Refuting the myth of non‐response to exercise training: ‘non‐responders’ do respond to higher dose of training

Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 595; no. 11; pp. 3377 - 3387
Main Authors Montero, David, Lundby, Carsten
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non‐response to exercise training is dose‐dependent, using a between‐ and within‐subject study design. Seventy‐eight healthy adults were divided into five groups (1–5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6‐week endurance training (ET) programme. Non‐response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non‐responders after the ET intervention completed a successive 6‐week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non‐responders. After the second ET period, non‐response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non‐response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen‐carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.
AbstractList KEY POINTSThe prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.ABSTRACTOne in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax ), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity.
Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non‐response to exercise training is dose‐dependent, using a between‐ and within‐subject study design. Seventy‐eight healthy adults were divided into five groups (1–5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6‐week endurance training (ET) programme. Non‐response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non‐responders after the ET intervention completed a successive 6‐week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non‐responders. After the second ET period, non‐response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non‐response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen‐carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.
The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (W ), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V̇O2 max ), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, W increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V̇O2 max with exercise training independently determined W response (partial correlation coefficient, r  ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V̇O2 max (r  = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity.
Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception. One in five adults following physical activity guidelines are reported to not demonstrate any improvement in cardiorespiratory fitness (CRF). Herein, we sought to establish whether CRF non-response to exercise training is dose-dependent, using a between- and within-subject study design. Seventy-eight healthy adults were divided into five groups (1-5) respectively comprising one, two, three, four and five 60 min exercise sessions per week but otherwise following an identical 6-week endurance training (ET) programme. Non-response was defined as any change in CRF, determined by maximal incremental exercise power output (Wmax), within the typical error of measurement (±3.96%). Participants classified as non-responders after the ET intervention completed a successive 6-week ET period including two additional exercise sessions per week. Maximal oxygen consumption (V O 2 max), haematology and muscle biopsies were assessed prior to and after each ET period. After the first ET period, Wmax increased (P < 0.05) in groups 2, 3, 4 and 5, but not 1. In groups 1, 2, 3, 4 and 5, 69%, 40%, 29%, 0% and 0% of individuals, respectively, were non-responders. After the second ET period, non-response was eliminated in all individuals. The change in V O 2 max with exercise training independently determined Wmax response (partial correlation coefficient, rpartial ≥ 0.74, P < 0.001). In turn, total haemoglobin mass was the strongest independent determinant of V O 2 max (rpartial = 0.49, P < 0.001). In conclusion, individual CRF non-response to exercise training is abolished by increasing the dose of exercise and primarily a function of haematological adaptations in oxygen-carrying capacity. Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6-week training period but comprising 120 min of additional exercise per week, CRF non-response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.
The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for 6 weeks. Following a successive identical 6‐week training period but comprising 120 min of additional exercise per week, CRF non‐response is universally abolished. The magnitude of CRF improvement is primarily attributed to changes in haemoglobin mass. The potential for CRF improvement may be present and unveiled with appropriate exercise training stimuli in healthy individuals without exception.
Author Montero, David
Lundby, Carsten
AuthorAffiliation 2 Department of Cardiology University Hospital Zurich Switzerland
1 Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology University of Zurich Switzerland
AuthorAffiliation_xml – name: 2 Department of Cardiology University Hospital Zurich Switzerland
– name: 1 Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology University of Zurich Switzerland
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-0438-8271
  surname: Montero
  fullname: Montero, David
  organization: University Hospital Zurich
– sequence: 2
  givenname: Carsten
  surname: Lundby
  fullname: Lundby, Carsten
  email: carsten.lundby@access.uzh.ch
  organization: University of Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28133739$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKcDEk-AIrFhk-K_-IcFUlVRoKpEhcraSpybiatMPNhJYXbzCF3C682T4IiZUirBytbxd47P1T1CB73vAaHnBB8TQtjr80sqGVf4EZoRLnQupWYHaIYxpTmTBTlERzFeY0wY1voJOqSKMCaZnqGbz9CMg-sX2dBCtlwPbeabLMVvN7cB4sr3EbLBZ_AdgnXTPZSuT_ybbLv5cZ-rIcTt5mdW-2wnTL7WLVoISUzWFLx3P0WPm7KL8Gx3ztGXs3dXpx_yi0_vP56eXOS2wAXOq4qzumwwL1UFmIGllGCmCyWwUEkl2qaZqqZmRcOFKAptRS0UF5wDUKXZHL39nbsaqyXUFvrUoDOr4JZlWBtfOvP3S-9as_A3puAFkUylgFe7gOC_jhAHs3TRQteVPfgxGqIE1VyyBM_RywfotR9Dn8YzRGOOJcFyol7cb3RXZb-SPz_a4GMM0NwhBJtp22a_7YQeP0CtG8rB-WkW1_3H8M11sP5nsLk6vySUcsx-AX8BvSQ
CitedBy_id crossref_primary_10_3389_fnut_2018_00041
crossref_primary_10_1080_02640414_2020_1725384
crossref_primary_10_1152_japplphysiol_00391_2020
crossref_primary_10_1016_j_ejso_2021_08_026
crossref_primary_10_1101_cshperspect_a029660
crossref_primary_10_1016_j_conctc_2019_100508
crossref_primary_10_1177_1559827619834527
crossref_primary_10_1016_j_cmet_2023_12_008
crossref_primary_10_1093_eurjpc_zwad232
crossref_primary_10_1152_japplphysiol_00726_2020
crossref_primary_10_1007_s00421_020_04477_4
crossref_primary_10_1136_bjsports_2020_103323
crossref_primary_10_1007_s40279_020_01335_3
crossref_primary_10_29254_2077_4214_2023_1_168_86_91
crossref_primary_10_1007_s00335_017_9732_5
crossref_primary_10_1007_s00421_019_04078_w
crossref_primary_10_3390_jfmk2040036
crossref_primary_10_1007_s40279_018_01041_1
crossref_primary_10_1249_MSS_0000000000002097
crossref_primary_10_1186_s40798_023_00635_y
crossref_primary_10_3389_fspor_2021_621055
crossref_primary_10_1249_MSS_0000000000002899
crossref_primary_10_1111_cpf_12614
crossref_primary_10_1152_ajpendo_00407_2016
crossref_primary_10_1111_sms_14362
crossref_primary_10_3389_fphys_2018_01285
crossref_primary_10_1080_02640414_2024_2448358
crossref_primary_10_1002_oby_23280
crossref_primary_10_1111_apha_13371
crossref_primary_10_14814_phy2_14163
crossref_primary_10_2337_db21_0934
crossref_primary_10_1038_s41598_024_65444_z
crossref_primary_10_1101_cshperspect_a029769
crossref_primary_10_3390_nu11030538
crossref_primary_10_3390_jfmk5030048
crossref_primary_10_1016_j_cmet_2023_12_025
crossref_primary_10_1519_JSC_0000000000003859
crossref_primary_10_1519_JPT_0000000000000308
crossref_primary_10_1055_a_1157_9257
crossref_primary_10_1249_MSS_0000000000001599
crossref_primary_10_1016_j_jsams_2023_08_175
crossref_primary_10_3389_fphys_2022_747903
crossref_primary_10_3389_fphys_2019_00730
crossref_primary_10_1038_s42255_020_0240_7
crossref_primary_10_3390_ijms21186732
crossref_primary_10_1519_JSC_0000000000004044
crossref_primary_10_7600_jpfsm_10_151
crossref_primary_10_1136_bmjsem_2018_000349
crossref_primary_10_1152_japplphysiol_00798_2018
crossref_primary_10_1371_journal_pone_0298223
crossref_primary_10_1016_j_jsams_2018_06_018
crossref_primary_10_1111_sms_13254
crossref_primary_10_1111_sms_13495
crossref_primary_10_1007_s00421_024_05589_x
crossref_primary_10_1161_CIRCRESAHA_121_319894
crossref_primary_10_1038_s41580_023_00606_x
crossref_primary_10_3389_fphys_2017_00444
crossref_primary_10_1097_EJA_0000000000001030
crossref_primary_10_3390_cells10123443
crossref_primary_10_1113_JP283214
crossref_primary_10_3389_fphys_2018_00896
crossref_primary_10_1016_j_apmr_2022_01_151
crossref_primary_10_1080_24745332_2019_1596772
crossref_primary_10_1249_MSS_0000000000002582
crossref_primary_10_3389_fendo_2017_00229
crossref_primary_10_1007_s00125_019_05045_y
crossref_primary_10_1038_nrrheum_2017_75
crossref_primary_10_1055_a_1778_2747
crossref_primary_10_3390_ijerph16122088
crossref_primary_10_1016_j_bbr_2018_12_041
crossref_primary_10_1113_EP088744
crossref_primary_10_1371_journal_pone_0207597
crossref_primary_10_1113_EP088187
crossref_primary_10_3390_sports12120328
crossref_primary_10_1113_JP276141
crossref_primary_10_23736_S0022_4707_23_15373_4
crossref_primary_10_1055_a_1481_8639
crossref_primary_10_1249_JES_0000000000000176
crossref_primary_10_1371_journal_pone_0239155
crossref_primary_10_1021_acs_jproteome_0c00905
crossref_primary_10_1161_CIRCULATIONAHA_117_030617
crossref_primary_10_1016_j_cmet_2017_04_018
crossref_primary_10_1371_journal_pone_0212115
crossref_primary_10_1007_s40279_021_01495_w
crossref_primary_10_1177_2047487319828478
crossref_primary_10_1007_s00125_020_05089_5
crossref_primary_10_1007_s40279_018_0936_y
crossref_primary_10_1152_ajpcell_00146_2022
crossref_primary_10_1007_s11357_023_00732_6
crossref_primary_10_1113_JP278328
crossref_primary_10_1152_japplphysiol_00289_2019
crossref_primary_10_2174_1875399X01710010191
crossref_primary_10_1152_japplphysiol_00670_2023
crossref_primary_10_1152_physrev_00017_2022
crossref_primary_10_1123_ijspp_2021_0033
crossref_primary_10_1177_2047487319877716
crossref_primary_10_3389_fspor_2020_00065
crossref_primary_10_1249_MSS_0000000000003204
crossref_primary_10_1016_j_ejso_2023_01_024
crossref_primary_10_1016_j_hipert_2024_07_001
crossref_primary_10_1055_a_0973_1982
crossref_primary_10_1146_annurev_med_070119_115343
crossref_primary_10_3389_fphys_2021_713016
crossref_primary_10_1007_s40279_024_02125_x
crossref_primary_10_1177_2047487319838221
crossref_primary_10_3390_jpm10030055
crossref_primary_10_3390_sports9060083
crossref_primary_10_1002_jcp_29797
crossref_primary_10_1249_JES_0000000000000150
crossref_primary_10_3389_fpubh_2022_911863
crossref_primary_10_1016_j_jtherbio_2018_03_002
crossref_primary_10_1016_j_rec_2019_09_013
crossref_primary_10_1186_s40798_023_00579_3
crossref_primary_10_14814_phy2_14416
crossref_primary_10_1249_MSS_0000000000002147
crossref_primary_10_1007_s40279_019_01147_0
crossref_primary_10_1519_SSC_0000000000000363
crossref_primary_10_1007_s00125_017_4461_6
crossref_primary_10_1007_s00421_020_04568_2
crossref_primary_10_1113_JP274031
crossref_primary_10_1038_s41440_024_01721_8
crossref_primary_10_1123_jpah_2019_0349
crossref_primary_10_1016_j_scispo_2020_02_003
crossref_primary_10_1007_s11332_019_00552_2
crossref_primary_10_1113_JP276455
crossref_primary_10_3389_fphys_2021_756618
crossref_primary_10_3389_fphys_2018_00569
crossref_primary_10_3389_fphys_2019_00672
crossref_primary_10_1016_j_cjca_2023_08_007
crossref_primary_10_1007_s40279_018_0865_9
crossref_primary_10_1007_s12603_017_0958_4
crossref_primary_10_2147_JMDH_S391996
crossref_primary_10_1007_s40279_024_02089_y
crossref_primary_10_1249_MSS_0000000000001842
crossref_primary_10_1136_bmjopen_2020_044478
crossref_primary_10_3390_jcm8081101
crossref_primary_10_1093_ptj_pzaa213
crossref_primary_10_14814_phy2_13595
crossref_primary_10_3389_fspor_2023_1298877
crossref_primary_10_1186_s11556_019_0217_2
crossref_primary_10_1152_physiol_00038_2018
crossref_primary_10_3389_fphys_2021_759677
crossref_primary_10_1080_17461391_2022_2048894
crossref_primary_10_1139_apnm_2023_0495
crossref_primary_10_1249_MSS_0000000000002720
crossref_primary_10_1093_eurjpc_zwaa142
crossref_primary_10_1139_apnm_2023_0137
crossref_primary_10_1152_japplphysiol_00501_2024
crossref_primary_10_1093_cvr_cvab028
crossref_primary_10_1249_MSS_0000000000002968
crossref_primary_10_1590_rbce_43_e013420
crossref_primary_10_3390_s21062063
crossref_primary_10_1016_j_arres_2021_100007
crossref_primary_10_1007_s40520_020_01587_z
crossref_primary_10_1113_EP089565
crossref_primary_10_1152_japplphysiol_00168_2020
crossref_primary_10_1016_S2213_8587_19_30119_6
crossref_primary_10_1186_s40798_017_0110_3
crossref_primary_10_1186_s40798_021_00315_9
crossref_primary_10_1139_apnm_2018_0343
crossref_primary_10_3390_ijerph17051688
crossref_primary_10_1007_s40279_018_0866_8
crossref_primary_10_1038_s41598_020_74140_7
crossref_primary_10_1016_j_jesf_2022_12_005
crossref_primary_10_1136_military_2022_002285
crossref_primary_10_1113_JP275942
crossref_primary_10_3389_fphys_2021_665044
crossref_primary_10_5812_intjssh_141680
crossref_primary_10_1123_ijspp_2022_0291
crossref_primary_10_1200_CCI_24_00031
crossref_primary_10_1136_bmjsem_2022_001339
crossref_primary_10_3390_sports10060095
crossref_primary_10_1007_s40279_017_0776_1
crossref_primary_10_1113_JP287534
crossref_primary_10_3389_fcvm_2021_605993
crossref_primary_10_1016_j_recesp_2019_09_024
crossref_primary_10_1007_s40279_021_01442_9
crossref_primary_10_3390_ijerph19094980
crossref_primary_10_1055_a_1193_2584
crossref_primary_10_1161_CIRCULATIONAHA_117_024671
crossref_primary_10_1139_apnm_2020_0855
crossref_primary_10_1007_s40279_019_01180_z
crossref_primary_10_14814_phy2_13928
crossref_primary_10_3390_cells10113013
crossref_primary_10_1136_heartjnl_2024_324281
crossref_primary_10_3389_fphys_2018_00241
crossref_primary_10_3390_jcm9030797
crossref_primary_10_1080_02640414_2022_2095489
crossref_primary_10_1371_journal_pone_0237388
crossref_primary_10_3389_fphys_2017_00974
crossref_primary_10_1113_JP284158
crossref_primary_10_1080_17461391_2021_1874057
crossref_primary_10_1055_a_1529_0831
crossref_primary_10_3390_jcm12196146
crossref_primary_10_3390_metabo12060473
crossref_primary_10_3389_fgene_2018_00015
crossref_primary_10_3389_fped_2018_00404
crossref_primary_10_1016_j_jacc_2022_07_011
crossref_primary_10_3390_metabo14090512
crossref_primary_10_1177_02537176211033316
crossref_primary_10_1016_j_cmet_2018_04_014
crossref_primary_10_1139_apnm_2017_0864
crossref_primary_10_1136_bmjopen_2020_044676
crossref_primary_10_3389_fphys_2021_682891
crossref_primary_10_47529_2223_2524_2021_2_5
crossref_primary_10_1186_s13063_024_08335_y
crossref_primary_10_1249_JES_0000000000000331
crossref_primary_10_1016_j_actbio_2020_10_041
crossref_primary_10_3390_jcm8030310
crossref_primary_10_3389_fphys_2018_00713
crossref_primary_10_3389_fpsyg_2019_02338
crossref_primary_10_1186_s12874_022_01524_w
crossref_primary_10_3390_sports7030064
crossref_primary_10_1055_a_1548_7026
crossref_primary_10_14814_phy2_14355
crossref_primary_10_1152_japplphysiol_00242_2021
crossref_primary_10_3390_jpm12040610
crossref_primary_10_1249_MSS_0000000000001439
crossref_primary_10_1111_sms_70024
crossref_primary_10_1113_JP277634
crossref_primary_10_1016_j_exger_2022_111984
crossref_primary_10_1371_journal_pone_0274082
crossref_primary_10_3389_fphys_2019_00019
crossref_primary_10_1016_j_jnutbio_2018_03_015
crossref_primary_10_1016_j_jacc_2018_06_054
crossref_primary_10_1016_j_mehy_2022_110837
crossref_primary_10_1016_j_pcad_2022_10_003
crossref_primary_10_1371_journal_pone_0292835
crossref_primary_10_1371_journal_pone_0307275
crossref_primary_10_1007_s40279_017_0793_0
crossref_primary_10_3389_fendo_2021_693683
crossref_primary_10_1007_s00421_021_04676_7
crossref_primary_10_1111_sms_13975
crossref_primary_10_1249_MSS_0000000000001429
Cites_doi 10.1249/MSS.0b013e3181896c4e
10.2165/00007256-200030010-00001
10.1016/S0140-6736(11)60749-6
10.1007/BF01466278
10.1152/japplphysiol.01121.2014
10.1016/j.mito.2010.12.006
10.1249/mss.0b013e3180304570
10.2165/00007256-198603050-00004
10.1152/japplphysiol.00973.2010
10.1001/jama.1995.03520390039030
10.1111/apha.12827
10.1177/1359786810382057
10.1152/japplphysiol.00058.2008
10.1007/s40279-014-0197-3
10.1164/rccm.167.2.211
10.1152/japplphysiol.00949.2010
10.1002/cphy.c100059
10.1111/apha.12258
10.1001/jama.2009.681
10.1101/pdb.top071787
10.1152/japplphysiol.00024.2008
10.1007/s00421-003-0990-4
10.1001/jama.297.19.2081
10.1113/expphysiol.2011.058735
10.1177/0962280210379174
10.1249/MSS.0000000000000321
10.1016/j.jsams.2008.12.626
10.1113/JP270250
10.1007/s40279-013-0018-0
10.1016/j.pmr.2008.10.009
10.1152/japplphysiol.00714.2014
10.1113/jphysiol.2009.179432
10.1055/s-2001-18522
10.1371/journal.pone.0073182
10.1152/jappl.1999.87.3.1003
10.2165/00007256-199826010-00001
10.1249/00005768-199505000-00015
10.1055/s-2008-1025911
10.1249/MSS.0000000000000640
10.1113/JP270551
10.1016/S0140-6736(53)91495-0
10.1113/JP272559
10.1152/japplphysiol.00445.2013
10.1152/japplphysiol.01295.2009
10.1097/00005768-199909000-00017
10.1111/sms.12581
10.1152/ajpregu.00028.2014
10.1113/JP270550
10.1016/j.mayocp.2015.07.024
10.1249/MSS.0b013e318213fefb
10.1177/2047487315617118
10.1001/archinte.161.6.825
10.1152/jappl.1995.79.2.623
ContentType Journal Article
Copyright 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Journal compilation © 2017 The Physiological Society
Copyright_xml – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
– notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
– notice: Journal compilation © 2017 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP273480
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate D. Montero and C. Lundby
EISSN 1469-7793
EndPage 3387
ExternalDocumentID PMC5451738
28133739
10_1113_JP273480
TJP12240
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Zurich Center for Integrative Human Physiology
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3EH
3O-
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5050-bb43daf04a8be03ec22103958606804a19c013bfd35f466559c6d684644ee2893
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Thu Aug 21 18:24:16 EDT 2025
Fri Jul 11 12:45:05 EDT 2025
Fri Jul 25 10:30:22 EDT 2025
Tue Jan 21 03:22:09 EST 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 04:29:16 EDT 2025
Wed Jan 22 16:20:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords non-response
cardiorespiratory fitness
hemoglobin mass
trainability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5050-bb43daf04a8be03ec22103958606804a19c013bfd35f466559c6d684644ee2893
Notes This article is highlighted by a Perspective by Joyner. To read this Perspective, visit
Linked articles
https://doi.org/10.1113/JP274031
.
This is an Editor's Choice article from the 1 June 2017 issue.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Linked articles This article is highlighted by a Perspective by Joyner. To read this Perspective, visit https://doi.org/10.1113/JP274031.
ORCID 0000-0002-0438-8271
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP273480
PMID 28133739
PQID 1904071077
PQPubID 1086388
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451738
proquest_miscellaneous_1862947317
proquest_journals_1904071077
pubmed_primary_28133739
crossref_primary_10_1113_JP273480
crossref_citationtrail_10_1113_JP273480
wiley_primary_10_1113_JP273480_TJP12240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 1 June 2017
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 39
2009; 41
2012; 2012
2011b; 110
2010; 13
2010; 108
1995; 79
2015a; 593
2011; 11
1999; 87
2008; 104
2017; 595
2013; 8
2012; 97
1979
2014; 211
2011; 110
2010; 24
1995; 27
2007; 297
1986; 3
2013; 115
2011; 20
2015; 90
1953; 265
2003; 167
1998; 26
2011; 378
2001; 161
2009; 20
2012
2013; 43
2011a; 1
2015b; 47
1962; 14
2014; 46
2001; 22
2004; 91
1995; 273
2014; 44
2014; 306
2015; 23
2015; 25
2000; 30
1984; 5
2015; 593
2011; 43
2017
1999; 31
2015; 119
2015; 118
2013
1992; 65
2009; 587
2009; 301
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
Cohen L (e_1_2_6_15_1) 1979
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Bergstrom J (e_1_2_6_4_1) 1962; 14
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_21_1
e_1_2_6_40_1
Potteiger JA (e_1_2_6_42_1) 2013
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
29603268 - J Physiol. 2018 Apr 1;596(7):1311
28185284 - J Physiol. 2017 Jun 1;595(11):3239-3240
References_xml – volume: 161
  start-page: 825
  year: 2001
  end-page: 831
  article-title: Cardiovascular fitness as a predictor of mortality in men
  publication-title: Arch Intern Med
– volume: 44
  start-page: 1113
  year: 2014
  end-page: 1124
  article-title: High responders and low responders: factors associated with individual variation in response to standardized training
  publication-title: Sports Med
– volume: 104
  start-page: 1251
  year: 2008
  article-title: Commentary on viewpoint: Perspective on the future use of genomics in exercise prescription
  publication-title: J Appl Physiol (1985)
– volume: 110
  start-page: 834
  year: 2011
  end-page: 845
  article-title: Nutritional modulation of training‐induced skeletal muscle adaptations
  publication-title: J Appl Physiol (1985)
– volume: 24
  start-page: 27
  year: 2010
  end-page: 35
  article-title: Mortality trends in the general population: the importance of cardiorespiratory fitness
  publication-title: J Psychopharmacol
– volume: 41
  start-page: 539
  year: 2009
  end-page: 545
  article-title: Volume of exercise and fitness nonresponse in sedentary, postmenopausal women
  publication-title: Med Sci Sports Exerc
– volume: 23
  start-page: 733
  year: 2015
  end-page: 743
  article-title: Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction
  publication-title: Eur J Prev Cardiol
– volume: 108
  start-page: 1487
  year: 2010
  end-page: 1496
  article-title: Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans
  publication-title: J Appl Physiol (1985)
– year: 1979
– volume: 43
  start-page: 157
  year: 2013
  end-page: 165
  article-title: Toward exercise as personalized medicine
  publication-title: Sports Med
– volume: 5
  start-page: 232
  year: 1984
  end-page: 236
  article-title: Responses of maximal aerobic power and capacity to aerobic training
  publication-title: Int J Sports Med
– volume: 26
  start-page: 1
  year: 1998
  end-page: 16
  article-title: Overtraining and recovery. A conceptual model
  publication-title: Sports Med
– volume: 31
  start-page: 1342
  year: 1999
  end-page: 1345
  article-title: Is determination of exercise intensities as percentages of VO max or HRmax adequate
  publication-title: Med Sci Sports Exerc
– volume: 30
  start-page: 1
  year: 2000
  end-page: 15
  article-title: Measures of reliability in sports medicine and science
  publication-title: Sports Med
– volume: 13
  start-page: 74
  year: 2010
  end-page: 79
  article-title: Exercise at given percentages of VO : heterogeneous metabolic responses between individuals
  publication-title: J Sci Med Sport
– volume: 43
  start-page: 1334
  year: 2011
  end-page: 1359
  article-title: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise
  publication-title: Med Sci Sports Exerc
– volume: 90
  start-page: 1506
  year: 2015
  end-page: 1514
  article-title: Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response
  publication-title: Mayo Clin Proc
– volume: 2012
  start-page: 1129
  year: 2012
  end-page: 1139
  article-title: Estimating volume in biological structures
  publication-title: Cold Spring Harb Protoc
– volume: 595
  start-page: 2931
  year: 2017
  end-page: 2939
  article-title: Genomic and transcriptomic predictors of response levels to endurance exercise training
  publication-title: J Physiol
– volume: 297
  start-page: 2081
  year: 2007
  end-page: 2091
  article-title: Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial
  publication-title: JAMA
– year: 2017
  article-title: Biology of VO : looking under the physiology lamp
  publication-title: Acta Physiologica
– volume: 8
  start-page: e73182
  year: 2013
  article-title: VO2max trainability and high intensity interval training in humans: a meta‐analysis
  publication-title: PLoS One
– volume: 11
  start-page: 303
  year: 2011
  end-page: 307
  article-title: Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans
  publication-title: Mitochondrion
– volume: 301
  start-page: 2024
  year: 2009
  end-page: 2035
  article-title: Cardiorespiratory fitness as a quantitative predictor of all‐cause mortality and cardiovascular events in healthy men and women: a meta‐analysis
  publication-title: JAMA
– volume: 119
  start-page: 1194
  year: 2015
  end-page: 1201
  article-title: Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454‐m altitude
  publication-title: J Appl Physiol (1985)
– volume: 593
  start-page: 4677
  year: 2015a
  end-page: 4688
  article-title: Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training
  publication-title: J Physiol
– volume: 1
  start-page: 1603
  year: 2011a
  end-page: 1648
  article-title: Genomics and genetics in the biology of adaptation to exercise
  publication-title: Compr Physiol
– volume: 91
  start-page: 199
  year: 2004
  end-page: 203
  article-title: Test‐retest errors and the apparent heterogeneity of training response
  publication-title: Eur J Appl Physiol
– volume: 593
  start-page: 3757
  year: 2015
  end-page: 3758
  article-title: CrossTalk proposal: Diffusion limitation of O from microvessels into muscle does contribute to the limitation of VO
  publication-title: J Physiol
– volume: 167
  start-page: 211
  year: 2003
  end-page: 277
  article-title: ATS/ACCP Statement on cardiopulmonary exercise testing
  publication-title: Am J Respir Crit Care Med
– volume: 378
  start-page: 1244
  year: 2011
  end-page: 1253
  article-title: Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study
  publication-title: Lancet
– volume: 211
  start-page: 122
  year: 2014
  end-page: 134
  article-title: Low‐intensity training increases peak arm VO by enhancing both convective and diffusive O delivery
  publication-title: Acta Physiol (Oxf)
– volume: 115
  start-page: 785
  year: 2013
  end-page: 793
  article-title: Improvements in exercise performance with high‐intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function
  publication-title: J Appl Physiol (1985)
– volume: 20
  start-page: 149
  year: 2009
  end-page: 159
  article-title: Sleep, recovery, and performance: the new frontier in high‐performance athletics
  publication-title: Phys Med Rehabil Clin N Am
– volume: 118
  start-page: 1450
  year: 2015
  end-page: 1459
  article-title: Individual response to exercise training – a statistical perspective
  publication-title: J Appl Physiol (1985)
– volume: 306
  start-page: R752
  year: 2014
  end-page: R760
  article-title: Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 79
  start-page: 623
  year: 1995
  end-page: 631
  article-title: Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method
  publication-title: J Appl Physiol (1985)
– volume: 3
  start-page: 346
  year: 1986
  end-page: 356
  article-title: The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness
  publication-title: Sports Med
– volume: 87
  start-page: 1003
  year: 1999
  end-page: 1008
  article-title: Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study
  publication-title: J Appl Physiol (1985)
– volume: 104
  start-page: 1254
  year: 2008
  article-title: Last word on viewpoint: Perspective on the future use of genomics in exercise prescription
  publication-title: J Appl Physiol (1985)
– year: 2012
– volume: 46
  start-page: 1936
  year: 2014
  end-page: 1945
  article-title: Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia
  publication-title: Med Sci Sports Exerc
– volume: 20
  start-page: 657
  year: 2011
  end-page: 666
  article-title: Investigating variability in patient response to treatment – a case study from a replicate cross‐over study
  publication-title: Stat Methods Med Res
– volume: 22
  start-page: 586
  year: 2001
  end-page: 592
  article-title: Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE Family Study
  publication-title: Int J Sports Med
– volume: 587
  start-page: 5551
  year: 2009
  end-page: 5558
  article-title: Exercise protects the cardiovascular system: effects beyond traditional risk factors
  publication-title: J Physiol
– volume: 14
  start-page: 1
  issue: 68
  year: 1962
  end-page: 110
  article-title: Muscle electrolytes in man
  publication-title: Scand J Clin Lab Invest
– volume: 25
  start-page: 1
  issue: 3
  year: 2015
  end-page: 72
  article-title: Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases
  publication-title: Scand J Med Sci Sports
– volume: 110
  start-page: 1160
  year: 2011b
  end-page: 1170
  article-title: Genomic predictors of the maximal O uptake response to standardized exercise training programs
  publication-title: J Appl Physiol (1985)
– volume: 47
  start-page: 2024
  year: 2015b
  end-page: 2033
  article-title: Endurance training and VO max: role of maximal cardiac output and oxygen extraction
  publication-title: Med Sci Sports Exerc
– volume: 65
  start-page: 79
  year: 1992
  end-page: 83
  article-title: Peak power output predicts maximal oxygen uptake and performance time in trained cyclists
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 27
  start-page: 721
  year: 1995
  end-page: 729
  article-title: The HERITAGE family study. Aims, design, and measurement protocol
  publication-title: Med Sci Sports Exerc
– volume: 593
  start-page: 3759
  year: 2015
  end-page: 3761
  article-title: CrossTalk opposing view: Diffusion limitation of O from microvessels into muscle does not contribute to the limitation of VO
  publication-title: J Physiol
– volume: 97
  start-page: 347
  year: 2012
  end-page: 352
  article-title: Genomic predictors of trainability
  publication-title: Exp Physiol
– volume: 265
  start-page: 1111
  year: 1953
  end-page: 1120
  article-title: Coronary heart‐disease and physical activity of work
  publication-title: Lancet
– volume: 39
  start-page: 665
  year: 2007
  end-page: 671
  article-title: Aerobic high‐intensity intervals improve VO more than moderate training
  publication-title: Med Sci Sports Exerc
– volume: 273
  start-page: 1179
  year: 1995
  end-page: 1184
  article-title: Exercise intensity and longevity in men. The Harvard Alumni Health Study
  publication-title: JAMA
– year: 2013
– ident: e_1_2_6_52_1
  doi: 10.1249/MSS.0b013e3181896c4e
– ident: e_1_2_6_23_1
  doi: 10.2165/00007256-200030010-00001
– ident: e_1_2_6_56_1
  doi: 10.1016/S0140-6736(11)60749-6
– ident: e_1_2_6_40_1
– ident: e_1_2_6_20_1
  doi: 10.1007/BF01466278
– ident: e_1_2_6_51_1
  doi: 10.1152/japplphysiol.01121.2014
– ident: e_1_2_6_12_1
  doi: 10.1016/j.mito.2010.12.006
– ident: e_1_2_6_22_1
  doi: 10.1249/mss.0b013e3180304570
– ident: e_1_2_6_57_1
  doi: 10.2165/00007256-198603050-00004
– ident: e_1_2_6_10_1
  doi: 10.1152/japplphysiol.00973.2010
– ident: e_1_2_6_30_1
  doi: 10.1001/jama.1995.03520390039030
– ident: e_1_2_6_33_1
  doi: 10.1111/apha.12827
– ident: e_1_2_6_29_1
  doi: 10.1177/1359786810382057
– ident: e_1_2_6_45_1
  doi: 10.1152/japplphysiol.00058.2008
– ident: e_1_2_6_34_1
  doi: 10.1007/s40279-014-0197-3
– ident: e_1_2_6_2_1
  doi: 10.1164/rccm.167.2.211
– ident: e_1_2_6_19_1
  doi: 10.1152/japplphysiol.00949.2010
– ident: e_1_2_6_9_1
  doi: 10.1002/cphy.c100059
– ident: e_1_2_6_11_1
  doi: 10.1111/apha.12258
– ident: e_1_2_6_27_1
  doi: 10.1001/jama.2009.681
– volume-title: ACSM's Introduction to Exercise Science
  year: 2013
  ident: e_1_2_6_42_1
– ident: e_1_2_6_58_1
  doi: 10.1101/pdb.top071787
– volume: 14
  start-page: 1
  issue: 68
  year: 1962
  ident: e_1_2_6_4_1
  article-title: Muscle electrolytes in man
  publication-title: Scand J Clin Lab Invest
– ident: e_1_2_6_53_1
  doi: 10.1152/japplphysiol.00024.2008
– ident: e_1_2_6_50_1
  doi: 10.1007/s00421-003-0990-4
– ident: e_1_2_6_16_1
  doi: 10.1001/jama.297.19.2081
– ident: e_1_2_6_6_1
  doi: 10.1113/expphysiol.2011.058735
– ident: e_1_2_6_49_1
  doi: 10.1177/0962280210379174
– volume-title: Statistics for Education and Physical Education
  year: 1979
  ident: e_1_2_6_15_1
– ident: e_1_2_6_43_1
  doi: 10.1249/MSS.0000000000000321
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jsams.2008.12.626
– ident: e_1_2_6_36_1
  doi: 10.1113/JP270250
– ident: e_1_2_6_13_1
  doi: 10.1007/s40279-013-0018-0
– ident: e_1_2_6_46_1
  doi: 10.1016/j.pmr.2008.10.009
– ident: e_1_2_6_21_1
  doi: 10.1152/japplphysiol.00714.2014
– ident: e_1_2_6_25_1
  doi: 10.1113/jphysiol.2009.179432
– ident: e_1_2_6_18_1
  doi: 10.1055/s-2001-18522
– ident: e_1_2_6_3_1
  doi: 10.1371/journal.pone.0073182
– ident: e_1_2_6_7_1
  doi: 10.1152/jappl.1999.87.3.1003
– ident: e_1_2_6_26_1
  doi: 10.2165/00007256-199826010-00001
– ident: e_1_2_6_8_1
  doi: 10.1249/00005768-199505000-00015
– ident: e_1_2_6_31_1
  doi: 10.1055/s-2008-1025911
– ident: e_1_2_6_38_1
  doi: 10.1249/MSS.0000000000000640
– ident: e_1_2_6_55_1
  doi: 10.1113/JP270551
– ident: e_1_2_6_39_1
  doi: 10.1016/S0140-6736(53)91495-0
– ident: e_1_2_6_47_1
  doi: 10.1113/JP272559
– ident: e_1_2_6_24_1
  doi: 10.1152/japplphysiol.00445.2013
– ident: e_1_2_6_54_1
  doi: 10.1152/japplphysiol.01295.2009
– ident: e_1_2_6_35_1
  doi: 10.1097/00005768-199909000-00017
– ident: e_1_2_6_41_1
  doi: 10.1111/sms.12581
– ident: e_1_2_6_5_1
  doi: 10.1152/ajpregu.00028.2014
– ident: e_1_2_6_32_1
  doi: 10.1113/JP270550
– ident: e_1_2_6_44_1
  doi: 10.1016/j.mayocp.2015.07.024
– ident: e_1_2_6_17_1
  doi: 10.1249/MSS.0b013e318213fefb
– ident: e_1_2_6_37_1
  doi: 10.1177/2047487315617118
– ident: e_1_2_6_28_1
  doi: 10.1001/archinte.161.6.825
– ident: e_1_2_6_14_1
  doi: 10.1152/jappl.1995.79.2.623
– reference: 28185284 - J Physiol. 2017 Jun 1;595(11):3239-3240
– reference: 29603268 - J Physiol. 2018 Apr 1;596(7):1311
SSID ssj0013099
Score 2.6196752
Snippet Key points The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per...
The prevalence of cardiorespiratory fitness (CRF) non‐response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for...
The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per week for...
Key points The prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per...
KEY POINTSThe prevalence of cardiorespiratory fitness (CRF) non-response gradually declines in healthy individuals exercising 60, 120, 180, 240 or 300 min per...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3377
SubjectTerms Adaptation
Adult
Cardiorespiratory Fitness
Carrying capacity
Exercise
Fitness training programs
Hemoglobin
hemoglobin mass
Hemoglobins - metabolism
Humans
Integrative
Male
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
non‐response
Oxygen Consumption
Physical activity
Physical fitness
Physical training
Research Paper
trainability
Title Refuting the myth of non‐response to exercise training: ‘non‐responders’ do respond to higher dose of training
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP273480
https://www.ncbi.nlm.nih.gov/pubmed/28133739
https://www.proquest.com/docview/1904071077
https://www.proquest.com/docview/1862947317
https://pubmed.ncbi.nlm.nih.gov/PMC5451738
Volume 595
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bG6SgTRU7Vt0qb1togiC4qIguChNGmKoray7gp62p_gUf_e_hJn0oe7PkC8tjNp0s6030ym3xCyCRFywp3At7R2Uot7MrACBX4Vi1QxV3naNT-JHZ_4Rxe8c-ldllWV-C9MwQ9RJ9zQM8z7Gh08lmUXEgfJBjqnhpkFw3Us1UI8dOZ-biDYYVgThQvPKXlnQXW3Uhz_En2Dl9-rJEfRq_n8HM6Qq2riRdXJ7U6_J3fUyxdOx_-tbJZMl6iUtgszmiMTOpsnjXYGEfn9M92ipk7UJOAb5OlMp30slqaAHSnmRmme0izPhoPXblFxq2kvp1UzJ1p1odijw8HbqBzWUA8H7zTJaXkA9a5N5QkcBFUYuNJeIBeHB-f7R1bZvcFSgKpsS0rOkji1eRxIbTOtXBe3nb3Ax3YfPHZCBY9JpgnzUu77ENkoP_EBDnGuwUJCtkgmYU56mVCIYiVXPOYygUEdFrs6UCmoeUIKX8om2a6eZKRKanOc3V1UhDgsqm5pk2zUkg8FnccPMq3KGKLSoR8jwE0Y-tpCwBD1aXBF3F-JM533QQaiw5ALQGRNslTYTn0RMHnGBAubRIxZVS2ANN_jZ7Kba0P3DRjXESyARRqj-XXe0XnnFPdJ7ZU_S66SKRdhiskqtchkr9vXawCyenLduNO6yX59AKJ8JwI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9RAEJ4QeNAXFVE5RF0To0_FtrvttvhEVHKeQAg5Eh5Mmu52G4zSErgjgaf7CTzC37tfwsy2WznRxPjazmx325n2m9npNwBvMEIuRJDEnjFB6YlIJV6i0a9yWWoe6siE9iex7Z24vy8GB9HBHHxw_8I0_BBdwo08w76vycEpId16ObENDHYtNQvG6wvU0JuI8z_thb-2EPw07ajCZRS0zLOo-95pzn6L7gDMu3WSt_Gr_QBtPoRvbupN3cmPtfFIremL31gd_3Ntj-BBC0zZRmNJizBnqsewtFFhUH50zt4yWypqc_BLcLZnyjHVSzOEj4zSo6wuWVVX08nlSVN0a9ioZq6fE3ONKNbZdHJ1W47KqKeTa1bUrD1Aeoe2-AQPoioO7LSfwP7m5-HHvtc2cPA0AivfU0rwIi99kSfK-NzoMKSd5yiJqeOHyINU43NSZcGjUsQxBjc6LmJEREIYNJKUP4V5nJNZBoaBrBJa5EIVOGjA89AkukS1SCoZK9WDd-5RZrplN6fZ_cyaKIdn7pb24HUnedwwevxBZtVZQ9b69GmG0ImiX19KHKI7jd5IWyx5ZeoxymCAmAqJoKwHzxrj6S6CVs-55GkP5IxZdQLE9D17pvp-aBm_EeYGkie4SGs1f513Nhzs0lapv_LPkq_gXn-4vZVtfdn5-hzuh4RabJJpFeZHJ2PzAjHXSL20vnUD8z8qDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIiEu_BXoQgtGQnBKSWLHTnqrKKuyQLWqWqkShyh2bLUqJFXZrVRO-wgc29fbJ2HG-aFLQUJcnRnHjmeSb-zJNwAvMUIuRZTKwNrIBSLRaZAa9KtCOcNjk9jY_yT2aUdu74vRQXLQZlXSvzANP0S_4Uae4d_X5OAnpWudnMgGRmPPzILh-k0hw4zKNmztxr9OEMIs65nCVRK1xLOo-6bTXPwUXcOX19Mkr8JX__0Z3oXP3cibtJPj9elEr5vvv5E6_t_U7sGdFpayzcaO7sMNWz2A5c0KQ_Kv5-wV84mifgd-Gc52rZtStjRD8Mhoc5TVjlV1NZ_9OG1Sbi2b1Kyr5sS6MhQbbD67uCpHSdTz2SUra9Y2kN6hTz3BRlTFjjvth7A_fLf3djtoyzcEBmFVGGgteFm4UBSptiG3Jo7p3DlJJdX7EEWUGVwm7UqeOCElhjZGlhLxkBAWTSTjj2AJx2RXgGEYq4URhdAldhrxIrapcaiWKK2k1gN43a1kblpucxrdl7yJcXjePdIBvOglTxo-jz_IrHbGkLce_S1H4ESxb6gUdtFfRl-kA5aisvUUZTA8zIRCSDaAx43t9DdBm-dc8WwAasGqegHi-V68Uh0der5vBLmR4ilO0hvNX8ed743GdFAaPvlnyedwa7w1zD--3_nwFG7HBFn8DtMqLE1Op3YNAddEP_Oe9RNi9Ci9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refuting+the+myth+of+non%E2%80%90response+to+exercise+training%3A+%E2%80%98non%E2%80%90responders%E2%80%99+do+respond+to+higher+dose+of+training&rft.jtitle=The+Journal+of+physiology&rft.au=Montero%2C+David&rft.au=Lundby%2C+Carsten&rft.date=2017-06-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=595&rft.issue=11&rft.spage=3377&rft.epage=3387&rft_id=info:doi/10.1113%2FJP273480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP273480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon