Conventional Electrolyte and Inactive Electrode Materials in Lithium‐Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at High Voltage

High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the u...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 13; no. 19; pp. 5301 - 5307
Main Authors Streipert, Benjamin, Stolz, Lukas, Homann, Gerrit, Janßen, Pia, Cekic‐Laskovic, Isidora, Winter, Martin, Kasnatscheew, Johannes
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 07.10.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g−1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner. Step by step: Electrochemical stability of, for example, electrolytes is still debated. Depending on the method, different oxidation onsets are reported. In contrast, battery application demonstrates stability even up to 5.56 V vs. Li|Li+. This apparent contradiction is investigated in this work. It could be shown, that the oxidation reactions proceed only in traces, thus can only be detected in cumulative manner during galvanostatic battery operation and/or chronoampeometric techniques.
AbstractList High-voltage electrodes based on, for example, LiNi0.5 Mn1.5 04 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+ . Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g-1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high-voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high-voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.
High‐voltage electrodes based on, for example, LiNi 0.5 Mn 1.5 0 4 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li + . Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li + and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g −1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner. Step by step : Electrochemical stability of, for example, electrolytes is still debated. Depending on the method, different oxidation onsets are reported. In contrast, battery application demonstrates stability even up to 5.56 V vs. Li|Li + . This apparent contradiction is investigated in this work. It could be shown, that the oxidation reactions proceed only in traces, thus can only be detected in cumulative manner during galvanostatic battery operation and/or chronoampeometric techniques.
Abstract High‐voltage electrodes based on, for example, LiNi 0.5 Mn 1.5 0 4 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li + . Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li + and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g −1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.
High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g−1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.
High-voltage electrodes based on, for example, LiNi Mn 0 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li . Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high-voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high-voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.
High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g−1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner. Step by step: Electrochemical stability of, for example, electrolytes is still debated. Depending on the method, different oxidation onsets are reported. In contrast, battery application demonstrates stability even up to 5.56 V vs. Li|Li+. This apparent contradiction is investigated in this work. It could be shown, that the oxidation reactions proceed only in traces, thus can only be detected in cumulative manner during galvanostatic battery operation and/or chronoampeometric techniques.
Author Janßen, Pia
Homann, Gerrit
Kasnatscheew, Johannes
Stolz, Lukas
Streipert, Benjamin
Winter, Martin
Cekic‐Laskovic, Isidora
AuthorAffiliation 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany
2 Helmholtz-Institute Münster (HI MS) IEK-12 Forschungszentrum Jülich GmbH Corrensstrasse 46 48149 Münster Germany
AuthorAffiliation_xml – name: 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany
– name: 2 Helmholtz-Institute Münster (HI MS) IEK-12 Forschungszentrum Jülich GmbH Corrensstrasse 46 48149 Münster Germany
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Streipert
  fullname: Streipert, Benjamin
  organization: University of Münster
– sequence: 2
  givenname: Lukas
  surname: Stolz
  fullname: Stolz, Lukas
  organization: Forschungszentrum Jülich GmbH
– sequence: 3
  givenname: Gerrit
  surname: Homann
  fullname: Homann, Gerrit
  organization: Forschungszentrum Jülich GmbH
– sequence: 4
  givenname: Pia
  surname: Janßen
  fullname: Janßen, Pia
  organization: University of Münster
– sequence: 5
  givenname: Isidora
  surname: Cekic‐Laskovic
  fullname: Cekic‐Laskovic, Isidora
  email: i.cekic-laskovic@fz-juelich.de
  organization: Forschungszentrum Jülich GmbH
– sequence: 6
  givenname: Martin
  surname: Winter
  fullname: Winter, Martin
  organization: Forschungszentrum Jülich GmbH
– sequence: 7
  givenname: Johannes
  orcidid: 0000-0002-8885-8591
  surname: Kasnatscheew
  fullname: Kasnatscheew, Johannes
  email: j.kasnatscheew@fz-juelich.de
  organization: Forschungszentrum Jülich GmbH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32692891$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWEzg-04jsMCCdJCRxrURQGxsxznZMaVY0_jZOjs-gg8AQ_Hk-Bh2uGyYWXL5_Pn4_MfowMfPCD0lJIpJYS9NDGaKSOMEJpn5AE6olLwSS74l4P9PqOH6DjGK0IEKYV4hA4zJkomS3qEvlfBr8EPNnjt8JkDM_TBbQbA2jd45rUZ7BruCw3gD3qA3moXsfV4boelHbsft99mweO3etjWIL7Cp5B2nfXWL3A1dqPTvzSzbpWEOLT44sY2u7NTMKFbhWi3PWA94HO7WOLPwQ16AY_Rwza9BU_u1hP06d3Zx-p8Mr94P6vezCcmJzmZSJZRSovWcC0Nl7nJOc9qIhqalwC0INLoGqA1ecFZ07Jc6LolgtYt6KJmJjtBr3fe1Vh30Jg0kV47teptp_uNCtqqvyveLtUirFWRy5KTMgle3An6cD1CHFRnowHntIcwRsU4E7QoGCsS-vwf9CqMfRr_luJSUiJ5lqjpjjJ9iLGHdt8MJWobvdpGr_bRpwvP_vzCHr_POgHlDvhqHWz-o1PV5WX1W_4TzijCIA
CitedBy_id crossref_primary_10_1002_cssc_202202189
crossref_primary_10_1039_D1MA00009H
crossref_primary_10_1016_j_ensm_2023_103050
crossref_primary_10_1002_aenm_202003738
crossref_primary_10_1126_science_abq3750
crossref_primary_10_1016_j_scib_2022_10_007
crossref_primary_10_1039_D0TA11775G
crossref_primary_10_1039_D4TA01836B
crossref_primary_10_1002_aenm_202304295
crossref_primary_10_1038_s41560_022_01129_z
crossref_primary_10_1016_j_est_2021_103013
crossref_primary_10_1016_j_mattod_2020_11_025
crossref_primary_10_1016_j_cclet_2023_109182
crossref_primary_10_1021_acsami_1c17408
crossref_primary_10_1002_aenm_202003404
crossref_primary_10_1016_j_xcrp_2021_100521
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1002_celc_202200469
crossref_primary_10_1021_acsenergylett_1c00265
crossref_primary_10_1016_j_electacta_2021_139769
crossref_primary_10_1002_aenm_202101126
crossref_primary_10_1002_aenm_202102599
crossref_primary_10_1016_j_joule_2021_02_016
crossref_primary_10_1002_advs_202305282
crossref_primary_10_1002_cssc_202100213
Cites_doi 10.1002/ente.201700068
10.1016/j.jpowsour.2017.05.092
10.1038/ncomms4529
10.1149/2.0671707jes
10.1016/j.jpowsour.2018.06.043
10.1039/C5CP07718D
10.1021/acs.chemmater.6b02895
10.1021/jz1015422
10.1021/acs.jpcc.7b02303
10.1016/j.jpowsour.2017.07.044
10.1149/2.0461614jes
10.1351/pac199870030603
10.1002/cssc.201601636
10.1021/acs.jpcc.6b11746
10.1149/1.1391829
10.1016/j.progsolidstchem.2014.04.003
10.1021/acs.jpclett.7b01927
10.1021/acsaem.9b01440
10.1149/2.1221814jes
10.1149/2.0961712jes
10.1016/S0022-0728(00)00457-5
10.1021/cr030203g
10.1149/2.0401503jes
10.1021/cm902696j
10.1039/c2jm14305d
10.1016/S0013-4686(01)00358-9
10.1039/C4EE01432D
10.1149/1.3428515
10.1016/j.mattod.2019.07.002
10.1524/zpch.2012.0222
10.1039/C5TA00361J
10.1016/S0378-7753(99)00260-8
10.1149/1.2792293
10.1038/s41598-020-61373-9
10.1021/acs.chemmater.0c01952
10.1007/s41061-018-0196-1
10.1039/C7CP03072J
10.1515/zpch-2015-0584
10.1149/1945-7111/ab8f57
10.1039/C4CP04113E
10.1016/j.isci.2020.101225
10.1007/s00216-004-2570-9
10.1016/j.matt.2020.03.015
10.1021/cr020738u
10.1021/ja3091438
10.1149/1.2218816
10.1016/j.jpowsour.2011.09.102
10.1149/1.1392609
10.1016/j.electacta.2020.136271
10.1016/j.jpowsour.2010.12.040
10.1149/2.0901811jes
10.1002/cphc.201601095
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley-VCH GmbH
2020 The Authors. Published by Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley-VCH GmbH
– notice: 2020 The Authors. Published by Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/cssc.202001530
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 5307
ExternalDocumentID 10_1002_cssc_202001530
32692891
CSSC202001530
Genre article
Journal Article
GrantInformation_xml – fundername: BMW Group
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIN
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c5050-8231117fc4a8c485c5443b06d159ee1708cabeefc5742df256abf061bfea7b2c3
IEDL.DBID DR2
ISSN 1864-5631
IngestDate Tue Sep 17 21:22:58 EDT 2024
Wed Jul 24 19:43:33 EDT 2024
Thu Oct 10 17:31:50 EDT 2024
Fri Aug 23 01:58:03 EDT 2024
Sat Sep 28 08:26:16 EDT 2024
Sat Aug 24 01:04:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords lithium
electrolyte oxidation
high voltage
inactive materials
batteries
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5050-8231117fc4a8c485c5443b06d159ee1708cabeefc5742df256abf061bfea7b2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8885-8591
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202001530
PMID 32692891
PQID 2448810843
PQPubID 986333
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589409
proquest_miscellaneous_2426177227
proquest_journals_2448810843
crossref_primary_10_1002_cssc_202001530
pubmed_primary_32692891
wiley_primary_10_1002_cssc_202001530_CSSC202001530
PublicationCentury 2000
PublicationDate October 7, 2020
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: October 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 162
2017; 5
2018; 165
2017; 8
2004; 104
2011; 2
2015; 3
2010; 13
2019; 2
2020; 346
1995
2006; 153
1999; 146
2020; 167
2015; 229
2020; 32
2020; 10
1999; 83
2016; 18
2011; 196
2012; 226
2001; 46
2016; 163
2017; 359
2014; 42
2010; 22
2001; 497
2018; 396
2014; 5
2012; 199
2020; 3
2004; 379
2007; 154
2018; 376
2017; 10
2014; 16
2013; 135
1998; 70
2017; 19
2017; 18
2020; 23
2014
2017; 164
2017; 362
2017; 121
2016; 28
2014; 7
2012; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Besenhard J. O. (e_1_2_7_45_1) 1995
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Castel E. (e_1_2_7_17_1) 2014
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 164
  start-page: A1474
  year: 2017
  end-page: A1479
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 6709
  year: 2015
  end-page: 6732
  publication-title: J. Mater. Chem. A.
– volume: 10
  start-page: 4390
  year: 2020
  publication-title: Sci. Rep.
– volume: 32
  start-page: 6279
  year: 2020
  end-page: 6284
  publication-title: Chem. Mat.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 10
  start-page: 804
  year: 2017
  end-page: 814
  publication-title: ChemSusChem
– volume: 199
  start-page: 331
  year: 2012
  end-page: 335
  publication-title: J. Power Sources
– volume: 28
  start-page: 7203
  year: 2016
  end-page: 7217
  publication-title: Chem. Mater.
– volume: 7
  start-page: 3857
  year: 2014
  end-page: 3886
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 691
  year: 2010
  end-page: 714
  publication-title: Chem. Mater.
– volume: 497
  start-page: 84
  year: 2001
  end-page: 96
  publication-title: J. Electroanal. Chem.
– volume: 13
  start-page: A95
  year: 2010
  end-page: A97
  publication-title: Electrochem. Solid-State Lett.
– volume: 46
  start-page: 1823
  year: 2001
  end-page: 1827
  publication-title: Electrochim. Acta.
– volume: 362
  start-page: 278
  year: 2017
  end-page: 282
  publication-title: J. Power Sources.
– volume: 121
  start-page: 1521
  year: 2017
  end-page: 1529
  publication-title: J. Phys. Chem. C
– volume: 167
  start-page: 9
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 23
  year: 2020
  publication-title: iScience.
– volume: 396
  start-page: 519
  year: 2018
  end-page: 526
  publication-title: J. Power Sources.
– volume: 226
  start-page: 391
  year: 2012
  end-page: 407
  publication-title: Z. Phys. Chem. (Leipzig)
– volume: 18
  start-page: 3956
  year: 2016
  end-page: 3965
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 3529
  year: 2014
  publication-title: Nat. Commun.
– volume: 121
  start-page: 13481
  year: 2017
  end-page: 13486
  publication-title: J. Phys. Chem. C.
– volume: 229
  start-page: 1451
  year: 2015
  end-page: 1469
  publication-title: Z. Phys. Chem. (Leipzig)
– volume: 18
  start-page: 156
  year: 2017
  end-page: 163
  publication-title: ChemPhysChem
– volume: 359
  start-page: 458
  year: 2017
  end-page: 467
  publication-title: J. Power Sources.
– start-page: 26
  year: 2014
  end-page: 5057
  publication-title: Chem. Mater.
– volume: 146
  start-page: 4172
  year: 1999
  end-page: 4178
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A339
  year: 2015
  end-page: A343
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 3680
  year: 2012
  end-page: 3695
  publication-title: J. Mater. Chem.
– volume: 42
  start-page: 65
  year: 2014
  end-page: 84
  publication-title: Prog. Solid State Chem.
– start-page: 54
  year: 1995
  end-page: 231
  publication-title: J. Power Sources.
– volume: 376
  start-page: 16
  year: 2018
  publication-title: Top. Curr. Chem.
– volume: 70
  start-page: 603
  year: 1998
  end-page: 608
  publication-title: Pure Appl. Chem.
– volume: 5
  start-page: 1670
  year: 2017
  end-page: 1679
  publication-title: Energy Technol.
– volume: 153
  start-page: B375
  year: 2006
  end-page: B383
  publication-title: J. Electrochem. Soc.
– volume: 19
  start-page: 16078
  year: 2017
  end-page: 16086
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 7733
  year: 2019
  end-page: 7737
  publication-title: ACS Appl. Energy Mater.
– volume: 379
  start-page: 272
  year: 2004
  end-page: 276
  publication-title: Anal. Bioanal. Chem.
– volume: 16
  start-page: 25306
  year: 2014
  end-page: 25313
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 196
  start-page: 3623
  year: 2011
  end-page: 3632
  publication-title: J. Power Sources
– volume: 146
  start-page: 1702
  year: 1999
  end-page: 1706
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: A3525
  year: 2018
  end-page: A3530
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 4820
  year: 2017
  end-page: 4825
  publication-title: J. Phys. Chem. Lett.
– volume: 165
  start-page: A2801
  year: 2018
  end-page: A2806
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 176
  year: 2011
  end-page: 184
  publication-title: J. Phys. Chem. Lett.
– volume: 164
  start-page: A2479
  year: 2017
  end-page: A2486
  publication-title: J. Electrochem. Soc.
– volume: 32
  start-page: 131
  year: 2020
  end-page: 146
  publication-title: Mater. Today
– volume: 346
  year: 2020
  publication-title: Electrochim. Acta.
– volume: 83
  start-page: 71
  year: 1999
  end-page: 74
  publication-title: J. Power Sources.
– volume: 3
  start-page: 57
  year: 2020
  end-page: 94
  publication-title: Matter.
– volume: 154
  start-page: A1129
  year: 2007
  end-page: A1134
  publication-title: J. Electrochem. Soc.
– volume: 163
  start-page: A2943
  year: 2016
  end-page: A2950
  publication-title: J. Electrochem. Soc.
– volume: 104
  start-page: 4419
  year: 2004
  end-page: 4462
  publication-title: Chem. Rev.
– ident: e_1_2_7_27_1
  doi: 10.1002/ente.201700068
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jpowsour.2017.05.092
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms4529
– ident: e_1_2_7_50_1
  doi: 10.1149/2.0671707jes
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jpowsour.2018.06.043
– ident: e_1_2_7_32_1
  doi: 10.1039/C5CP07718D
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.chemmater.6b02895
– ident: e_1_2_7_12_1
  doi: 10.1021/jz1015422
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.jpcc.7b02303
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jpowsour.2017.07.044
– ident: e_1_2_7_2_1
  doi: 10.1149/2.0461614jes
– ident: e_1_2_7_10_1
  doi: 10.1351/pac199870030603
– ident: e_1_2_7_9_1
  doi: 10.1002/cssc.201601636
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jpcc.6b11746
– ident: e_1_2_7_19_1
  doi: 10.1149/1.1391829
– ident: e_1_2_7_28_1
  doi: 10.1016/j.progsolidstchem.2014.04.003
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpclett.7b01927
– ident: e_1_2_7_41_1
  doi: 10.1021/acsaem.9b01440
– ident: e_1_2_7_22_1
  doi: 10.1149/2.1221814jes
– ident: e_1_2_7_30_1
  doi: 10.1149/2.0961712jes
– ident: e_1_2_7_16_1
  doi: 10.1016/S0022-0728(00)00457-5
– ident: e_1_2_7_6_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_7_1
  doi: 10.1149/2.0401503jes
– ident: e_1_2_7_39_1
  doi: 10.1021/cm902696j
– ident: e_1_2_7_40_1
  doi: 10.1039/c2jm14305d
– ident: e_1_2_7_53_1
  doi: 10.1016/S0013-4686(01)00358-9
– ident: e_1_2_7_5_1
  doi: 10.1039/C4EE01432D
– ident: e_1_2_7_20_1
  doi: 10.1149/1.3428515
– ident: e_1_2_7_33_1
  doi: 10.1016/j.mattod.2019.07.002
– start-page: 54
  year: 1995
  ident: e_1_2_7_45_1
  publication-title: J. Power Sources.
  contributor:
    fullname: Besenhard J. O.
– ident: e_1_2_7_43_1
  doi: 10.1524/zpch.2012.0222
– ident: e_1_2_7_11_1
  doi: 10.1039/C5TA00361J
– ident: e_1_2_7_54_1
  doi: 10.1016/S0378-7753(99)00260-8
– ident: e_1_2_7_55_1
  doi: 10.1149/1.2792293
– ident: e_1_2_7_34_1
  doi: 10.1038/s41598-020-61373-9
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.chemmater.0c01952
– ident: e_1_2_7_3_1
  doi: 10.1007/s41061-018-0196-1
– ident: e_1_2_7_26_1
  doi: 10.1039/C7CP03072J
– ident: e_1_2_7_52_1
  doi: 10.1515/zpch-2015-0584
– ident: e_1_2_7_15_1
  doi: 10.1149/1945-7111/ab8f57
– ident: e_1_2_7_44_1
  doi: 10.1039/C4CP04113E
– ident: e_1_2_7_35_1
  doi: 10.1016/j.isci.2020.101225
– ident: e_1_2_7_14_1
  doi: 10.1149/1.3428515
– ident: e_1_2_7_46_1
  doi: 10.1007/s00216-004-2570-9
– ident: e_1_2_7_37_1
  doi: 10.1016/j.matt.2020.03.015
– ident: e_1_2_7_4_1
  doi: 10.1021/cr020738u
– ident: e_1_2_7_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_48_1
  doi: 10.1149/1.2218816
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jpowsour.2011.09.102
– ident: e_1_2_7_47_1
  doi: 10.1149/1.1392609
– ident: e_1_2_7_25_1
  doi: 10.1016/j.electacta.2020.136271
– ident: e_1_2_7_49_1
  doi: 10.1016/j.jpowsour.2010.12.040
– ident: e_1_2_7_36_1
  doi: 10.1149/2.0901811jes
– ident: e_1_2_7_8_1
  doi: 10.1002/cphc.201601095
– start-page: 26
  year: 2014
  ident: e_1_2_7_17_1
  publication-title: Chem. Mater.
  contributor:
    fullname: Castel E.
SSID ssj0060966
Score 2.4832785
Snippet High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+....
High-voltage electrodes based on, for example, LiNi Mn 0 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li ....
Abstract High‐voltage electrodes based on, for example, LiNi 0.5 Mn 1.5 0 4 (LNMO) active material require oxidative stability of inactive materials up to 4.95...
High-voltage electrodes based on, for example, LiNi0.5 Mn1.5 04 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs....
High‐voltage electrodes based on, for example, LiNi 0.5 Mn 1.5 0 4 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs....
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5301
SubjectTerms batteries
Decomposition
Discharge
Electrode materials
Electrodes
electrolyte oxidation
high voltage
inactive materials
lithium
Lithium-ion batteries
Oxidation
Stability
Title Conventional Electrolyte and Inactive Electrode Materials in Lithium‐Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at High Voltage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202001530
https://www.ncbi.nlm.nih.gov/pubmed/32692891
https://www.proquest.com/docview/2448810843
https://search.proquest.com/docview/2426177227
https://pubmed.ncbi.nlm.nih.gov/PMC7589409
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db5YwFG50N3rj9wc6l5qYeMUGpaXgnWFb9hqnxjmzO9KWkhE3ML6QqFf-BH-BP85f4jkt4Pu6CxO9A0opLaftc-hznhLyRArNTc50aJQSIa9zGeZpFYXWANg12kAyrugevkoPjvmLE3GyEsXv9SHmH27YM9x4jR1c6eXOb9FQs1yiBCFygkSCTjuq6SEqejvrR6WAz114UZbyUKRJPKk2RmxnPfv6rHQBal5kTK4iWTcV7V8naqqEZ6B82B56vW2-_qHv-D-1vEGujTiVPveGdZNcsu0tcqWYtoe7TX4UK3x1uud30zn70luq2oouWuUG0imhsvRQ9d7aadPSl01_2gznP799X3Qt9SKf4LM_o7sjPQdmVFoM525zMXjMwgVz0q6mrz83lb-2a5EPP5LOqOopclbo--6shzHyDjne33tXHITjZg-hARCG4ewJDLuyNlxlhmfCoDCfjtIK8Ja1sYwyo7S1tRHgzFc1IDWlawAjurZKamaSu2Sj7Vp7n1DBtQbHwWohK66rGvKZOBGRYZlJEy0D8nT62OVHr-lRevVmVmJ7l3N7B2RzsoVy7NvLEgBRlsVRxpOAPJ6TofVxqUW1thvwHlS6l4xBYfe86cxFAWDOwc2NAyLXjGq-ARW_11Pa5tQpf4Nzl4NDHhDmbOYvb18WR0fFfPbgXzI9JFfx2LEX5SbZ6D8N9hGgsF5vkcuMv9ly_e0Xt7Mw7A
link.rule.ids 230,315,786,790,891,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWZQNb2hKKUZCYpU2DztO2KFMqxmYKRJtEbvIdhw1onUqJpFaVnwCX8DH8SVc20naoQskWCa283Dutc91zj1G6BWjgsgsEr7knPqkypifJWXgKwlgVwoJxeaP7uIgmR6Td5_pwCY0uTBOH2JccDOeYcdr4-BmQXr3SjVULpdGg9CQgmgMUftt8HlqfHPycVSQSgCh2wSjNCE-TeJw0G0Mot3V9qvz0g2weZMzeR3L2slo_x4Sw2s4DsqXna4VO_LbHwqP__We99HdHqrit862HqBbSj9E6_mwQ9wj9DO_RlnHe25DndPLVmGuSzzT3I6lQ0Gp8IK3zuBxrfG8bk_q7uzX9x-zRmOn8wlh-xs86Rk6MKnivDuz-4vBZWY2nxM3Ff5wUZfu3EQZSnzPO8O8xYa2gj81py0Mk4_R8f7eUT71-_0efAk4zGS0xzDyskoSnkqSUmm0-USQlAC5lApZkEoulKokhXi-rACscVEBHhGV4kxEMn6C1nSj1QbClAgBsYMSlJVElBW0k2FMAxmlMokF89Dr4WsX507Wo3ACzlFh-rsY-9tDW4MxFL17LwvARGkaBimJPfRyLIbeN39buFZNZ-oYsXsWRXCzp852xlsBZs4g0g09xFasaqxgRL9XS3R9YsW_Ib7LICb3UGSN5i9PX-SHh_l4tPkvjV6g9enRYl7MZwfvn6E75rwlM7IttNZ-7dRzAGWt2LZu9xt8BDQ1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkYAL4p9AASMhcYqaHztOuKFsV11oS6VS1FvkXzVS61RsVmpvPAJPwMPxJIztJOyqBySO8dhJlPGMv4lnPiP0jlFBZJWJWHJOY2IqFleFSmItAexKIUHsdnQPDou9E_LplJ6uVfEHfojph5uzDO-vnYFfKrPzlzRULpeOgtDlBNEcgvbbpAD44LidydHoiwsA6L6-qCxITIs8HWkbk2xnc_zmsnQDa95MmVyHsn4tmj9A9wcQiT8GrT9Et7R9hO7W49ltj9Gvei2ZHO-Go27Or3uNuVV4Ybn3cqNAaXzA-zAVcWvxftuftauL3z9-LjqLAwMnBNQf8GzInYHlDterC3_yF9xm4SstcWfwl6tWhbaZdsnqQ0YY5j12CSX4W3fegwN7gk7mu1_rvXg4iSGWgJBcrXkOPpEZSXgpSUmlY80TSaEADGmdsqSUXGhtJIVIWxmAUVwYQArCaM5EJvOnaMt2Vj9HmBIhANVrQZkiQhkYJ9OcJjIrZZELFqH3oyKay0C40QRq5axxKmsmlUVoe9RTMxjesgG0UpZpUpI8Qm8nMXx9tw_Cre5Wro-joWdZBg97FtQ6PQrQbAUxaBohtqHwqYOj496U2PbM03JD5FVBtByhzE-Nf7x9Ux8f19PVi_8Z9AbdOZrNm_3F4eeX6J5r9lmGbBtt9d9X-hWgpV689gbxB-qhEXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conventional+Electrolyte+and+Inactive+Electrode+Materials+in+Lithium-Ion+Batteries%3A+Determining+Cumulative+Impact+of+Oxidative+Decomposition+at+High+Voltage&rft.jtitle=ChemSusChem&rft.au=Streipert%2C+Benjamin&rft.au=Stolz%2C+Lukas&rft.au=Homann%2C+Gerrit&rft.au=Jan%C3%9Fen%2C+Pia&rft.date=2020-10-07&rft.eissn=1864-564X&rft.volume=13&rft.issue=19&rft.spage=5301&rft_id=info:doi/10.1002%2Fcssc.202001530&rft_id=info%3Apmid%2F32692891&rft.externalDocID=32692891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon