Influence of elevated Zn (II) on Anammox system: Microbial variation and zinc tolerance
•Zinc ion performed significant inhibition on Anammox process.•AAOB had self-adaption to elevated Zn (II) in 1–10 mg L−1.•The irreversible suppression threshold on AAOB was 20 mg L−1 Zn (II).•Zn (II) addition led to the biodiversity increase of Anammox system.•Relative abundance of AAOB significantl...
Saved in:
Published in | Bioresource technology Vol. 251; pp. 108 - 113 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Zinc ion performed significant inhibition on Anammox process.•AAOB had self-adaption to elevated Zn (II) in 1–10 mg L−1.•The irreversible suppression threshold on AAOB was 20 mg L−1 Zn (II).•Zn (II) addition led to the biodiversity increase of Anammox system.•Relative abundance of AAOB significantly rebounded after long-term acclimatization.
Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23–26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m−3 d−1, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1–10 mg L−1 and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L−1. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g−1 SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%. |
---|---|
AbstractList | Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23-26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m
d
, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1-10 mg L
and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L
. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g
SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%. Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23-26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m-3 d-1, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1-10 mg L-1 and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L-1. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g-1 SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%.Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23-26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m-3 d-1, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1-10 mg L-1 and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L-1. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g-1 SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%. •Zinc ion performed significant inhibition on Anammox process.•AAOB had self-adaption to elevated Zn (II) in 1–10 mg L−1.•The irreversible suppression threshold on AAOB was 20 mg L−1 Zn (II).•Zn (II) addition led to the biodiversity increase of Anammox system.•Relative abundance of AAOB significantly rebounded after long-term acclimatization. Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23–26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m−3 d−1, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1–10 mg L−1 and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L−1. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g−1 SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%. Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23–26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m⁻³ d⁻¹, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1–10 mg L⁻¹ and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L⁻¹. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g⁻¹ SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%. |
Author | Ma, Yongpeng Chen, Zhao Zhang, Xiaojing Wang, Lina Zhao, Siyu Zhai, Hanfei Zhou, Yue |
Author_xml | – sequence: 1 givenname: Xiaojing surname: Zhang fullname: Zhang, Xiaojing email: zhangxiaojing@zzuli.edu.cn – sequence: 2 givenname: Zhao surname: Chen fullname: Chen, Zhao – sequence: 3 givenname: Yongpeng surname: Ma fullname: Ma, Yongpeng – sequence: 4 givenname: Yue surname: Zhou fullname: Zhou, Yue – sequence: 5 givenname: Siyu surname: Zhao fullname: Zhao, Siyu – sequence: 6 givenname: Lina surname: Wang fullname: Wang, Lina – sequence: 7 givenname: Hanfei surname: Zhai fullname: Zhai, Hanfei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29272769$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVJaZy0fyFomS5mKmlm9ChdNIQ-DCndtAS6EbLmisrMSKkkmyS_vnIcb7Lx6m6-cy6c7wydhBgAoQtKWkoo_7BuVz6mAvZvywgVLWUt6YZXaEGl6BqmBD9BC6I4aeTA-lN0lvOaENJRwd6gU6aYYIKrBbpdBjdtIFjA0WGYYGsKjPhPwJfL5XscA74KZp7jPc4PucD8Ef_wNsWVNxPemuRN8ZUxYcSPPlhc4gTJ1La36LUzU4Z3z_cc_f765df19-bm57fl9dVNYwfSl8bJnhnhBJUKwFnZc8ttNxAJYhCddOMouR24FNYYJakk_QCDMswYJ8xKsu4cXe5771L8t4Fc9OyzhWkyAeIma1YTsut7Qo-iVAmlOFOUV_TiGd2sZhj1XfKzSQ_6sFsFPu2BukXOCZy2vjxtUZLxk6ZE7zTptT5o0jtNmjJdNdU4fxE_fDga_LwPQt106yHpbP3O3ugT2KLH6I9V_Af18K-F |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116498 crossref_primary_10_1016_j_watres_2024_121996 crossref_primary_10_1080_10643389_2020_1831358 crossref_primary_10_1016_j_jhazmat_2024_135070 crossref_primary_10_3390_ijms221910529 crossref_primary_10_1016_j_scitotenv_2024_172397 crossref_primary_10_1016_j_jclepro_2020_123921 crossref_primary_10_1016_j_biortech_2018_08_035 crossref_primary_10_1016_j_bej_2019_04_010 crossref_primary_10_1016_j_biortech_2020_123769 crossref_primary_10_3389_fceng_2022_851822 crossref_primary_10_3390_w12010020 crossref_primary_10_1016_j_scitotenv_2022_155074 crossref_primary_10_1016_j_biortech_2019_02_005 crossref_primary_10_1016_j_scitotenv_2020_138603 crossref_primary_10_1080_10643389_2020_1738166 crossref_primary_10_1016_j_marpolbul_2024_116408 crossref_primary_10_1002_jctb_7056 crossref_primary_10_2166_wst_2021_608 crossref_primary_10_1016_j_envres_2023_115513 crossref_primary_10_1515_revce_2020_0024 crossref_primary_10_1016_j_scitotenv_2024_174269 crossref_primary_10_1016_j_bej_2023_109112 crossref_primary_10_1016_j_cjche_2024_10_002 crossref_primary_10_1016_j_jhazmat_2021_125533 crossref_primary_10_1016_j_scitotenv_2021_149449 crossref_primary_10_1007_s11270_024_07705_1 crossref_primary_10_1016_j_seppur_2021_118539 crossref_primary_10_1016_j_chemosphere_2019_03_121 crossref_primary_10_1016_j_envpol_2019_04_094 crossref_primary_10_1016_j_procbio_2019_01_014 crossref_primary_10_1016_j_jhazmat_2024_135367 crossref_primary_10_1016_j_biortech_2018_05_067 crossref_primary_10_1016_j_envadv_2023_100379 crossref_primary_10_1016_j_jhazmat_2025_137820 crossref_primary_10_1016_j_chemosphere_2024_143308 crossref_primary_10_1016_j_scitotenv_2021_150009 crossref_primary_10_1007_s10646_019_02099_x crossref_primary_10_1016_j_chemosphere_2020_127838 crossref_primary_10_1016_j_cej_2023_146980 crossref_primary_10_1016_j_watres_2023_120031 crossref_primary_10_1002_jctb_6504 |
Cites_doi | 10.2166/wst.2008.570 10.2166/wst.2016.456 10.1016/S0304-3894(03)00116-X 10.1016/j.soilbio.2012.12.003 10.1016/j.biortech.2013.05.019 10.1002/jctb.4377 10.1016/j.biortech.2015.10.035 10.1016/j.jbiosc.2016.06.008 10.1080/19443994.2014.984339 10.1016/j.watres.2012.10.037 10.1007/s00253-015-7120-1 10.1016/j.biortech.2016.04.118 10.2166/wst.2001.0340 10.1007/s00253-014-6205-6 10.1080/09593330.2016.1223174 10.1016/j.chemosphere.2015.03.058 10.1002/jctb.2321 10.1016/j.biortech.2016.12.099 10.1016/j.biortech.2017.04.017 10.1016/j.watres.2016.05.005 10.1126/science.1185941 10.1016/j.memsci.2013.10.008 10.1016/j.watres.2007.05.043 10.1016/j.cej.2017.09.072 10.1016/j.ecoleng.2017.02.002 10.1016/j.biortech.2014.04.034 10.1016/j.watres.2004.06.025 10.1111/j.1462-2920.2006.01100.x 10.1016/j.biortech.2016.05.082 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.12.035 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 113 |
ExternalDocumentID | 29272769 10_1016_j_biortech_2017_12_035 S0960852417321703 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-f842a7f7189eefc846c6c3508e75738fdd86c5687caa9818045e59a2aaf7ab823 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 02 04:48:48 EDT 2025 Thu Jul 10 23:26:21 EDT 2025 Mon Jul 21 06:01:43 EDT 2025 Tue Jul 01 02:06:55 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 Sat Nov 16 16:00:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrogen removal Zn (II) Anaerobic ammonia-oxidizing bacteria (AAOB) Anaerobia ammonium oxidation (Anammox) Microbial community |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-f842a7f7189eefc846c6c3508e75738fdd86c5687caa9818045e59a2aaf7ab823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29272769 |
PQID | 1979962916 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2045834401 proquest_miscellaneous_1979962916 pubmed_primary_29272769 crossref_citationtrail_10_1016_j_biortech_2017_12_035 crossref_primary_10_1016_j_biortech_2017_12_035 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_12_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Lam, Fang (b0055) 2001; 43 Zhang, Zhou, Xu, Zheng, Zhang, Peng, Zhang (b0140) 2018; 332 Çeçen, Semerci, Geyik (b0010) 2010; 85 Xing, Wang, Fang, Li, Liu, Chen, Guo (b0115) 2017; 38 Zekker, Rikmann, Kroon, Mandel, Mihkelson, Tenno, Tenno (b0125) 2017 Hu, Chandran, Grasso, Smets (b0025) 2004; 38 Zhang, Zhang, Guo, Wang, Wang, Jin (b0135) 2014; 99 Laureni, Falas, Robin, Wick, Weissbrodt, Nielsen, Ternes, Morgenroth, Joss (b0045) 2016; 101 Kartal, Kuenen, van Loosdrecht (b0035) 2010; 328 Juliastuti, Baeyens, Creemers, Bixio, Lodewyckx (b0030) 2003; 100 Zhang, Hu, Xu, Shi, Deng, Ji, Shi, Jin (b0150) 2017; 101 Mei, Wang, Xiang, Fei, Ma, Tang, Wu (b0065) 2014; 451 Abe, Komada, Ookuma (b0005) 2008; 58 Mertens, Springael, De Troyer, Cheyns, Wattiau, Smolders (b0070) 2006; 8 Zekker, Rikmann, Mandel, Kroon, Seiman, Mihkelson, Tenno, Tenno (b0130) 2015; 37 Kroon (b0040) 2016; 57 Feng, Fang, Hou, Ma, Huang, Huang (b0020) 2013; 142 Miao, Wang, Hou, Wang, Ao, Li, Geng, Yao, Lv, Yang, You, Xu (b0075) 2016; 216 Morales, Val Del Rio, Vazquez-Padin, Mendez, Mosquera-Corral, Campos (b0080) 2015; 140 Scullion, Winson, Matthews (b0100) 2007; 41 Yu, Song, Chai, Duan, Tang, Ali, Peng (b0120) 2016; 122 Wang, Peng, Miao, Cao, Zhang, Wang, Han (b0110) 2016; 214 Raudkivi, Zekker, Rikmann, Vabamäe, Kroon, Tenno (b0085) 2017; 75 Li, Puyol, Carvajal-Arroyo, Sierra-Alvarez, Field (b0050) 2015; 90 Zhang, Zhou, Zhang, Zheng, Wang, Han, Zhang (b0145) 2017; 228 Ma, Niu, Zhang, He, Li (b0060) 2017; 238 Rikmann, Zekker, Tenno, Saluste, Tenno (b0090) 2017 Daverey, Chen, Sung, Lin (b0015) 2014; 165 Ruyters, Nicol, Prosser, Lievens, Smolders (b0095) 2013; 58 Sheng, Xu, Luo, Li, Li, Yu, Xie, Wei, Hu (b0105) 2013; 47 Zhang, Zhang, Xu, Shi, Guo, Jiang, Wang, Chen, Jin (b0160) 2016; 100 Zhang, Zhang, Xu, Deng, Ji, Wu, Jin (b0155) 2016; 200 Zhang (10.1016/j.biortech.2017.12.035_b0155) 2016; 200 Mei (10.1016/j.biortech.2017.12.035_b0065) 2014; 451 Abe (10.1016/j.biortech.2017.12.035_b0005) 2008; 58 Kartal (10.1016/j.biortech.2017.12.035_b0035) 2010; 328 Ma (10.1016/j.biortech.2017.12.035_b0060) 2017; 238 Raudkivi (10.1016/j.biortech.2017.12.035_b0085) 2017; 75 Çeçen (10.1016/j.biortech.2017.12.035_b0010) 2010; 85 Zekker (10.1016/j.biortech.2017.12.035_b0130) 2015; 37 Zhang (10.1016/j.biortech.2017.12.035_b0150) 2017; 101 Kroon (10.1016/j.biortech.2017.12.035_b0040) 2016; 57 Xing (10.1016/j.biortech.2017.12.035_b0115) 2017; 38 Daverey (10.1016/j.biortech.2017.12.035_b0015) 2014; 165 Zhang (10.1016/j.biortech.2017.12.035_b0140) 2018; 332 Liu (10.1016/j.biortech.2017.12.035_b0055) 2001; 43 Zhang (10.1016/j.biortech.2017.12.035_b0160) 2016; 100 Zekker (10.1016/j.biortech.2017.12.035_b0125) 2017 Ruyters (10.1016/j.biortech.2017.12.035_b0095) 2013; 58 Mertens (10.1016/j.biortech.2017.12.035_b0070) 2006; 8 Wang (10.1016/j.biortech.2017.12.035_b0110) 2016; 214 Zhang (10.1016/j.biortech.2017.12.035_b0135) 2014; 99 Yu (10.1016/j.biortech.2017.12.035_b0120) 2016; 122 Miao (10.1016/j.biortech.2017.12.035_b0075) 2016; 216 Laureni (10.1016/j.biortech.2017.12.035_b0045) 2016; 101 Hu (10.1016/j.biortech.2017.12.035_b0025) 2004; 38 Sheng (10.1016/j.biortech.2017.12.035_b0105) 2013; 47 Zhang (10.1016/j.biortech.2017.12.035_b0145) 2017; 228 Morales (10.1016/j.biortech.2017.12.035_b0080) 2015; 140 Feng (10.1016/j.biortech.2017.12.035_b0020) 2013; 142 Scullion (10.1016/j.biortech.2017.12.035_b0100) 2007; 41 Rikmann (10.1016/j.biortech.2017.12.035_b0090) 2017 Li (10.1016/j.biortech.2017.12.035_b0050) 2015; 90 Juliastuti (10.1016/j.biortech.2017.12.035_b0030) 2003; 100 |
References_xml | – volume: 43 start-page: 59 year: 2001 end-page: 66 ident: b0055 article-title: Adsorption of heavy metals by EPS of activated sludge publication-title: Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. – volume: 100 start-page: 2417 year: 2016 end-page: 2427 ident: b0160 article-title: Long-term effects of heavy metals and antibiotics on granule-based anammox process: granule property and performance evolution publication-title: Appl. Microbiol. Biotechnol. – volume: 238 start-page: 263 year: 2017 end-page: 272 ident: b0060 article-title: Substrate inhibition and concentration control in an UASB-Anammox process publication-title: Bioresour. Technol. – volume: 100 start-page: 271 year: 2003 end-page: 283 ident: b0030 article-title: The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge publication-title: J. Hazard. Mater. – volume: 216 start-page: 537 year: 2016 end-page: 544 ident: b0075 article-title: Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms publication-title: Bioresour. Technol. – volume: 90 start-page: 830 year: 2015 end-page: 837 ident: b0050 article-title: Inhibition of anaerobic ammonium oxidation by heavy metals publication-title: J. Chem. Technol. Biotechnol. – volume: 99 start-page: 3221 year: 2014 end-page: 3232 ident: b0135 article-title: Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition publication-title: Appl. Microbiol. Biotechnol. – volume: 332 start-page: 42 year: 2018 end-page: 48 ident: b0140 article-title: Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of Anammox process publication-title: Chem. Eng. J. – volume: 75 start-page: 313 year: 2017 ident: b0085 article-title: Nitrite inhibition and limitation - the effect of nitrite spiking on anammox biofilm, suspended and granular biomass publication-title: Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. – volume: 140 start-page: 99 year: 2015 end-page: 105 ident: b0080 article-title: Integration of the Anammox process to the rejection water and main stream lines of WWTPs publication-title: Chemosphere – volume: 214 start-page: 514 year: 2016 end-page: 519 ident: b0110 article-title: Continuous-flow combined process of nitritation and Anammox for treatment of landfill leachate publication-title: Bioresour. Technol. – volume: 8 start-page: 2170 year: 2006 end-page: 2178 ident: b0070 article-title: Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil publication-title: Environ. Microbiol. – start-page: 1 year: 2017 end-page: 14 ident: b0125 article-title: Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide publication-title: Int. J. Environ. Sci. Technol. – volume: 451 start-page: 169 year: 2014 end-page: 176 ident: b0065 article-title: Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles publication-title: J. Membr. Sci. – volume: 142 start-page: 32 year: 2013 end-page: 38 ident: b0020 article-title: Effects of heavy metal wastewater on the anoxic/aerobic-membrane bioreactor bioprocess and membrane fouling publication-title: Bioresour. Technol. – volume: 47 start-page: 607 year: 2013 end-page: 614 ident: b0105 article-title: Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge publication-title: Water Res. – volume: 57 start-page: 3132 year: 2016 end-page: 3141 ident: b0040 article-title: Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters publication-title: Desalin. Water Treat. – volume: 101 start-page: 201 year: 2017 end-page: 210 ident: b0150 article-title: Effects of inorganic phosphate on a high-rate anammox system: performance and microbial community publication-title: Ecol. Eng. – volume: 38 start-page: 3949 year: 2004 end-page: 3959 ident: b0025 article-title: Comparison of nitrification inhibition by metals in batch and continuous flow reactors publication-title: Water Res. – volume: 101 start-page: 628 year: 2016 end-page: 639 ident: b0045 article-title: Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures publication-title: Water Res. – start-page: 1 year: 2017 end-page: 16 ident: b0090 article-title: Inoculum -free start-up of biofilm- and sludge-based deammonification systems in pilot scale. publication-title: Int. J. Environ. Sci. Technol. – volume: 122 start-page: 722 year: 2016 end-page: 729 ident: b0120 article-title: Comparative evaluation of short-term stress of Cd(II), Hg(II), Pb(II), As(III) and Cr(VI) on anammox granules by batch test publication-title: J. Biosci. Bioeng. – volume: 58 start-page: 244 year: 2013 end-page: 247 ident: b0095 article-title: Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil_ A stable isotope probing study publication-title: Soil Biol. Biochem. – volume: 85 start-page: 520 year: 2010 end-page: 528 ident: b0010 article-title: Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation publication-title: J. Chem. Technol. Biotechnol. – volume: 228 start-page: 315 year: 2017 end-page: 321 ident: b0145 article-title: Short-term and long-term effects of Zn (II) on the microbial activity and sludge property of partial nitrification process publication-title: Bioresour. Technol. – volume: 41 start-page: 4129 year: 2007 end-page: 4138 ident: b0100 article-title: Inhibition and recovery in a fixed microbial film leachate treatment system subject to shock loading of copper and zinc publication-title: Water Res. – volume: 38 start-page: 1184 year: 2017 end-page: 1190 ident: b0115 article-title: Effect of increase in salinity on ANAMMOX-UASB reactor stability publication-title: Environ. Technol. – volume: 58 start-page: 2427 year: 2008 end-page: 2433 ident: b0005 article-title: Efficiency of removal of nitrogen, phosphorus, and zinc from domestic wastewater by a constructed wetland system in rural areas: a case study publication-title: Water Sci.Technol – volume: 165 start-page: 105 year: 2014 end-page: 110 ident: b0015 article-title: Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process publication-title: Bioresour. Technol. – volume: 328 start-page: 702 year: 2010 end-page: 703 ident: b0035 article-title: Sewage treatment with Anammox publication-title: Science – volume: 200 start-page: 208 year: 2016 end-page: 216 ident: b0155 article-title: Evaluation of the inhibitory effects of heavy metals on Anammox activity: a batch test study publication-title: Bioresour. Technol. – volume: 37 start-page: 1 year: 2015 ident: b0130 article-title: Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short- Term Anammox Biofilm Tests publication-title: Environ. Technol. – volume: 58 start-page: 2427 issue: 12 year: 2008 ident: 10.1016/j.biortech.2017.12.035_b0005 article-title: Efficiency of removal of nitrogen, phosphorus, and zinc from domestic wastewater by a constructed wetland system in rural areas: a case study publication-title: Water Sci.Technol doi: 10.2166/wst.2008.570 – volume: 75 start-page: 313 issue: 2 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0085 article-title: Nitrite inhibition and limitation - the effect of nitrite spiking on anammox biofilm, suspended and granular biomass publication-title: Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. doi: 10.2166/wst.2016.456 – volume: 100 start-page: 271 issue: 1–3 year: 2003 ident: 10.1016/j.biortech.2017.12.035_b0030 article-title: The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(03)00116-X – volume: 58 start-page: 244 year: 2013 ident: 10.1016/j.biortech.2017.12.035_b0095 article-title: Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil_ A stable isotope probing study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.12.003 – volume: 142 start-page: 32 year: 2013 ident: 10.1016/j.biortech.2017.12.035_b0020 article-title: Effects of heavy metal wastewater on the anoxic/aerobic-membrane bioreactor bioprocess and membrane fouling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.05.019 – volume: 90 start-page: 830 issue: 5 year: 2015 ident: 10.1016/j.biortech.2017.12.035_b0050 article-title: Inhibition of anaerobic ammonium oxidation by heavy metals publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4377 – volume: 200 start-page: 208 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0155 article-title: Evaluation of the inhibitory effects of heavy metals on Anammox activity: a batch test study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.035 – volume: 122 start-page: 722 issue: 6 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0120 article-title: Comparative evaluation of short-term stress of Cd(II), Hg(II), Pb(II), As(III) and Cr(VI) on anammox granules by batch test publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2016.06.008 – volume: 57 start-page: 3132 issue: 7 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0040 article-title: Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2014.984339 – start-page: 1 issue: 15 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0090 article-title: Inoculum -free start-up of biofilm- and sludge-based deammonification systems in pilot scale. publication-title: Int. J. Environ. Sci. Technol. – volume: 47 start-page: 607 issue: 2 year: 2013 ident: 10.1016/j.biortech.2017.12.035_b0105 article-title: Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2012.10.037 – volume: 100 start-page: 2417 issue: 5 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0160 article-title: Long-term effects of heavy metals and antibiotics on granule-based anammox process: granule property and performance evolution publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7120-1 – volume: 214 start-page: 514 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0110 article-title: Continuous-flow combined process of nitritation and Anammox for treatment of landfill leachate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.118 – volume: 43 start-page: 59 issue: 6 year: 2001 ident: 10.1016/j.biortech.2017.12.035_b0055 article-title: Adsorption of heavy metals by EPS of activated sludge publication-title: Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. doi: 10.2166/wst.2001.0340 – volume: 99 start-page: 3221 issue: 7 year: 2014 ident: 10.1016/j.biortech.2017.12.035_b0135 article-title: Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6205-6 – volume: 38 start-page: 1184 issue: 9 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0115 article-title: Effect of increase in salinity on ANAMMOX-UASB reactor stability publication-title: Environ. Technol. doi: 10.1080/09593330.2016.1223174 – volume: 37 start-page: 1 issue: 15 year: 2015 ident: 10.1016/j.biortech.2017.12.035_b0130 article-title: Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short- Term Anammox Biofilm Tests publication-title: Environ. Technol. – volume: 140 start-page: 99 year: 2015 ident: 10.1016/j.biortech.2017.12.035_b0080 article-title: Integration of the Anammox process to the rejection water and main stream lines of WWTPs publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.058 – volume: 85 start-page: 520 issue: 4 year: 2010 ident: 10.1016/j.biortech.2017.12.035_b0010 article-title: Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2321 – volume: 228 start-page: 315 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0145 article-title: Short-term and long-term effects of Zn (II) on the microbial activity and sludge property of partial nitrification process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.099 – volume: 238 start-page: 263 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0060 article-title: Substrate inhibition and concentration control in an UASB-Anammox process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.017 – volume: 101 start-page: 628 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0045 article-title: Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures publication-title: Water Res. doi: 10.1016/j.watres.2016.05.005 – volume: 328 start-page: 702 issue: 5979 year: 2010 ident: 10.1016/j.biortech.2017.12.035_b0035 article-title: Sewage treatment with Anammox publication-title: Science doi: 10.1126/science.1185941 – volume: 451 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.biortech.2017.12.035_b0065 article-title: Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.008 – volume: 41 start-page: 4129 issue: 18 year: 2007 ident: 10.1016/j.biortech.2017.12.035_b0100 article-title: Inhibition and recovery in a fixed microbial film leachate treatment system subject to shock loading of copper and zinc publication-title: Water Res. doi: 10.1016/j.watres.2007.05.043 – volume: 332 start-page: 42 year: 2018 ident: 10.1016/j.biortech.2017.12.035_b0140 article-title: Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of Anammox process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.072 – volume: 101 start-page: 201 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0150 article-title: Effects of inorganic phosphate on a high-rate anammox system: performance and microbial community publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2017.02.002 – start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.biortech.2017.12.035_b0125 article-title: Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide publication-title: Int. J. Environ. Sci. Technol. – volume: 165 start-page: 105 year: 2014 ident: 10.1016/j.biortech.2017.12.035_b0015 article-title: Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.034 – volume: 38 start-page: 3949 issue: 18 year: 2004 ident: 10.1016/j.biortech.2017.12.035_b0025 article-title: Comparison of nitrification inhibition by metals in batch and continuous flow reactors publication-title: Water Res. doi: 10.1016/j.watres.2004.06.025 – volume: 8 start-page: 2170 issue: 12 year: 2006 ident: 10.1016/j.biortech.2017.12.035_b0070 article-title: Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01100.x – volume: 216 start-page: 537 year: 2016 ident: 10.1016/j.biortech.2017.12.035_b0075 article-title: Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.082 |
SSID | ssj0003172 |
Score | 2.4369652 |
Snippet | •Zinc ion performed significant inhibition on Anammox process.•AAOB had self-adaption to elevated Zn (II) in 1–10 mg L−1.•The irreversible suppression... Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | acclimation adsorption Anaerobia ammonium oxidation (Anammox) Anaerobic ammonia-oxidizing bacteria (AAOB) anaerobic ammonium oxidation biofilm biofilters microbial communities Microbial community nitrogen Nitrogen removal polymers technology zinc Zn (II) |
Title | Influence of elevated Zn (II) on Anammox system: Microbial variation and zinc tolerance |
URI | https://dx.doi.org/10.1016/j.biortech.2017.12.035 https://www.ncbi.nlm.nih.gov/pubmed/29272769 https://www.proquest.com/docview/1979962916 https://www.proquest.com/docview/2045834401 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V7QE4VKW8tkBlJA5wSJd1_EpvqxXVLmh7gYqKi-U4Nkq1clbttqp64Ld37CRlkah64BjHVix_o5nPmRfAe25RdHNmMiOYz5hXVVbwUmQlE44VVkiXEmnnx2J6wr6c8tMNmPS5MDGsstP9rU5P2robGXanOVzW9fBbJN-KowWSOfLqVPGTMRml_OD3nzAPtI_Jk4CTszh7LUv47KCsY0RrckqMZPotmNq-_dNA3UdAkyE62oHtjkGScbvJp7Dhwi48Gf8676pouF14NOnbuOGbtYqDz-DHrG9KQhpPYm45cs2K_Azkw2z2kTSBjINB0bwmbYnnQzKvU6km_OIVXqsTjsSEitzUwZJVs3CxM4d7DidHn79PplnXWyGz_BNbZV4xaqRHy1Q45y2yECtsjmzNSS5z5atKCcuFktaYIuaDM-54YagxXppS0fwFbIYmuFdABOraypR5xbyLGgHVp2Im5txWFO_XagC8P1Btu8Ljsf_FQvcRZme6B0JHIPSIagRiAMO7dcu29MaDK4oeL_2XEGm0Dw-ufdcDrBGh6DYxwTWXF3oUPZ-CIo--fw5N_meGl9UBvGyl427PtKBIEkWx9x-7ew2P8Um1wW9vYHN1funeIhtalftJ3Pdhazz7Oj2-BZ1yCCc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD4huEAXRPF1wUdNNNHFcLmdttMxcXGDkjvCZSNE4qZ2Oi0ZQjoELios_FP-QU87M4iJhIVhO51mmp7T73yd8wJ4yQ2qbsp0ogVzCXOySnJeiqRkwrLciMzGRNrptpjsso97fG8OfvW5MCGsssP-FtMjWndPht1uDo_qevgpkG_J0QJlKfLqtb6D9aY9-473tpN3xXsU8itKNz7srE-SrrVAYvgamyVOMqozh8CcW-sMGmEjTIpkxWY8S6WrKikMFzIzWuchHZpxy3NNtXaZLmWodoC4f4shXIS2Cas__8SVoEGOrgtcXRKWdykt-WC1rEMIbfSCjLL4HzL2mfunRbyK8UbLt3EXFjvKSsbtrtyDOeuX4M54_7gr22GXYGG97xuHI5dKHN6Hz0XfBYU0joRkdiS3FfniyeuieEMaT8Ze41n4Qdqa0m_JtI61ofCL3_AeHxWHaF-R89obMmsObWgFYh_A7o3s-EOY9423j4EIBPdKl2nFnA0QhHgtmQ5JvhXFC70cAO83VJmu0nlouHGo-pC2A9ULQgVBqBFVKIgBDC_mHbW1Pq6dkffyUn9prUKDdO3cF72AFUoo-Gm0t83piRoFV6ugSNyvfodGhzfD2_EAHrXacbFmmlNkpSJf_o_VPYeFyc50S20V25srcBtHZBt59wTmZ8en9ilSsVn5LKo-ga83fdZ-A3fzQ-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+elevated+Zn+%28II%29+on+Anammox+system%3A+Microbial+variation+and+zinc+tolerance&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Xiaojing&rft.au=Chen%2C+Zhao&rft.au=Ma%2C+Yongpeng&rft.au=Zhou%2C+Yue&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.volume=251&rft.spage=108&rft.epage=113&rft_id=info:doi/10.1016%2Fj.biortech.2017.12.035&rft.externalDocID=S0960852417321703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |