Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 4; no. 1; p. 5863
Main Authors Xu, Wei, Zhang, Huimin, Li, Gang, Wu, Zucheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.08.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm −2 when 0.33 M urea was used as fuel, O 2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm −2 with an open circuit voltage of 0.38 V at 60°C.
AbstractList Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C.
Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C.Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C.
Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm −2 when 0.33 M urea was used as fuel, O 2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm −2 with an open circuit voltage of 0.38 V at 60°C.
Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm-2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm-2 with an open circuit voltage of 0.38 V at 60°C.
ArticleNumber 5863
Author Wu, Zucheng
Zhang, Huimin
Li, Gang
Xu, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University
– sequence: 2
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
  organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University
– sequence: 3
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University
– sequence: 4
  givenname: Zucheng
  surname: Wu
  fullname: Wu, Zucheng
  organization: Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage, State Key laboratory of Clean Energy Utilization, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25168632$$D View this record in MEDLINE/PubMed
BookMark eNptkUtPxCAUhYnROD5m4R8wTdyoSRUodMrGRI2vxOhG14TS2xFlygjUxH8v44xmfLDhEr57OJeziVY71wFCOwQfEVxUx8HDFPOqLFbQBsWM57SgdHWpHqBhCM84LU4FI2IdDSgnZeqgG-jszugXsLl2tbIxq80EorLW6Ex1roFMq3R8DzFkrfNZYzzomPUeVNb2YDMN1m6jtVbZAMPFvoUeLy8ezq_z2_urm_PT21xzzGLetoVmglAMrBwJJmrALakh-RiVGgsKVSkqWmsB0KRaa9qMRN0IGJGm4RgXW-hkrjvt6wk0GrrolZVTbybKv0unjPx505knOXZvkhFWlSVPAvsLAe9eewhRTkyYTaA6cH2QhHNRUobF7K29X-iz632XxpOkEhXhDH862l129G3l63sTcDwHtHchBdVKbaKKxs0MGisJlrMM5XeGqePgV8eX6H_s4ZwNienG4JdM_oE_APnKqqc
CitedBy_id crossref_primary_10_1016_j_apcatb_2017_07_005
crossref_primary_10_1016_j_ijhydene_2016_10_041
crossref_primary_10_1039_C6NJ04060H
crossref_primary_10_1007_s10800_019_01328_9
crossref_primary_10_1007_s41061_018_0219_y
crossref_primary_10_1016_j_matchemphys_2019_121958
crossref_primary_10_1016_j_apcatb_2019_118147
crossref_primary_10_1039_D2CY00308B
crossref_primary_10_1002_slct_201702071
crossref_primary_10_1016_j_ijhydene_2020_01_090
crossref_primary_10_1039_D0TA09295A
crossref_primary_10_1016_j_electacta_2020_136386
crossref_primary_10_1039_C8EE00521D
crossref_primary_10_1016_j_jelechem_2016_01_013
crossref_primary_10_1016_j_jcis_2024_04_123
crossref_primary_10_1016_j_apcatb_2018_03_064
crossref_primary_10_3390_pr11103035
crossref_primary_10_1007_s13204_017_0601_z
crossref_primary_10_1016_j_seppur_2023_123652
crossref_primary_10_3390_nano8050338
crossref_primary_10_1002_cctc_201700451
crossref_primary_10_3390_nano12172970
crossref_primary_10_1002_cssc_202201263
crossref_primary_10_1016_j_apsusc_2023_157898
crossref_primary_10_1016_j_apcatb_2019_118154
crossref_primary_10_1039_C8TA05064C
crossref_primary_10_1088_2053_1591_ad5789
crossref_primary_10_1007_s11837_022_05530_7
crossref_primary_10_1016_j_ijhydene_2017_11_114
crossref_primary_10_1016_j_ijhydene_2020_03_094
crossref_primary_10_1039_C9CY02618E
crossref_primary_10_1016_j_electacta_2017_09_097
crossref_primary_10_1002_aesr_202000015
crossref_primary_10_1016_j_egypro_2017_12_528
crossref_primary_10_1021_acssuschemeng_3c06691
crossref_primary_10_1016_j_cej_2024_153841
crossref_primary_10_1021_acsanm_3c01416
crossref_primary_10_1021_acs_inorgchem_9b01124
crossref_primary_10_1088_1757_899X_1046_1_012021
crossref_primary_10_1021_acsami_4c11560
crossref_primary_10_1016_j_jallcom_2021_159486
crossref_primary_10_1039_C8NR06756B
crossref_primary_10_1016_j_jiec_2018_12_040
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_1016_j_ijhydene_2019_05_158
crossref_primary_10_1016_j_matchemphys_2022_126843
crossref_primary_10_1016_j_apcatb_2016_11_003
crossref_primary_10_1002_celc_201900844
crossref_primary_10_1016_j_ijhydene_2020_05_052
crossref_primary_10_1038_s41598_019_57139_7
crossref_primary_10_1016_j_matchemphys_2020_122798
crossref_primary_10_3390_mi14030677
crossref_primary_10_1016_j_jscs_2017_05_010
crossref_primary_10_1039_D3CS00963G
crossref_primary_10_1002_adfm_202315625
crossref_primary_10_1002_celc_202000404
crossref_primary_10_1039_D1RA01276B
crossref_primary_10_1002_asia_202100916
crossref_primary_10_1002_cctc_202101906
crossref_primary_10_1039_C9CC07454F
crossref_primary_10_1016_j_jelechem_2022_116825
crossref_primary_10_1016_j_energy_2024_132164
crossref_primary_10_1016_j_jpowsour_2018_06_082
crossref_primary_10_1007_s12678_018_0475_1
crossref_primary_10_1016_j_electacta_2018_07_024
crossref_primary_10_1021_acs_jpcc_1c03063
crossref_primary_10_1016_j_bios_2016_05_075
crossref_primary_10_1016_j_jallcom_2022_165362
crossref_primary_10_1016_j_electacta_2017_01_035
crossref_primary_10_1016_j_apsusc_2015_11_072
crossref_primary_10_1016_j_renene_2018_07_055
crossref_primary_10_1016_j_mineng_2024_108897
crossref_primary_10_1016_j_electacta_2017_04_055
crossref_primary_10_1021_acs_est_8b01743
crossref_primary_10_3390_polym11030512
crossref_primary_10_20964_2018_05_10
crossref_primary_10_1016_j_ijhydene_2021_08_022
crossref_primary_10_1021_acs_inorgchem_7b02658
crossref_primary_10_1021_acs_jpcc_2c03164
crossref_primary_10_3866_PKU_WHXB202306054
crossref_primary_10_1016_j_ijhydene_2016_11_048
crossref_primary_10_1039_C7TA00980A
crossref_primary_10_1016_j_jtice_2023_104802
crossref_primary_10_3390_ma17112617
crossref_primary_10_1016_j_mseb_2024_117785
crossref_primary_10_1016_j_ijhydene_2018_01_163
crossref_primary_10_1021_acsami_6b02491
crossref_primary_10_1016_j_electacta_2018_05_049
crossref_primary_10_1016_j_electacta_2017_09_064
crossref_primary_10_1039_C7CC04368F
crossref_primary_10_1007_s10800_024_02105_z
crossref_primary_10_1016_j_electacta_2019_06_013
crossref_primary_10_1039_D1QM00305D
crossref_primary_10_3390_catal12030337
crossref_primary_10_1016_j_jcis_2022_03_072
crossref_primary_10_3390_app7010064
crossref_primary_10_1016_j_jcat_2021_11_005
crossref_primary_10_1149_1945_7111_ac0459
crossref_primary_10_1002_smll_202302151
crossref_primary_10_1016_j_jpowsour_2019_05_059
crossref_primary_10_1016_j_ceramint_2015_06_032
crossref_primary_10_3389_fchem_2020_00777
crossref_primary_10_1039_D1CY00435B
crossref_primary_10_1002_cctc_201801094
crossref_primary_10_1016_j_ijhydene_2020_07_193
crossref_primary_10_1016_j_jcis_2020_06_030
crossref_primary_10_1016_j_cej_2018_10_225
crossref_primary_10_1016_j_jare_2018_12_003
crossref_primary_10_1002_ente_202100017
crossref_primary_10_1016_j_electacta_2020_136516
crossref_primary_10_1016_j_jcis_2019_09_012
crossref_primary_10_1515_chem_2021_0100
crossref_primary_10_1007_s12598_024_02668_y
crossref_primary_10_1021_acsaem_1c00607
crossref_primary_10_1007_s10800_016_0993_6
crossref_primary_10_1155_2018_9870732
crossref_primary_10_1002_ente_201600185
crossref_primary_10_1002_cssc_202102614
crossref_primary_10_1007_s11356_021_18280_x
crossref_primary_10_1016_j_jes_2021_03_017
crossref_primary_10_1016_j_jpowsour_2018_12_024
crossref_primary_10_1002_ange_201606313
crossref_primary_10_1016_j_jpowsour_2017_07_117
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1002_celc_201901423
crossref_primary_10_1021_acsami_9b22956
crossref_primary_10_1039_D0NR01386B
crossref_primary_10_1016_j_electacta_2022_140877
crossref_primary_10_3390_ani14030433
crossref_primary_10_1016_j_arabjc_2016_12_021
crossref_primary_10_1016_j_ijhydene_2023_04_057
crossref_primary_10_1016_j_jelechem_2022_116242
crossref_primary_10_1016_j_ceramint_2024_05_358
crossref_primary_10_1021_acsaem_2c03938
crossref_primary_10_1016_j_pecs_2019_100805
crossref_primary_10_1088_1757_899X_902_1_012001
crossref_primary_10_1016_j_cej_2021_132733
crossref_primary_10_1016_j_nanoen_2015_10_030
crossref_primary_10_1002_adfm_202000556
crossref_primary_10_1016_j_electacta_2018_02_059
crossref_primary_10_1002_ente_202101010
crossref_primary_10_1016_j_inoche_2023_110933
crossref_primary_10_1051_e3sconf_202021103004
crossref_primary_10_1002_anie_201606313
crossref_primary_10_1038_s41598_018_37011_w
crossref_primary_10_1016_j_electacta_2017_12_123
crossref_primary_10_1021_acsami_8b14397
crossref_primary_10_1016_j_fuel_2022_124660
crossref_primary_10_3390_ma17061292
crossref_primary_10_1021_acssuschemeng_9b03275
crossref_primary_10_1016_j_apmate_2022_01_003
crossref_primary_10_1016_j_apsusc_2017_11_076
crossref_primary_10_1039_D1TA09989B
crossref_primary_10_1149_2_0561706jes
crossref_primary_10_1039_D0NR08025J
crossref_primary_10_1039_D0QM00526F
crossref_primary_10_1039_D4RA07911F
crossref_primary_10_1021_acsami_3c16244
crossref_primary_10_1246_bcsj_20210301
crossref_primary_10_1021_acsomega_0c03477
Cites_doi 10.1007/s10008-012-1855-8
10.1016/j.elecom.2008.08.043
10.1039/C3NR05359H
10.1038/srep01309
10.2298/JSC0311859G
10.1016/j.apcatb.2004.11.009
10.1021/jp305323s
10.1016/j.jpowsour.2011.02.015
10.1038/srep01775
10.1016/j.jpowsour.2010.11.006
10.1016/S0169-4332(97)00223-7
10.1149/1.1403731
10.1149/1.1613671
10.1016/j.ecoleng.2013.06.039
10.1007/BF01009266
10.1016/j.electacta.2007.11.029
10.1021/la1005264
10.1016/j.apsusc.2010.10.051
10.1007/s10008-010-1018-8
10.1039/b924786f
10.1016/j.soilbio.2013.05.006
10.1126/science.1188267
10.1016/j.jpowsour.2010.06.009
10.1016/j.electacta.2011.11.044
10.1016/j.electacta.2012.06.129
10.1039/b905974a
10.1016/0378-7753(89)85001-3
ContentType Journal Article
Copyright The Author(s) 2014
Copyright Nature Publishing Group Aug 2014
Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved
Copyright_xml – notice: The Author(s) 2014
– notice: Copyright Nature Publishing Group Aug 2014
– notice: Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep05863
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC4148665
25168632
10_1038_srep05863
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c504t-ff3c49120e467949be0f1be68676c092e86982bc9eede86cc2d79bd9e71dd5003
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 17:46:17 EDT 2025
Fri Jul 11 03:47:02 EDT 2025
Sat Aug 23 14:12:13 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 03:14:31 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-ff3c49120e467949be0f1be68676c092e86982bc9eede86cc2d79bd9e71dd5003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1898154000?pq-origsite=%requestingapplication%
PMID 25168632
PQID 1898154000
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148665
proquest_miscellaneous_1559624090
proquest_journals_1898154000
pubmed_primary_25168632
crossref_citationtrail_10_1038_srep05863
crossref_primary_10_1038_srep05863
springer_journals_10_1038_srep05863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-29
PublicationDateYYYYMMDD 2014-08-29
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hernandez-FernandezPEffect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported PtJ. Power Sources2010195795979671:CAS:528:DC%2BC3cXhtFWnsr3F2010JPS...195.7959H10.1016/j.jpowsour.2010.06.009
Córdoba de TorresiSIProvaziKMaltaMTorresiRMEffect of additives in the stabilization of the α Phase of Ni(OH)2 electrodesJ. Electrochem. Soc.2001148A1179A118410.1149/1.1403731
BoggsBKKingRLBotteGGUrea electrolysis: direct hydrogen production from urineChem. Commun.2009324859486110.1039/b905974a
YanWWangDBotteGGNickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidationElectrochim. Acta20126125301:CAS:528:DC%2BC38XmtFWj10.1016/j.electacta.2011.11.044
VidottiMSilvaMRSalvadorRPCórdoba de TorresiSIDall'AntoniaLHElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029
KingRLBotteGGHydrogen production via urea electrolysis using a gel electrolyteJ. Power Sources2011196277327781:CAS:528:DC%2BC3cXhs1SrtLnI2011JPS...196.2773K10.1016/j.jpowsour.2010.11.006
HwangSJSupported core@shell electrocatalysts for fuel cells: close encounter withrealitySci. Rep.20133130910.1038/srep01309
VidottiMElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029
ArmstrongRDCharlesEASome effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodesJ. Power Sources19892589971:CAS:528:DyaL1MXhslKlsbk%3D1989JPS....25...89A10.1016/0378-7753(89)85001-3
DuttaADattaJOutstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cellJ. Phys. Chem. C201211625677256881:CAS:528:DC%2BC38XhsFCrtbrE10.1021/jp305323s
Putnam, D. F. Composition and Concentrative Properties of Human Urine. (NASA Contractor Report, the United States, 1971).
SunSSingle-atom catalysis using Pt/graphene achieved through atomic layer depositionSci. Rep.20133177510.1038/srep01775
WangXXiaYElectrocatalytic performance of PdCo–C catalyst for formic acid oxidationElectrochem Commun.200810164416461:CAS:528:DC%2BD1cXhtFOgtbrE10.1016/j.elecom.2008.08.043
KimJWParkSMIn situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanolJ. Electrochem. Soc.2003150E560E5661:CAS:528:DC%2BD3sXotVKkt7k%3D10.1149/1.1613671
DingRFacile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidationNanoscale20146136913761:CAS:528:DC%2BC2cXotV2qsg%3D%3D2014Nanos...6.1369D10.1039/C3NR05359H
HamontsKInfluence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea depositionSoil Biol. Biochem.2013651111:CAS:528:DC%2BC3sXht1Sht77I10.1016/j.soilbio.2013.05.006
HuangHFanYWangXLow-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanolElectrochim. Acta2012801181251:CAS:528:DC%2BC38Xht1Gisb7M10.1016/j.electacta.2012.06.129
WangZHigh electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cellsJ. Solid State Electrochem.201317991071:CAS:528:DC%2BC3sXhtVajtQ%3D%3D2013SSEle..82...99W10.1007/s10008-012-1855-8
SalgadoJRCAntoliniEGonzalezERCarbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cellsAppl. Catal. B2005572832901:CAS:528:DC%2BD2MXjslOkur4%3D10.1016/j.apcatb.2004.11.009
LanRTaoSPreparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cellsJ. Power Sources2011196502150261:CAS:528:DC%2BC3MXjvVSgtLo%3D2011JPS...196.5021L10.1016/j.jpowsour.2011.02.015
GojkovicSLElectrochemical oxidation of methanol on Pt3Co bulk alloyJ. Serb. Chem. Soc.2003688598701:CAS:528:DC%2BD2cXkt1Gh10.2298/JSC0311859G
FuQInterface-confined ferrous centers for catalytic oxidationScience2010328114111441:CAS:528:DC%2BC3cXmsVGjs7c%3D2010Sci...328.1141F10.1126/science.1188267
ArmstrongRDBriggsGWDCharlesEASome effects of the addition of cobalt to the nickel hydroxide electrodeJ. Appl. Electrochem.1988182152191:CAS:528:DyaL1cXit1ygtLk%3D10.1007/BF01009266
ChoiIDLeeHShimYBLeeDA one-Step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrodeLangmuir20102611212112161:CAS:528:DC%2BC3cXjtlaitr4%3D10.1021/la1005264
Shriver, D. & Atkins, P. Inorganic Chemistry. (W. H. Freeman, the United States, 2010).
TangYElectro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acidJ. Solid State Electrochem.201014207720821:CAS:528:DC%2BC3cXhtVCjtbrJ10.1007/s10008-010-1018-8
ChangJJWuSQDaiYRLiangWWuZBNitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systemsEcol. Eng.20135819220110.1016/j.ecoleng.2013.06.039
DaiW-LQiaoM-HDengJ-FXPS studies on a novel amorphous Ni–Co–W–B alloy powderAppl. Surf. Sci.19971201191241:CAS:528:DyaK2sXmsVKiurk%3D1997ApSS..120..119D10.1016/S0169-4332(97)00223-7
Meessen, J. H. [Urea]. Ullmann's Encyclopedia of Industrial Chemistry. (Wiley-VCH, Germany, 2010).
BiesingerMCPayneBPGrosvenorAPLauLWMGersonARSmartRSt. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and NiAppl. Surf. Sci.2011257271727301:CAS:528:DC%2BC3MXjtVWntw%3D%3D2011ApSS..257.2717B10.1016/j.apsusc.2010.10.051
LanRTaoSIrvineJTSA direct urea fuel cell - power from fertiliser and wasteEnergy Environ. Sci.201034384411:CAS:528:DC%2BC3cXnvVaiu7g%3D10.1039/b924786f
RD Armstrong (BFsrep05863_CR30) 1989; 25
Y Tang (BFsrep05863_CR14) 2010; 14
Z Wang (BFsrep05863_CR17) 2013; 17
MC Biesinger (BFsrep05863_CR26) 2011; 257
SI Córdoba de Torresi (BFsrep05863_CR29) 2001; 148
JRC Salgado (BFsrep05863_CR23) 2005; 57
BFsrep05863_CR24
ID Choi (BFsrep05863_CR7) 2010; 26
Q Fu (BFsrep05863_CR9) 2010; 328
JW Kim (BFsrep05863_CR28) 2003; 150
K Hamonts (BFsrep05863_CR5) 2013; 65
BFsrep05863_CR2
H Huang (BFsrep05863_CR16) 2012; 80
BFsrep05863_CR1
JJ Chang (BFsrep05863_CR6) 2013; 58
BK Boggs (BFsrep05863_CR12) 2009; 32
R Lan (BFsrep05863_CR3) 2011; 196
A Dutta (BFsrep05863_CR8) 2012; 116
RL King (BFsrep05863_CR13) 2011; 196
P Hernandez-Fernandez (BFsrep05863_CR21) 2010; 195
SJ Hwang (BFsrep05863_CR11) 2013; 3
M Vidotti (BFsrep05863_CR18) 2008; 53
W Yan (BFsrep05863_CR19) 2012; 61
R Ding (BFsrep05863_CR20) 2014; 6
W-L Dai (BFsrep05863_CR25) 1997; 120
RD Armstrong (BFsrep05863_CR31) 1988; 18
R Lan (BFsrep05863_CR4) 2010; 3
S Sun (BFsrep05863_CR10) 2013; 3
M Vidotti (BFsrep05863_CR27) 2008; 53
X Wang (BFsrep05863_CR15) 2008; 10
SL Gojkovic (BFsrep05863_CR22) 2003; 68
19652805 - Chem Commun (Camb). 2009 Aug 28;(32):4859-61
24306055 - Nanoscale. 2014;6(3):1369-76
20508127 - Science. 2010 May 28;328(5982):1141-4
23419683 - Sci Rep. 2013;3:1309
20235541 - Langmuir. 2010 Jul 6;26(13):11212-6
References_xml – reference: HuangHFanYWangXLow-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanolElectrochim. Acta2012801181251:CAS:528:DC%2BC38Xht1Gisb7M10.1016/j.electacta.2012.06.129
– reference: DingRFacile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidationNanoscale20146136913761:CAS:528:DC%2BC2cXotV2qsg%3D%3D2014Nanos...6.1369D10.1039/C3NR05359H
– reference: Hernandez-FernandezPEffect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported PtJ. Power Sources2010195795979671:CAS:528:DC%2BC3cXhtFWnsr3F2010JPS...195.7959H10.1016/j.jpowsour.2010.06.009
– reference: ChangJJWuSQDaiYRLiangWWuZBNitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systemsEcol. Eng.20135819220110.1016/j.ecoleng.2013.06.039
– reference: Putnam, D. F. Composition and Concentrative Properties of Human Urine. (NASA Contractor Report, the United States, 1971).
– reference: HamontsKInfluence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea depositionSoil Biol. Biochem.2013651111:CAS:528:DC%2BC3sXht1Sht77I10.1016/j.soilbio.2013.05.006
– reference: LanRTaoSIrvineJTSA direct urea fuel cell - power from fertiliser and wasteEnergy Environ. Sci.201034384411:CAS:528:DC%2BC3cXnvVaiu7g%3D10.1039/b924786f
– reference: SunSSingle-atom catalysis using Pt/graphene achieved through atomic layer depositionSci. Rep.20133177510.1038/srep01775
– reference: DaiW-LQiaoM-HDengJ-FXPS studies on a novel amorphous Ni–Co–W–B alloy powderAppl. Surf. Sci.19971201191241:CAS:528:DyaK2sXmsVKiurk%3D1997ApSS..120..119D10.1016/S0169-4332(97)00223-7
– reference: GojkovicSLElectrochemical oxidation of methanol on Pt3Co bulk alloyJ. Serb. Chem. Soc.2003688598701:CAS:528:DC%2BD2cXkt1Gh10.2298/JSC0311859G
– reference: TangYElectro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acidJ. Solid State Electrochem.201014207720821:CAS:528:DC%2BC3cXhtVCjtbrJ10.1007/s10008-010-1018-8
– reference: YanWWangDBotteGGNickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidationElectrochim. Acta20126125301:CAS:528:DC%2BC38XmtFWj10.1016/j.electacta.2011.11.044
– reference: KingRLBotteGGHydrogen production via urea electrolysis using a gel electrolyteJ. Power Sources2011196277327781:CAS:528:DC%2BC3cXhs1SrtLnI2011JPS...196.2773K10.1016/j.jpowsour.2010.11.006
– reference: ArmstrongRDCharlesEASome effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodesJ. Power Sources19892589971:CAS:528:DyaL1MXhslKlsbk%3D1989JPS....25...89A10.1016/0378-7753(89)85001-3
– reference: Shriver, D. & Atkins, P. Inorganic Chemistry. (W. H. Freeman, the United States, 2010).
– reference: FuQInterface-confined ferrous centers for catalytic oxidationScience2010328114111441:CAS:528:DC%2BC3cXmsVGjs7c%3D2010Sci...328.1141F10.1126/science.1188267
– reference: SalgadoJRCAntoliniEGonzalezERCarbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cellsAppl. Catal. B2005572832901:CAS:528:DC%2BD2MXjslOkur4%3D10.1016/j.apcatb.2004.11.009
– reference: Meessen, J. H. [Urea]. Ullmann's Encyclopedia of Industrial Chemistry. (Wiley-VCH, Germany, 2010).
– reference: VidottiMSilvaMRSalvadorRPCórdoba de TorresiSIDall'AntoniaLHElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029
– reference: BiesingerMCPayneBPGrosvenorAPLauLWMGersonARSmartRSt. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and NiAppl. Surf. Sci.2011257271727301:CAS:528:DC%2BC3MXjtVWntw%3D%3D2011ApSS..257.2717B10.1016/j.apsusc.2010.10.051
– reference: VidottiMElectrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodesElectrochim. Acta200853403040341:CAS:528:DC%2BD1cXis1ans7s%3D10.1016/j.electacta.2007.11.029
– reference: WangXXiaYElectrocatalytic performance of PdCo–C catalyst for formic acid oxidationElectrochem Commun.200810164416461:CAS:528:DC%2BD1cXhtFOgtbrE10.1016/j.elecom.2008.08.043
– reference: Córdoba de TorresiSIProvaziKMaltaMTorresiRMEffect of additives in the stabilization of the α Phase of Ni(OH)2 electrodesJ. Electrochem. Soc.2001148A1179A118410.1149/1.1403731
– reference: HwangSJSupported core@shell electrocatalysts for fuel cells: close encounter withrealitySci. Rep.20133130910.1038/srep01309
– reference: WangZHigh electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cellsJ. Solid State Electrochem.201317991071:CAS:528:DC%2BC3sXhtVajtQ%3D%3D2013SSEle..82...99W10.1007/s10008-012-1855-8
– reference: ChoiIDLeeHShimYBLeeDA one-Step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrodeLangmuir20102611212112161:CAS:528:DC%2BC3cXjtlaitr4%3D10.1021/la1005264
– reference: BoggsBKKingRLBotteGGUrea electrolysis: direct hydrogen production from urineChem. Commun.2009324859486110.1039/b905974a
– reference: DuttaADattaJOutstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cellJ. Phys. Chem. C201211625677256881:CAS:528:DC%2BC38XhsFCrtbrE10.1021/jp305323s
– reference: KimJWParkSMIn situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanolJ. Electrochem. Soc.2003150E560E5661:CAS:528:DC%2BD3sXotVKkt7k%3D10.1149/1.1613671
– reference: ArmstrongRDBriggsGWDCharlesEASome effects of the addition of cobalt to the nickel hydroxide electrodeJ. Appl. Electrochem.1988182152191:CAS:528:DyaL1cXit1ygtLk%3D10.1007/BF01009266
– reference: LanRTaoSPreparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cellsJ. Power Sources2011196502150261:CAS:528:DC%2BC3MXjvVSgtLo%3D2011JPS...196.5021L10.1016/j.jpowsour.2011.02.015
– volume: 17
  start-page: 99
  year: 2013
  ident: BFsrep05863_CR17
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-012-1855-8
– volume: 10
  start-page: 1644
  year: 2008
  ident: BFsrep05863_CR15
  publication-title: Electrochem Commun.
  doi: 10.1016/j.elecom.2008.08.043
– volume: 6
  start-page: 1369
  year: 2014
  ident: BFsrep05863_CR20
  publication-title: Nanoscale
  doi: 10.1039/C3NR05359H
– volume: 3
  start-page: 1309
  year: 2013
  ident: BFsrep05863_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/srep01309
– volume: 68
  start-page: 859
  year: 2003
  ident: BFsrep05863_CR22
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC0311859G
– volume: 57
  start-page: 283
  year: 2005
  ident: BFsrep05863_CR23
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2004.11.009
– volume: 116
  start-page: 25677
  year: 2012
  ident: BFsrep05863_CR8
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305323s
– volume: 196
  start-page: 5021
  year: 2011
  ident: BFsrep05863_CR3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.02.015
– volume: 3
  start-page: 1775
  year: 2013
  ident: BFsrep05863_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep01775
– volume: 196
  start-page: 2773
  year: 2011
  ident: BFsrep05863_CR13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.006
– volume: 120
  start-page: 119
  year: 1997
  ident: BFsrep05863_CR25
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(97)00223-7
– volume: 148
  start-page: A1179
  year: 2001
  ident: BFsrep05863_CR29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1403731
– ident: BFsrep05863_CR24
– ident: BFsrep05863_CR1
– volume: 150
  start-page: E560
  year: 2003
  ident: BFsrep05863_CR28
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1613671
– volume: 58
  start-page: 192
  year: 2013
  ident: BFsrep05863_CR6
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.06.039
– volume: 18
  start-page: 215
  year: 1988
  ident: BFsrep05863_CR31
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01009266
– volume: 53
  start-page: 4030
  year: 2008
  ident: BFsrep05863_CR18
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.11.029
– volume: 26
  start-page: 11212
  year: 2010
  ident: BFsrep05863_CR7
  publication-title: Langmuir
  doi: 10.1021/la1005264
– volume: 257
  start-page: 2717
  year: 2011
  ident: BFsrep05863_CR26
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.10.051
– ident: BFsrep05863_CR2
– volume: 14
  start-page: 2077
  year: 2010
  ident: BFsrep05863_CR14
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-010-1018-8
– volume: 3
  start-page: 438
  year: 2010
  ident: BFsrep05863_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b924786f
– volume: 65
  start-page: 1
  year: 2013
  ident: BFsrep05863_CR5
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.05.006
– volume: 328
  start-page: 1141
  year: 2010
  ident: BFsrep05863_CR9
  publication-title: Science
  doi: 10.1126/science.1188267
– volume: 195
  start-page: 7959
  year: 2010
  ident: BFsrep05863_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.009
– volume: 61
  start-page: 25
  year: 2012
  ident: BFsrep05863_CR19
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.11.044
– volume: 80
  start-page: 118
  year: 2012
  ident: BFsrep05863_CR16
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.06.129
– volume: 32
  start-page: 4859
  year: 2009
  ident: BFsrep05863_CR12
  publication-title: Chem. Commun.
  doi: 10.1039/b905974a
– volume: 53
  start-page: 4030
  year: 2008
  ident: BFsrep05863_CR27
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.11.029
– volume: 25
  start-page: 89
  year: 1989
  ident: BFsrep05863_CR30
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(89)85001-3
– reference: 19652805 - Chem Commun (Camb). 2009 Aug 28;(32):4859-61
– reference: 23419683 - Sci Rep. 2013;3:1309
– reference: 20235541 - Langmuir. 2010 Jul 6;26(13):11212-6
– reference: 24306055 - Nanoscale. 2014;6(3):1369-76
– reference: 20508127 - Science. 2010 May 28;328(5982):1141-4
SSID ssj0000529419
Score 2.5218346
Snippet Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5863
SubjectTerms 147/135
147/143
639/638/161
639/638/77
Catalysis
Catalysts
Cobalt
Cobalt - chemistry
conference-proceeding
Electric Power Supplies
Electrodes
Fuel cells
Fuel technology
Humanities and Social Sciences
Humans
multidisciplinary
Nanoparticles
Nickel
Nickel - chemistry
Oxidizing agents
Particle Size
Science
Temperature effects
Urea
Urea - chemistry
Urine
Urine - chemistry
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngR365WiY-Dl9B9ZjcnUbEUQU8Wels2j8Vi3Va7PfTfO9mXthVvCxnI7EyS-fJNmAG4Zmj5VDqcSp9L6nsqoYkUAeVCmvZHrhAFNfD8wnp9_2kQDCrCbVo9q6zPxOKgVmNpOPKOE_EIwz3u4NvJJzVdo0x2tWqhsQ4bpnSZWdXhIGw4FpPF8h1eFxTyog6GnYkdRMxbDEMr2HL1ieRSnrQIP90d2K5wI7krHb0Lazrbg82yk-R8H-7Ro-96RKUp75ETMfzQiKpHQ0mSbKw0KVia-TSfEgSppIxjxDxIJ-lMj4ih7w-g3318fejRqj0ClYHt5zRNPTSw49oaDzvuc6Ht1BGaRSxk0uaujhiPXCE5hkH8ltJVIReK69BRKsDdfAitbJzpY0AlHI04DpG2bQxmY8hCXCJTlSY8SKSy4Ka2Viyr2uGmhcUoLnLYXhQ3hrXgshGdlAUz_hJq1yaPqz0zjX88bMFFM4yr3dggyfR4hjKB6RaEd1KUOSo91MyCSA3_3XMtCBd81wiYStqLI9nwraio7eOlkLHAgqvay7_UWlb-5H_lT2ELQZVveGeXt6GVf830GQKXXJwXq_Mb7OHv-w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgExIXxJvCQOFx4FLRR5o2x4GYpklwgUm7VU2aionSTbQ77N_j9AVjHLhViqu6dhJ_cazPADcMLZ9Im5uScmlSN47MSArP5ELq9keOEGVq4OmZDcd0NPEmNVl0XpdVVpSW5TbdVIfdYbyYW17A3E3oaoZ2nNLdfn_0MmoTKvrKitq8YQ9yg-93VmPOGpBcr4f8dSlaxprBLuzUIJH0K7X2YENl-7BVtY1cHsA9uu9dpabUXB4FEdMPhRA6nUoSZbNYkTIls8yLnCAiJVXQIrr6nCQLlRKdqz-E8eDx9WFo1r0QTOlZtDCTxEVr2o6lcGfjlAtlJbZQLGA-kxZ3VMB44AjJMebhs5RO7HMRc-Xbcezh0j2CTjbL1AmgErZC0Iaw2tIGszA-IQiRSZxE3ItkbMBtY61Q1kThul9FGpYX1m4QtoY14KoVnVfsGH8J9RqTh_UCyUM74AGiN3SbAZftME5tbYMoU7MFyni6NRAeQFHmuPJQ-xWEZfjvrmOAv-K7VkDTZq-OZNO3kj6b4gmQMc-A68bLP9T6rfzpv6TOYBuBFNW5Zof3oFN8LtQ5gpVCXNTT9AvPdexm
  priority: 102
  providerName: Springer Nature
Title Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell
URI https://link.springer.com/article/10.1038/srep05863
https://www.ncbi.nlm.nih.gov/pubmed/25168632
https://www.proquest.com/docview/1898154000
https://www.proquest.com/docview/1559624090
https://pubmed.ncbi.nlm.nih.gov/PMC4148665
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xEBIXBOwuhEdllj3sxbuJkzjxAaFSgVAlEAIq9RbFjiMqQlpoKtF_zzgvUeDAKVE8UcYzcebz2JkP4A9Hy6fKEVR5QlHPTWIaK-lTIZWhP2JSlqmBq2t-OfD6Q3-4BA3HZm3A6ZdTO8MnNXjJ_r0-z09xwJ9Uv4yH_zGWTGw_5O4yrGJACgyRwVWN8qsS30x4JcWHqb1OEUOwpsbQ-7sXI9MnuPl51-SHpdMyIl1swkYNJUm38v0WLOl8G9Yqcsn5DzhDJz_qjCpT8aMgcvSksY_ZSJE4HyealImb-bSYEsStpAptxOxRJ-lMZ8Rk9H_C4OL8vndJa8YEqnzbK2iaumhzh9kav3_CE1LbqSM1D3nAlS2YDrkImVQCIyOeK8WSQMhE6MBJEh8H-C9Yyce53gVUwtEI7RB828Z4NkYxhCoqTdJY-LFKLPjbWCtSdTlxw2qRReWythtGrWEt-N2KTqoaGl8JHTQmj5q3IHJCESLGQxdacNQ24wAwNohzPZ6hjG8IhHCaijI7lYfapyB4w767zIJgwXetgCmuvdiSjx7KItsezhM59y04brz8Tq2Pyu99Q7t9WEew5Zl8NBMHsFK8zPQhAppCdmA5GAYdWO12-3d9PJ6dX9_c4tUe73XKJEGnfKHfAIt2-9M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RECoXxKMt5tWFtlIvK-y1vfYeEOKp8DyBlJvrfViNCE4gjlD-FL-RWTs2BKreuFnyyB7PY-fbmfUMwE-Oks-UJ6gKhKKBr1OaKhlSIZUdf8SkLFMDl1e8dROctcP2FDzV_8LYY5X1mlgu1LqnbI58x4tFjOEePXivf0_t1ChbXa1HaFRmcW5Gj7hlG-yeHqF-fzF2cnx92KLjqQJUhW5Q0CzzkS-PuQbXCBEIadzMk4bHPOLKFczEXMRMKoHRA6-VYjoSUgsTeVqH6AT43E8wg4HXtZu9qB01OR1bNQs8UTcw8uMdDHN9N4y5Pxn23mHZ90cy39Rly3B3sgDzY5xK9ivDWoQpky_BbDW5crQMB2hBt6ZLlW0nUhDZuTOI4rsdRdK8pw0ps0KjQTEgCIpJFTeJPQBPsqHpElsu-AI3HyK4rzCd93KzAsiEZxA3IrJ3rcBcDJGIg1Sms1SEqdIO_K6llahxr3I7MqOblDVzP04awTqw3ZD2qwYd_yJar0WejH10kLxYlANbzW30LiuDNDe9IdKEdjoR7oGR5luloeYtiAzx233mQDShu4bAdu6evJN3_pYdvAPchHIeOvCj1vIrtt4yv_p_5r_D59b15UVycXp1vgZzCOgCm_NmYh2mi4eh2UDQVMjN0lIJ_Plo13gGPVQtUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BUBEXRB8UF9puaStxWcVe22vvAaFSiHi0EaqKxM31PqxGTZ1AHKH8NX4ds361AcSNmyWP7PE8dr6dWc8AfOIo-Ux5gqpAKBr4OqWpkiEVUtnxR0zKMjXwvc-PzoOTi_BiAW6af2HsscpmTSwXaj1SNkfe9WIRY7hHD-5m9bGIs4Pe3viS2glSttLajNOoTOTUzK5x-zbZPT5AXX9mrHf48-sRrScMUBW6QUGzzEcePeYaXC9EIKRxM08aHvOIK1cwE3MRM6kERhK8VorpSEgtTORpHaJD4HMXYSmyu6IOLO0f9s9-tBkeW0MLPNG0M_LjLga9sRvG3J8PgveQ7f0DmneqtGXw663Bao1ayZfKzJ7DgslfwLNqjuXsJeyjPf0xQ6psc5GCyMFfg5h-OFAkzUfakDJHNJsUE4IQmVRRlNjj8CSbmiGxxYNXcP4koluHTj7KzQYgE55BFIk437UCczFgIipSmc5SEaZKO7DTSCtRdedyO0BjmJQVdD9OWsE6sN2Sjqt2HQ8RbTUiT2qPnST_7MuBD-1t9DUrgzQ3oynShHZWEe6IkeZ1paH2LYgT8dt95kA0p7uWwPbxnr-TD36X_bwD3JJyHjrwsdHyf2zdZf7N48y_h2V0i-Tbcf90E1YQ3QU2Ac7EFnSKq6l5iwiqkO9qUyXw66m94xYblDLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel-cobalt+bimetallic+anode+catalysts+for+direct+urea+fuel+cell&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Wei&rft.au=Zhang%2C+Huimin&rft.au=Li%2C+Gang&rft.au=Wu%2C+Zucheng&rft.date=2014-08-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=4&rft.spage=5863&rft_id=info:doi/10.1038%2Fsrep05863&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon