett_1c01170 crossref_primary_10_1088_1361_6641_acb16a crossref_primary_10_1016_j_orgel_2018_06_049 crossref_primary_10_1039_D4EL00034J crossref_primary_10_1016_j_solmat_2019_04_023 crossref_primary_10_1021_acsami_2c18235 crossref_primary_10_1007_s40820_023_01143_0 crossref_primary_10_1021_acsenergylett_0c01190 crossref_primary_10_1002_aenm_201800525 crossref_primary_10_1002_ange_202422217 crossref_primary_10_1021_acsaem_0c00628 crossref_primary_10_1002_eom2_12352 crossref_primary_10_1016_j_solener_2020_12_065 crossref_primary_10_1021_acs_langmuir_4c01681 crossref_primary_10_1002_solr_202200088 crossref_primary_10_1016_j_cej_2023_142635 crossref_primary_10_1021_acsenergylett_0c01796 crossref_primary_10_1007_s42247_022_00394_8 crossref_primary_10_1002_advs_201903213 crossref_primary_10_15541_jim20220710 crossref_primary_10_1039_D1TA05248A crossref_primary_10_1038_s41565_020_0765_7 crossref_primary_10_1051_epjap_2023230099 crossref_primary_10_1002_adfm_201903621 crossref_primary_10_1002_adom_202000290 crossref_primary_10_1002_solr_201900403 crossref_primary_10_3390_mi14040806 crossref_primary_10_1002_adma_202105844 crossref_primary_10_1021_acsami_0c11253 crossref_primary_10_1002_aenm_201902584 crossref_primary_10_1021_acs_jpcc_1c02993 crossref_primary_10_1039_C9TA02835H crossref_primary_10_1016_j_jechem_2020_06_044 crossref_primary_10_1021_acsenergylett_0c02656 crossref_primary_10_1021_acsomega_1c00767 crossref_primary_10_1007_s40843_020_1581_4 crossref_primary_10_1002_aenm_201902467 crossref_primary_10_1002_pssb_202400217 crossref_primary_10_1039_D3NA00309D crossref_primary_10_1039_D1NR06802D crossref_primary_10_1002_aenm_202102213 crossref_primary_10_1002_ange_201902418 crossref_primary_10_1016_j_nanoen_2018_05_006 crossref_primary_10_1002_solr_202100212 crossref_primary_10_1002_slct_202405119 crossref_primary_10_1016_j_scib_2020_04_028 crossref_primary_10_1002_adma_201803792 crossref_primary_10_1021_acsaem_1c03767 crossref_primary_10_1021_acsami_0c02575 crossref_primary_10_1016_j_solener_2020_11_038 crossref_primary_10_1109_TED_2021_3078063 crossref_primary_10_1002_advs_202100552 crossref_primary_10_1002_adfm_202100931 crossref_primary_10_1007_s40843_018_9355_0 crossref_primary_10_1021_acsenergylett_0c00577 crossref_primary_10_3390_nano11082066 crossref_primary_10_1002_aenm_202202209 crossref_primary_10_1002_solr_202200789 crossref_primary_10_1007_s40843_021_1670_0 crossref_primary_10_1016_j_snb_2024_136188 crossref_primary_10_1039_D3TC04411D crossref_primary_10_3390_nano12224055 crossref_primary_10_1021_acsenergylett_1c02651 crossref_primary_10_1002_solr_202101007 crossref_primary_10_1002_solr_202100713 crossref_primary_10_1021_acs_jpclett_5c00200 crossref_primary_10_1002_aelm_202100771 crossref_primary_10_1002_anie_201808385 crossref_primary_10_1002_aenm_201802774 crossref_primary_10_1063_1_5083624 crossref_primary_10_1039_D2TC03355K crossref_primary_10_1016_j_ceramint_2021_11_184 crossref_primary_10_1002_anie_201811539 crossref_primary_10_1002_adfm_202108832 crossref_primary_10_1039_D0EE04007J crossref_primary_10_1002_adma_202008574 crossref_primary_10_1007_s11172_023_3828_1 crossref_primary_10_1002_advs_201800793 crossref_primary_10_1007_s10853_019_03768_2 crossref_primary_10_1007_s40820_020_00578_z crossref_primary_10_1002_solr_202100034 crossref_primary_10_3390_nano13060983 crossref_primary_10_1002_anie_202421637 crossref_primary_10_1021_acsaem_0c00407 crossref_primary_10_1021_acs_jpcc_0c03401 crossref_primary_10_1039_D1TA07121A crossref_primary_10_1021_acsami_1c01408 crossref_primary_10_1002_anie_201902418 crossref_primary_10_1021_acs_jpclett_0c00686 crossref_primary_10_1039_D0QM01002B crossref_primary_10_1039_D0CS01488E crossref_primary_10_1002_solr_201800136 crossref_primary_10_1021_acs_jpcc_3c02750 crossref_primary_10_1002_nano_202000249 crossref_primary_10_1002_adfm_202404792 crossref_primary_10_1021_acsenergylett_2c02776 crossref_primary_10_1016_j_joule_2021_03_001 crossref_primary_10_3390_en13195092 crossref_primary_10_1002_crat_202300340 crossref_primary_10_1002_solr_202100800 crossref_primary_10_1021_acsenergylett_1c01217 crossref_primary_10_1039_C9TA08679J crossref_primary_10_1002_adfm_201808059 crossref_primary_10_1039_D0QM01036G crossref_primary_10_1002_advs_201903540 crossref_primary_10_1002_eom2_12004 crossref_primary_10_1021_acsami_0c01311 crossref_primary_10_1021_acsami_1c20045 crossref_primary_10_1002_solr_201900213 crossref_primary_10_1016_j_xcrp_2022_101060 crossref_primary_10_1002_solr_201900457 crossref_primary_10_1007_s40243_024_00255_w crossref_primary_10_1039_D4CS00838C crossref_primary_10_1002_ange_201811539 crossref_primary_10_1016_j_xcrp_2021_100690 crossref_primary_10_1021_acs_jpclett_9b02191 crossref_primary_10_1021_acs_jpclett_8b03194 crossref_primary_10_1088_1361_6463_aae2ab crossref_primary_10_3390_molecules28093787 crossref_primary_10_1002_solr_201900245 crossref_primary_10_1016_j_solener_2023_111825 crossref_primary_10_1002_adma_202001591 crossref_primary_10_1021_accountsmr_1c00099 crossref_primary_10_7498_aps_70_20201678 crossref_primary_10_1016_j_jechem_2021_09_013 crossref_primary_10_1039_D2TA07687J crossref_primary_10_1002_solr_202100069 crossref_primary_10_1002_solr_202000616 crossref_primary_10_1002_aenm_201901891 crossref_primary_10_1002_ange_202421637 crossref_primary_10_1002_adfm_201807024 crossref_primary_10_1002_advs_201903047 crossref_primary_10_1021_acsaem_0c01422 crossref_primary_10_1016_j_ijleo_2018_11_028 crossref_primary_10_1002_ange_202209464 crossref_primary_10_1007_s11082_021_03175_5 crossref_primary_10_1002_pip_3794 crossref_primary_10_1016_j_chempr_2021_11_010 crossref_primary_10_1002_smll_202200036 crossref_primary_10_1002_ange_201808385 crossref_primary_10_1002_adma_202300503 crossref_primary_10_1109_JPHOTOV_2023_3241793 crossref_primary_10_1016_j_progsolidstchem_2024_100463 crossref_primary_10_1039_D4TC04420G crossref_primary_10_1016_j_matt_2019_10_006 crossref_primary_10_1021_acs_jpclett_0c01859 crossref_primary_10_1002_adfm_202000794 crossref_primary_10_1002_adfm_202310530 crossref_primary_10_1021_jacs_0c13069 crossref_primary_10_1016_j_matlet_2023_135485 crossref_primary_10_1016_j_mtphys_2021_100513 crossref_primary_10_1002_adma_202110241 crossref_primary_10_1039_D2QI00802E crossref_primary_10_1039_D0EE03368E crossref_primary_10_1016_j_solener_2024_112761 crossref_primary_10_1002_advs_202200242 crossref_primary_10_1007_s11172_023_3721_5 crossref_primary_10_1016_j_jechem_2020_08_053 crossref_primary_10_1002_aenm_202200305 crossref_primary_10_1002_advs_202203749 crossref_primary_10_1002_adma_202006691 |
Cites_doi | 10.1126/science.286.5441.945 10.1021/acsami.6b14375 10.1021/nn5036476 10.1021/acs.accounts.5b00229 10.1002/adma.201600619 10.1038/nphoton.2014.82 10.1002/adma.201300580 10.1002/adma.201401641 10.1039/C5TA08963H 10.1021/acs.jpclett.5b02651 10.1038/nnano.2015.90 10.1039/C4EE01138D 10.1021/acs.accounts.5b00465 10.1038/nphoton.2014.134 10.1039/c3dt50743b 10.1021/jacs.7b01815 10.1039/C6EE01987K 10.1002/adma.201205098 10.1038/nature12340 10.1002/anie.201511792 10.1002/adma.201601418 10.1126/science.aan2301 10.1021/jacs.5b06658 10.1016/0040-6031(94)85042-9 10.1126/science.aah5557 10.1002/adma.201401991 10.1021/jacs.6b09257 10.1021/jacs.5b06444 10.1126/science.aaf8060 10.1021/acs.jpclett.6b00322 10.1021/jacs.6b00142 10.1021/ar990144m 10.1021/acs.jpclett.6b00118 10.1039/C4TA05033A 10.1038/srep35705 10.1002/smll.201402767 10.1002/aenm.201601353 10.1021/acs.accounts.5b00411 10.1002/aenm.201601307 10.1039/c2jm30755c 10.1002/adfm.201505127 10.1038/nature11067 10.1002/adma.201402276 10.1021/ic50176a022 10.1002/adma.201400231 10.1021/acs.accounts.5b00455 10.1021/acsenergylett.6b00402 10.1002/adfm.201400850 10.1002/adma.201404598 10.1021/jacs.6b06291 10.1002/aenm.201601130 10.1126/science.aaf9717 10.1126/science.aaa9272 10.1039/C4CS00458B 10.1002/adma.201602696 10.1002/adma.201602992 10.1039/C5TA00190K 10.1002/aenm.201500963 10.1039/C5TA09661H 10.1039/C4EE01076K 10.1021/jacs.5b13470 10.1002/adma.201606964 10.1021/acs.accounts.5b00440 10.1021/ed074p575 10.1039/C4EE00942H 10.1039/C6CP04553G |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201703800 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1537363 29250846 10_1002_adma_201703800 ADMA201703800 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1608279 – fundername: Boeing‐Johnson Foundation – fundername: Department of Energy SunShot program funderid: DE‐EE0006710 – fundername: Office of Naval Research funderid: N00014‐17‐1‐2260 – fundername: Asian Office of Aerospace R&D funderid: FA2386‐15‐1‐4106 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5050-ce6194fc0e4ddc435169c286343b6a4daee314a227597dc0277febd500b428ba3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri May 19 02:14:11 EDT 2023 Fri Jul 11 08:49:35 EDT 2025 Sun Jul 13 04:50:00 EDT 2025 Thu Apr 03 08:16:45 EDT 2025 Tue Jul 01 00:44:37 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 17:06:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | solar cells sequential deposition formamidinium tin-based perovskites morphology control |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5050-ce6194fc0e4ddc435169c286343b6a4daee314a227597dc0277febd500b428ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0006710 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0002-8285-9665 0000000282859665 |
PMID | 29250846 |
PQID | 1999121206 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1537363 proquest_miscellaneous_1978318355 proquest_journals_1999121206 pubmed_primary_29250846 crossref_primary_10_1002_adma_201703800 crossref_citationtrail_10_1002_adma_201703800 wiley_primary_10_1002_adma_201703800_ADMA201703800 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Feb |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1994 1997; 243 74 2015; 3 2015 2013; 348 499 2017 2014; 7 7 2014 2014; 26 26 2016 2016 2014 2015 2015; 49 18 8 11 10 2014 2013; 26 25 2016 2015; 49 48 2014; 26 2017; 29 2016 2016 2015; 353 354 5 2017; 356 2017; 9 2017; 139 2016; 55 2013 2000; 25 33 2016 2016; 138 28 2016; 6 2016; 7 2016 2014; 9 24 2015; 137 2016 2014 2016; 49 7 7 2012 2016 2013; 485 1 42 2015 2016 2016; 27 4 4 1977; 16 1999 2016; 286 28 2016; 354 2016 2016; 138 2015 2016; 3 26 2014; 8 2016; 28 2014; 7 2016; 49 2012; 22 2016; 45 2016 2016; 7 138 e_1_2_5_27_1 e_1_2_5_27_2 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_2 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_36_2 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_5_3 e_1_2_5_7_1 e_1_2_5_5_2 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_2 e_1_2_5_1_3 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_26_2 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_22_2 e_1_2_5_22_3 e_1_2_5_24_1 e_1_2_5_22_1 e_1_2_5_28_2 e_1_2_5_28_3 e_1_2_5_41_2 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_37_2 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_6_5 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_6_4 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_6_3 e_1_2_5_8_1 e_1_2_5_10_2 e_1_2_5_6_2 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 |
References_xml | – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 27 4 4 start-page: 1241 6755 6693 year: 2015 2016 2016 publication-title: Adv. Mater. J. Mater. Chem. A J. Mater. Chem. A – volume: 3 26 start-page: 8926 3417 year: 2015 2016 publication-title: J. Mater. Chem. A Adv. Funct. Mater. – volume: 286 28 start-page: 945 8191 year: 1999 2016 publication-title: Science Adv. Mater. – volume: 49 18 8 11 10 start-page: 339 27026 506 10 391 year: 2016 2016 2014 2015 2015 publication-title: Acc. Chem. Res. Phys. Chem. Chem. Phys. Nat. Photonics Small Nat. Nanotechnol. – volume: 138 28 start-page: 11833 6478 year: 2016 2016 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 26 26 start-page: 6454 3748 year: 2014 2014 publication-title: Adv. Mater. Adv. Mater. – volume: 22 start-page: 8574 year: 2012 publication-title: J. Mater. Chem. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 7 138 start-page: 1321 2941 year: 2016 2016 publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc. – volume: 348 499 start-page: 1234 316 year: 2015 2013 publication-title: Science Nature – volume: 9 start-page: 1136 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 49 48 start-page: 146 2791 year: 2016 2015 publication-title: Acc. Chem. Res. Acc. Chem. Res. – start-page: 1601130 year: 2016 publication-title: Adv. Energy Mater. – volume: 26 25 start-page: 6262 4425 year: 2014 2013 publication-title: Adv. Mater. Adv. Mater. – volume: 7 7 start-page: 1601307 2619 year: 2017 2014 publication-title: Adv. Energy Mater. Energy Environ. Sci. – volume: 138 start-page: 3974 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1606964 year: 2017 publication-title: Adv. Mater. – volume: 9 24 start-page: 3424 6252 year: 2016 2014 publication-title: Energy Environ. Sci. Adv. Funct. Mater. – volume: 7 start-page: 776 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 243 74 start-page: 95 575 year: 1994 1997 publication-title: Thermochim. Acta J. Chem. Educ. – volume: 49 start-page: 311 year: 2016 publication-title: Acc. Chem. Res. – volume: 353 354 5 start-page: 58 206 1500963 year: 2016 2016 2015 publication-title: Science Science Adv. Energy Mater. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 16 start-page: 2529 year: 1977 publication-title: Inorg. Chem. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 485 1 42 start-page: 486 1028 8364 year: 2012 2016 2013 publication-title: Nature ACS Energy Lett. Dalton Trans. – volume: 25 33 start-page: 4663 695 year: 2013 2000 publication-title: Adv. Mater. Acc. Chem. Res. – volume: 8 start-page: 9815 year: 2014 publication-title: ACS Nano – volume: 139 start-page: 6693 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 35705 year: 2016 publication-title: Sci. Rep. – volume: 26 start-page: 7122 year: 2014 publication-title: Adv. Mater. – start-page: 14750 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 10399 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9333 year: 2016 publication-title: Adv. Mater. – volume: 55 start-page: 3447 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 49 7 7 start-page: 330 2448 811 year: 2016 2014 2016 publication-title: Acc. Chem. Res. Energy Environ. Sci. J. Phys. Chem. Lett. – volume: 3 start-page: 14996 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1601353 year: 2016 publication-title: Adv. Energy Mater. – volume: 137 start-page: 11445 year: 2015 publication-title: J. Am. Chem. Soc. – ident: e_1_2_5_16_1 doi: 10.1126/science.286.5441.945 – ident: e_1_2_5_39_1 doi: 10.1021/acsami.6b14375 – ident: e_1_2_5_33_1 doi: 10.1021/nn5036476 – ident: e_1_2_5_3_2 doi: 10.1021/acs.accounts.5b00229 – ident: e_1_2_5_36_2 doi: 10.1002/adma.201600619 – ident: e_1_2_5_7_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_5_38_2 doi: 10.1002/adma.201300580 – ident: e_1_2_5_37_1 doi: 10.1002/adma.201401641 – ident: e_1_2_5_28_3 doi: 10.1039/C5TA08963H – ident: e_1_2_5_1_3 doi: 10.1021/acs.jpclett.5b02651 – ident: e_1_2_5_6_5 doi: 10.1038/nnano.2015.90 – ident: e_1_2_5_27_2 doi: 10.1039/C4EE01138D – ident: e_1_2_5_6_1 doi: 10.1021/acs.accounts.5b00465 – ident: e_1_2_5_6_3 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_5_22_3 doi: 10.1039/c3dt50743b – ident: e_1_2_5_25_1 doi: 10.1021/jacs.7b01815 – ident: e_1_2_5_40_1 doi: 10.1039/C6EE01987K – ident: e_1_2_5_41_1 doi: 10.1002/adma.201205098 – ident: e_1_2_5_26_2 doi: 10.1038/nature12340 – ident: e_1_2_5_24_1 doi: 10.1002/anie.201511792 – ident: e_1_2_5_16_2 doi: 10.1002/adma.201601418 – ident: e_1_2_5_4_1 doi: 10.1126/science.aan2301 – ident: e_1_2_5_20_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_5_35_1 doi: 10.1016/0040-6031(94)85042-9 – ident: e_1_2_5_5_2 doi: 10.1126/science.aah5557 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201401991 – ident: e_1_2_5_17_1 doi: 10.1021/jacs.6b09257 – ident: e_1_2_5_31_1 doi: 10.1021/jacs.5b06444 – ident: e_1_2_5_5_1 doi: 10.1126/science.aaf8060 – ident: e_1_2_5_10_1 doi: 10.1021/acs.jpclett.6b00322 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.6b00142 – ident: e_1_2_5_41_2 doi: 10.1021/ar990144m – ident: e_1_2_5_21_1 doi: 10.1021/acs.jpclett.6b00118 – ident: e_1_2_5_9_1 doi: 10.1039/C4TA05033A – ident: e_1_2_5_30_1 doi: 10.1038/srep35705 – ident: e_1_2_5_6_4 doi: 10.1002/smll.201402767 – ident: e_1_2_5_14_1 doi: 10.1002/aenm.201601353 – ident: e_1_2_5_3_1 doi: 10.1021/acs.accounts.5b00411 – ident: e_1_2_5_27_1 doi: 10.1002/aenm.201601307 – ident: e_1_2_5_42_1 doi: 10.1039/c2jm30755c – ident: e_1_2_5_9_2 doi: 10.1002/adfm.201505127 – ident: e_1_2_5_22_1 doi: 10.1038/nature11067 – ident: e_1_2_5_38_1 doi: 10.1002/adma.201402276 – ident: e_1_2_5_34_1 doi: 10.1021/ic50176a022 – ident: e_1_2_5_37_2 doi: 10.1002/adma.201400231 – ident: e_1_2_5_1_1 doi: 10.1021/acs.accounts.5b00455 – ident: e_1_2_5_22_2 doi: 10.1021/acsenergylett.6b00402 – ident: e_1_2_5_40_2 doi: 10.1002/adfm.201400850 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201404598 – ident: e_1_2_5_36_1 doi: 10.1021/jacs.6b06291 – ident: e_1_2_5_11_1 doi: 10.1002/aenm.201601130 – ident: e_1_2_5_13_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_5_26_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_5_2_1 doi: 10.1039/C4CS00458B – ident: e_1_2_5_12_1 doi: 10.1002/adma.201602696 – ident: e_1_2_5_18_1 doi: 10.1002/adma.201602992 – ident: e_1_2_5_23_1 doi: 10.1039/C5TA00190K – ident: e_1_2_5_5_3 doi: 10.1002/aenm.201500963 – ident: e_1_2_5_28_2 doi: 10.1039/C5TA09661H – ident: e_1_2_5_8_1 doi: 10.1039/C4EE01076K – ident: e_1_2_5_10_2 doi: 10.1021/jacs.5b13470 – ident: e_1_2_5_29_1 doi: 10.1002/adma.201606964 – ident: e_1_2_5_32_1 doi: 10.1021/acs.accounts.5b00440 – ident: e_1_2_5_35_2 doi: 10.1021/ed074p575 – ident: e_1_2_5_1_2 doi: 10.1039/C4EE00942H – ident: e_1_2_5_6_2 doi: 10.1039/C6CP04553G |
SSID | ssj0009606 |
Score | 2.6259816 |
Snippet | Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct... Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid-base adduct... Not provided. |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Chemistry Crystallization Deposition Energy conversion efficiency formamidinium Halides Lead free Lewis acid Lewis base Materials Science morphology control Photovoltaic cells Physics Science & Technology - Other Topics sequential deposition Solar cells tin‐based perovskites Trimethylamine |
Title | Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703800 https://www.ncbi.nlm.nih.gov/pubmed/29250846 https://www.proquest.com/docview/1999121206 https://www.proquest.com/docview/1978318355 https://www.osti.gov/biblio/1537363 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9wwEMdF2VN76PvhJi0qFHpSYlvy67gkWUIhpSQbyE3oMQbTjV12vTnk1I-Qz5hP0hl77WRLS6G92VgCWZ7R_CSN_2LsoyxBepBORKXPhEqNF6Y0oShD56HI4ywyNFE8-ZIen6vPF8nFvb_4e32IccGNPKMbr8nBjV3t34mGGt_pBkVosgg9OAhTwhZR0emdfhTheSe2JxNRpCofVBvDeH-7-lZUmjToXb8jzm2A7SLQ7AkzQ9v7xJNve-vW7rnrX2Qd_-flnrLHGzzl096enrEHUD9nj-6JFr5g7SmyZXWN1_yo05_AsMXppM7bHzezJQCfEQZfVhgUq_Uln1c1ny-rqvGVB_4Vls3VilaM-RlNqvkBLBYrflUZbvhZl9aNQ86CH8KQTcYpZwlesvPZ0fzgWGzObhAOmSoUDmh5pHQhKO8dMlmUFi7OU6mkTY3yBkBGysRxhjMa72gnuQTrkzC0OCGyRr5ik7qp4Q3jSExgEVshz5zCMiaSyvk8sUVZFipPAyaGb6fdRticztdY6F6SOdbUm3rszYB9Gst_7yU9_lhyh0xBI4yQoq6j1CPXagwSmUxlwHYHC9Ebx19pUnWIEAdCbNaH8TG6LO3DmBqaNZXJchpKkyRgr3vLGhsSF8ikyIQBizv7-EsL9fTwZDrevf2XSjvsIV7nfSb6Lpu0yzW8Q9Bq7fvOmX4ClLcgIQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgOQCHlldpaAEjIXFKm8TO67hqu1qgW6F2K3GzHHsiRWwTtJvtoSd-Ar-RX9KZZJN2KxAS3PKYSI4z4_lmPPmGsfciB2FBGNfPbezKSFtX59pzc89YSJMg9jUFipOTaHwuP30Nu2pC-hem5YfoE25kGc16TQZOCen9G9ZQbRviIB91FlHPffaA2no3UdXpDYMUAfSGbk-EbhrJpONt9IL99efX_NKgQvv6HeZch7CNDxptsqwbfVt68m1vWWd75uoOseN_vd4TtrFCqHzYqtRTdg_KZ-zxLd7C56w-RXhZXOExP2ooKNBzcWrW-evHz9EcgI8ICV8U6BeL5QWfFiWfzouisoUF_gXm1eWCksb8jOJqfgCz2YJfFpprftZUduOqM-OH0BWUcSpbghfsfHQ0PRi7q_YNrkFY5bkGKEOSGw-ktQZhmR-lJkgiIUUWaWk1gPClDoIYgxpraDM5h8yGnpdhTJRpscUGZVXCNuMImiBD5ApJbCTKaF9IY5MwS_M8lUnkMLf7eMqsuM2pxcZMtazMgaLZVP1sOuxDL_-9ZfX4o-QO6YJCPEKkuoaqj0yt0E_EIhIO2-1URK1sf6GI2MFHRODhsN71t9FqaStGl1AtSSZOaDUNQ4e9bFWrH0iQIixFWOiwoFGQv4xQDQ8nw_7s1b889JY9HE8nx-r448nnHfYIrydtYfouG9TzJbxG3FVnbxrLugaJpyQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctWCQEh_KmoQWMhMQpbRI7r-Oq26g8WlXtVurNcuyJFLFNqt1sDz3xEfiMfBJmkk3aRSAkuOXhSI4z4_nZnvzN2HtRgLAgjOsXNnZlpK2rC-25hWcspEkQ-5oGiodH0cGZ_HQent_6i7_Thxgm3Mgz2v6aHPzSFrs3oqHatrpBPposQs9ddk9GXkJ2PTm5EZAiPm_V9kToppFMetlGL9hdf34tLI1qdK_fIec6wbYhKHvEdF_5LvPk686yyXfM9S-6jv_zdo_ZxopP-bgzqCfsDlRP2cNbqoXPWHOCcFle4zHfbwUoMG5x2qrzx7fv2RyAZ8TBFyVGxXJ5wadlxafzsqxtaYEfw7y-WtCUMT-lUTXfg9lswa9KzTU_bfO6sc-Z8Qn06WSckpbgOTvL9qd7B-5q8wbXIFR5rgGaHymMB9Jag1DmR6kJkkhIkUdaWg0gfKmDIMYhjTW0lFxAbkPPy3FElGvxgo2quoJNxhGZIEduhSQ2EstoX0hjkzBPiyKVSeQwt_92yqyUzWmDjZnqNJkDRa2phtZ02Ieh_GWn6fHHkltkCgpphCR1DeUemUZhlIhFJBy23VuIWnn-QpGsg4884GG13g230WdpIUZXUC-pTJxQXxqGDnvZWdZQkSBFKEUodFjQ2sdfaqjGk8PxcPbqXx56y-4fTzL15ePR5y32AC8nXVb6Nhs18yW8Ruhq8jetX_0EGR0i9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+Efficient+Lead-Free+Formamidinium+Tin+Triiodide+Perovskite+Solar+Cells+via+a+Sequential+Deposition+Route&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Zonglong&rft.au=Chueh%2C+Chu-Chen&rft.au=Li%2C+Nan&rft.au=Mao%2C+Chengyi&rft.date=2018-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.201703800&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |