Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions
Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are...
Saved in:
Published in | Journal of biomedical semantics Vol. 7; no. 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
20.05.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Keywords: Phenotype, Genotype, Disease, Mouse, Annotation |
---|---|
AbstractList | Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators. Keywords: Phenotype, Genotype, Disease, Mouse, Annotation |
ArticleNumber | 14 |
Audience | Academic |
Author | Bello, Susan M , Eppig, Janan T |
Author_xml | – sequence: 1 fullname: Bello, Susan M – sequence: 2 fullname: Eppig, Janan T – sequence: 3 fullname: , |
BookMark | eNptkcFq3DAQhkVJoel2H6A3Q87eSpZsyz0UwtJuAgm5tGchyyOvgi05kl3I22c2u2waqIQYMZr_YzT_Z3LhgwdCvjK6YUxW3xLjvKhyyvDQUuTiA7ksqGA5E5Je_HP_RNYpPVJcnDMq-SVJt95CjM73WQ8e8jnk0x58mJ8nyLTvztnOJdAJsgiDnl3wae-mlOk5uw8LpneoGSFDWogjFpj0PTN7PQzge0ivpBSG5VX5hXy0ekiwPsUV-fPr5-_tTX73sLvdXt_lpqRizm1dFEUlail1oSVtO1sb2pS21JZabhpZW9q01nSsMLYF3bWN7GrZ4higrmrgK_LjyJ2WdoTOgJ-jHtQU3ajjswraqfcv3u1VH_6qkgkuRIGAqxMghqcF0qwewxI99qxY3VQN5Y1gb1W9HkA5nADCzOiSUdeiRGsYQ96KbP5ThbuD0Rn00zrMvxOwo8DEkFIEe26cUXWwXR1tV_hfdbBdCf4CMK2jmQ |
CitedBy_id | crossref_primary_10_1038_s41598_017_17769_1 crossref_primary_10_1093_ilar_ilx013 crossref_primary_10_1016_j_cell_2018_06_052 crossref_primary_10_1093_genetics_iyad152 crossref_primary_10_1186_s13326_016_0108_7 crossref_primary_10_1242_dmm_049441 |
Cites_doi | 10.1093/nar/gku301 10.1016/S1074-7613(00)80195-8 10.1007/s00335-012-9421-3 10.1101/gad.231233.113 10.1172/JCI64537 10.1093/intimm/dxh036 10.1073/pnas.94.8.3789 10.1073/pnas.0907008106 10.1016/j.ydbio.2006.03.053 10.1371/journal.pone.0061042 10.1093/nar/gks938 10.1093/nar/gku967 10.1016/j.cmet.2008.12.005 10.1002/humu.22857 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 Bello and Eppig. 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 – notice: Bello and Eppig. 2016 |
CorporateAuthor | the MGI Software Group |
CorporateAuthor_xml | – sequence: 0 name: the MGI Software Group |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS 5PM |
DOI | 10.1186/s13326-016-0054-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures |
EISSN | 2041-1480 |
ExternalDocumentID | 4089710301 A451331114 10_1186_s13326_016_0054_4 |
GrantInformation_xml | – fundername: ; grantid: HG000330 |
GroupedDBID | -A0 0R~ 3V. 4.4 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHSBF AHYZX AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CITATION DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS 5PM |
ID | FETCH-LOGICAL-c504t-f722264788a2a80bdf7c095f5af0f3c987f09bfcd12cfbeadb98d78b016e767e3 |
IEDL.DBID | RPM |
ISSN | 2041-1480 |
IngestDate | Tue Sep 17 21:16:23 EDT 2024 Thu Oct 10 18:36:25 EDT 2024 Tue Nov 19 20:37:58 EST 2024 Tue Nov 12 23:25:58 EST 2024 Fri Dec 06 01:07:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-f722264788a2a80bdf7c095f5af0f3c987f09bfcd12cfbeadb98d78b016e767e3 |
ORCID | 0000-0003-4606-0597 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143442/ |
PQID | 1796903941 |
PQPubID | 2040220 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5143442 proquest_journals_1796903941 gale_infotracmisc_A451331114 gale_infotracacademiconefile_A451331114 crossref_primary_10_1186_s13326_016_0054_4 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-20 |
PublicationDateYYYYMMDD | 2016-05-20 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of biomedical semantics |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | H Chen (54_CR11) 2009; 106 S Pasula (54_CR12) 2012; 122 B Salomon (54_CR13) 2000; 12 A Kalderimis (54_CR10) 2014; 42 EA Akbay (54_CR14) 2014; 28 CJ Mungall (54_CR8) 2015; 36 JJ Gierut (54_CR2) 2014; 2014 C Richez (54_CR5) 2013; 8 C Mora (54_CR15) 2004; 16 JT Eppig (54_CR1) 2015; 43 CL Smith (54_CR3) 2012; 23 L Lin (54_CR6) 2006; 295 MS Remedi (54_CR4) 2009; 9 DG Howe (54_CR7) 2013; 41 BP Zambrowicz (54_CR9) 1997; 94 |
References_xml | – volume: 42 start-page: W468 issue: Web Server issu year: 2014 ident: 54_CR10 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku301 contributor: fullname: A Kalderimis – volume: 12 start-page: 431 year: 2000 ident: 54_CR13 publication-title: Immunity doi: 10.1016/S1074-7613(00)80195-8 contributor: fullname: B Salomon – volume: 23 start-page: 653 year: 2012 ident: 54_CR3 publication-title: Mamm Genome doi: 10.1007/s00335-012-9421-3 contributor: fullname: CL Smith – volume: 28 start-page: 479 year: 2014 ident: 54_CR14 publication-title: Genes Dev doi: 10.1101/gad.231233.113 contributor: fullname: EA Akbay – volume: 122 start-page: 4424 year: 2012 ident: 54_CR12 publication-title: J Clin Invest doi: 10.1172/JCI64537 contributor: fullname: S Pasula – volume: 16 start-page: 257 year: 2004 ident: 54_CR15 publication-title: Int Immunol doi: 10.1093/intimm/dxh036 contributor: fullname: C Mora – volume: 94 start-page: 3789 year: 1997 ident: 54_CR9 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.8.3789 contributor: fullname: BP Zambrowicz – volume: 106 start-page: 13838 year: 2009 ident: 54_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0907008106 contributor: fullname: H Chen – volume: 295 start-page: 756 year: 2006 ident: 54_CR6 publication-title: Dev Biol doi: 10.1016/j.ydbio.2006.03.053 contributor: fullname: L Lin – volume: 8 start-page: e61042 year: 2013 ident: 54_CR5 publication-title: PLoS One doi: 10.1371/journal.pone.0061042 contributor: fullname: C Richez – volume: 41 start-page: D854 issue: Database issue year: 2013 ident: 54_CR7 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks938 contributor: fullname: DG Howe – volume: 43 start-page: D726 issue: Database issue year: 2015 ident: 54_CR1 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku967 contributor: fullname: JT Eppig – volume: 2014 start-page: 339 year: 2014 ident: 54_CR2 publication-title: Cold Spring Harb Protoc contributor: fullname: JJ Gierut – volume: 9 start-page: 140 year: 2009 ident: 54_CR4 publication-title: Cell Metab doi: 10.1016/j.cmet.2008.12.005 contributor: fullname: MS Remedi – volume: 36 start-page: 979 year: 2015 ident: 54_CR8 publication-title: Hum Mutat doi: 10.1002/humu.22857 contributor: fullname: CJ Mungall |
SSID | ssj0000331083 |
Score | 2.1147752 |
Snippet | Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when... Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Algorithms Genes Genetic aspects Genomes Genomics Mice Systemic lupus erythematosus |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV29T90wELdaWFiqAqV9QJEH1EqVLPwcv9hhQajqAyHoVCQ2y744hYHkQcL_37s8J20YOmSxHSfync_35d8xdiytyRSYQkhvo9DgNe65oAUEKDOvVbB9OaCbn_nlrb66W9wlh1ub0ioHmdgL6rIB8pGfIOOgIZcVen62ehJUNYqiq6mExlu2OVcmp5Q-u7wYfSwyQ-XFZimYObf5SYsmmSITGh9UVoSeHEevhfLrRMl_Tp7le_YuqYz8fE3jbfYm1jvs43VyNLb8C78esZHbXUaBJIJbrH9zZI4oukZQHldDzlbu63JsTbEZ_jzkw90_rFruO37TvGDzBb7zGHm6r0RozqcchtIrbT_TyLcf2O3yx6_vlyKVVhCwkLoTlVF0gxbtX6-8laGsDKCyVS18JasMCmsqWYQKyrmCKiC3hcKWxgZcuGhyE7M9tlE3dfzEuM-8z0FL0HmplY4WbAFBRUI4BBnijH0bVtit1ggarrc8bO7W5HCUZUbkcHrGvhINHO0uXHHw6ZIAfopwqty5pno0KJ9x5OFkJO4KmHYPVHRpV7buLw_NmJlQdvwzQtue9tQP9z3qNmmWWqv9_098wLZUz10LlD-HbKN7fomfUW3pwlHPm38A4bzv-w priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBvFkoyAcEEpLB68zGDhJCFaJUqMuJlXqz7IlDK0G2bFIJ_j0z3mRFqh445OI4jjUvz9jjb4R4oZ0tDNpK6eCSAgxAOhdBYcS6CGCiy-WAll_L4xV8OV2c7omxvNVAwO7a0I7rSa02P978_vXnAyn8-6zwrnzbUZxlOC6mhzwQBTfETUMLI2d4LQdvPxvmgnyZDMxpNMwVBQLjOee1o0xWqqv2-moO5T-L0tEdcXvwJuXhlv13xV5q74lHJ8MeZCdfypMdbHJ3X_AZEyMxtt8lyU1S_Vpxitea92FlaOtd63BsIzdjqtzZ-UUnQy-X60tq_kzf_ExyuMrEQM_vJI5VWbo80k6kH4jV0advH4_VUHVB4UJDrxpr-HIthcbBBKdj3VgkP6xZhEY3BVbONrqKDdZzg00kQYyVq62LRLhkS5uKh2K_XbfpsZChCKFE0AhlDQaSQ1dhNInBD1HHNBOvRwr7iy24hs9BiSv9lh2eE9CYHR5m4hXzwLMoEMUxDPcH6FcMYeUPgUvVkOmmngeTnqQwOH09ctGP8ubJLpWVLiqYz4SdcHY3Mwbinr5pz88yIDc7nQDmyX_P8Km4ZbKgLchKHYj9fnOZnpFz08fnWWT_ArQv-ME priority: 102 providerName: Scholars Portal |
Title | Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions |
URI | https://www.proquest.com/docview/1796903941 https://pubmed.ncbi.nlm.nih.gov/PMC5143442 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9swVPTjssvY1n1k64IOo4WBG0WWLXm3rDQtoSllWyE3IT3LbWBxQu3-_z0pcqh73MEy6MMWek_vQ3ofhHxjSqYcZJEwo1wiwAjcc1YkYKFMjeBWhXRA85v86k7MFtlij2SdL0ww2ge7PKv_rs7q5UOwrdysYNTZiY1u5-eeyQvBR_tkH9nvMxU9kN8UJRaVxhvMscpHDeph3OvN-KCEkogeD3pJiV9aRz5jN9M35HWUE-lkO5-3ZM_V78jH63i62NATer0LiNwcEX975GMs1vcUMcIl7Trxxltrf8JKTV3uauOFDH3sjOAelpuGmpbO109YfYljVo5GJyUfwvkHhS7fShO-tEPW9-RuevHn_CqJ-RQSyJhok0py7zaLSq_hRjFbVhJQwqoyU7EqhULJihW2gnLMobKIYrZQpVQWF87JXLr0Azmo17X7RKhJjclBMBB5KbhwClQBljsf1hCYdQPyvVthvdmGzdBB3VC53oJDe9MyDw4tBuTUw0D7LYUrDiZ6BuCvfHAqPRE-CQ0SZex53OuJWwH6zR0UddyKjUaKkxcsLcR4QGQPsruZ-RDb_RbEvBBqO2La5_8e-YW84gHxMqRHx-SgfXxyX1GMae0QkXchsVTTyyE5nExmv2f4_nlxc_trGI4GsJwLNQzo_Q_ZYf3k |
link.rule.ids | 230,314,727,780,784,864,885,12056,12765,21388,24318,27924,27925,31719,33373,33744,43310,43600,43805,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4AL4t2FAj4gkJCsZh0ndriggloW2F0h1Eq9WfbEoT2QLE36_5nJOoH0wCEX23Eiz3g8L3_D2OvE6FSCLkTiTBAKnMI955UAD2XqlPSmLwe03uTLM_X1PDuPDrc2plUOMrEX1GUD5CM_RMZBQy4t1OLD9regqlEUXY0lNG6zPUJOz2Zs7-Px5vuP0cuSpKi-mDSGMxcmP2zRKJNkROOD6opQkwPppli-mSr5z9lzcp_di0ojP9pR-QG7FeqH7Okquhpb_oavRnTk9hGjUBIBLtY_ObJHEF0jKJOrIXcrd3U5tsboDL8aMuIuLrctdx1fN9fY_Bnf-RV4vLFEeM7vOQzFV9p-ppFzH7Ozk-PTT0sRiysIyBLViUpLukOLFrCTziS-rDSgulVlrkqqFAqjq6TwFZQLCZVHfvOFKbXxuHBB5zqkT9isbuqwz7hLnctBJaDyUkkVDJgCvAyEcQiJD3P2blhhu91haNje9jC53ZHDUp4ZkcOqOXtLNLC0v3DFwcVrAvgpQqqyR4oq0qCExpEHk5G4L2DaPVDRxn3Z2r9cNGd6Qtnxzwhve9pTX170uNukWyoln_1_4lfszvJ0vbKrL5tvz9ld2XNahtLogM26q-vwApWYzr-MnPoHUx70TA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgL4puFAj4gkJDceB0ncbhVhaXAbtUDlXqz7IndrsRmV036_xl7ndWmRw65OHZieZ7HM_b4DSEfuapyAVXNuFGOSTAS55yVDCw0uZHCqpgOaHFWnl7IX5fF5V6qrxi0D3Z51P5dHbXL6xhbuVlBNsSJZeeLk7DISymyTeOz--RBkSPI9hz1qIRztFtUns4xp6rMOvTGRPCe8UE7hcnRSnRXH9-NkdxbdGZPyONkLdLjba-eknuufUZezdMeY0c_0fmOFrl7TsIZUmBabK8o4sKxfs1CCNc67LNS0za70nQsQ2-GULjr5aajpqeL9S0W_8A2K0fTVaVA5PyVwpB1pYtf2kH2BbmYff9zcspSVgUGBZc985UIl2fR9TXCKG4bXwHaWb4wnvscalV5XlsPzVSAtwg0W6umUhYHzlVl5fKX5KBdt-41oSY3pgTJQZaNFNIpUDVY4QK5IXDrJuTLMMJ6syXP0NHpUKXeikOHALMgDi0n5HOQgQ4TC0ccTLofgL8KFFX6WIZUNKiasebhqCZOCBi_HqSo04TsNOqdsuZ5LacTUo0ku-tZINoev0H8RcLthLc3_93yA3l4_m2m5z_Pfr8lj0TEYIEK6pAc9De37h3aNb19HxH8D1-j-4o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+gene-to-phenotype+and+gene-to-disease+relationships+at+Mouse+Genome+Informatics%3A+challenges+and+solutions&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Bello%2C+Susan+M&rft.au=Eppig%2C+Janan+T&rft.au=%2C&rft.date=2016-05-20&rft.pub=BioMed+Central+Ltd&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=7&rft.issue=14&rft_id=info:doi/10.1186%2Fs13326-016-0054-4&rft.externalDocID=A451331114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |