Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions

Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 7; no. 14
Main Authors Bello, Susan M, Eppig, Janan T,
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 20.05.2016
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Keywords: Phenotype, Genotype, Disease, Mouse, Annotation
AbstractList Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators.
Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators.
Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Keywords: Phenotype, Genotype, Disease, Mouse, Annotation
ArticleNumber 14
Audience Academic
Author Bello, Susan M
,
Eppig, Janan T
Author_xml – sequence: 1
  fullname: Bello, Susan M
– sequence: 2
  fullname: Eppig, Janan T
– sequence: 3
  fullname: ,
BookMark eNptkcFq3DAQhkVJoel2H6A3Q87eSpZsyz0UwtJuAgm5tGchyyOvgi05kl3I22c2u2waqIQYMZr_YzT_Z3LhgwdCvjK6YUxW3xLjvKhyyvDQUuTiA7ksqGA5E5Je_HP_RNYpPVJcnDMq-SVJt95CjM73WQ8e8jnk0x58mJ8nyLTvztnOJdAJsgiDnl3wae-mlOk5uw8LpneoGSFDWogjFpj0PTN7PQzge0ivpBSG5VX5hXy0ekiwPsUV-fPr5-_tTX73sLvdXt_lpqRizm1dFEUlail1oSVtO1sb2pS21JZabhpZW9q01nSsMLYF3bWN7GrZ4higrmrgK_LjyJ2WdoTOgJ-jHtQU3ajjswraqfcv3u1VH_6qkgkuRIGAqxMghqcF0qwewxI99qxY3VQN5Y1gb1W9HkA5nADCzOiSUdeiRGsYQ96KbP5ThbuD0Rn00zrMvxOwo8DEkFIEe26cUXWwXR1tV_hfdbBdCf4CMK2jmQ
CitedBy_id crossref_primary_10_1038_s41598_017_17769_1
crossref_primary_10_1093_ilar_ilx013
crossref_primary_10_1016_j_cell_2018_06_052
crossref_primary_10_1093_genetics_iyad152
crossref_primary_10_1186_s13326_016_0108_7
crossref_primary_10_1242_dmm_049441
Cites_doi 10.1093/nar/gku301
10.1016/S1074-7613(00)80195-8
10.1007/s00335-012-9421-3
10.1101/gad.231233.113
10.1172/JCI64537
10.1093/intimm/dxh036
10.1073/pnas.94.8.3789
10.1073/pnas.0907008106
10.1016/j.ydbio.2006.03.053
10.1371/journal.pone.0061042
10.1093/nar/gks938
10.1093/nar/gku967
10.1016/j.cmet.2008.12.005
10.1002/humu.22857
ContentType Journal Article
Copyright COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Bello and Eppig. 2016
Copyright_xml – notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
– notice: Bello and Eppig. 2016
CorporateAuthor the MGI Software Group
CorporateAuthor_xml – sequence: 0
  name: the MGI Software Group
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
5PM
DOI 10.1186/s13326-016-0054-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
EISSN 2041-1480
ExternalDocumentID 4089710301
A451331114
10_1186_s13326_016_0054_4
GrantInformation_xml – fundername: ;
  grantid: HG000330
GroupedDBID -A0
0R~
3V.
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
5PM
ID FETCH-LOGICAL-c504t-f722264788a2a80bdf7c095f5af0f3c987f09bfcd12cfbeadb98d78b016e767e3
IEDL.DBID RPM
ISSN 2041-1480
IngestDate Tue Sep 17 21:16:23 EDT 2024
Thu Oct 10 18:36:25 EDT 2024
Tue Nov 19 20:37:58 EST 2024
Tue Nov 12 23:25:58 EST 2024
Fri Dec 06 01:07:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-f722264788a2a80bdf7c095f5af0f3c987f09bfcd12cfbeadb98d78b016e767e3
ORCID 0000-0003-4606-0597
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143442/
PQID 1796903941
PQPubID 2040220
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5143442
proquest_journals_1796903941
gale_infotracmisc_A451331114
gale_infotracacademiconefile_A451331114
crossref_primary_10_1186_s13326_016_0054_4
PublicationCentury 2000
PublicationDate 2016-05-20
PublicationDateYYYYMMDD 2016-05-20
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of biomedical semantics
PublicationYear 2016
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References H Chen (54_CR11) 2009; 106
S Pasula (54_CR12) 2012; 122
B Salomon (54_CR13) 2000; 12
A Kalderimis (54_CR10) 2014; 42
EA Akbay (54_CR14) 2014; 28
CJ Mungall (54_CR8) 2015; 36
JJ Gierut (54_CR2) 2014; 2014
C Richez (54_CR5) 2013; 8
C Mora (54_CR15) 2004; 16
JT Eppig (54_CR1) 2015; 43
CL Smith (54_CR3) 2012; 23
L Lin (54_CR6) 2006; 295
MS Remedi (54_CR4) 2009; 9
DG Howe (54_CR7) 2013; 41
BP Zambrowicz (54_CR9) 1997; 94
References_xml – volume: 42
  start-page: W468
  issue: Web Server issu
  year: 2014
  ident: 54_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku301
  contributor:
    fullname: A Kalderimis
– volume: 12
  start-page: 431
  year: 2000
  ident: 54_CR13
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80195-8
  contributor:
    fullname: B Salomon
– volume: 23
  start-page: 653
  year: 2012
  ident: 54_CR3
  publication-title: Mamm Genome
  doi: 10.1007/s00335-012-9421-3
  contributor:
    fullname: CL Smith
– volume: 28
  start-page: 479
  year: 2014
  ident: 54_CR14
  publication-title: Genes Dev
  doi: 10.1101/gad.231233.113
  contributor:
    fullname: EA Akbay
– volume: 122
  start-page: 4424
  year: 2012
  ident: 54_CR12
  publication-title: J Clin Invest
  doi: 10.1172/JCI64537
  contributor:
    fullname: S Pasula
– volume: 16
  start-page: 257
  year: 2004
  ident: 54_CR15
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxh036
  contributor:
    fullname: C Mora
– volume: 94
  start-page: 3789
  year: 1997
  ident: 54_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.8.3789
  contributor:
    fullname: BP Zambrowicz
– volume: 106
  start-page: 13838
  year: 2009
  ident: 54_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0907008106
  contributor:
    fullname: H Chen
– volume: 295
  start-page: 756
  year: 2006
  ident: 54_CR6
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2006.03.053
  contributor:
    fullname: L Lin
– volume: 8
  start-page: e61042
  year: 2013
  ident: 54_CR5
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061042
  contributor:
    fullname: C Richez
– volume: 41
  start-page: D854
  issue: Database issue
  year: 2013
  ident: 54_CR7
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks938
  contributor:
    fullname: DG Howe
– volume: 43
  start-page: D726
  issue: Database issue
  year: 2015
  ident: 54_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku967
  contributor:
    fullname: JT Eppig
– volume: 2014
  start-page: 339
  year: 2014
  ident: 54_CR2
  publication-title: Cold Spring Harb Protoc
  contributor:
    fullname: JJ Gierut
– volume: 9
  start-page: 140
  year: 2009
  ident: 54_CR4
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.12.005
  contributor:
    fullname: MS Remedi
– volume: 36
  start-page: 979
  year: 2015
  ident: 54_CR8
  publication-title: Hum Mutat
  doi: 10.1002/humu.22857
  contributor:
    fullname: CJ Mungall
SSID ssj0000331083
Score 2.1147752
Snippet Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when...
Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching...
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Genes
Genetic aspects
Genomes
Genomics
Mice
Systemic lupus erythematosus
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV29T90wELdaWFiqAqV9QJEH1EqVLPwcv9hhQajqAyHoVCQ2y744hYHkQcL_37s8J20YOmSxHSfync_35d8xdiytyRSYQkhvo9DgNe65oAUEKDOvVbB9OaCbn_nlrb66W9wlh1ub0ioHmdgL6rIB8pGfIOOgIZcVen62ehJUNYqiq6mExlu2OVcmp5Q-u7wYfSwyQ-XFZimYObf5SYsmmSITGh9UVoSeHEevhfLrRMl_Tp7le_YuqYz8fE3jbfYm1jvs43VyNLb8C78esZHbXUaBJIJbrH9zZI4oukZQHldDzlbu63JsTbEZ_jzkw90_rFruO37TvGDzBb7zGHm6r0RozqcchtIrbT_TyLcf2O3yx6_vlyKVVhCwkLoTlVF0gxbtX6-8laGsDKCyVS18JasMCmsqWYQKyrmCKiC3hcKWxgZcuGhyE7M9tlE3dfzEuM-8z0FL0HmplY4WbAFBRUI4BBnijH0bVtit1ggarrc8bO7W5HCUZUbkcHrGvhINHO0uXHHw6ZIAfopwqty5pno0KJ9x5OFkJO4KmHYPVHRpV7buLw_NmJlQdvwzQtue9tQP9z3qNmmWWqv9_098wLZUz10LlD-HbKN7fomfUW3pwlHPm38A4bzv-w
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBvFkoyAcEEpLB68zGDhJCFaJUqMuJlXqz7IlDK0G2bFIJ_j0z3mRFqh445OI4jjUvz9jjb4R4oZ0tDNpK6eCSAgxAOhdBYcS6CGCiy-WAll_L4xV8OV2c7omxvNVAwO7a0I7rSa02P978_vXnAyn8-6zwrnzbUZxlOC6mhzwQBTfETUMLI2d4LQdvPxvmgnyZDMxpNMwVBQLjOee1o0xWqqv2-moO5T-L0tEdcXvwJuXhlv13xV5q74lHJ8MeZCdfypMdbHJ3X_AZEyMxtt8lyU1S_Vpxitea92FlaOtd63BsIzdjqtzZ-UUnQy-X60tq_kzf_ExyuMrEQM_vJI5VWbo80k6kH4jV0advH4_VUHVB4UJDrxpr-HIthcbBBKdj3VgkP6xZhEY3BVbONrqKDdZzg00kQYyVq62LRLhkS5uKh2K_XbfpsZChCKFE0AhlDQaSQ1dhNInBD1HHNBOvRwr7iy24hs9BiSv9lh2eE9CYHR5m4hXzwLMoEMUxDPcH6FcMYeUPgUvVkOmmngeTnqQwOH09ctGP8ubJLpWVLiqYz4SdcHY3Mwbinr5pz88yIDc7nQDmyX_P8Km4ZbKgLchKHYj9fnOZnpFz08fnWWT_ArQv-ME
  priority: 102
  providerName: Scholars Portal
Title Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions
URI https://www.proquest.com/docview/1796903941
https://pubmed.ncbi.nlm.nih.gov/PMC5143442
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9swVPTjssvY1n1k64IOo4WBG0WWLXm3rDQtoSllWyE3IT3LbWBxQu3-_z0pcqh73MEy6MMWek_vQ3ofhHxjSqYcZJEwo1wiwAjcc1YkYKFMjeBWhXRA85v86k7MFtlij2SdL0ww2ge7PKv_rs7q5UOwrdysYNTZiY1u5-eeyQvBR_tkH9nvMxU9kN8UJRaVxhvMscpHDeph3OvN-KCEkogeD3pJiV9aRz5jN9M35HWUE-lkO5-3ZM_V78jH63i62NATer0LiNwcEX975GMs1vcUMcIl7Trxxltrf8JKTV3uauOFDH3sjOAelpuGmpbO109YfYljVo5GJyUfwvkHhS7fShO-tEPW9-RuevHn_CqJ-RQSyJhok0py7zaLSq_hRjFbVhJQwqoyU7EqhULJihW2gnLMobKIYrZQpVQWF87JXLr0Azmo17X7RKhJjclBMBB5KbhwClQBljsf1hCYdQPyvVthvdmGzdBB3VC53oJDe9MyDw4tBuTUw0D7LYUrDiZ6BuCvfHAqPRE-CQ0SZex53OuJWwH6zR0UddyKjUaKkxcsLcR4QGQPsruZ-RDb_RbEvBBqO2La5_8e-YW84gHxMqRHx-SgfXxyX1GMae0QkXchsVTTyyE5nExmv2f4_nlxc_trGI4GsJwLNQzo_Q_ZYf3k
link.rule.ids 230,314,727,780,784,864,885,12056,12765,21388,24318,27924,27925,31719,33373,33744,43310,43600,43805,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4AL4t2FAj4gkJCsZh0ndriggloW2F0h1Eq9WfbEoT2QLE36_5nJOoH0wCEX23Eiz3g8L3_D2OvE6FSCLkTiTBAKnMI955UAD2XqlPSmLwe03uTLM_X1PDuPDrc2plUOMrEX1GUD5CM_RMZBQy4t1OLD9regqlEUXY0lNG6zPUJOz2Zs7-Px5vuP0cuSpKi-mDSGMxcmP2zRKJNkROOD6opQkwPppli-mSr5z9lzcp_di0ojP9pR-QG7FeqH7Okquhpb_oavRnTk9hGjUBIBLtY_ObJHEF0jKJOrIXcrd3U5tsboDL8aMuIuLrctdx1fN9fY_Bnf-RV4vLFEeM7vOQzFV9p-ppFzH7Ozk-PTT0sRiysIyBLViUpLukOLFrCTziS-rDSgulVlrkqqFAqjq6TwFZQLCZVHfvOFKbXxuHBB5zqkT9isbuqwz7hLnctBJaDyUkkVDJgCvAyEcQiJD3P2blhhu91haNje9jC53ZHDUp4ZkcOqOXtLNLC0v3DFwcVrAvgpQqqyR4oq0qCExpEHk5G4L2DaPVDRxn3Z2r9cNGd6Qtnxzwhve9pTX170uNukWyoln_1_4lfszvJ0vbKrL5tvz9ld2XNahtLogM26q-vwApWYzr-MnPoHUx70TA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgL4puFAj4gkJDceB0ncbhVhaXAbtUDlXqz7IndrsRmV036_xl7ndWmRw65OHZieZ7HM_b4DSEfuapyAVXNuFGOSTAS55yVDCw0uZHCqpgOaHFWnl7IX5fF5V6qrxi0D3Z51P5dHbXL6xhbuVlBNsSJZeeLk7DISymyTeOz--RBkSPI9hz1qIRztFtUns4xp6rMOvTGRPCe8UE7hcnRSnRXH9-NkdxbdGZPyONkLdLjba-eknuufUZezdMeY0c_0fmOFrl7TsIZUmBabK8o4sKxfs1CCNc67LNS0za70nQsQ2-GULjr5aajpqeL9S0W_8A2K0fTVaVA5PyVwpB1pYtf2kH2BbmYff9zcspSVgUGBZc985UIl2fR9TXCKG4bXwHaWb4wnvscalV5XlsPzVSAtwg0W6umUhYHzlVl5fKX5KBdt-41oSY3pgTJQZaNFNIpUDVY4QK5IXDrJuTLMMJ6syXP0NHpUKXeikOHALMgDi0n5HOQgQ4TC0ccTLofgL8KFFX6WIZUNKiasebhqCZOCBi_HqSo04TsNOqdsuZ5LacTUo0ku-tZINoev0H8RcLthLc3_93yA3l4_m2m5z_Pfr8lj0TEYIEK6pAc9De37h3aNb19HxH8D1-j-4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+gene-to-phenotype+and+gene-to-disease+relationships+at+Mouse+Genome+Informatics%3A+challenges+and+solutions&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Bello%2C+Susan+M&rft.au=Eppig%2C+Janan+T&rft.au=%2C&rft.date=2016-05-20&rft.pub=BioMed+Central+Ltd&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=7&rft.issue=14&rft_id=info:doi/10.1186%2Fs13326-016-0054-4&rft.externalDocID=A451331114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon