Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients

Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experi...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 340; pp. 104 - 114
Main Authors Nandan, Rajiv, Singh, Vikram, Singh, Sati Shankar, Kumar, Virender, Hazra, Kali Krishna, Nath, Chaitanya Prasad, Poonia, Shishpal, Malik, Ram Kanwar, Bhattacharyya, Ranjan, McDonald, Andrew
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2019
Elsevier Scientific Pub. Co
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (Cfrac1) by 21% followed by labile fraction (Cfrac2) (16%), non–labile fraction (Cfrac4) (13%) and less–labile fraction (Cfrac3) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher (p < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability. •Conservation tillage increased soil aggregation over conventional tillage.•Zero-tillage treatments increased labile carbon stabilization over conventional tillage.•Residue retention increased soil aggregation, soil available P, K and Zn over residue removal.•Zero-tillage with residue retention increased crop yields over conventional tillage practice.
AbstractList Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (Cfrac1) by 21% followed by labile fraction (Cfrac2) (16%), non–labile fraction (Cfrac4) (13%) and less–labile fraction (Cfrac3) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher (p < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability. •Conservation tillage increased soil aggregation over conventional tillage.•Zero-tillage treatments increased labile carbon stabilization over conventional tillage.•Residue retention increased soil aggregation, soil available P, K and Zn over residue removal.•Zero-tillage with residue retention increased crop yields over conventional tillage practice.
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (Cfrac 1) by 21% followed by labile fraction (Cfrac 2) (16%), non-labile fraction (Cfrac 4) (13%) and less-labile fraction (Cfrac 3) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher (p < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (Cfrac 1) by 21% followed by labile fraction (Cfrac 2) (16%), non-labile fraction (Cfrac 4) (13%) and less-labile fraction (Cfrac 3) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher (p < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (Cfrac1) by 21% followed by labile fraction (Cfrac2) (16%), non–labile fraction (Cfrac4) (13%) and less–labile fraction (Cfrac3) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher (p < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability.
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher (  < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (C ) by 21% followed by labile fraction (C ) (16%), non-labile fraction (C ) (13%) and less-labile fraction (C ) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher (  < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased (  < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher ( p  < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (C frac 1 ) by 21% followed by labile fraction (C frac 2 ) (16%), non–labile fraction (C frac 4 ) (13%) and less–labile fraction (C frac 3 ) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher ( p  < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased ( p  < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability. • Conservation tillage increased soil aggregation over conventional tillage. • Zero-tillage treatments increased labile carbon stabilization over conventional tillage. • Residue retention increased soil aggregation, soil available P, K and Zn over residue removal. • Zero-tillage with residue retention increased crop yields over conventional tillage practice.
Author Nandan, Rajiv
Singh, Sati Shankar
Poonia, Shishpal
Kumar, Virender
Nath, Chaitanya Prasad
McDonald, Andrew
Malik, Ram Kanwar
Bhattacharyya, Ranjan
Hazra, Kali Krishna
Singh, Vikram
AuthorAffiliation a Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh, India
c International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
e ICAR–Indian Agricultural Research Institute, New Delhi, India
d International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Patna, India
b ICAR–Indian Institute of Pulses Research (ICAR–IIPR), Kanpur, Uttar Pradesh, India
f International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Kathmandu, Nepal
AuthorAffiliation_xml – name: a Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh, India
– name: c International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
– name: b ICAR–Indian Institute of Pulses Research (ICAR–IIPR), Kanpur, Uttar Pradesh, India
– name: d International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Patna, India
– name: f International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Kathmandu, Nepal
– name: e ICAR–Indian Agricultural Research Institute, New Delhi, India
Author_xml – sequence: 1
  givenname: Rajiv
  surname: Nandan
  fullname: Nandan, Rajiv
  organization: Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh, India
– sequence: 2
  givenname: Vikram
  surname: Singh
  fullname: Singh, Vikram
  organization: Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh, India
– sequence: 3
  givenname: Sati Shankar
  surname: Singh
  fullname: Singh, Sati Shankar
  organization: ICAR–Indian Institute of Pulses Research (ICAR–IIPR), Kanpur, Uttar Pradesh, India
– sequence: 4
  givenname: Virender
  surname: Kumar
  fullname: Kumar, Virender
  organization: International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
– sequence: 5
  givenname: Kali Krishna
  surname: Hazra
  fullname: Hazra, Kali Krishna
  email: kalikrishna123@gmail.com
  organization: ICAR–Indian Institute of Pulses Research (ICAR–IIPR), Kanpur, Uttar Pradesh, India
– sequence: 6
  givenname: Chaitanya Prasad
  surname: Nath
  fullname: Nath, Chaitanya Prasad
  organization: ICAR–Indian Institute of Pulses Research (ICAR–IIPR), Kanpur, Uttar Pradesh, India
– sequence: 7
  givenname: Shishpal
  surname: Poonia
  fullname: Poonia, Shishpal
  organization: International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Patna, India
– sequence: 8
  givenname: Ram Kanwar
  surname: Malik
  fullname: Malik, Ram Kanwar
  organization: International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Patna, India
– sequence: 9
  givenname: Ranjan
  surname: Bhattacharyya
  fullname: Bhattacharyya, Ranjan
  organization: ICAR–Indian Agricultural Research Institute, New Delhi, India
– sequence: 10
  givenname: Andrew
  surname: McDonald
  fullname: McDonald, Andrew
  organization: International Maize and Wheat Improvement Center (CIMMYT), South Asia Regional Office, Kathmandu, Nepal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30996398$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1URG8Lr1B5yYIE_ySOIyFEVfFTqRIbWFuOPQm-Suxg-16pO96BN-RJcHvbCtiUlWXPOWfG852gIx88IHRGSU0JFa-39QTBQlx0zQjta0JrQugTtKGyY5VgbX-ENuVFVB0R9BidpLQt144w8gwdc9L3gvdyg8LlsmqTcRixCT5B3OvsgsfZzbOeADuPozPw68fPQSew2MSwrs5POF2nDEvCRZuCm7GepgjTrfkVNjoOpbCGMCesvcV-l6MDn9Nz9HTUc4IXd-cp-vrh_ZeLT9XV54-XF-dXlWlJkysrJHRDqxm3reWs6zvGZD8y3XZmAMslbbqG6nEchOWasbHpOjFIBlz3rZWEn6K3h9x1NyxgTekd9azW6BYdr1XQTv1d8e6bmsJeCd5K0jQl4OVdQAzfd5CyWlwyULbiIeySYowR2cqW_o-UUs4EFW2Rnv051sM890CKQBwEZdEpRRgfJJSoG_Jqq-7JqxvyilBVwBbjm3-MxuVbHOV7bn7c_u5ghwJl7yCqZAowA9ZFMFnZ4B6L-A2tLtGd
CitedBy_id crossref_primary_10_1007_s42729_021_00433_z
crossref_primary_10_1080_03650340_2020_1819532
crossref_primary_10_1002_jpln_202100333
crossref_primary_10_1016_j_agee_2024_109355
crossref_primary_10_1016_j_jia_2024_03_020
crossref_primary_10_3390_su13031541
crossref_primary_10_3390_agronomy10111734
crossref_primary_10_1007_s42729_024_01907_6
crossref_primary_10_1016_j_agee_2025_109474
crossref_primary_10_1007_s42729_021_00741_4
crossref_primary_10_1016_j_still_2022_105318
crossref_primary_10_1016_j_still_2023_105716
crossref_primary_10_1016_j_heliyon_2023_e17828
crossref_primary_10_1007_s12145_024_01427_y
crossref_primary_10_1111_sum_12942
crossref_primary_10_1038_s41598_020_67973_9
crossref_primary_10_3390_agriculture11020142
crossref_primary_10_3390_agronomy11020302
crossref_primary_10_1080_00103624_2022_2060250
crossref_primary_10_1080_00103624_2021_2017961
crossref_primary_10_1016_j_envres_2023_117033
crossref_primary_10_3390_agronomy11112101
crossref_primary_10_1007_s42106_024_00318_y
crossref_primary_10_1080_07352689_2020_1782069
crossref_primary_10_1007_s13412_024_00917_1
crossref_primary_10_1007_s42729_024_02142_9
crossref_primary_10_3390_su141711056
crossref_primary_10_3934_geosci_2023034
crossref_primary_10_1016_j_fcr_2019_03_016
crossref_primary_10_1038_s41598_023_28276_x
crossref_primary_10_1016_j_catena_2020_105102
crossref_primary_10_3390_plants11091229
crossref_primary_10_1016_j_chemosphere_2023_139695
crossref_primary_10_1038_s41598_022_07760_w
crossref_primary_10_1007_s11356_020_10395_x
crossref_primary_10_1007_s42729_024_01844_4
crossref_primary_10_1016_S2095_3119_21_63646_8
crossref_primary_10_1016_j_pedsph_2022_06_047
crossref_primary_10_1016_j_geoderma_2019_06_039
crossref_primary_10_1016_j_still_2024_106029
crossref_primary_10_3389_fpls_2023_1170739
crossref_primary_10_1016_j_envc_2021_100258
crossref_primary_10_1017_S0014479722000370
crossref_primary_10_1080_00103624_2022_2118298
crossref_primary_10_1007_s11368_023_03585_w
crossref_primary_10_1016_j_ecoleng_2019_02_004
crossref_primary_10_1016_j_scitotenv_2021_152710
crossref_primary_10_1016_j_geoderma_2021_115391
crossref_primary_10_1016_j_iswcr_2020_12_003
crossref_primary_10_1016_j_scitotenv_2021_147123
crossref_primary_10_1002_jpln_202000310
crossref_primary_10_1016_j_fcr_2021_108080
crossref_primary_10_1016_j_still_2021_105240
crossref_primary_10_1007_s11104_024_06826_0
crossref_primary_10_1016_j_still_2025_106453
crossref_primary_10_1016_j_still_2022_105421
crossref_primary_10_1016_j_still_2024_106399
crossref_primary_10_1016_j_fcr_2024_109438
crossref_primary_10_1080_03650340_2020_1752369
crossref_primary_10_1007_s11356_023_31203_2
crossref_primary_10_1002_ldr_4512
crossref_primary_10_1111_ejss_13413
crossref_primary_10_1016_j_geoderma_2019_07_007
crossref_primary_10_1016_j_catena_2020_104555
crossref_primary_10_1080_00103624_2024_2323073
crossref_primary_10_1016_j_eti_2022_102966
crossref_primary_10_1016_j_energy_2020_117554
crossref_primary_10_3390_su14127460
crossref_primary_10_1016_j_still_2024_106442
crossref_primary_10_1002_ldr_4066
crossref_primary_10_1166_jbmb_2021_2080
crossref_primary_10_1016_j_jenvman_2022_115603
crossref_primary_10_1007_s42106_023_00256_1
crossref_primary_10_1016_j_apsoil_2021_104226
crossref_primary_10_1007_s42535_022_00539_4
crossref_primary_10_3390_agriculture11090903
crossref_primary_10_1038_s41598_024_52319_6
crossref_primary_10_3390_agriculture12030407
crossref_primary_10_3390_agronomy10101566
crossref_primary_10_1016_j_fcr_2020_107781
crossref_primary_10_3389_fsufs_2024_1476292
crossref_primary_10_1016_j_still_2019_104473
crossref_primary_10_3390_land12091783
crossref_primary_10_1016_j_pedsph_2022_06_036
crossref_primary_10_1007_s42729_020_00213_1
crossref_primary_10_1007_s42729_020_00358_z
crossref_primary_10_1016_j_scitotenv_2023_167813
crossref_primary_10_3390_agriculture14091490
crossref_primary_10_3390_land13122157
crossref_primary_10_1017_S0014479722000187
crossref_primary_10_1080_03650340_2022_2108804
crossref_primary_10_3390_rs16173168
crossref_primary_10_1002_agj2_20051
crossref_primary_10_3390_su13041965
crossref_primary_10_1080_01904167_2023_2209112
crossref_primary_10_31497_zrzyxb_20220505
crossref_primary_10_1016_j_ecolind_2023_109940
crossref_primary_10_1016_j_scitotenv_2023_169421
crossref_primary_10_1007_s11368_023_03590_z
crossref_primary_10_1016_j_eja_2021_126352
crossref_primary_10_3390_soilsystems8030080
crossref_primary_10_1016_j_still_2024_106226
crossref_primary_10_3390_land13060859
crossref_primary_10_3389_fevo_2022_1026771
crossref_primary_10_3390_agronomy14050928
crossref_primary_10_3390_agronomy12051101
crossref_primary_10_3390_land12061253
crossref_primary_10_1007_s10705_023_10288_8
crossref_primary_10_1016_j_jenvman_2020_111388
crossref_primary_10_1016_j_farsys_2024_100099
crossref_primary_10_1016_j_still_2024_106073
crossref_primary_10_1071_CP20339
crossref_primary_10_1016_j_envres_2023_116525
crossref_primary_10_1002_agj2_21159
crossref_primary_10_1016_j_still_2023_105885
crossref_primary_10_1007_s11104_024_06817_1
crossref_primary_10_3390_agronomy10060888
crossref_primary_10_3390_agronomy10121844
crossref_primary_10_3390_su14105860
crossref_primary_10_1016_j_eti_2020_101193
crossref_primary_10_1016_j_geodrs_2023_e00621
crossref_primary_10_1016_j_ecolind_2020_106292
crossref_primary_10_1016_j_fcr_2024_109598
crossref_primary_10_1007_s10661_020_8165_x
crossref_primary_10_1016_j_scitotenv_2024_170418
Cites_doi 10.1007/s10705-014-9629-6
10.2136/sssaj2000.6462180x
10.2136/sssaj1980.03615995004400040022x
10.1007/s40011-014-0415-7
10.1007/s12571-015-0492-3
10.1016/j.geoderma.2013.10.022
10.2136/sssaj2010.0362
10.2134/agronj1936.00021962002800050001x
10.1016/j.fcr.2014.04.015
10.1016/j.agee.2014.06.001
10.1007/s40003-016-0215-9
10.1016/j.geoderma.2004.03.005
10.1016/j.still.2012.01.014
10.4141/cjss2012-072
10.1016/S0038-0717(00)00179-6
10.1071/AR9951459
10.1097/00010694-200101000-00009
10.1016/j.still.2012.10.001
10.2136/sssaj2010.0185
10.2136/sssaj1978.03615995004200030009x
10.2136/sssaj2006.0378
10.1016/j.agee.2012.07.008
10.1007/s11104-012-1226-3
10.1016/j.geoderma.2009.11.011
10.1016/j.still.2007.01.002
10.1007/s10333-018-0641-3
10.1016/j.soilbio.2010.05.015
10.1016/S0065-2113(04)85006-5
10.1007/s40003-017-0246-x
10.1071/SR04049
10.1080/03650340.2018.1451638
10.1071/SR9910815
10.1016/S0167-1987(99)00051-3
10.1002/jpln.201200628
10.2136/sssaj2002.1981
10.1016/j.geoderma.2009.11.009
10.1016/j.still.2013.10.001
10.1016/B978-0-12-394278-4.00006-4
10.1097/00010694-193401000-00003
10.1016/S0167-1987(97)00036-6
10.1097/SS.0b013e3182408f1e
10.1016/j.still.2007.10.003
10.1017/S0014479712000130
10.1111/j.1365-2389.1982.tb01755.x
10.1016/j.agee.2013.06.002
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.geoderma.2019.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 114
ExternalDocumentID PMC6358044
30996398
10_1016_j_geoderma_2019_01_001
S0016706118309212
Genre Journal Article
GeographicLocations South Asia
GeographicLocations_xml – name: South Asia
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
EFKBS
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c504t-d68e7b5a23d5d327972289f2a57cbed3814741affb6d3a22f4776b82e3a95d803
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Aug 21 13:50:12 EDT 2025
Mon Jul 21 09:30:16 EDT 2025
Fri Jul 11 16:02:03 EDT 2025
Mon Jul 21 05:51:22 EDT 2025
Tue Jul 01 04:04:48 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:49:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Soil aggregate
Soil available nutrients
Zero–till direct seeded rice
Grain yield
Carbon fractions
Carbon stabilization
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-d68e7b5a23d5d327972289f2a57cbed3814741affb6d3a22f4776b82e3a95d803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706118309212
PMID 30996398
PQID 2211326165
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358044
proquest_miscellaneous_2220858514
proquest_miscellaneous_2211326165
pubmed_primary_30996398
crossref_primary_10_1016_j_geoderma_2019_01_001
crossref_citationtrail_10_1016_j_geoderma_2019_01_001
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Geoderma
PublicationTitleAlternate Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Scientific Pub. Co
Publisher_xml – name: Elsevier B.V
– name: Elsevier Scientific Pub. Co
References Bhattacharyya, Tuti, Bisht, Bhatt, Gupta (bb0025) 2012; 177
Spohn, Giani (bb0220) 2010; 42
Venkatesh, Hazra, Ghosh, Praharaj, Kumar (bb0235) 2013; 93
Yoder (bb0250) 1936; 28
Kemper, Rosenau (bb0145) 1986
Lal (bb9000) 1997; 43
Laik, Sharma, Idris, Singh, Singh, Bhatt, Saharawat, Humphreys, Ladha (bb0160) 2014; 195
Gathala, Ladha, Saharawat, Kumar, Kumar, Sharma (bb0070) 2011; 75
Six, Elliott, Paustian (bb0210) 2000; 32
Kumari, Chakraborty, Gathala, Pathak, Dwivedi, Tomar, Garg, Singh, Ladha (bb0150) 2011; 75
Javurek, Vach (bb0130) 2009
Jat, Sapkota, Singh, Jat, Kumar, Gupta (bb0125) 2014; 164
Chauhan, Mahajan, Sardana, Timsina, Jat (bb0050) 2012; 117
Huang, Peng, Huang, Zhang (bb0115) 2010; 154
Guppy, Menzies, Moody, Blamey (bb0090) 2005; 43
Doran (bb0060) 1980; 44
Ladha, Kumar, Alam, Sharma, Gathala, Chandna, Saharawat, Balasubramanian (bb0155) 2009
Bandyopadhyay, Saha, Mani, Mandal (bb0015) 2010; 154
Benbi, Toor, Kumar (bb0020) 2012; 360
Keil, D'Souza, McDonald (bb0140) 2015; 7
Singh, Singh, Timsina (bb0205) 2005; 85
Pandey, Agrawal, Bohra (bb0195) 2012; 159
Jackson (bb0120) 1973
Bronick, Lal (bb0040) 2005; 124
Hazra, Venkatesh, Ghosh, Ganeshamurthy, Kumar, Nadarajan, Singh (bb0100) 2014; 100
Choudhury, Srivastava, Singh, Chaudhari, Sharma, Singh, Sarkar (bb0055) 2014; 136
Elder, Lal (bb0065) 2008; 98
Jenkinson (bb0135) 1988
Andruschkewitsch, Geisseler, Dultz, Joergensen, Ludwig (bb0010) 2014; 177
Ghosh, Hazra, Venkatesh, Singh, Kumar, Mathur (bb0085) 2016; 5
Sheoran, Tonk, Kaushik, Hasija, Pannu (bb0200) 1998
Six, Callewaert, Lenders, De Gryze, Morris, Gregorich, Paustian (bb0215) 2002; 66
Lindsay, Norvell (bb0165) 1978; 42
Walkley, Black (bb0240) 1934; 37
Zotarelli, Alves, Urquiaga, Boddey, Six (bb0255) 2007; 95
Oades, Waters (bb0190) 1991; 29
Nath, Das, Rana, Bhattacharyya, Pathak, Paul, Meena, Singh (bb0180) 2017; 6
Yang, Wander (bb0245) 1999; 52
Hazra, Chandra (bb9005) 2016; 86
Tisdall, Oades (bb0230) 1982; 33
Gathala, Kumar, Sharma, Saharawat, Jat, Singh, Kumar, Jat, Humphreys, Sharma, Sharma, Ladha (bb0075) 2013; 177
Nandan, Singh, Kumar, Singh, Hazra, Nath, Malik, Poonia, Solanki (bb0175) 2018; 16
Nath, Das, Bhattacharyya, Pathak, Paul, Chakraborty, Hazra (bb0185) 2017
Andruschkewitsch, Koch, Ludwig (bb0005) 2014; 217
Brar, Singh, Dheri (bb0035) 2013; 128
Hazra, Ghosh, Venkatesh, Nath, Kumar, Singh, Singh, Nadarajan (bb0105) 2018; 64
Chan, Bowman, Oates (bb0045) 2001; 166
Hou, Chen, Wang, Van Cleemput, Patrick (bb0110) 2000; 64
Ghosh, Venkatesh, Hazra, Kumar (bb0080) 2012; 48
Majumder, Mandal, Bandyopadhyay, Gangopadhyay, Mani, Kundu, Majumder (bb0170) 2008; 72
Blair, Lefroy, Lisle (bb0030) 1995; 46
Srinivasan, Maheswarappa, Lal (bb0225) 2012; 121
Bhattacharyya (10.1016/j.geoderma.2019.01.001_bb0025) 2012; 177
Tisdall (10.1016/j.geoderma.2019.01.001_bb0230) 1982; 33
Ghosh (10.1016/j.geoderma.2019.01.001_bb0080) 2012; 48
Chan (10.1016/j.geoderma.2019.01.001_bb0045) 2001; 166
Majumder (10.1016/j.geoderma.2019.01.001_bb0170) 2008; 72
Benbi (10.1016/j.geoderma.2019.01.001_bb0020) 2012; 360
Yang (10.1016/j.geoderma.2019.01.001_bb0245) 1999; 52
Bandyopadhyay (10.1016/j.geoderma.2019.01.001_bb0015) 2010; 154
Jat (10.1016/j.geoderma.2019.01.001_bb0125) 2014; 164
Lindsay (10.1016/j.geoderma.2019.01.001_bb0165) 1978; 42
Guppy (10.1016/j.geoderma.2019.01.001_bb0090) 2005; 43
Pandey (10.1016/j.geoderma.2019.01.001_bb0195) 2012; 159
Andruschkewitsch (10.1016/j.geoderma.2019.01.001_bb0010) 2014; 177
Kumari (10.1016/j.geoderma.2019.01.001_bb0150) 2011; 75
Nath (10.1016/j.geoderma.2019.01.001_bb0180) 2017; 6
Yoder (10.1016/j.geoderma.2019.01.001_bb0250) 1936; 28
Bronick (10.1016/j.geoderma.2019.01.001_bb0040) 2005; 124
Chauhan (10.1016/j.geoderma.2019.01.001_bb0050) 2012; 117
Hazra (10.1016/j.geoderma.2019.01.001_bb9005) 2016; 86
Spohn (10.1016/j.geoderma.2019.01.001_bb0220) 2010; 42
Walkley (10.1016/j.geoderma.2019.01.001_bb0240) 1934; 37
Doran (10.1016/j.geoderma.2019.01.001_bb0060) 1980; 44
Huang (10.1016/j.geoderma.2019.01.001_bb0115) 2010; 154
Lal (10.1016/j.geoderma.2019.01.001_bb9000) 1997; 43
Venkatesh (10.1016/j.geoderma.2019.01.001_bb0235) 2013; 93
Jenkinson (10.1016/j.geoderma.2019.01.001_bb0135) 1988
Ladha (10.1016/j.geoderma.2019.01.001_bb0155) 2009
Brar (10.1016/j.geoderma.2019.01.001_bb0035) 2013; 128
Gathala (10.1016/j.geoderma.2019.01.001_bb0075) 2013; 177
Nath (10.1016/j.geoderma.2019.01.001_bb0185) 2017
Gathala (10.1016/j.geoderma.2019.01.001_bb0070) 2011; 75
Hazra (10.1016/j.geoderma.2019.01.001_bb0105) 2018; 64
Hou (10.1016/j.geoderma.2019.01.001_bb0110) 2000; 64
Six (10.1016/j.geoderma.2019.01.001_bb0210) 2000; 32
Andruschkewitsch (10.1016/j.geoderma.2019.01.001_bb0005) 2014; 217
Hazra (10.1016/j.geoderma.2019.01.001_bb0100) 2014; 100
Singh (10.1016/j.geoderma.2019.01.001_bb0205) 2005; 85
Elder (10.1016/j.geoderma.2019.01.001_bb0065) 2008; 98
Srinivasan (10.1016/j.geoderma.2019.01.001_bb0225) 2012; 121
Keil (10.1016/j.geoderma.2019.01.001_bb0140) 2015; 7
Zotarelli (10.1016/j.geoderma.2019.01.001_bb0255) 2007; 95
Nandan (10.1016/j.geoderma.2019.01.001_bb0175) 2018; 16
Blair (10.1016/j.geoderma.2019.01.001_bb0030) 1995; 46
Sheoran (10.1016/j.geoderma.2019.01.001_bb0200) 1998
Javurek (10.1016/j.geoderma.2019.01.001_bb0130) 2009
Six (10.1016/j.geoderma.2019.01.001_bb0215) 2002; 66
Kemper (10.1016/j.geoderma.2019.01.001_bb0145) 1986
Jackson (10.1016/j.geoderma.2019.01.001_bb0120) 1973
Oades (10.1016/j.geoderma.2019.01.001_bb0190) 1991; 29
Laik (10.1016/j.geoderma.2019.01.001_bb0160) 2014; 195
Ghosh (10.1016/j.geoderma.2019.01.001_bb0085) 2016; 5
Choudhury (10.1016/j.geoderma.2019.01.001_bb0055) 2014; 136
References_xml – volume: 75
  start-page: 560
  year: 2011
  end-page: 567
  ident: bb0150
  article-title: Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India
  publication-title: Soil Sci. Soc. Am. J.
– year: 2017
  ident: bb0185
  article-title: Nitrogen effects on productivity and soil properties in conventional and zero tilled wheat with different residue management
  publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.
– volume: 6
  start-page: 33
  year: 2017
  end-page: 46
  ident: bb0180
  article-title: Weed and nitrogen management effects on weed infestation and crop productivity of wheat–mungbean sequence in conventional and conservation tillage practices
  publication-title: Agric. Res.
– volume: 42
  start-page: 1505
  year: 2010
  end-page: 1511
  ident: bb0220
  article-title: Water–stable aggregates, glomalin–related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils
  publication-title: Soil Biol. Biochem.
– volume: 42
  start-page: 421
  year: 1978
  end-page: 428
  ident: bb0165
  article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper
  publication-title: Soil Sci. Soc. Am. J.
– volume: 136
  start-page: 76
  year: 2014
  end-page: 83
  ident: bb0055
  article-title: Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil
  publication-title: Soil Tillage Res.
– volume: 154
  start-page: 379
  year: 2010
  end-page: 386
  ident: bb0015
  article-title: Effect of organic inputs on aggregate associated organic carbon concentration under long–term rice–wheat cropping system
  publication-title: Geoderma
– volume: 46
  start-page: 1459
  year: 1995
  end-page: 1466
  ident: bb0030
  article-title: Soil carbon fractions based on their degree of oxidation and development of a carbon management index for agricultural systems
  publication-title: Aust. J. Agric. Res.
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0240
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 5
  start-page: 261
  year: 2016
  end-page: 268
  ident: bb0085
  article-title: Potential of crop residue and fertilizer on enrichment of carbon pools in upland soils of subtropical India
  publication-title: Agribiol. Res.
– volume: 177
  start-page: 85
  year: 2013
  end-page: 97
  ident: bb0075
  article-title: Optimizing intensive cereal–based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo–Gangetic Plains of India
  publication-title: Agric. Ecosyst. Environ.
– volume: 128
  start-page: 30
  year: 2013
  end-page: 36
  ident: bb0035
  article-title: Carbon sequestration and soil carbon pools in a rice–wheat cropping system: effect of long–term use of inorganic fertilizers and organic manure
  publication-title: Soil Tillage Res.
– volume: 166
  start-page: 61
  year: 2001
  end-page: 67
  ident: bb0045
  article-title: Oxidizible organic carbon fractions and soil quality changes in oxicpaleustalf under different pasture leys
  publication-title: Soil Sci.
– volume: 177
  start-page: 218
  year: 2012
  end-page: 228
  ident: bb0025
  article-title: Conservation tillage and fertilization impact on soil aggregation and carbon pools in the Indian Himalayas under an irrigated rice–wheat rotation
  publication-title: Soil Sci.
– volume: 66
  start-page: 1981
  year: 2002
  end-page: 1987
  ident: bb0215
  article-title: Measuring and understanding carbon storage in afforested soils by physical fractionation
  publication-title: Soil Sci. Soc. Am. J.
– year: 1973
  ident: bb0120
  article-title: Soil Chemical Analysis
– volume: 7
  start-page: 983
  year: 2015
  end-page: 1001
  ident: bb0140
  article-title: Zero–tillage as a pathway for sustainable wheat intensification in the Eastern Indo–Gangetic Plains: does it work in farmers' fields?
  publication-title: Food Sec.
– volume: 95
  start-page: 196
  year: 2007
  end-page: 206
  ident: bb0255
  article-title: Impact of tillage and crop rotation on light fraction and intra–aggregate soil organic matter in two Oxisols
  publication-title: Soil Tillage Res.
– start-page: 368
  year: 1988
  end-page: 386
  ident: bb0135
  article-title: Determination of microbial biomass carbon and nitrogen in soil
  publication-title: Advances in Nitrogen Cycling in Agricultural Ecosystems
– volume: 43
  start-page: 81
  year: 1997
  end-page: 107
  ident: bb9000
  article-title: Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO
  publication-title: Soil Till. Res.
– volume: 93
  start-page: 127
  year: 2013
  end-page: 136
  ident: bb0235
  article-title: Long–term effect of pulses and nutrient management on soil carbon sequestration in Indo–Gangetic plains of India
  publication-title: Can. J. Soil Sci.
– volume: 159
  start-page: 133
  year: 2012
  end-page: 144
  ident: bb0195
  article-title: Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system
  publication-title: Agric. Ecosyst. Environ.
– volume: 75
  start-page: 1851
  year: 2011
  end-page: 1862
  ident: bb0070
  article-title: Effect of tillage and crop establishment methods on physical properties of a medium–textured soil under a seven–year rice–wheat rotation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 117
  start-page: 315
  year: 2012
  end-page: 369
  ident: bb0050
  article-title: Productivity and sustainability of the rice–wheat cropping system in the Indo–Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies
  publication-title: Adv. Agron.
– volume: 64
  start-page: 1690
  year: 2018
  end-page: 1704
  ident: bb0105
  article-title: Improving soil organic carbon pools through inclusion of summer mungbean in cereal–cereal cropping systems in Indo–Gangetic plain
  publication-title: Arch. Agron. Soil Sci.
– start-page: 1
  year: 2009
  end-page: 5
  ident: bb0130
  article-title: Impacts of long–term reduced tillage use on soil carbon content and water stable aggregates in Ortic Luvisol, loam soil
  publication-title: Proc. 18
– volume: 43
  start-page: 189
  year: 2005
  end-page: 202
  ident: bb0090
  article-title: Competitive sorption reactions between phosphorus and organic matter in soil: a review
  publication-title: Soil Res.
– start-page: 425
  year: 1986
  end-page: 442
  ident: bb0145
  article-title: Aggregate Stability and Size Distribution
– volume: 98
  start-page: 45
  year: 2008
  end-page: 55
  ident: bb0065
  article-title: Tillage effects on gaseous emissions from an intensively farmed organic soil in north Central Ohio
  publication-title: Soil Tillage Res.
– start-page: 69
  year: 2009
  end-page: 108
  ident: bb0155
  article-title: Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice–wheat system in South Asia
  publication-title: Integrated Crop and Resource Management in the Rice–Wheat System of South Asia
– volume: 29
  start-page: 815
  year: 1991
  end-page: 828
  ident: bb0190
  article-title: Aggregate hierarchy in soils
  publication-title: Aust. J. Soil Res.
– volume: 124
  start-page: 3
  year: 2005
  end-page: 22
  ident: bb0040
  article-title: Soil structure and management: a review
  publication-title: Geoderma
– volume: 72
  start-page: 775
  year: 2008
  end-page: 785
  ident: bb0170
  article-title: Organic amendments influence soil organic carbon pools and crop productivity in a 19 years old rice–wheat agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
– volume: 195
  start-page: 68
  year: 2014
  end-page: 82
  ident: bb0160
  article-title: Integration of conservation agriculture with best management practices for improving system performance of the rice–wheat rotation in the Eastern Indo–Gangetic Plains of India
  publication-title: Agric. Ecosyst. Environ.
– volume: 44
  start-page: 765
  year: 1980
  end-page: 771
  ident: bb0060
  article-title: Soil microbial and biochemical changes associated with reduced tillage 1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: bb0210
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no–tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 52
  start-page: 1
  year: 1999
  end-page: 9
  ident: bb0245
  article-title: Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois
  publication-title: Soil Tillage Res.
– volume: 100
  start-page: 95
  year: 2014
  end-page: 110
  ident: bb0100
  article-title: Long–term effect of pulse crops inclusion on soil–plant nutrient dynamics in puddled rice (
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 164
  start-page: 199
  year: 2014
  end-page: 210
  ident: bb0125
  article-title: Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: yield trends and economic profitability
  publication-title: Field Crop Res.
– volume: 33
  start-page: 141
  year: 1982
  end-page: 163
  ident: bb0230
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: J. Soil Sci.
– volume: 217
  start-page: 57
  year: 2014
  end-page: 64
  ident: bb0005
  article-title: Effect of long–term tillage treatments on the temporal dynamics of water–stable aggregates and on macro–aggregate turnover at three German sites
  publication-title: Geoderma
– volume: 121
  start-page: 10
  year: 2012
  end-page: 17
  ident: bb0225
  article-title: Long term effects of topsoil depth and amendments on particulate and non particulate carbon fractions in a Miamian soil of Central Ohio
  publication-title: Soil Tillage Res.
– start-page: 139
  year: 1998
  end-page: 143
  ident: bb0200
  article-title: Statistical software package for agricultural research workers
  publication-title: Recent Advances in Information Theory, Statistics & Computer Applications
– volume: 177
  start-page: 297
  year: 2014
  end-page: 306
  ident: bb0010
  article-title: Rate of soil-aggregate formation under different organic matter amendments a short–term incubation experiment
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 28
  start-page: 337
  year: 1936
  end-page: 351
  ident: bb0250
  article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses
  publication-title: Agron. J.
– volume: 48
  start-page: 473
  year: 2012
  end-page: 487
  ident: bb0080
  article-title: Long–term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of Indo–Gangetic Plains of India
  publication-title: Exp. Agric.
– volume: 154
  start-page: 364
  year: 2010
  end-page: 369
  ident: bb0115
  article-title: Soil aggregation and organic carbon fractions affected by long–term fertilization in a red soil of subtropical China
  publication-title: Geoderma
– volume: 360
  start-page: 145
  year: 2012
  end-page: 162
  ident: bb0020
  article-title: Management of organic amendments in rice–wheat cropping system determines the pool where carbon is sequestered
  publication-title: Plant Soil
– volume: 85
  start-page: 269
  year: 2005
  end-page: 407
  ident: bb0205
  article-title: Crop residue management for nutrient cycling and improving soil productivity in rice–based cropping systems in the tropics
  publication-title: Adv. Agron.
– volume: 86
  start-page: 105
  year: 2016
  end-page: 113
  ident: bb9005
  article-title: Effect of extended water stress on growth, tiller mortality and nutrient recovery under system of rice intensification
  publication-title: Proc. Nat. Acad. Sci., India Sec. B: Biol. Sci.
– volume: 64
  start-page: 2180
  year: 2000
  end-page: 2186
  ident: bb0110
  article-title: Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 477
  year: 2018
  end-page: 492
  ident: bb0175
  article-title: Crop establishment with conservation tillage and crop residue retention in rice–based cropping systems of eastern India: yield advantage and economic benefit
  publication-title: Paddy Water Environ.
– volume: 100
  start-page: 95
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0100
  article-title: Long–term effect of pulse crops inclusion on soil–plant nutrient dynamics in puddled rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system on an Inceptisol of Indo–Gangetic plain zone of India
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-014-9629-6
– volume: 64
  start-page: 2180
  year: 2000
  ident: 10.1016/j.geoderma.2019.01.001_bb0110
  article-title: Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6462180x
– volume: 44
  start-page: 765
  year: 1980
  ident: 10.1016/j.geoderma.2019.01.001_bb0060
  article-title: Soil microbial and biochemical changes associated with reduced tillage 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400040022x
– volume: 86
  start-page: 105
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.001_bb9005
  article-title: Effect of extended water stress on growth, tiller mortality and nutrient recovery under system of rice intensification
  publication-title: Proc. Nat. Acad. Sci., India Sec. B: Biol. Sci.
  doi: 10.1007/s40011-014-0415-7
– volume: 7
  start-page: 983
  year: 2015
  ident: 10.1016/j.geoderma.2019.01.001_bb0140
  article-title: Zero–tillage as a pathway for sustainable wheat intensification in the Eastern Indo–Gangetic Plains: does it work in farmers' fields?
  publication-title: Food Sec.
  doi: 10.1007/s12571-015-0492-3
– volume: 217
  start-page: 57
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0005
  article-title: Effect of long–term tillage treatments on the temporal dynamics of water–stable aggregates and on macro–aggregate turnover at three German sites
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.10.022
– start-page: 69
  year: 2009
  ident: 10.1016/j.geoderma.2019.01.001_bb0155
  article-title: Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice–wheat system in South Asia
– volume: 75
  start-page: 1851
  year: 2011
  ident: 10.1016/j.geoderma.2019.01.001_bb0070
  article-title: Effect of tillage and crop establishment methods on physical properties of a medium–textured soil under a seven–year rice–wheat rotation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0362
– volume: 28
  start-page: 337
  issue: 5
  year: 1936
  ident: 10.1016/j.geoderma.2019.01.001_bb0250
  article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses
  publication-title: Agron. J.
  doi: 10.2134/agronj1936.00021962002800050001x
– volume: 164
  start-page: 199
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0125
  article-title: Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: yield trends and economic profitability
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2014.04.015
– volume: 195
  start-page: 68
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0160
  article-title: Integration of conservation agriculture with best management practices for improving system performance of the rice–wheat rotation in the Eastern Indo–Gangetic Plains of India
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.06.001
– volume: 5
  start-page: 261
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.001_bb0085
  article-title: Potential of crop residue and fertilizer on enrichment of carbon pools in upland soils of subtropical India
  publication-title: Agribiol. Res.
  doi: 10.1007/s40003-016-0215-9
– volume: 124
  start-page: 3
  year: 2005
  ident: 10.1016/j.geoderma.2019.01.001_bb0040
  article-title: Soil structure and management: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 121
  start-page: 10
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0225
  article-title: Long term effects of topsoil depth and amendments on particulate and non particulate carbon fractions in a Miamian soil of Central Ohio
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.01.014
– volume: 93
  start-page: 127
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.001_bb0235
  article-title: Long–term effect of pulses and nutrient management on soil carbon sequestration in Indo–Gangetic plains of India
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2012-072
– volume: 32
  start-page: 2099
  year: 2000
  ident: 10.1016/j.geoderma.2019.01.001_bb0210
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no–tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 46
  start-page: 1459
  year: 1995
  ident: 10.1016/j.geoderma.2019.01.001_bb0030
  article-title: Soil carbon fractions based on their degree of oxidation and development of a carbon management index for agricultural systems
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9951459
– volume: 166
  start-page: 61
  year: 2001
  ident: 10.1016/j.geoderma.2019.01.001_bb0045
  article-title: Oxidizible organic carbon fractions and soil quality changes in oxicpaleustalf under different pasture leys
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200101000-00009
– start-page: 1
  year: 2009
  ident: 10.1016/j.geoderma.2019.01.001_bb0130
  article-title: Impacts of long–term reduced tillage use on soil carbon content and water stable aggregates in Ortic Luvisol, loam soil
– volume: 128
  start-page: 30
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.001_bb0035
  article-title: Carbon sequestration and soil carbon pools in a rice–wheat cropping system: effect of long–term use of inorganic fertilizers and organic manure
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.10.001
– volume: 75
  start-page: 560
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2019.01.001_bb0150
  article-title: Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0185
– volume: 42
  start-page: 421
  year: 1978
  ident: 10.1016/j.geoderma.2019.01.001_bb0165
  article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200030009x
– start-page: 139
  year: 1998
  ident: 10.1016/j.geoderma.2019.01.001_bb0200
  article-title: Statistical software package for agricultural research workers
– volume: 72
  start-page: 775
  year: 2008
  ident: 10.1016/j.geoderma.2019.01.001_bb0170
  article-title: Organic amendments influence soil organic carbon pools and crop productivity in a 19 years old rice–wheat agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0378
– volume: 159
  start-page: 133
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0195
  article-title: Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2012.07.008
– volume: 360
  start-page: 145
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0020
  article-title: Management of organic amendments in rice–wheat cropping system determines the pool where carbon is sequestered
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1226-3
– volume: 154
  start-page: 379
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.001_bb0015
  article-title: Effect of organic inputs on aggregate associated organic carbon concentration under long–term rice–wheat cropping system
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.011
– volume: 95
  start-page: 196
  year: 2007
  ident: 10.1016/j.geoderma.2019.01.001_bb0255
  article-title: Impact of tillage and crop rotation on light fraction and intra–aggregate soil organic matter in two Oxisols
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2007.01.002
– year: 2017
  ident: 10.1016/j.geoderma.2019.01.001_bb0185
  article-title: Nitrogen effects on productivity and soil properties in conventional and zero tilled wheat with different residue management
  publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.
– volume: 16
  start-page: 477
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2019.01.001_bb0175
  article-title: Crop establishment with conservation tillage and crop residue retention in rice–based cropping systems of eastern India: yield advantage and economic benefit
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-018-0641-3
– year: 1973
  ident: 10.1016/j.geoderma.2019.01.001_bb0120
– volume: 42
  start-page: 1505
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.001_bb0220
  article-title: Water–stable aggregates, glomalin–related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.05.015
– volume: 85
  start-page: 269
  year: 2005
  ident: 10.1016/j.geoderma.2019.01.001_bb0205
  article-title: Crop residue management for nutrient cycling and improving soil productivity in rice–based cropping systems in the tropics
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(04)85006-5
– volume: 6
  start-page: 33
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.001_bb0180
  article-title: Weed and nitrogen management effects on weed infestation and crop productivity of wheat–mungbean sequence in conventional and conservation tillage practices
  publication-title: Agric. Res.
  doi: 10.1007/s40003-017-0246-x
– volume: 43
  start-page: 189
  issue: 2
  year: 2005
  ident: 10.1016/j.geoderma.2019.01.001_bb0090
  article-title: Competitive sorption reactions between phosphorus and organic matter in soil: a review
  publication-title: Soil Res.
  doi: 10.1071/SR04049
– start-page: 425
  year: 1986
  ident: 10.1016/j.geoderma.2019.01.001_bb0145
– volume: 64
  start-page: 1690
  year: 2018
  ident: 10.1016/j.geoderma.2019.01.001_bb0105
  article-title: Improving soil organic carbon pools through inclusion of summer mungbean in cereal–cereal cropping systems in Indo–Gangetic plain
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2018.1451638
– volume: 29
  start-page: 815
  year: 1991
  ident: 10.1016/j.geoderma.2019.01.001_bb0190
  article-title: Aggregate hierarchy in soils
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9910815
– volume: 52
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.geoderma.2019.01.001_bb0245
  article-title: Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(99)00051-3
– volume: 177
  start-page: 297
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0010
  article-title: Rate of soil-aggregate formation under different organic matter amendments a short–term incubation experiment
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200628
– volume: 66
  start-page: 1981
  year: 2002
  ident: 10.1016/j.geoderma.2019.01.001_bb0215
  article-title: Measuring and understanding carbon storage in afforested soils by physical fractionation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1981
– volume: 154
  start-page: 364
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.001_bb0115
  article-title: Soil aggregation and organic carbon fractions affected by long–term fertilization in a red soil of subtropical China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.009
– volume: 136
  start-page: 76
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.001_bb0055
  article-title: Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2013.10.001
– volume: 117
  start-page: 315
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0050
  article-title: Productivity and sustainability of the rice–wheat cropping system in the Indo–Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-394278-4.00006-4
– volume: 37
  start-page: 29
  issue: 1
  year: 1934
  ident: 10.1016/j.geoderma.2019.01.001_bb0240
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 43
  start-page: 81
  issue: 1-2
  year: 1997
  ident: 10.1016/j.geoderma.2019.01.001_bb9000
  article-title: Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(97)00036-6
– volume: 177
  start-page: 218
  issue: 3
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0025
  article-title: Conservation tillage and fertilization impact on soil aggregation and carbon pools in the Indian Himalayas under an irrigated rice–wheat rotation
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182408f1e
– volume: 98
  start-page: 45
  year: 2008
  ident: 10.1016/j.geoderma.2019.01.001_bb0065
  article-title: Tillage effects on gaseous emissions from an intensively farmed organic soil in north Central Ohio
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2007.10.003
– volume: 48
  start-page: 473
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.001_bb0080
  article-title: Long–term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of Indo–Gangetic Plains of India
  publication-title: Exp. Agric.
  doi: 10.1017/S0014479712000130
– start-page: 368
  year: 1988
  ident: 10.1016/j.geoderma.2019.01.001_bb0135
  article-title: Determination of microbial biomass carbon and nitrogen in soil
– volume: 33
  start-page: 141
  year: 1982
  ident: 10.1016/j.geoderma.2019.01.001_bb0230
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1982.tb01755.x
– volume: 177
  start-page: 85
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.001_bb0075
  article-title: Optimizing intensive cereal–based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo–Gangetic Plains of India
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.06.002
SSID ssj0017020
Score 2.5963788
Snippet Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South...
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Carbon fractions
carbon sinks
Carbon stabilization
conventional tillage
corn
crop residues
crop rotation
direct seeding
field experimentation
Grain yield
intensive cropping
no-tillage
nutrient availability
nutrients
plant establishment
rice
Soil aggregate
soil aggregation
Soil available nutrients
soil degradation
soil depth
soil organic carbon
soil properties
soil quality
South Asia
total organic carbon
wheat
Zero–till direct seeded rice
zinc
Title Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients
URI https://dx.doi.org/10.1016/j.geoderma.2019.01.001
https://www.ncbi.nlm.nih.gov/pubmed/30996398
https://www.proquest.com/docview/2211326165
https://www.proquest.com/docview/2220858514
https://pubmed.ncbi.nlm.nih.gov/PMC6358044
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQXMqhgra0y59cqcemGzv-SY4rBFpaiVORuFl27GyDUIJ2lyviHXhDnoSZxFmxbVUOPSa2o8Qz9szEM99HyBcHiuNlahNXeZ4IK_LElaxMfMD4lTmEnsRsiws1vRTfr-TVBjkZamEwrTLu_f2e3u3W8c44zub4tq6xxpcpDc8DpUwL3jENC6FRy7_dr9I8mE4jNCNTCfZ-USV8DTJCwrEOf4gVHXxnJIf5i4H60wH9PY_yhWE62yFvo0dJJ_1L75KN0Lwj25PZPKJqhPekPe9qIWlb0RKzp-N_WLpEyqFZoHVDEVvo6eERjZqnSOuFdVS0x3leUOi7aOsbamcQns-6wV9paecOGpCka0Ft42mDyP6YmPGBXJ6d_jyZJpFpISllKpaJV3nQTlqeeekzrgvNIRCruJW6dMGDVRfgediqcspnlvNKaK1czkNmC-nzNNsjm03bhE-EIt1mriGKcxUIPvVFaUOwilVWpa5QYUTkML2mjDDkyIZxY4Z8s2sziMWgWEzKMPFuRMarcbc9EMerI4pBemZNpQxYi1fHfh7EbWC94SGKbUJ7tzAcImZweZmS_-qDzKfgy4oR-diryOqdQVdhzyvyEdFryrPqgHjf6y1N_avD_VZ4ZC3E_n981wF5g1d4HMbkIdlczu_CEXhVS3fcLZtjsjU5_zG9eAY9ZSat
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDCaK9LDtMHT_2bpNA3acEVu2JPsYFCuStcupBXoTJEvOXBR2kaT3vkPfcE8y0paDZhvWw66WaMgmLZIW-X0Any0ajhOxiWzleJSZLI9smZSR85S_JpagJ6naYiFn59m3C3GxB0dDLwyVVYa9v9_Tu906XJmEtzm5rmvq8U2kwvuhUcYFJ6bhfUKnEiPYn85PZovtYYKKAzpjIiMSuNcofIlqIs6xDoIoKToEz8AP8xcf9WcM-nsp5T3fdHwAT0NQyab9up_Bnm-ew5PpchWANfwLaOddOyRrK1ZSAXX4Fcs2xDq09KxuGMEL_by9I7_mGDF7USsV66Ge1wznrtv6ipklZujLTvgLK83K4gDxdK2ZaRxrCNyfajNewvnx17OjWRTIFqJSxNkmcjL3ygrDUydcylWhOOZiFTdCldY7dOwZBh-mqqx0qeG8ypSSNuc-NYVweZy-glHTNv4NMGLczBUmcrZC3ceuKI33RiaVkbEtpB-DGF6vLgMSORFiXOmh5OxSD2rRpBYdJ1R7N4bJVu66x-J4UKIYtKd3rEqjw3hQ9tOgbo2fHJ2jmMa3N2vNMWnGqDeR4l9ziPwUw9lsDK97E9muGc0Vt70iH4PaMZ7tBIL83h1p6h8d9LekU-sse_sfz_URHs3Ovp_q0_ni5B085sRnTC366SGMNqsb_x6DrI39ED6iXzIeKVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+conservation+tillage+in+rice%E2%80%93based+cropping+systems+on+soil+aggregation%2C+carbon+pools+and+nutrients&rft.jtitle=Geoderma&rft.au=Nandan%2C+Rajiv&rft.au=Singh%2C+Vikram&rft.au=Singh%2C+S+S&rft.au=Kumar%2C+Virender&rft.date=2019-04-15&rft.issn=0016-7061&rft.volume=340+p.104-114&rft.spage=104&rft.epage=114&rft_id=info:doi/10.1016%2Fj.geoderma.2019.01.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon