Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell
Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve...
Saved in:
Published in | Scientific reports Vol. 4; no. 1; p. 5863 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.08.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm
−2
when 0.33 M urea was used as fuel, O
2
as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm
−2
with an open circuit voltage of 0.38 V at 60°C. |
---|---|
AbstractList | Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C. Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C.Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C. Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm −2 when 0.33 M urea was used as fuel, O 2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm −2 with an open circuit voltage of 0.38 V at 60°C. Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm-2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm-2 with an open circuit voltage of 0.38 V at 60°C. |
ArticleNumber | 5863 |
Author | Wu, Zucheng Zhang, Huimin Li, Gang Xu, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Xu fullname: Xu, Wei organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University – sequence: 2 givenname: Huimin surname: Zhang fullname: Zhang, Huimin organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University – sequence: 3 givenname: Gang surname: Li fullname: Li, Gang organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University – sequence: 4 givenname: Zucheng surname: Wu fullname: Wu, Zucheng organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25168632$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtPxCAUhYnROD5m4R8wTdyoSRUodMrGRI2vxOhG14TS2xFlygjUxH8v44xmfLDhEr57OJeziVY71wFCOwQfEVxUx8HDFPOqLFbQBsWM57SgdHWpHqBhCM84LU4FI2IdDSgnZeqgG-jszugXsLl2tbIxq80EorLW6Ex1roFMq3R8DzFkrfNZYzzomPUeVNb2YDMN1m6jtVbZAMPFvoUeLy8ezq_z2_urm_PT21xzzGLetoVmglAMrBwJJmrALakh-RiVGgsKVSkqWmsB0KRaa9qMRN0IGJGm4RgXW-hkrjvt6wk0GrrolZVTbybKv0unjPx505knOXZvkhFWlSVPAvsLAe9eewhRTkyYTaA6cH2QhHNRUobF7K29X-iz632XxpOkEhXhDH862l129G3l63sTcDwHtHchBdVKbaKKxs0MGisJlrMM5XeGqePgV8eX6H_s4ZwNienG4JdM_oE_APnKqqc |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2017_07_005 crossref_primary_10_1016_j_ijhydene_2016_10_041 crossref_primary_10_1039_C6NJ04060H crossref_primary_10_1007_s10800_019_01328_9 crossref_primary_10_1007_s41061_018_0219_y crossref_primary_10_1016_j_matchemphys_2019_121958 crossref_primary_10_1016_j_apcatb_2019_118147 crossref_primary_10_1039_D2CY00308B crossref_primary_10_1002_slct_201702071 crossref_primary_10_1016_j_ijhydene_2020_01_090 crossref_primary_10_1039_D0TA09295A crossref_primary_10_1016_j_electacta_2020_136386 crossref_primary_10_1039_C8EE00521D crossref_primary_10_1016_j_jelechem_2016_01_013 crossref_primary_10_1016_j_jcis_2024_04_123 crossref_primary_10_1016_j_apcatb_2018_03_064 crossref_primary_10_3390_pr11103035 crossref_primary_10_1007_s13204_017_0601_z crossref_primary_10_1016_j_seppur_2023_123652 crossref_primary_10_3390_nano8050338 crossref_primary_10_1002_cctc_201700451 crossref_primary_10_3390_nano12172970 crossref_primary_10_1002_cssc_202201263 crossref_primary_10_1016_j_apsusc_2023_157898 crossref_primary_10_1016_j_apcatb_2019_118154 crossref_primary_10_1039_C8TA05064C crossref_primary_10_1088_2053_1591_ad5789 crossref_primary_10_1007_s11837_022_05530_7 crossref_primary_10_1016_j_ijhydene_2017_11_114 crossref_primary_10_1016_j_ijhydene_2020_03_094 crossref_primary_10_1039_C9CY02618E crossref_primary_10_1016_j_electacta_2017_09_097 crossref_primary_10_1002_aesr_202000015 crossref_primary_10_1016_j_egypro_2017_12_528 crossref_primary_10_1021_acssuschemeng_3c06691 crossref_primary_10_1016_j_cej_2024_153841 crossref_primary_10_1021_acsanm_3c01416 crossref_primary_10_1021_acs_inorgchem_9b01124 crossref_primary_10_1088_1757_899X_1046_1_012021 crossref_primary_10_1021_acsami_4c11560 crossref_primary_10_1016_j_jallcom_2021_159486 crossref_primary_10_1039_C8NR06756B crossref_primary_10_1016_j_jiec_2018_12_040 crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_1016_j_ijhydene_2019_05_158 crossref_primary_10_1016_j_matchemphys_2022_126843 crossref_primary_10_1016_j_apcatb_2016_11_003 crossref_primary_10_1002_celc_201900844 crossref_primary_10_1016_j_ijhydene_2020_05_052 crossref_primary_10_1038_s41598_019_57139_7 crossref_primary_10_1016_j_matchemphys_2020_122798 crossref_primary_10_3390_mi14030677 crossref_primary_10_1016_j_jscs_2017_05_010 crossref_primary_10_1039_D3CS00963G crossref_primary_10_1002_adfm_202315625 crossref_primary_10_1002_celc_202000404 crossref_primary_10_1039_D1RA01276B crossref_primary_10_1002_asia_202100916 crossref_primary_10_1002_cctc_202101906 crossref_primary_10_1039_C9CC07454F crossref_primary_10_1016_j_jelechem_2022_116825 crossref_primary_10_1016_j_energy_2024_132164 crossref_primary_10_1016_j_jpowsour_2018_06_082 crossref_primary_10_1007_s12678_018_0475_1 crossref_primary_10_1016_j_electacta_2018_07_024 crossref_primary_10_1021_acs_jpcc_1c03063 crossref_primary_10_1016_j_bios_2016_05_075 crossref_primary_10_1016_j_jallcom_2022_165362 crossref_primary_10_1016_j_electacta_2017_01_035 crossref_primary_10_1016_j_apsusc_2015_11_072 crossref_primary_10_1016_j_renene_2018_07_055 crossref_primary_10_1016_j_mineng_2024_108897 crossref_primary_10_1016_j_electacta_2017_04_055 crossref_primary_10_1021_acs_est_8b01743 crossref_primary_10_3390_polym11030512 crossref_primary_10_20964_2018_05_10 crossref_primary_10_1016_j_ijhydene_2021_08_022 crossref_primary_10_1021_acs_inorgchem_7b02658 crossref_primary_10_1021_acs_jpcc_2c03164 crossref_primary_10_3866_PKU_WHXB202306054 crossref_primary_10_1016_j_ijhydene_2016_11_048 crossref_primary_10_1039_C7TA00980A crossref_primary_10_1016_j_jtice_2023_104802 crossref_primary_10_3390_ma17112617 crossref_primary_10_1016_j_mseb_2024_117785 crossref_primary_10_1016_j_ijhydene_2018_01_163 crossref_primary_10_1021_acsami_6b02491 crossref_primary_10_1016_j_electacta_2018_05_049 crossref_primary_10_1016_j_electacta_2017_09_064 crossref_primary_10_1039_C7CC04368F crossref_primary_10_1007_s10800_024_02105_z crossref_primary_10_1016_j_electacta_2019_06_013 crossref_primary_10_1039_D1QM00305D crossref_primary_10_3390_catal12030337 crossref_primary_10_1016_j_jcis_2022_03_072 crossref_primary_10_3390_app7010064 crossref_primary_10_1016_j_jcat_2021_11_005 crossref_primary_10_1149_1945_7111_ac0459 crossref_primary_10_1002_smll_202302151 crossref_primary_10_1016_j_jpowsour_2019_05_059 crossref_primary_10_1016_j_ceramint_2015_06_032 crossref_primary_10_3389_fchem_2020_00777 crossref_primary_10_1039_D1CY00435B crossref_primary_10_1002_cctc_201801094 crossref_primary_10_1016_j_ijhydene_2020_07_193 crossref_primary_10_1016_j_jcis_2020_06_030 crossref_primary_10_1016_j_cej_2018_10_225 crossref_primary_10_1016_j_jare_2018_12_003 crossref_primary_10_1002_ente_202100017 crossref_primary_10_1016_j_electacta_2020_136516 crossref_primary_10_1016_j_jcis_2019_09_012 crossref_primary_10_1515_chem_2021_0100 crossref_primary_10_1007_s12598_024_02668_y crossref_primary_10_1021_acsaem_1c00607 crossref_primary_10_1007_s10800_016_0993_6 crossref_primary_10_1155_2018_9870732 crossref_primary_10_1002_ente_201600185 crossref_primary_10_1002_cssc_202102614 crossref_primary_10_1007_s11356_021_18280_x crossref_primary_10_1016_j_jes_2021_03_017 crossref_primary_10_1016_j_jpowsour_2018_12_024 crossref_primary_10_1002_ange_201606313 crossref_primary_10_1016_j_jpowsour_2017_07_117 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1002_celc_201901423 crossref_primary_10_1021_acsami_9b22956 crossref_primary_10_1039_D0NR01386B crossref_primary_10_1016_j_electacta_2022_140877 crossref_primary_10_3390_ani14030433 crossref_primary_10_1016_j_arabjc_2016_12_021 crossref_primary_10_1016_j_ijhydene_2023_04_057 crossref_primary_10_1016_j_jelechem_2022_116242 crossref_primary_10_1016_j_ceramint_2024_05_358 crossref_primary_10_1021_acsaem_2c03938 crossref_primary_10_1016_j_pecs_2019_100805 crossref_primary_10_1088_1757_899X_902_1_012001 crossref_primary_10_1016_j_cej_2021_132733 crossref_primary_10_1016_j_nanoen_2015_10_030 crossref_primary_10_1002_adfm_202000556 crossref_primary_10_1016_j_electacta_2018_02_059 crossref_primary_10_1002_ente_202101010 crossref_primary_10_1016_j_inoche_2023_110933 crossref_primary_10_1051_e3sconf_202021103004 crossref_primary_10_1002_anie_201606313 crossref_primary_10_1038_s41598_018_37011_w crossref_primary_10_1016_j_electacta_2017_12_123 crossref_primary_10_1021_acsami_8b14397 crossref_primary_10_1016_j_fuel_2022_124660 crossref_primary_10_3390_ma17061292 crossref_primary_10_1021_acssuschemeng_9b03275 crossref_primary_10_1016_j_apmate_2022_01_003 crossref_primary_10_1016_j_apsusc_2017_11_076 crossref_primary_10_1039_D1TA09989B crossref_primary_10_1149_2_0561706jes crossref_primary_10_1039_D0NR08025J crossref_primary_10_1039_D0QM00526F crossref_primary_10_1039_D4RA07911F crossref_primary_10_1021_acsami_3c16244 crossref_primary_10_1246_bcsj_20210301 crossref_primary_10_1021_acsomega_0c03477 |
Cites_doi | 10.1007/s10008-012-1855-8 10.1016/j.elecom.2008.08.043 10.1039/C3NR05359H 10.1038/srep01309 10.2298/JSC0311859G 10.1016/j.apcatb.2004.11.009 10.1021/jp305323s 10.1016/j.jpowsour.2011.02.015 10.1038/srep01775 10.1016/j.jpowsour.2010.11.006 10.1016/S0169-4332(97)00223-7 10.1149/1.1403731 10.1149/1.1613671 10.1016/j.ecoleng.2013.06.039 10.1007/BF01009266 10.1016/j.electacta.2007.11.029 10.1021/la1005264 10.1016/j.apsusc.2010.10.051 10.1007/s10008-010-1018-8 10.1039/b924786f 10.1016/j.soilbio.2013.05.006 10.1126/science.1188267 10.1016/j.jpowsour.2010.06.009 10.1016/j.electacta.2011.11.044 10.1016/j.electacta.2012.06.129 10.1039/b905974a 10.1016/0378-7753(89)85001-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 Copyright Nature Publishing Group Aug 2014 Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved |
Copyright_xml | – notice: The Author(s) 2014 – notice: Copyright Nature Publishing Group Aug 2014 – notice: Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep05863 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC4148665 25168632 10_1038_srep05863 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c504t-ff3c49120e467949be0f1be68676c092e86982bc9eede86cc2d79bd9e71dd5003 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 17:46:17 EDT 2025 Fri Jul 11 03:47:02 EDT 2025 Sat Aug 23 14:12:13 EDT 2025 Mon Jul 21 06:06:31 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 03:14:31 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-ff3c49120e467949be0f1be68676c092e86982bc9eede86cc2d79bd9e71dd5003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1898154000?pq-origsite=%requestingapplication% |
PMID | 25168632 |
PQID | 1898154000 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148665 proquest_miscellaneous_1559624090 proquest_journals_1898154000 pubmed_primary_25168632 crossref_citationtrail_10_1038_srep05863 crossref_primary_10_1038_srep05863 springer_journals_10_1038_srep05863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-29 |
PublicationDateYYYYMMDD | 2014-08-29 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hernandez-FernandezPEffect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported PtJ. Power Sources2010195795979671:CAS:528:DC%2BC3cXhtFWnsr3F2010JPS...195.7959H10.1016/j.jpowsour.2010.06.009 Córdoba de TorresiSIProvaziKMaltaMTorresiRMEffect of additives in the stabilization of the α Phase of Ni(OH)2 electrodesJ. Electrochem. Soc.2001148A1179A118410.1149/1.1403731 BoggsBKKingRLBotteGGUrea electrolysis: direct hydrogen production from urineChem. Commun.2009324859486110.1039/b905974a YanWWangDBotteGGNickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidationElectrochim. Acta20126125301:CAS:528:DC%2BC38XmtFWj10.1016/j.electacta.2011.11.044 VidottiMSilvaMRSalvadorRPCórdoba de TorresiSIDall'AntoniaLHElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029 KingRLBotteGGHydrogen production via urea electrolysis using a gel electrolyteJ. Power Sources2011196277327781:CAS:528:DC%2BC3cXhs1SrtLnI2011JPS...196.2773K10.1016/j.jpowsour.2010.11.006 HwangSJSupported core@shell electrocatalysts for fuel cells: close encounter withrealitySci. Rep.20133130910.1038/srep01309 VidottiMElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029 ArmstrongRDCharlesEASome effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodesJ. Power Sources19892589971:CAS:528:DyaL1MXhslKlsbk%3D1989JPS....25...89A10.1016/0378-7753(89)85001-3 DuttaADattaJOutstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cellJ. Phys. Chem. C201211625677256881:CAS:528:DC%2BC38XhsFCrtbrE10.1021/jp305323s Putnam, D. F. Composition and Concentrative Properties of Human Urine. (NASA Contractor Report, the United States, 1971). SunSSingle-atom catalysis using Pt/graphene achieved through atomic layer depositionSci. Rep.20133177510.1038/srep01775 WangXXiaYElectrocatalytic performance of PdCo–C catalyst for formic acid oxidationElectrochem Commun.200810164416461:CAS:528:DC%2BD1cXhtFOgtbrE10.1016/j.elecom.2008.08.043 KimJWParkSMIn situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanolJ. Electrochem. Soc.2003150E560E5661:CAS:528:DC%2BD3sXotVKkt7k%3D10.1149/1.1613671 DingRFacile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidationNanoscale20146136913761:CAS:528:DC%2BC2cXotV2qsg%3D%3D2014Nanos...6.1369D10.1039/C3NR05359H HamontsKInfluence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea depositionSoil Biol. Biochem.2013651111:CAS:528:DC%2BC3sXht1Sht77I10.1016/j.soilbio.2013.05.006 HuangHFanYWangXLow-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanolElectrochim. Acta2012801181251:CAS:528:DC%2BC38Xht1Gisb7M10.1016/j.electacta.2012.06.129 WangZHigh electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cellsJ. Solid State Electrochem.201317991071:CAS:528:DC%2BC3sXhtVajtQ%3D%3D2013SSEle..82...99W10.1007/s10008-012-1855-8 SalgadoJRCAntoliniEGonzalezERCarbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cellsAppl. Catal. B2005572832901:CAS:528:DC%2BD2MXjslOkur4%3D10.1016/j.apcatb.2004.11.009 LanRTaoSPreparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cellsJ. Power Sources2011196502150261:CAS:528:DC%2BC3MXjvVSgtLo%3D2011JPS...196.5021L10.1016/j.jpowsour.2011.02.015 GojkovicSLElectrochemical oxidation of methanol on Pt3Co bulk alloyJ. Serb. Chem. Soc.2003688598701:CAS:528:DC%2BD2cXkt1Gh10.2298/JSC0311859G FuQInterface-confined ferrous centers for catalytic oxidationScience2010328114111441:CAS:528:DC%2BC3cXmsVGjs7c%3D2010Sci...328.1141F10.1126/science.1188267 ArmstrongRDBriggsGWDCharlesEASome effects of the addition of cobalt to the nickel hydroxide electrodeJ. Appl. Electrochem.1988182152191:CAS:528:DyaL1cXit1ygtLk%3D10.1007/BF01009266 ChoiIDLeeHShimYBLeeDA one-Step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrodeLangmuir20102611212112161:CAS:528:DC%2BC3cXjtlaitr4%3D10.1021/la1005264 Shriver, D. & Atkins, P. Inorganic Chemistry. (W. H. Freeman, the United States, 2010). TangYElectro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acidJ. Solid State Electrochem.201014207720821:CAS:528:DC%2BC3cXhtVCjtbrJ10.1007/s10008-010-1018-8 ChangJJWuSQDaiYRLiangWWuZBNitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systemsEcol. Eng.20135819220110.1016/j.ecoleng.2013.06.039 DaiW-LQiaoM-HDengJ-FXPS studies on a novel amorphous Ni–Co–W–B alloy powderAppl. Surf. Sci.19971201191241:CAS:528:DyaK2sXmsVKiurk%3D1997ApSS..120..119D10.1016/S0169-4332(97)00223-7 Meessen, J. H. [Urea]. Ullmann's Encyclopedia of Industrial Chemistry. (Wiley-VCH, Germany, 2010). BiesingerMCPayneBPGrosvenorAPLauLWMGersonARSmartRSt. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and NiAppl. Surf. Sci.2011257271727301:CAS:528:DC%2BC3MXjtVWntw%3D%3D2011ApSS..257.2717B10.1016/j.apsusc.2010.10.051 LanRTaoSIrvineJTSA direct urea fuel cell - power from fertiliser and wasteEnergy Environ. Sci.201034384411:CAS:528:DC%2BC3cXnvVaiu7g%3D10.1039/b924786f RD Armstrong (BFsrep05863_CR30) 1989; 25 Y Tang (BFsrep05863_CR14) 2010; 14 Z Wang (BFsrep05863_CR17) 2013; 17 MC Biesinger (BFsrep05863_CR26) 2011; 257 SI Córdoba de Torresi (BFsrep05863_CR29) 2001; 148 JRC Salgado (BFsrep05863_CR23) 2005; 57 BFsrep05863_CR24 ID Choi (BFsrep05863_CR7) 2010; 26 Q Fu (BFsrep05863_CR9) 2010; 328 JW Kim (BFsrep05863_CR28) 2003; 150 K Hamonts (BFsrep05863_CR5) 2013; 65 BFsrep05863_CR2 H Huang (BFsrep05863_CR16) 2012; 80 BFsrep05863_CR1 JJ Chang (BFsrep05863_CR6) 2013; 58 BK Boggs (BFsrep05863_CR12) 2009; 32 R Lan (BFsrep05863_CR3) 2011; 196 A Dutta (BFsrep05863_CR8) 2012; 116 RL King (BFsrep05863_CR13) 2011; 196 P Hernandez-Fernandez (BFsrep05863_CR21) 2010; 195 SJ Hwang (BFsrep05863_CR11) 2013; 3 M Vidotti (BFsrep05863_CR18) 2008; 53 W Yan (BFsrep05863_CR19) 2012; 61 R Ding (BFsrep05863_CR20) 2014; 6 W-L Dai (BFsrep05863_CR25) 1997; 120 RD Armstrong (BFsrep05863_CR31) 1988; 18 R Lan (BFsrep05863_CR4) 2010; 3 S Sun (BFsrep05863_CR10) 2013; 3 M Vidotti (BFsrep05863_CR27) 2008; 53 X Wang (BFsrep05863_CR15) 2008; 10 SL Gojkovic (BFsrep05863_CR22) 2003; 68 19652805 - Chem Commun (Camb). 2009 Aug 28;(32):4859-61 24306055 - Nanoscale. 2014;6(3):1369-76 20508127 - Science. 2010 May 28;328(5982):1141-4 23419683 - Sci Rep. 2013;3:1309 20235541 - Langmuir. 2010 Jul 6;26(13):11212-6 |
References_xml | – reference: HuangHFanYWangXLow-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanolElectrochim. Acta2012801181251:CAS:528:DC%2BC38Xht1Gisb7M10.1016/j.electacta.2012.06.129 – reference: DingRFacile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidationNanoscale20146136913761:CAS:528:DC%2BC2cXotV2qsg%3D%3D2014Nanos...6.1369D10.1039/C3NR05359H – reference: Hernandez-FernandezPEffect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported PtJ. Power Sources2010195795979671:CAS:528:DC%2BC3cXhtFWnsr3F2010JPS...195.7959H10.1016/j.jpowsour.2010.06.009 – reference: ChangJJWuSQDaiYRLiangWWuZBNitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systemsEcol. Eng.20135819220110.1016/j.ecoleng.2013.06.039 – reference: Putnam, D. F. Composition and Concentrative Properties of Human Urine. (NASA Contractor Report, the United States, 1971). – reference: HamontsKInfluence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea depositionSoil Biol. Biochem.2013651111:CAS:528:DC%2BC3sXht1Sht77I10.1016/j.soilbio.2013.05.006 – reference: LanRTaoSIrvineJTSA direct urea fuel cell - power from fertiliser and wasteEnergy Environ. Sci.201034384411:CAS:528:DC%2BC3cXnvVaiu7g%3D10.1039/b924786f – reference: SunSSingle-atom catalysis using Pt/graphene achieved through atomic layer depositionSci. Rep.20133177510.1038/srep01775 – reference: DaiW-LQiaoM-HDengJ-FXPS studies on a novel amorphous Ni–Co–W–B alloy powderAppl. Surf. Sci.19971201191241:CAS:528:DyaK2sXmsVKiurk%3D1997ApSS..120..119D10.1016/S0169-4332(97)00223-7 – reference: GojkovicSLElectrochemical oxidation of methanol on Pt3Co bulk alloyJ. Serb. Chem. Soc.2003688598701:CAS:528:DC%2BD2cXkt1Gh10.2298/JSC0311859G – reference: TangYElectro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acidJ. Solid State Electrochem.201014207720821:CAS:528:DC%2BC3cXhtVCjtbrJ10.1007/s10008-010-1018-8 – reference: YanWWangDBotteGGNickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidationElectrochim. Acta20126125301:CAS:528:DC%2BC38XmtFWj10.1016/j.electacta.2011.11.044 – reference: KingRLBotteGGHydrogen production via urea electrolysis using a gel electrolyteJ. Power Sources2011196277327781:CAS:528:DC%2BC3cXhs1SrtLnI2011JPS...196.2773K10.1016/j.jpowsour.2010.11.006 – reference: ArmstrongRDCharlesEASome effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodesJ. Power Sources19892589971:CAS:528:DyaL1MXhslKlsbk%3D1989JPS....25...89A10.1016/0378-7753(89)85001-3 – reference: Shriver, D. & Atkins, P. Inorganic Chemistry. (W. H. Freeman, the United States, 2010). – reference: FuQInterface-confined ferrous centers for catalytic oxidationScience2010328114111441:CAS:528:DC%2BC3cXmsVGjs7c%3D2010Sci...328.1141F10.1126/science.1188267 – reference: SalgadoJRCAntoliniEGonzalezERCarbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cellsAppl. Catal. B2005572832901:CAS:528:DC%2BD2MXjslOkur4%3D10.1016/j.apcatb.2004.11.009 – reference: Meessen, J. H. [Urea]. Ullmann's Encyclopedia of Industrial Chemistry. (Wiley-VCH, Germany, 2010). – reference: VidottiMSilvaMRSalvadorRPCórdoba de TorresiSIDall'AntoniaLHElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029 – reference: BiesingerMCPayneBPGrosvenorAPLauLWMGersonARSmartRSt. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and NiAppl. Surf. Sci.2011257271727301:CAS:528:DC%2BC3MXjtVWntw%3D%3D2011ApSS..257.2717B10.1016/j.apsusc.2010.10.051 – reference: VidottiMElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029 – reference: WangXXiaYElectrocatalytic performance of PdCo–C catalyst for formic acid oxidationElectrochem Commun.200810164416461:CAS:528:DC%2BD1cXhtFOgtbrE10.1016/j.elecom.2008.08.043 – reference: Córdoba de TorresiSIProvaziKMaltaMTorresiRMEffect of additives in the stabilization of the α Phase of Ni(OH)2 electrodesJ. Electrochem. Soc.2001148A1179A118410.1149/1.1403731 – reference: HwangSJSupported core@shell electrocatalysts for fuel cells: close encounter withrealitySci. Rep.20133130910.1038/srep01309 – reference: WangZHigh electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cellsJ. Solid State Electrochem.201317991071:CAS:528:DC%2BC3sXhtVajtQ%3D%3D2013SSEle..82...99W10.1007/s10008-012-1855-8 – reference: ChoiIDLeeHShimYBLeeDA one-Step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrodeLangmuir20102611212112161:CAS:528:DC%2BC3cXjtlaitr4%3D10.1021/la1005264 – reference: BoggsBKKingRLBotteGGUrea electrolysis: direct hydrogen production from urineChem. Commun.2009324859486110.1039/b905974a – reference: DuttaADattaJOutstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cellJ. Phys. Chem. C201211625677256881:CAS:528:DC%2BC38XhsFCrtbrE10.1021/jp305323s – reference: KimJWParkSMIn situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanolJ. Electrochem. Soc.2003150E560E5661:CAS:528:DC%2BD3sXotVKkt7k%3D10.1149/1.1613671 – reference: ArmstrongRDBriggsGWDCharlesEASome effects of the addition of cobalt to the nickel hydroxide electrodeJ. Appl. Electrochem.1988182152191:CAS:528:DyaL1cXit1ygtLk%3D10.1007/BF01009266 – reference: LanRTaoSPreparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cellsJ. Power Sources2011196502150261:CAS:528:DC%2BC3MXjvVSgtLo%3D2011JPS...196.5021L10.1016/j.jpowsour.2011.02.015 – volume: 17 start-page: 99 year: 2013 ident: BFsrep05863_CR17 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-012-1855-8 – volume: 10 start-page: 1644 year: 2008 ident: BFsrep05863_CR15 publication-title: Electrochem Commun. doi: 10.1016/j.elecom.2008.08.043 – volume: 6 start-page: 1369 year: 2014 ident: BFsrep05863_CR20 publication-title: Nanoscale doi: 10.1039/C3NR05359H – volume: 3 start-page: 1309 year: 2013 ident: BFsrep05863_CR11 publication-title: Sci. Rep. doi: 10.1038/srep01309 – volume: 68 start-page: 859 year: 2003 ident: BFsrep05863_CR22 publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC0311859G – volume: 57 start-page: 283 year: 2005 ident: BFsrep05863_CR23 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2004.11.009 – volume: 116 start-page: 25677 year: 2012 ident: BFsrep05863_CR8 publication-title: J. Phys. Chem. C doi: 10.1021/jp305323s – volume: 196 start-page: 5021 year: 2011 ident: BFsrep05863_CR3 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.02.015 – volume: 3 start-page: 1775 year: 2013 ident: BFsrep05863_CR10 publication-title: Sci. Rep. doi: 10.1038/srep01775 – volume: 196 start-page: 2773 year: 2011 ident: BFsrep05863_CR13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.006 – volume: 120 start-page: 119 year: 1997 ident: BFsrep05863_CR25 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(97)00223-7 – volume: 148 start-page: A1179 year: 2001 ident: BFsrep05863_CR29 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1403731 – ident: BFsrep05863_CR24 – ident: BFsrep05863_CR1 – volume: 150 start-page: E560 year: 2003 ident: BFsrep05863_CR28 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1613671 – volume: 58 start-page: 192 year: 2013 ident: BFsrep05863_CR6 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.06.039 – volume: 18 start-page: 215 year: 1988 ident: BFsrep05863_CR31 publication-title: J. Appl. Electrochem. doi: 10.1007/BF01009266 – volume: 53 start-page: 4030 year: 2008 ident: BFsrep05863_CR18 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.11.029 – volume: 26 start-page: 11212 year: 2010 ident: BFsrep05863_CR7 publication-title: Langmuir doi: 10.1021/la1005264 – volume: 257 start-page: 2717 year: 2011 ident: BFsrep05863_CR26 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – ident: BFsrep05863_CR2 – volume: 14 start-page: 2077 year: 2010 ident: BFsrep05863_CR14 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-010-1018-8 – volume: 3 start-page: 438 year: 2010 ident: BFsrep05863_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/b924786f – volume: 65 start-page: 1 year: 2013 ident: BFsrep05863_CR5 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.006 – volume: 328 start-page: 1141 year: 2010 ident: BFsrep05863_CR9 publication-title: Science doi: 10.1126/science.1188267 – volume: 195 start-page: 7959 year: 2010 ident: BFsrep05863_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.009 – volume: 61 start-page: 25 year: 2012 ident: BFsrep05863_CR19 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.11.044 – volume: 80 start-page: 118 year: 2012 ident: BFsrep05863_CR16 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.06.129 – volume: 32 start-page: 4859 year: 2009 ident: BFsrep05863_CR12 publication-title: Chem. Commun. doi: 10.1039/b905974a – volume: 53 start-page: 4030 year: 2008 ident: BFsrep05863_CR27 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.11.029 – volume: 25 start-page: 89 year: 1989 ident: BFsrep05863_CR30 publication-title: J. Power Sources doi: 10.1016/0378-7753(89)85001-3 – reference: 19652805 - Chem Commun (Camb). 2009 Aug 28;(32):4859-61 – reference: 23419683 - Sci Rep. 2013;3:1309 – reference: 20235541 - Langmuir. 2010 Jul 6;26(13):11212-6 – reference: 24306055 - Nanoscale. 2014;6(3):1369-76 – reference: 20508127 - Science. 2010 May 28;328(5982):1141-4 |
SSID | ssj0000529419 |
Score | 2.5218346 |
Snippet | Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5863 |
SubjectTerms | 147/135 147/143 639/638/161 639/638/77 Catalysis Catalysts Cobalt Cobalt - chemistry conference-proceeding Electric Power Supplies Electrodes Fuel cells Fuel technology Humanities and Social Sciences Humans multidisciplinary Nanoparticles Nickel Nickel - chemistry Oxidizing agents Particle Size Science Temperature effects Urea Urea - chemistry Urine Urine - chemistry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngR365WiY-Dl9B9ZjcnUbEUQU8Wels2j8Vi3Va7PfTfO9mXthVvCxnI7EyS-fJNmAG4Zmj5VDqcSp9L6nsqoYkUAeVCmvZHrhAFNfD8wnp9_2kQDCrCbVo9q6zPxOKgVmNpOPKOE_EIwz3u4NvJJzVdo0x2tWqhsQ4bpnSZWdXhIGw4FpPF8h1eFxTyog6GnYkdRMxbDEMr2HL1ieRSnrQIP90d2K5wI7krHb0Lazrbg82yk-R8H-7Ro-96RKUp75ETMfzQiKpHQ0mSbKw0KVia-TSfEgSppIxjxDxIJ-lMj4ih7w-g3318fejRqj0ClYHt5zRNPTSw49oaDzvuc6Ht1BGaRSxk0uaujhiPXCE5hkH8ltJVIReK69BRKsDdfAitbJzpY0AlHI04DpG2bQxmY8hCXCJTlSY8SKSy4Ka2Viyr2uGmhcUoLnLYXhQ3hrXgshGdlAUz_hJq1yaPqz0zjX88bMFFM4yr3dggyfR4hjKB6RaEd1KUOSo91MyCSA3_3XMtCBd81wiYStqLI9nwraio7eOlkLHAgqvay7_UWlb-5H_lT2ELQZVveGeXt6GVf830GQKXXJwXq_Mb7OHv-w priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgExIXxJvCQOFx4FLRR5o2x4GYpklwgUm7VU2aionSTbQ77N_j9AVjHLhViqu6dhJ_cazPADcMLZ9Im5uScmlSN47MSArP5ELq9keOEGVq4OmZDcd0NPEmNVl0XpdVVpSW5TbdVIfdYbyYW17A3E3oaoZ2nNLdfn_0MmoTKvrKitq8YQ9yg-93VmPOGpBcr4f8dSlaxprBLuzUIJH0K7X2YENl-7BVtY1cHsA9uu9dpabUXB4FEdMPhRA6nUoSZbNYkTIls8yLnCAiJVXQIrr6nCQLlRKdqz-E8eDx9WFo1r0QTOlZtDCTxEVr2o6lcGfjlAtlJbZQLGA-kxZ3VMB44AjJMebhs5RO7HMRc-Xbcezh0j2CTjbL1AmgErZC0Iaw2tIGszA-IQiRSZxE3ItkbMBtY61Q1kThul9FGpYX1m4QtoY14KoVnVfsGH8J9RqTh_UCyUM74AGiN3SbAZftME5tbYMoU7MFyni6NRAeQFHmuPJQ-xWEZfjvrmOAv-K7VkDTZq-OZNO3kj6b4gmQMc-A68bLP9T6rfzpv6TOYBuBFNW5Zof3oFN8LtQ5gpVCXNTT9AvPdexm priority: 102 providerName: Springer Nature |
Title | Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell |
URI | https://link.springer.com/article/10.1038/srep05863 https://www.ncbi.nlm.nih.gov/pubmed/25168632 https://www.proquest.com/docview/1898154000 https://www.proquest.com/docview/1559624090 https://pubmed.ncbi.nlm.nih.gov/PMC4148665 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xEBIXBOwuhEdllj3sxbuJkzjxAaFSgVAlEAIq9RbFjiMqQlpoKtF_zzgvUeDAKVE8UcYzcebz2JkP4A9Hy6fKEVR5QlHPTWIaK-lTIZWhP2JSlqmBq2t-OfD6Q3-4BA3HZm3A6ZdTO8MnNXjJ_r0-z09xwJ9Uv4yH_zGWTGw_5O4yrGJACgyRwVWN8qsS30x4JcWHqb1OEUOwpsbQ-7sXI9MnuPl51-SHpdMyIl1swkYNJUm38v0WLOl8G9Yqcsn5DzhDJz_qjCpT8aMgcvSksY_ZSJE4HyealImb-bSYEsStpAptxOxRJ-lMZ8Rk9H_C4OL8vndJa8YEqnzbK2iaumhzh9kav3_CE1LbqSM1D3nAlS2YDrkImVQCIyOeK8WSQMhE6MBJEh8H-C9Yyce53gVUwtEI7RB828Z4NkYxhCoqTdJY-LFKLPjbWCtSdTlxw2qRReWythtGrWEt-N2KTqoaGl8JHTQmj5q3IHJCESLGQxdacNQ24wAwNohzPZ6hjG8IhHCaijI7lYfapyB4w767zIJgwXetgCmuvdiSjx7KItsezhM59y04brz8Tq2Pyu99Q7t9WEew5Zl8NBMHsFK8zPQhAppCdmA5GAYdWO12-3d9PJ6dX9_c4tUe73XKJEGnfKHfAIt2-9M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RECoXxKMt5tWFtlIvK-y1vfYeEOKp8DyBlJvrfViNCE4gjlD-FL-RWTs2BKreuFnyyB7PY-fbmfUMwE-Oks-UJ6gKhKKBr1OaKhlSIZUdf8SkLFMDl1e8dROctcP2FDzV_8LYY5X1mlgu1LqnbI58x4tFjOEePXivf0_t1ChbXa1HaFRmcW5Gj7hlG-yeHqF-fzF2cnx92KLjqQJUhW5Q0CzzkS-PuQbXCBEIadzMk4bHPOLKFczEXMRMKoHRA6-VYjoSUgsTeVqH6AT43E8wg4HXtZu9qB01OR1bNQs8UTcw8uMdDHN9N4y5Pxn23mHZ90cy39Rly3B3sgDzY5xK9ivDWoQpky_BbDW5crQMB2hBt6ZLlW0nUhDZuTOI4rsdRdK8pw0ps0KjQTEgCIpJFTeJPQBPsqHpElsu-AI3HyK4rzCd93KzAsiEZxA3IrJ3rcBcDJGIg1Sms1SEqdIO_K6llahxr3I7MqOblDVzP04awTqw3ZD2qwYd_yJar0WejH10kLxYlANbzW30LiuDNDe9IdKEdjoR7oGR5luloeYtiAzx233mQDShu4bAdu6evJN3_pYdvAPchHIeOvCj1vIrtt4yv_p_5r_D59b15UVycXp1vgZzCOgCm_NmYh2mi4eh2UDQVMjN0lIJ_Plo13gGPVQtUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BUBEXRB8UF9puaStxWcVe22vvAaFSiHi0EaqKxM31PqxGTZ1AHKH8NX4ds361AcSNmyWP7PE8dr6dWc8AfOIo-Ux5gqpAKBr4OqWpkiEVUtnxR0zKMjXwvc-PzoOTi_BiAW6af2HsscpmTSwXaj1SNkfe9WIRY7hHD-5m9bGIs4Pe3viS2glSttLajNOoTOTUzK5x-zbZPT5AXX9mrHf48-sRrScMUBW6QUGzzEcePeYaXC9EIKRxM08aHvOIK1cwE3MRM6kERhK8VorpSEgtTORpHaJD4HMXYSmyu6IOLO0f9s9-tBkeW0MLPNG0M_LjLga9sRvG3J8PgveQ7f0DmneqtGXw663Bao1ayZfKzJ7DgslfwLNqjuXsJeyjPf0xQ6psc5GCyMFfg5h-OFAkzUfakDJHNJsUE4IQmVRRlNjj8CSbmiGxxYNXcP4koluHTj7KzQYgE55BFIk437UCczFgIipSmc5SEaZKO7DTSCtRdedyO0BjmJQVdD9OWsE6sN2Sjqt2HQ8RbTUiT2qPnST_7MuBD-1t9DUrgzQ3oynShHZWEe6IkeZ1paH2LYgT8dt95kA0p7uWwPbxnr-TD36X_bwD3JJyHjrwsdHyf2zdZf7N48y_h2V0i-Tbcf90E1YQ3QU2Ac7EFnSKq6l5iwiqkO9qUyXw66m94xYblDLs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel-cobalt+bimetallic+anode+catalysts+for+direct+urea+fuel+cell&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Wei&rft.au=Zhang%2C+Huimin&rft.au=Li%2C+Gang&rft.au=Wu%2C+Zucheng&rft.date=2014-08-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=4&rft.spage=5863&rft_id=info:doi/10.1038%2Fsrep05863&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |