Refuting the myth of non‐response to exercise training: ‘non‐responders’ do respond to higher dose of training
Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐re...
Saved in:
Published in | The Journal of physiology Vol. 595; no. 11; pp. 3377 - 3387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key points
The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks.
Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished.
The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass.
The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.
One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non‐response to exercise training is dose‐dependent, using a between‐ and within‐subject study design. Seventy‐eight healthy adults were divided into five groups (1–5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6‐week endurance training (ET) programme. Non‐response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non‐responders after the ET intervention completed a successive 6‐week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non‐responders. After the second ET period, non‐response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non‐response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen‐carrying capacity.
Key points
The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks.
Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished.
The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass.
The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. |
---|---|
AbstractList | KEY POINTSThe prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.ABSTRACTOne in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax ), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non‐response to exercise training is dose‐dependent, using a between‐ and within‐subject study design. Seventy‐eight healthy adults were divided into five groups (1–5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6‐week endurance training (ET) programme. Non‐response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non‐responders after the ET intervention completed a successive 6‐week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non‐responders. After the second ET period, non‐response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non‐response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen‐carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (W ), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, W increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined W response (partial correlation coefficient, r ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (r = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V O 2 max), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V O 2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V O 2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. |
Author | Montero, David Lundby, Carsten |
AuthorAffiliation | 2 Department of Cardiology University Hospital Zurich Switzerland 1 Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology University of Zurich Switzerland |
AuthorAffiliation_xml | – name: 2 Department of Cardiology University Hospital Zurich Switzerland – name: 1 Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology University of Zurich Switzerland |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-0438-8271 surname: Montero fullname: Montero, David organization: University Hospital Zurich – sequence: 2 givenname: Carsten surname: Lundby fullname: Lundby, Carsten email: carsten.lundby@access.uzh.ch organization: University of Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28133739$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKcDEk-AIrFhk-K_-IcFUlVRoKpEhcraSpybiatMPNhJYXbzCF3C682T4IiZUirBytbxd47P1T1CB73vAaHnBB8TQtjr80sqGVf4EZoRLnQupWYHaIYxpTmTBTlERzFeY0wY1voJOqSKMCaZnqGbz9CMg-sX2dBCtlwPbeabLMVvN7cB4sr3EbLBZ_AdgnXTPZSuT_ybbLv5cZ-rIcTt5mdW-2wnTL7WLVoISUzWFLx3P0WPm7KL8Gx3ztGXs3dXpx_yi0_vP56eXOS2wAXOq4qzumwwL1UFmIGllGCmCyWwUEkl2qaZqqZmRcOFKAptRS0UF5wDUKXZHL39nbsaqyXUFvrUoDOr4JZlWBtfOvP3S-9as_A3puAFkUylgFe7gOC_jhAHs3TRQteVPfgxGqIE1VyyBM_RywfotR9Dn8YzRGOOJcFyol7cb3RXZb-SPz_a4GMM0NwhBJtp22a_7YQeP0CtG8rB-WkW1_3H8M11sP5nsLk6vySUcsx-AX8BvSQ |
CitedBy_id | crossref_primary_10_3389_fnut_2018_00041 crossref_primary_10_1080_02640414_2020_1725384 crossref_primary_10_1152_japplphysiol_00391_2020 crossref_primary_10_1016_j_ejso_2021_08_026 crossref_primary_10_1101_cshperspect_a029660 crossref_primary_10_1016_j_conctc_2019_100508 crossref_primary_10_1177_1559827619834527 crossref_primary_10_1016_j_cmet_2023_12_008 crossref_primary_10_1093_eurjpc_zwad232 crossref_primary_10_1152_japplphysiol_00726_2020 crossref_primary_10_1007_s00421_020_04477_4 crossref_primary_10_1136_bjsports_2020_103323 crossref_primary_10_1007_s40279_020_01335_3 crossref_primary_10_29254_2077_4214_2023_1_168_86_91 crossref_primary_10_1007_s00335_017_9732_5 crossref_primary_10_1007_s00421_019_04078_w crossref_primary_10_3390_jfmk2040036 crossref_primary_10_1007_s40279_018_01041_1 crossref_primary_10_1249_MSS_0000000000002097 crossref_primary_10_1186_s40798_023_00635_y crossref_primary_10_3389_fspor_2021_621055 crossref_primary_10_1249_MSS_0000000000002899 crossref_primary_10_1111_cpf_12614 crossref_primary_10_1152_ajpendo_00407_2016 crossref_primary_10_1111_sms_14362 crossref_primary_10_3389_fphys_2018_01285 crossref_primary_10_1080_02640414_2024_2448358 crossref_primary_10_1002_oby_23280 crossref_primary_10_1111_apha_13371 crossref_primary_10_14814_phy2_14163 crossref_primary_10_2337_db21_0934 crossref_primary_10_1038_s41598_024_65444_z crossref_primary_10_1101_cshperspect_a029769 crossref_primary_10_3390_nu11030538 crossref_primary_10_3390_jfmk5030048 crossref_primary_10_1016_j_cmet_2023_12_025 crossref_primary_10_1519_JSC_0000000000003859 crossref_primary_10_1519_JPT_0000000000000308 crossref_primary_10_1055_a_1157_9257 crossref_primary_10_1249_MSS_0000000000001599 crossref_primary_10_1016_j_jsams_2023_08_175 crossref_primary_10_3389_fphys_2022_747903 crossref_primary_10_3389_fphys_2019_00730 crossref_primary_10_1038_s42255_020_0240_7 crossref_primary_10_3390_ijms21186732 crossref_primary_10_1519_JSC_0000000000004044 crossref_primary_10_7600_jpfsm_10_151 crossref_primary_10_1136_bmjsem_2018_000349 crossref_primary_10_1152_japplphysiol_00798_2018 crossref_primary_10_1371_journal_pone_0298223 crossref_primary_10_1016_j_jsams_2018_06_018 crossref_primary_10_1111_sms_13254 crossref_primary_10_1111_sms_13495 crossref_primary_10_1007_s00421_024_05589_x crossref_primary_10_1161_CIRCRESAHA_121_319894 crossref_primary_10_1038_s41580_023_00606_x crossref_primary_10_3389_fphys_2017_00444 crossref_primary_10_1097_EJA_0000000000001030 crossref_primary_10_3390_cells10123443 crossref_primary_10_1113_JP283214 crossref_primary_10_3389_fphys_2018_00896 crossref_primary_10_1016_j_apmr_2022_01_151 crossref_primary_10_1080_24745332_2019_1596772 crossref_primary_10_1249_MSS_0000000000002582 crossref_primary_10_3389_fendo_2017_00229 crossref_primary_10_1007_s00125_019_05045_y crossref_primary_10_1038_nrrheum_2017_75 crossref_primary_10_1055_a_1778_2747 crossref_primary_10_3390_ijerph16122088 crossref_primary_10_1016_j_bbr_2018_12_041 crossref_primary_10_1113_EP088744 crossref_primary_10_1371_journal_pone_0207597 crossref_primary_10_1113_EP088187 crossref_primary_10_3390_sports12120328 crossref_primary_10_1113_JP276141 crossref_primary_10_23736_S0022_4707_23_15373_4 crossref_primary_10_1055_a_1481_8639 crossref_primary_10_1249_JES_0000000000000176 crossref_primary_10_1371_journal_pone_0239155 crossref_primary_10_1021_acs_jproteome_0c00905 crossref_primary_10_1161_CIRCULATIONAHA_117_030617 crossref_primary_10_1016_j_cmet_2017_04_018 crossref_primary_10_1371_journal_pone_0212115 crossref_primary_10_1007_s40279_021_01495_w crossref_primary_10_1177_2047487319828478 crossref_primary_10_1007_s00125_020_05089_5 crossref_primary_10_1007_s40279_018_0936_y crossref_primary_10_1152_ajpcell_00146_2022 crossref_primary_10_1007_s11357_023_00732_6 crossref_primary_10_1113_JP278328 crossref_primary_10_1152_japplphysiol_00289_2019 crossref_primary_10_2174_1875399X01710010191 crossref_primary_10_1152_japplphysiol_00670_2023 crossref_primary_10_1152_physrev_00017_2022 crossref_primary_10_1123_ijspp_2021_0033 crossref_primary_10_1177_2047487319877716 crossref_primary_10_3389_fspor_2020_00065 crossref_primary_10_1249_MSS_0000000000003204 crossref_primary_10_1016_j_ejso_2023_01_024 crossref_primary_10_1016_j_hipert_2024_07_001 crossref_primary_10_1055_a_0973_1982 crossref_primary_10_1146_annurev_med_070119_115343 crossref_primary_10_3389_fphys_2021_713016 crossref_primary_10_1007_s40279_024_02125_x crossref_primary_10_1177_2047487319838221 crossref_primary_10_3390_jpm10030055 crossref_primary_10_3390_sports9060083 crossref_primary_10_1002_jcp_29797 crossref_primary_10_1249_JES_0000000000000150 crossref_primary_10_3389_fpubh_2022_911863 crossref_primary_10_1016_j_jtherbio_2018_03_002 crossref_primary_10_1016_j_rec_2019_09_013 crossref_primary_10_1186_s40798_023_00579_3 crossref_primary_10_14814_phy2_14416 crossref_primary_10_1249_MSS_0000000000002147 crossref_primary_10_1007_s40279_019_01147_0 crossref_primary_10_1519_SSC_0000000000000363 crossref_primary_10_1007_s00125_017_4461_6 crossref_primary_10_1007_s00421_020_04568_2 crossref_primary_10_1113_JP274031 crossref_primary_10_1038_s41440_024_01721_8 crossref_primary_10_1123_jpah_2019_0349 crossref_primary_10_1016_j_scispo_2020_02_003 crossref_primary_10_1007_s11332_019_00552_2 crossref_primary_10_1113_JP276455 crossref_primary_10_3389_fphys_2021_756618 crossref_primary_10_3389_fphys_2018_00569 crossref_primary_10_3389_fphys_2019_00672 crossref_primary_10_1016_j_cjca_2023_08_007 crossref_primary_10_1007_s40279_018_0865_9 crossref_primary_10_1007_s12603_017_0958_4 crossref_primary_10_2147_JMDH_S391996 crossref_primary_10_1007_s40279_024_02089_y crossref_primary_10_1249_MSS_0000000000001842 crossref_primary_10_1136_bmjopen_2020_044478 crossref_primary_10_3390_jcm8081101 crossref_primary_10_1093_ptj_pzaa213 crossref_primary_10_14814_phy2_13595 crossref_primary_10_3389_fspor_2023_1298877 crossref_primary_10_1186_s11556_019_0217_2 crossref_primary_10_1152_physiol_00038_2018 crossref_primary_10_3389_fphys_2021_759677 crossref_primary_10_1080_17461391_2022_2048894 crossref_primary_10_1139_apnm_2023_0495 crossref_primary_10_1249_MSS_0000000000002720 crossref_primary_10_1093_eurjpc_zwaa142 crossref_primary_10_1139_apnm_2023_0137 crossref_primary_10_1152_japplphysiol_00501_2024 crossref_primary_10_1093_cvr_cvab028 crossref_primary_10_1249_MSS_0000000000002968 crossref_primary_10_1590_rbce_43_e013420 crossref_primary_10_3390_s21062063 crossref_primary_10_1016_j_arres_2021_100007 crossref_primary_10_1007_s40520_020_01587_z crossref_primary_10_1113_EP089565 crossref_primary_10_1152_japplphysiol_00168_2020 crossref_primary_10_1016_S2213_8587_19_30119_6 crossref_primary_10_1186_s40798_017_0110_3 crossref_primary_10_1186_s40798_021_00315_9 crossref_primary_10_1139_apnm_2018_0343 crossref_primary_10_3390_ijerph17051688 crossref_primary_10_1007_s40279_018_0866_8 crossref_primary_10_1038_s41598_020_74140_7 crossref_primary_10_1016_j_jesf_2022_12_005 crossref_primary_10_1136_military_2022_002285 crossref_primary_10_1113_JP275942 crossref_primary_10_3389_fphys_2021_665044 crossref_primary_10_5812_intjssh_141680 crossref_primary_10_1123_ijspp_2022_0291 crossref_primary_10_1200_CCI_24_00031 crossref_primary_10_1136_bmjsem_2022_001339 crossref_primary_10_3390_sports10060095 crossref_primary_10_1007_s40279_017_0776_1 crossref_primary_10_1113_JP287534 crossref_primary_10_3389_fcvm_2021_605993 crossref_primary_10_1016_j_recesp_2019_09_024 crossref_primary_10_1007_s40279_021_01442_9 crossref_primary_10_3390_ijerph19094980 crossref_primary_10_1055_a_1193_2584 crossref_primary_10_1161_CIRCULATIONAHA_117_024671 crossref_primary_10_1139_apnm_2020_0855 crossref_primary_10_1007_s40279_019_01180_z crossref_primary_10_14814_phy2_13928 crossref_primary_10_3390_cells10113013 crossref_primary_10_1136_heartjnl_2024_324281 crossref_primary_10_3389_fphys_2018_00241 crossref_primary_10_3390_jcm9030797 crossref_primary_10_1080_02640414_2022_2095489 crossref_primary_10_1371_journal_pone_0237388 crossref_primary_10_3389_fphys_2017_00974 crossref_primary_10_1113_JP284158 crossref_primary_10_1080_17461391_2021_1874057 crossref_primary_10_1055_a_1529_0831 crossref_primary_10_3390_jcm12196146 crossref_primary_10_3390_metabo12060473 crossref_primary_10_3389_fgene_2018_00015 crossref_primary_10_3389_fped_2018_00404 crossref_primary_10_1016_j_jacc_2022_07_011 crossref_primary_10_3390_metabo14090512 crossref_primary_10_1177_02537176211033316 crossref_primary_10_1016_j_cmet_2018_04_014 crossref_primary_10_1139_apnm_2017_0864 crossref_primary_10_1136_bmjopen_2020_044676 crossref_primary_10_3389_fphys_2021_682891 crossref_primary_10_47529_2223_2524_2021_2_5 crossref_primary_10_1186_s13063_024_08335_y crossref_primary_10_1249_JES_0000000000000331 crossref_primary_10_1016_j_actbio_2020_10_041 crossref_primary_10_3390_jcm8030310 crossref_primary_10_3389_fphys_2018_00713 crossref_primary_10_3389_fpsyg_2019_02338 crossref_primary_10_1186_s12874_022_01524_w crossref_primary_10_3390_sports7030064 crossref_primary_10_1055_a_1548_7026 crossref_primary_10_14814_phy2_14355 crossref_primary_10_1152_japplphysiol_00242_2021 crossref_primary_10_3390_jpm12040610 crossref_primary_10_1249_MSS_0000000000001439 crossref_primary_10_1111_sms_70024 crossref_primary_10_1113_JP277634 crossref_primary_10_1016_j_exger_2022_111984 crossref_primary_10_1371_journal_pone_0274082 crossref_primary_10_3389_fphys_2019_00019 crossref_primary_10_1016_j_jnutbio_2018_03_015 crossref_primary_10_1016_j_jacc_2018_06_054 crossref_primary_10_1016_j_mehy_2022_110837 crossref_primary_10_1016_j_pcad_2022_10_003 crossref_primary_10_1371_journal_pone_0292835 crossref_primary_10_1371_journal_pone_0307275 crossref_primary_10_1007_s40279_017_0793_0 crossref_primary_10_3389_fendo_2021_693683 crossref_primary_10_1007_s00421_021_04676_7 crossref_primary_10_1111_sms_13975 crossref_primary_10_1249_MSS_0000000000001429 |
Cites_doi | 10.1249/MSS.0b013e3181896c4e 10.2165/00007256-200030010-00001 10.1016/S0140-6736(11)60749-6 10.1007/BF01466278 10.1152/japplphysiol.01121.2014 10.1016/j.mito.2010.12.006 10.1249/mss.0b013e3180304570 10.2165/00007256-198603050-00004 10.1152/japplphysiol.00973.2010 10.1001/jama.1995.03520390039030 10.1111/apha.12827 10.1177/1359786810382057 10.1152/japplphysiol.00058.2008 10.1007/s40279-014-0197-3 10.1164/rccm.167.2.211 10.1152/japplphysiol.00949.2010 10.1002/cphy.c100059 10.1111/apha.12258 10.1001/jama.2009.681 10.1101/pdb.top071787 10.1152/japplphysiol.00024.2008 10.1007/s00421-003-0990-4 10.1001/jama.297.19.2081 10.1113/expphysiol.2011.058735 10.1177/0962280210379174 10.1249/MSS.0000000000000321 10.1016/j.jsams.2008.12.626 10.1113/JP270250 10.1007/s40279-013-0018-0 10.1016/j.pmr.2008.10.009 10.1152/japplphysiol.00714.2014 10.1113/jphysiol.2009.179432 10.1055/s-2001-18522 10.1371/journal.pone.0073182 10.1152/jappl.1999.87.3.1003 10.2165/00007256-199826010-00001 10.1249/00005768-199505000-00015 10.1055/s-2008-1025911 10.1249/MSS.0000000000000640 10.1113/JP270551 10.1016/S0140-6736(53)91495-0 10.1113/JP272559 10.1152/japplphysiol.00445.2013 10.1152/japplphysiol.01295.2009 10.1097/00005768-199909000-00017 10.1111/sms.12581 10.1152/ajpregu.00028.2014 10.1113/JP270550 10.1016/j.mayocp.2015.07.024 10.1249/MSS.0b013e318213fefb 10.1177/2047487315617118 10.1001/archinte.161.6.825 10.1152/jappl.1995.79.2.623 |
ContentType | Journal Article |
Copyright | 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. Journal compilation © 2017 The Physiological Society |
Copyright_xml | – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. – notice: Journal compilation © 2017 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP273480 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | D. Montero and C. Lundby |
EISSN | 1469-7793 |
EndPage | 3387 |
ExternalDocumentID | PMC5451738 28133739 10_1113_JP273480 TJP12240 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Zurich Center for Integrative Human Physiology |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 31~ 3EH 3O- AAYJJ AAYXX ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF FA8 H13 HF~ H~9 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5050-bb43daf04a8be03ec22103958606804a19c013bfd35f466559c6d684644ee2893 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Thu Aug 21 18:24:16 EDT 2025 Fri Jul 11 12:45:05 EDT 2025 Fri Jul 25 10:30:22 EDT 2025 Tue Jan 21 03:22:09 EST 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 04:29:16 EDT 2025 Wed Jan 22 16:20:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | non-response cardiorespiratory fitness hemoglobin mass trainability |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5050-bb43daf04a8be03ec22103958606804a19c013bfd35f466559c6d684644ee2893 |
Notes | This article is highlighted by a Perspective by Joyner. To read this Perspective, visit Linked articles https://doi.org/10.1113/JP274031 . This is an Editor's Choice article from the 1 June 2017 issue. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 Linked articles This article is highlighted by a Perspective by Joyner. To read this Perspective, visit https://doi.org/10.1113/JP274031. |
ORCID | 0000-0002-0438-8271 |
OpenAccessLink | https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP273480 |
PMID | 28133739 |
PQID | 1904071077 |
PQPubID | 1086388 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451738 proquest_miscellaneous_1862947317 proquest_journals_1904071077 pubmed_primary_28133739 crossref_primary_10_1113_JP273480 crossref_citationtrail_10_1113_JP273480 wiley_primary_10_1113_JP273480_TJP12240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 1 June 2017 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2007; 39 2009; 41 2012; 2012 2011b; 110 2010; 13 2010; 108 1995; 79 2015a; 593 2011; 11 1999; 87 2008; 104 2017; 595 2013; 8 2012; 97 1979 2014; 211 2011; 110 2010; 24 1995; 27 2007; 297 1986; 3 2013; 115 2011; 20 2015; 90 1953; 265 2003; 167 1998; 26 2011; 378 2001; 161 2009; 20 2012 2013; 43 2011a; 1 2015b; 47 1962; 14 2014; 46 2001; 22 2004; 91 1995; 273 2014; 44 2014; 306 2015; 23 2015; 25 2000; 30 1984; 5 2015; 593 2011; 43 2017 1999; 31 2015; 119 2015; 118 2013 1992; 65 2009; 587 2009; 301 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 Cohen L (e_1_2_6_15_1) 1979 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Bergstrom J (e_1_2_6_4_1) 1962; 14 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_21_1 e_1_2_6_40_1 Potteiger JA (e_1_2_6_42_1) 2013 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 29603268 - J Physiol. 2018 Apr 1;596(7):1311 28185284 - J Physiol. 2017 Jun 1;595(11):3239-3240 |
References_xml | – volume: 161 start-page: 825 year: 2001 end-page: 831 article-title: Cardiovascular fitness as a predictor of mortality in men publication-title: Arch Intern Med – volume: 44 start-page: 1113 year: 2014 end-page: 1124 article-title: High responders and low responders: factors associated with individual variation in response to standardized training publication-title: Sports Med – volume: 104 start-page: 1251 year: 2008 article-title: Commentary on viewpoint: Perspective on the future use of genomics in exercise prescription publication-title: J Appl Physiol (1985) – volume: 110 start-page: 834 year: 2011 end-page: 845 article-title: Nutritional modulation of training‐induced skeletal muscle adaptations publication-title: J Appl Physiol (1985) – volume: 24 start-page: 27 year: 2010 end-page: 35 article-title: Mortality trends in the general population: the importance of cardiorespiratory fitness publication-title: J Psychopharmacol – volume: 41 start-page: 539 year: 2009 end-page: 545 article-title: Volume of exercise and fitness nonresponse in sedentary, postmenopausal women publication-title: Med Sci Sports Exerc – volume: 23 start-page: 733 year: 2015 end-page: 743 article-title: Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction publication-title: Eur J Prev Cardiol – volume: 108 start-page: 1487 year: 2010 end-page: 1496 article-title: Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans publication-title: J Appl Physiol (1985) – year: 1979 – volume: 43 start-page: 157 year: 2013 end-page: 165 article-title: Toward exercise as personalized medicine publication-title: Sports Med – volume: 5 start-page: 232 year: 1984 end-page: 236 article-title: Responses of maximal aerobic power and capacity to aerobic training publication-title: Int J Sports Med – volume: 26 start-page: 1 year: 1998 end-page: 16 article-title: Overtraining and recovery. A conceptual model publication-title: Sports Med – volume: 31 start-page: 1342 year: 1999 end-page: 1345 article-title: Is determination of exercise intensities as percentages of VO max or HRmax adequate publication-title: Med Sci Sports Exerc – volume: 30 start-page: 1 year: 2000 end-page: 15 article-title: Measures of reliability in sports medicine and science publication-title: Sports Med – volume: 13 start-page: 74 year: 2010 end-page: 79 article-title: Exercise at given percentages of VO : heterogeneous metabolic responses between individuals publication-title: J Sci Med Sport – volume: 43 start-page: 1334 year: 2011 end-page: 1359 article-title: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise publication-title: Med Sci Sports Exerc – volume: 90 start-page: 1506 year: 2015 end-page: 1514 article-title: Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response publication-title: Mayo Clin Proc – volume: 2012 start-page: 1129 year: 2012 end-page: 1139 article-title: Estimating volume in biological structures publication-title: Cold Spring Harb Protoc – volume: 595 start-page: 2931 year: 2017 end-page: 2939 article-title: Genomic and transcriptomic predictors of response levels to endurance exercise training publication-title: J Physiol – volume: 297 start-page: 2081 year: 2007 end-page: 2091 article-title: Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial publication-title: JAMA – year: 2017 article-title: Biology of VO : looking under the physiology lamp publication-title: Acta Physiologica – volume: 8 start-page: e73182 year: 2013 article-title: VO2max trainability and high intensity interval training in humans: a meta‐analysis publication-title: PLoS One – volume: 11 start-page: 303 year: 2011 end-page: 307 article-title: Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans publication-title: Mitochondrion – volume: 301 start-page: 2024 year: 2009 end-page: 2035 article-title: Cardiorespiratory fitness as a quantitative predictor of all‐cause mortality and cardiovascular events in healthy men and women: a meta‐analysis publication-title: JAMA – volume: 119 start-page: 1194 year: 2015 end-page: 1201 article-title: Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454‐m altitude publication-title: J Appl Physiol (1985) – volume: 593 start-page: 4677 year: 2015a end-page: 4688 article-title: Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training publication-title: J Physiol – volume: 1 start-page: 1603 year: 2011a end-page: 1648 article-title: Genomics and genetics in the biology of adaptation to exercise publication-title: Compr Physiol – volume: 91 start-page: 199 year: 2004 end-page: 203 article-title: Test‐retest errors and the apparent heterogeneity of training response publication-title: Eur J Appl Physiol – volume: 593 start-page: 3757 year: 2015 end-page: 3758 article-title: CrossTalk proposal: Diffusion limitation of O from microvessels into muscle does contribute to the limitation of VO publication-title: J Physiol – volume: 167 start-page: 211 year: 2003 end-page: 277 article-title: ATS/ACCP Statement on cardiopulmonary exercise testing publication-title: Am J Respir Crit Care Med – volume: 378 start-page: 1244 year: 2011 end-page: 1253 article-title: Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study publication-title: Lancet – volume: 211 start-page: 122 year: 2014 end-page: 134 article-title: Low‐intensity training increases peak arm VO by enhancing both convective and diffusive O delivery publication-title: Acta Physiol (Oxf) – volume: 115 start-page: 785 year: 2013 end-page: 793 article-title: Improvements in exercise performance with high‐intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function publication-title: J Appl Physiol (1985) – volume: 20 start-page: 149 year: 2009 end-page: 159 article-title: Sleep, recovery, and performance: the new frontier in high‐performance athletics publication-title: Phys Med Rehabil Clin N Am – volume: 118 start-page: 1450 year: 2015 end-page: 1459 article-title: Individual response to exercise training – a statistical perspective publication-title: J Appl Physiol (1985) – volume: 306 start-page: R752 year: 2014 end-page: R760 article-title: Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 79 start-page: 623 year: 1995 end-page: 631 article-title: Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method publication-title: J Appl Physiol (1985) – volume: 3 start-page: 346 year: 1986 end-page: 356 article-title: The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness publication-title: Sports Med – volume: 87 start-page: 1003 year: 1999 end-page: 1008 article-title: Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study publication-title: J Appl Physiol (1985) – volume: 104 start-page: 1254 year: 2008 article-title: Last word on viewpoint: Perspective on the future use of genomics in exercise prescription publication-title: J Appl Physiol (1985) – year: 2012 – volume: 46 start-page: 1936 year: 2014 end-page: 1945 article-title: Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia publication-title: Med Sci Sports Exerc – volume: 20 start-page: 657 year: 2011 end-page: 666 article-title: Investigating variability in patient response to treatment – a case study from a replicate cross‐over study publication-title: Stat Methods Med Res – volume: 22 start-page: 586 year: 2001 end-page: 592 article-title: Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE Family Study publication-title: Int J Sports Med – volume: 587 start-page: 5551 year: 2009 end-page: 5558 article-title: Exercise protects the cardiovascular system: effects beyond traditional risk factors publication-title: J Physiol – volume: 14 start-page: 1 issue: 68 year: 1962 end-page: 110 article-title: Muscle electrolytes in man publication-title: Scand J Clin Lab Invest – volume: 25 start-page: 1 issue: 3 year: 2015 end-page: 72 article-title: Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases publication-title: Scand J Med Sci Sports – volume: 110 start-page: 1160 year: 2011b end-page: 1170 article-title: Genomic predictors of the maximal O uptake response to standardized exercise training programs publication-title: J Appl Physiol (1985) – volume: 47 start-page: 2024 year: 2015b end-page: 2033 article-title: Endurance training and VO max: role of maximal cardiac output and oxygen extraction publication-title: Med Sci Sports Exerc – volume: 65 start-page: 79 year: 1992 end-page: 83 article-title: Peak power output predicts maximal oxygen uptake and performance time in trained cyclists publication-title: Eur J Appl Physiol Occup Physiol – volume: 27 start-page: 721 year: 1995 end-page: 729 article-title: The HERITAGE family study. Aims, design, and measurement protocol publication-title: Med Sci Sports Exerc – volume: 593 start-page: 3759 year: 2015 end-page: 3761 article-title: CrossTalk opposing view: Diffusion limitation of O from microvessels into muscle does not contribute to the limitation of VO publication-title: J Physiol – volume: 97 start-page: 347 year: 2012 end-page: 352 article-title: Genomic predictors of trainability publication-title: Exp Physiol – volume: 265 start-page: 1111 year: 1953 end-page: 1120 article-title: Coronary heart‐disease and physical activity of work publication-title: Lancet – volume: 39 start-page: 665 year: 2007 end-page: 671 article-title: Aerobic high‐intensity intervals improve VO more than moderate training publication-title: Med Sci Sports Exerc – volume: 273 start-page: 1179 year: 1995 end-page: 1184 article-title: Exercise intensity and longevity in men. The Harvard Alumni Health Study publication-title: JAMA – year: 2013 – ident: e_1_2_6_52_1 doi: 10.1249/MSS.0b013e3181896c4e – ident: e_1_2_6_23_1 doi: 10.2165/00007256-200030010-00001 – ident: e_1_2_6_56_1 doi: 10.1016/S0140-6736(11)60749-6 – ident: e_1_2_6_40_1 – ident: e_1_2_6_20_1 doi: 10.1007/BF01466278 – ident: e_1_2_6_51_1 doi: 10.1152/japplphysiol.01121.2014 – ident: e_1_2_6_12_1 doi: 10.1016/j.mito.2010.12.006 – ident: e_1_2_6_22_1 doi: 10.1249/mss.0b013e3180304570 – ident: e_1_2_6_57_1 doi: 10.2165/00007256-198603050-00004 – ident: e_1_2_6_10_1 doi: 10.1152/japplphysiol.00973.2010 – ident: e_1_2_6_30_1 doi: 10.1001/jama.1995.03520390039030 – ident: e_1_2_6_33_1 doi: 10.1111/apha.12827 – ident: e_1_2_6_29_1 doi: 10.1177/1359786810382057 – ident: e_1_2_6_45_1 doi: 10.1152/japplphysiol.00058.2008 – ident: e_1_2_6_34_1 doi: 10.1007/s40279-014-0197-3 – ident: e_1_2_6_2_1 doi: 10.1164/rccm.167.2.211 – ident: e_1_2_6_19_1 doi: 10.1152/japplphysiol.00949.2010 – ident: e_1_2_6_9_1 doi: 10.1002/cphy.c100059 – ident: e_1_2_6_11_1 doi: 10.1111/apha.12258 – ident: e_1_2_6_27_1 doi: 10.1001/jama.2009.681 – volume-title: ACSM's Introduction to Exercise Science year: 2013 ident: e_1_2_6_42_1 – ident: e_1_2_6_58_1 doi: 10.1101/pdb.top071787 – volume: 14 start-page: 1 issue: 68 year: 1962 ident: e_1_2_6_4_1 article-title: Muscle electrolytes in man publication-title: Scand J Clin Lab Invest – ident: e_1_2_6_53_1 doi: 10.1152/japplphysiol.00024.2008 – ident: e_1_2_6_50_1 doi: 10.1007/s00421-003-0990-4 – ident: e_1_2_6_16_1 doi: 10.1001/jama.297.19.2081 – ident: e_1_2_6_6_1 doi: 10.1113/expphysiol.2011.058735 – ident: e_1_2_6_49_1 doi: 10.1177/0962280210379174 – volume-title: Statistics for Education and Physical Education year: 1979 ident: e_1_2_6_15_1 – ident: e_1_2_6_43_1 doi: 10.1249/MSS.0000000000000321 – ident: e_1_2_6_48_1 doi: 10.1016/j.jsams.2008.12.626 – ident: e_1_2_6_36_1 doi: 10.1113/JP270250 – ident: e_1_2_6_13_1 doi: 10.1007/s40279-013-0018-0 – ident: e_1_2_6_46_1 doi: 10.1016/j.pmr.2008.10.009 – ident: e_1_2_6_21_1 doi: 10.1152/japplphysiol.00714.2014 – ident: e_1_2_6_25_1 doi: 10.1113/jphysiol.2009.179432 – ident: e_1_2_6_18_1 doi: 10.1055/s-2001-18522 – ident: e_1_2_6_3_1 doi: 10.1371/journal.pone.0073182 – ident: e_1_2_6_7_1 doi: 10.1152/jappl.1999.87.3.1003 – ident: e_1_2_6_26_1 doi: 10.2165/00007256-199826010-00001 – ident: e_1_2_6_8_1 doi: 10.1249/00005768-199505000-00015 – ident: e_1_2_6_31_1 doi: 10.1055/s-2008-1025911 – ident: e_1_2_6_38_1 doi: 10.1249/MSS.0000000000000640 – ident: e_1_2_6_55_1 doi: 10.1113/JP270551 – ident: e_1_2_6_39_1 doi: 10.1016/S0140-6736(53)91495-0 – ident: e_1_2_6_47_1 doi: 10.1113/JP272559 – ident: e_1_2_6_24_1 doi: 10.1152/japplphysiol.00445.2013 – ident: e_1_2_6_54_1 doi: 10.1152/japplphysiol.01295.2009 – ident: e_1_2_6_35_1 doi: 10.1097/00005768-199909000-00017 – ident: e_1_2_6_41_1 doi: 10.1111/sms.12581 – ident: e_1_2_6_5_1 doi: 10.1152/ajpregu.00028.2014 – ident: e_1_2_6_32_1 doi: 10.1113/JP270550 – ident: e_1_2_6_44_1 doi: 10.1016/j.mayocp.2015.07.024 – ident: e_1_2_6_17_1 doi: 10.1249/MSS.0b013e318213fefb – ident: e_1_2_6_37_1 doi: 10.1177/2047487315617118 – ident: e_1_2_6_28_1 doi: 10.1001/archinte.161.6.825 – ident: e_1_2_6_14_1 doi: 10.1152/jappl.1995.79.2.623 – reference: 28185284 - J Physiol. 2017 Jun 1;595(11):3239-3240 – reference: 29603268 - J Physiol. 2018 Apr 1;596(7):1311 |
SSID | ssj0013099 |
Score | 2.6196752 |
Snippet | Key points
The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per... The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for... The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for... Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per... KEY POINTSThe prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3377 |
SubjectTerms | Adaptation Adult Cardiorespiratory Fitness Carrying capacity Exercise Fitness training programs Hemoglobin hemoglobin mass Hemoglobins - metabolism Humans Integrative Male Muscle, Skeletal - metabolism Muscle, Skeletal - physiology non‐response Oxygen Consumption Physical activity Physical fitness Physical training Research Paper trainability |
Title | Refuting the myth of non‐response to exercise training: ‘non‐responders’ do respond to higher dose of training |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP273480 https://www.ncbi.nlm.nih.gov/pubmed/28133739 https://www.proquest.com/docview/1904071077 https://www.proquest.com/docview/1862947317 https://pubmed.ncbi.nlm.nih.gov/PMC5451738 |
Volume | 595 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bG6SgTRU7Vt0qb1togiC4qIguChNGmKoray7gp62p_gUf_e_hJn0oe7PkC8tjNp0s6030ym3xCyCRFywp3At7R2Uot7MrACBX4Vi1QxV3naNT-JHZ_4Rxe8c-ldllWV-C9MwQ9RJ9zQM8z7Gh08lmUXEgfJBjqnhpkFw3Us1UI8dOZ-biDYYVgThQvPKXlnQXW3Uhz_En2Dl9-rJEfRq_n8HM6Qq2riRdXJ7U6_J3fUyxdOx_-tbJZMl6iUtgszmiMTOpsnjXYGEfn9M92ipk7UJOAb5OlMp30slqaAHSnmRmme0izPhoPXblFxq2kvp1UzJ1p1odijw8HbqBzWUA8H7zTJaXkA9a5N5QkcBFUYuNJeIBeHB-f7R1bZvcFSgKpsS0rOkji1eRxIbTOtXBe3nb3Ax3YfPHZCBY9JpgnzUu77ENkoP_EBDnGuwUJCtkgmYU56mVCIYiVXPOYygUEdFrs6UCmoeUIKX8om2a6eZKRKanOc3V1UhDgsqm5pk2zUkg8FnccPMq3KGKLSoR8jwE0Y-tpCwBD1aXBF3F-JM533QQaiw5ALQGRNslTYTn0RMHnGBAubRIxZVS2ANN_jZ7Kba0P3DRjXESyARRqj-XXe0XnnFPdJ7ZU_S66SKRdhiskqtchkr9vXawCyenLduNO6yX59AKJ8JwI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9RAEJ4QeNAXFVE5RF0To0_FtrvttvhEVHKeQAg5Eh5Mmu52G4zSErgjgaf7CTzC37tfwsy2WznRxPjazmx325n2m9npNwBvMEIuRJDEnjFB6YlIJV6i0a9yWWoe6siE9iex7Z24vy8GB9HBHHxw_8I0_BBdwo08w76vycEpId16ObENDHYtNQvG6wvU0JuI8z_thb-2EPw07ajCZRS0zLOo-95pzn6L7gDMu3WSt_Gr_QBtPoRvbupN3cmPtfFIremL31gd_3Ntj-BBC0zZRmNJizBnqsewtFFhUH50zt4yWypqc_BLcLZnyjHVSzOEj4zSo6wuWVVX08nlSVN0a9ioZq6fE3ONKNbZdHJ1W47KqKeTa1bUrD1Aeoe2-AQPoioO7LSfwP7m5-HHvtc2cPA0AivfU0rwIi99kSfK-NzoMKSd5yiJqeOHyINU43NSZcGjUsQxBjc6LmJEREIYNJKUP4V5nJNZBoaBrBJa5EIVOGjA89AkukS1SCoZK9WDd-5RZrplN6fZ_cyaKIdn7pb24HUnedwwevxBZtVZQ9b69GmG0ImiX19KHKI7jd5IWyx5ZeoxymCAmAqJoKwHzxrj6S6CVs-55GkP5IxZdQLE9D17pvp-aBm_EeYGkie4SGs1f513Nhzs0lapv_LPkq_gXn-4vZVtfdn5-hzuh4RabJJpFeZHJ2PzAjHXSL20vnUD8z8qDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIiEu_BXoQgtGQnBKSWLHTnqrKKuyQLWqWqkShyh2bLUqJFXZrVRO-wgc29fbJ2HG-aFLQUJcnRnHjmeSb-zJNwAvMUIuRZTKwNrIBSLRaZAa9KtCOcNjk9jY_yT2aUdu74vRQXLQZlXSvzANP0S_4Uae4d_X5OAnpWudnMgGRmPPzILh-k0hw4zKNmztxr9OEMIs65nCVRK1xLOo-6bTXPwUXcOX19Mkr8JX__0Z3oXP3cibtJPj9elEr5vvv5E6_t_U7sGdFpayzcaO7sMNWz2A5c0KQ_Kv5-wV84mifgd-Gc52rZtStjRD8Mhoc5TVjlV1NZ_9OG1Sbi2b1Kyr5sS6MhQbbD67uCpHSdTz2SUra9Y2kN6hTz3BRlTFjjvth7A_fLf3djtoyzcEBmFVGGgteFm4UBSptiG3Jo7p3DlJJdX7EEWUGVwm7UqeOCElhjZGlhLxkBAWTSTjj2AJx2RXgGEYq4URhdAldhrxIrapcaiWKK2k1gN43a1kblpucxrdl7yJcXjePdIBvOglTxo-jz_IrHbGkLce_S1H4ESxb6gUdtFfRl-kA5aisvUUZTA8zIRCSDaAx43t9DdBm-dc8WwAasGqegHi-V68Uh0der5vBLmR4ilO0hvNX8ed743GdFAaPvlnyedwa7w1zD--3_nwFG7HBFn8DtMqLE1Op3YNAddEP_Oe9RNi9Ci9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refuting+the+myth+of+non%E2%80%90response+to+exercise+training%3A+%E2%80%98non%E2%80%90responders%E2%80%99+do+respond+to+higher+dose+of+training&rft.jtitle=The+Journal+of+physiology&rft.au=Montero%2C+David&rft.au=Lundby%2C+Carsten&rft.date=2017-06-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=595&rft.issue=11&rft.spage=3377&rft.epage=3387&rft_id=info:doi/10.1113%2FJP273480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP273480 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |