A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics

•A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB ana...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 304; p. 125377
Main Authors Wu, Yang-Yang, Huang, Pengcheng, Wu, Fang-Ying
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 30.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB analysis of smartphone. We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.
AbstractList We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.
•A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB analysis of smartphone. We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.
We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.
ArticleNumber 125377
Author Wu, Fang-Ying
Huang, Pengcheng
Wu, Yang-Yang
Author_xml – sequence: 1
  givenname: Yang-Yang
  surname: Wu
  fullname: Wu, Yang-Yang
– sequence: 2
  givenname: Pengcheng
  surname: Huang
  fullname: Huang, Pengcheng
– sequence: 3
  givenname: Fang-Ying
  orcidid: 0000-0002-8524-7904
  surname: Wu
  fullname: Wu, Fang-Ying
  email: fywu@ncu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31476547$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv3CAURlGVqJmk_QsRy2485WHAlrroKOpLitoskjXicT1hZJsp4Kjtry_pZDbdzAqke76L-M4lOpvjDAhdU7KmhMr3u_UQo3ePMK0Zof2aMsGVeoVWtFO8UUSxM7QinHRNR1t5gS5z3hFCKtu9RhectkqKVq3Qnw0ejYWxGRIAdnGMKUxQUnDY7IvJMOeYsK0Xj-NcgbmkONbICNhstwm2poQ6iAPeLN_vMh4qXh4BeyjgjqNpGUvYj_ALm7kEG2IJLr9B54MZM7x9Oa_Qw-dP9zdfm9sfX77dbG4bJ0hbGi96R9qWcc8oGzpFWutb6J23njvoJe8Mk1L2wlmpLBWUdMYPQkjFmLXE8yv07rB3n-LPBXLRU8gO6idmiEvWjHNBaScEP42yjve96gWt6PULutgJvN7X3kz6rY_VVuDDAXAp5pxg0C6Uf2WVZMKoKdHPJvVOH03qZ5P6YLLG5X_x4wsngx8PQaidPgVIOrsAswMfUjWifQynVvwFnxu9GQ
CitedBy_id crossref_primary_10_1016_j_talanta_2020_121054
crossref_primary_10_1039_D4AY01146E
crossref_primary_10_31857_S004445022309013X
crossref_primary_10_1111_1541_4337_12914
crossref_primary_10_3390_bios13090850
crossref_primary_10_1016_j_bios_2022_114509
crossref_primary_10_1155_2020_5616379
crossref_primary_10_1016_j_microc_2024_112047
crossref_primary_10_1021_acsanm_2c02554
crossref_primary_10_3390_bios13080801
crossref_primary_10_1016_j_bios_2020_112158
crossref_primary_10_3390_foods11244101
crossref_primary_10_1016_j_jhazmat_2021_128135
crossref_primary_10_1016_j_microc_2023_109838
crossref_primary_10_1016_j_snb_2022_133024
crossref_primary_10_21517_1992_7223_2019_7_8_91_99
crossref_primary_10_1016_S1872_2040_21_60097_X
crossref_primary_10_1007_s12161_021_02029_w
crossref_primary_10_1016_j_foodchem_2022_132072
crossref_primary_10_1039_D3AN00689A
crossref_primary_10_1007_s00604_020_04414_4
crossref_primary_10_1021_acs_jafc_3c03565
crossref_primary_10_1021_acs_nanolett_3c02828
crossref_primary_10_1016_j_foodchem_2024_138461
crossref_primary_10_3390_chemosensors10080322
crossref_primary_10_1016_j_saa_2020_118147
crossref_primary_10_1016_j_saa_2022_120855
crossref_primary_10_1016_j_snb_2020_128470
crossref_primary_10_3168_jds_2020_19905
crossref_primary_10_1021_acs_analchem_2c04280
crossref_primary_10_1080_10408347_2020_1828027
crossref_primary_10_1016_j_trac_2020_115882
crossref_primary_10_1007_s00216_022_04398_5
crossref_primary_10_1016_j_trac_2020_115883
crossref_primary_10_1039_D1AY01809D
crossref_primary_10_1021_acs_analchem_0c04688
crossref_primary_10_1016_j_jphotochem_2022_113942
crossref_primary_10_1021_acs_analchem_5c00260
crossref_primary_10_1016_j_talanta_2020_121039
crossref_primary_10_1007_s12161_023_02508_2
crossref_primary_10_1021_acssensors_0c01740
crossref_primary_10_1016_j_foodchem_2024_139381
crossref_primary_10_1007_s44211_022_00136_0
crossref_primary_10_1016_j_microc_2023_108920
crossref_primary_10_3389_fchem_2021_793355
crossref_primary_10_1134_S1995078019040116
crossref_primary_10_1016_j_snb_2020_129173
crossref_primary_10_1007_s42250_021_00286_0
crossref_primary_10_1016_j_snb_2023_134215
crossref_primary_10_3390_bios10030021
crossref_primary_10_3390_bios15010030
crossref_primary_10_1016_j_snb_2023_134697
crossref_primary_10_1016_j_jfca_2023_105513
crossref_primary_10_1016_j_talanta_2024_125989
crossref_primary_10_1021_acs_analchem_1c03856
crossref_primary_10_1007_s00604_020_04644_6
crossref_primary_10_1016_j_jfutfo_2023_11_003
crossref_primary_10_1016_j_talanta_2022_123769
crossref_primary_10_1111_1471_0307_13145
crossref_primary_10_1021_acssensors_1c00512
crossref_primary_10_1002_anse_202000023
crossref_primary_10_1149_1945_7111_ac88fb
crossref_primary_10_1016_j_bios_2021_113457
crossref_primary_10_1007_s00216_021_03840_4
crossref_primary_10_1021_acssensors_2c02008
crossref_primary_10_1021_acsami_9b23167
crossref_primary_10_1016_j_apsusc_2022_152555
crossref_primary_10_3390_chemosensors10110437
crossref_primary_10_1007_s00604_024_06306_3
crossref_primary_10_1039_D1RA08311B
crossref_primary_10_3390_s23020949
crossref_primary_10_3390_chemosensors9100281
crossref_primary_10_1016_j_microc_2022_107207
crossref_primary_10_1007_s00216_022_04354_3
crossref_primary_10_1016_j_foodchem_2022_133534
crossref_primary_10_1016_j_jhazmat_2019_121929
crossref_primary_10_1016_j_foodchem_2023_135554
crossref_primary_10_1007_s10895_020_02631_x
crossref_primary_10_1007_s12161_024_02693_8
crossref_primary_10_1016_j_bios_2024_117023
crossref_primary_10_1039_D2AY00368F
crossref_primary_10_1021_acsanm_0c01647
crossref_primary_10_1080_05704928_2024_2388521
crossref_primary_10_1016_j_fct_2019_111058
crossref_primary_10_1016_j_foodchem_2024_138656
crossref_primary_10_1016_j_ab_2020_113894
crossref_primary_10_3390_nano11040840
crossref_primary_10_1016_j_rechem_2022_100710
crossref_primary_10_1016_j_snb_2022_132926
crossref_primary_10_1007_s00604_020_04671_3
crossref_primary_10_1016_j_snb_2024_136160
crossref_primary_10_1039_D0AN00139B
crossref_primary_10_1039_D1TB00181G
crossref_primary_10_1021_acsanm_4c02932
crossref_primary_10_1016_j_snb_2023_134204
crossref_primary_10_1039_D0AN00392A
crossref_primary_10_1002_agt2_559
crossref_primary_10_1016_j_aca_2022_340588
crossref_primary_10_1016_j_tifs_2022_04_008
crossref_primary_10_1016_j_aca_2024_343014
crossref_primary_10_1016_j_bbrc_2025_151387
crossref_primary_10_1021_acsomega_1c00359
crossref_primary_10_1039_D1AY00606A
crossref_primary_10_1002_slct_202302282
crossref_primary_10_1016_j_snb_2020_129135
crossref_primary_10_1016_j_matlet_2021_131235
crossref_primary_10_1088_1361_6528_ac2c41
crossref_primary_10_1016_j_aca_2023_342139
crossref_primary_10_2116_analsci_21P173
crossref_primary_10_1016_j_trac_2024_117839
crossref_primary_10_1016_j_microc_2024_111736
crossref_primary_10_1016_j_saa_2022_121251
crossref_primary_10_3390_molecules27238403
crossref_primary_10_1016_j_snb_2020_129144
crossref_primary_10_1021_acs_analchem_4c02413
crossref_primary_10_1139_cjc_2022_0253
crossref_primary_10_3390_s23198172
crossref_primary_10_1080_10408347_2022_2162331
crossref_primary_10_1007_s00604_020_04348_x
crossref_primary_10_1038_s44222_024_00208_y
crossref_primary_10_1039_D1RA04834A
Cites_doi 10.1021/ac502440h
10.1016/j.bios.2018.02.051
10.1016/j.foodchem.2018.04.014
10.1021/la205036p
10.1021/acs.analchem.6b05109
10.1021/ar2000293
10.1016/j.bios.2017.09.028
10.1016/j.bios.2018.04.008
10.1021/acs.analchem.7b03468
10.1016/j.bios.2015.03.040
10.1073/pnas.0406115101
10.1021/ja710241b
10.1021/acs.langmuir.7b02529
10.1016/j.bios.2016.08.107
10.1021/acs.chemrev.7b00063
10.1016/j.bios.2017.12.006
10.1016/j.foodchem.2014.08.104
10.1016/j.bios.2018.09.060
10.1016/j.foodchem.2018.01.022
10.1002/anie.201703807
10.1021/ja4097384
10.1021/acs.analchem.5b03926
10.1039/C3CC47108J
10.1021/acs.langmuir.8b00701
10.1016/j.bios.2015.07.024
10.1021/ac502461r
10.1289/ehp.1206316
10.1021/ja9011386
10.1021/acs.analchem.5b00335
10.1021/acs.langmuir.7b02449
10.1016/j.foodchem.2017.11.038
10.1016/j.bios.2016.08.019
10.1016/j.foodchem.2018.02.002
10.1021/cr0306743
10.1021/acs.analchem.8b03739
10.1016/j.jbiotec.2011.06.043
10.1016/j.snb.2017.09.092
10.1016/j.foodchem.2018.04.018
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2019.125377
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 31476547
10_1016_j_foodchem_2019_125377
S0308814619314918
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
Y6R
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-d59c04423d212f8704bd4e9cdbd3ce9638a266695cb67b15108adf556722bb0d3
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 10:03:36 EDT 2025
Fri Jul 11 10:57:26 EDT 2025
Wed Feb 19 02:36:45 EST 2025
Tue Jul 01 03:22:02 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Colorimetric aptasensor
Controllable aggregation
Food safety
Multiplex antibiotics
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-d59c04423d212f8704bd4e9cdbd3ce9638a266695cb67b15108adf556722bb0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8524-7904
PMID 31476547
PQID 2283997951
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2335118553
proquest_miscellaneous_2283997951
pubmed_primary_31476547
crossref_citationtrail_10_1016_j_foodchem_2019_125377
crossref_primary_10_1016_j_foodchem_2019_125377
elsevier_sciencedirect_doi_10_1016_j_foodchem_2019_125377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-30
PublicationDateYYYYMMDD 2020-01-30
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Famulok, Mayer (b0035) 2011; 44
Wang, Ding, He, Wang, Lou (b0150) 2014; 86
Jiang, Shi, Liu, Wan, Cui, Zhang, Tan (b0065) 2017; 56
Li, Xi, Kong, Liu, Chen (b0085) 2018; 90
Saxena, Rangasamy, Krishnan, Singh, Uke, Malekadi, Gupta (b0135) 2018; 260
Lin, Yu, Cao, Guo, Zhu, Dai, Zheng (b0095) 2018; 100
Ramezani, Mohammad Danesh, Lavaee, Abnous, Mohammad Taghdisi (b0130) 2015; 70
Yan, Gan, Wang, Cao, Chen, Li, Chen (b0170) 2015; 74
Khoshbin, Verdian, Housaindokht, Izadyar, Rouhbakhsh (b0070) 2018; 122
Li, Rothberg (b0080) 2004; 101
Park, Shumaker-Parry (b0120) 2014; 136
Zhang, Servos, Liu (b0180) 2012; 28
Wang, Mi, Beier, Zhang, Sheng, Shi, Shen (b0165) 2015; 171
Huang, Gao, Li, Wu (b0060) 2018; 255
Ashbolt, Amezquita, Backhaus, Borriello, Brandt, Collignon, Topp (b0010) 2013; 121
Ge, Li, Du, Zhu, Chen, Shi, Wang (b0045) 2018; 111
Lin, Yan, Guo, Cao, Yu, Zhang, Wu (b0090) 2018; 245
Tang, Gu, Wang, Song, Zhou, Lou, He (b0145) 2018; 102
Gai, Gu, Hou, Li (b0040) 2017; 89
Suzuki, Hosokawa, Maeda (b0140) 2009; 131
Yan, Zhang, Yao, Xue, Lu, Li, Chen (b0175) 2018; 260
Wang, Dong, Liang (b0155) 2018; 109
Caniça, Manageiro, Abriouel, Moran-Gilad, Franz (b0015) 2018
Mirau, Smith, Chavez, Hagen, Kelley-Loughnane, Naik (b0115) 2018; 34
Ma, Wang, Jia, Xiang (b0105) 2018; 249
Kwon, Ahmad Raston, Gu (b0075) 2014; 50
Mehta, Van Dorst, Rouah-Martin, Herrebout, Scippo, Blust, Robbens (b0110) 2011; 155
Alsager, Kumar, Zhu, Travas-Sejdic, McNatty, Hodgkiss (b0005) 2015; 87
Famulok, Hartig, Mayer (b0030) 2007; 107
Epanchintseva, Vorobjev, Pyshnyi, Pyshnaya (b0025) 2018; 34
Liu, Wang, Xu, Leng, Wang, Guo, Huang (b0100) 2017; 88
Wang, Gan, Zhou, Li, Cao, Chen (b0160) 2017; 87
Zhou, Saran, Liu (b0195) 2017; 117
Zhou, Nie, Chen, Yang, Gong, Zhang, Feng (b0190) 2018; 256
Guo, Zhang, Shao, Wang, Wang, Jiang (b0050) 2014; 86
Phanchai, Srikulwong, Chompoosor, Sakonsinsiri, Puangmali (b0125) 2018; 34
Hizir, Top, Balcioglu, Rana, Robertson, Shen, Yigit (b0055) 2016; 88
Zhao, Chiuman, Lam, McManus, Chen, Cui, Li (b0185) 2008; 130
Deng, Liu, Zhang, Deng, Lei, Shen, Xiang (b0020) 2018; 90
Kwon (10.1016/j.foodchem.2019.125377_b0075) 2014; 50
Phanchai (10.1016/j.foodchem.2019.125377_b0125) 2018; 34
Caniça (10.1016/j.foodchem.2019.125377_b0015) 2018
Suzuki (10.1016/j.foodchem.2019.125377_b0140) 2009; 131
Wang (10.1016/j.foodchem.2019.125377_b0155) 2018; 109
Ma (10.1016/j.foodchem.2019.125377_b0105) 2018; 249
Zhang (10.1016/j.foodchem.2019.125377_b0180) 2012; 28
Famulok (10.1016/j.foodchem.2019.125377_b0030) 2007; 107
Guo (10.1016/j.foodchem.2019.125377_b0050) 2014; 86
Liu (10.1016/j.foodchem.2019.125377_b0100) 2017; 88
Yan (10.1016/j.foodchem.2019.125377_b0170) 2015; 74
Hizir (10.1016/j.foodchem.2019.125377_b0055) 2016; 88
Ashbolt (10.1016/j.foodchem.2019.125377_b0010) 2013; 121
Mehta (10.1016/j.foodchem.2019.125377_b0110) 2011; 155
Zhou (10.1016/j.foodchem.2019.125377_b0195) 2017; 117
Mirau (10.1016/j.foodchem.2019.125377_b0115) 2018; 34
Zhou (10.1016/j.foodchem.2019.125377_b0190) 2018; 256
Yan (10.1016/j.foodchem.2019.125377_b0175) 2018; 260
Ge (10.1016/j.foodchem.2019.125377_b0045) 2018; 111
Wang (10.1016/j.foodchem.2019.125377_b0150) 2014; 86
Lin (10.1016/j.foodchem.2019.125377_b0090) 2018; 245
Wang (10.1016/j.foodchem.2019.125377_b0160) 2017; 87
Li (10.1016/j.foodchem.2019.125377_b0085) 2018; 90
Alsager (10.1016/j.foodchem.2019.125377_b0005) 2015; 87
Park (10.1016/j.foodchem.2019.125377_b0120) 2014; 136
Saxena (10.1016/j.foodchem.2019.125377_b0135) 2018; 260
Wang (10.1016/j.foodchem.2019.125377_b0165) 2015; 171
Zhao (10.1016/j.foodchem.2019.125377_b0185) 2008; 130
Li (10.1016/j.foodchem.2019.125377_b0080) 2004; 101
Deng (10.1016/j.foodchem.2019.125377_b0020) 2018; 90
Jiang (10.1016/j.foodchem.2019.125377_b0065) 2017; 56
Huang (10.1016/j.foodchem.2019.125377_b0060) 2018; 255
Lin (10.1016/j.foodchem.2019.125377_b0095) 2018; 100
Tang (10.1016/j.foodchem.2019.125377_b0145) 2018; 102
Gai (10.1016/j.foodchem.2019.125377_b0040) 2017; 89
Epanchintseva (10.1016/j.foodchem.2019.125377_b0025) 2018; 34
Famulok (10.1016/j.foodchem.2019.125377_b0035) 2011; 44
Khoshbin (10.1016/j.foodchem.2019.125377_b0070) 2018; 122
Ramezani (10.1016/j.foodchem.2019.125377_b0130) 2015; 70
References_xml – volume: 74
  start-page: 718
  year: 2015
  end-page: 724
  ident: b0170
  article-title: A “signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers
  publication-title: Biosensors and Bioelectronics
– volume: 155
  start-page: 361
  year: 2011
  end-page: 369
  ident: b0110
  article-title: In vitro selection and characterization of DNA aptamers recognizing chloramphenicol
  publication-title: Journal of Biotechnology
– volume: 34
  start-page: 2139
  year: 2018
  end-page: 2146
  ident: b0115
  article-title: Structured DNA aptamer interactions with gold nanoparticles
  publication-title: Langmuir
– volume: 107
  start-page: 3715
  year: 2007
  end-page: 3743
  ident: b0030
  article-title: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy
  publication-title: Chemical Reviews
– volume: 87
  start-page: 4201
  year: 2015
  end-page: 4209
  ident: b0005
  article-title: Ultrasensitive colorimetric detection of 17beta-estradiol: The effect of shortening DNA aptamer sequences
  publication-title: Analytical Chemistry
– volume: 260
  start-page: 208
  year: 2018
  end-page: 212
  ident: b0175
  article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food
  publication-title: Food Chemistry
– volume: 90
  start-page: 11723
  year: 2018
  end-page: 11727
  ident: b0085
  article-title: “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag
  publication-title: Analytical Chemistry
– year: 2018
  ident: b0015
  article-title: Antibiotic resistance in foodborne bacteria
  publication-title: Trends in Food Science & Technology
– volume: 70
  start-page: 181
  year: 2015
  end-page: 187
  ident: b0130
  article-title: A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline
  publication-title: Biosensors and Bioelectronics
– volume: 89
  start-page: 2163
  year: 2017
  end-page: 2169
  ident: b0040
  article-title: Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection
  publication-title: Analytical Chemistry
– volume: 131
  start-page: 7518
  year: 2009
  end-page: 7519
  ident: b0140
  article-title: Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces
  publication-title: Journal of the American Chemical Society
– volume: 86
  start-page: 8530
  year: 2014
  end-page: 8534
  ident: b0050
  article-title: Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles
  publication-title: Analytical Chemistry
– volume: 171
  start-page: 98
  year: 2015
  end-page: 107
  ident: b0165
  article-title: Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme-linked immunosorbent assay for erythromycin in milk
  publication-title: Food Chemistry
– volume: 44
  start-page: 1349
  year: 2011
  end-page: 1358
  ident: b0035
  article-title: Aptamer modules as sensors and detectors
  publication-title: Accounts of Chemical Research
– volume: 260
  start-page: 336
  year: 2018
  end-page: 343
  ident: b0135
  article-title: Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS
  publication-title: Food Chemistry
– volume: 249
  start-page: 98
  year: 2018
  end-page: 103
  ident: b0105
  article-title: Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles
  publication-title: Food Chemistry
– volume: 136
  start-page: 1907
  year: 2014
  end-page: 1921
  ident: b0120
  article-title: Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles
  publication-title: Journal of the American Chemical Society
– volume: 86
  start-page: 10186
  year: 2014
  end-page: 10192
  ident: b0150
  article-title: Kinetic adsorption profile and conformation evolution at the DNA-gold nanoparticle interface probed by dynamic light scattering
  publication-title: Analytical Chemistry
– volume: 28
  start-page: 3896
  year: 2012
  end-page: 3902
  ident: b0180
  article-title: Surface science of DNA adsorption onto citrate-capped gold nanoparticles
  publication-title: Langmuir
– volume: 56
  start-page: 11916
  year: 2017
  end-page: 11920
  ident: b0065
  article-title: Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins
  publication-title: Angewandte Chemmie International Edition
– volume: 90
  start-page: 1710
  year: 2018
  end-page: 1717
  ident: b0020
  article-title: Light-up nonthiolated aptasensor for low-mass, soluble amyloid-beta40 oligomers at high salt concentrations
  publication-title: Analytical Chemistry
– volume: 34
  start-page: 6161
  year: 2018
  end-page: 6169
  ident: b0125
  article-title: Insight into the molecular mechanisms of AuNP-based aptasensor for colorimetric detection: A molecular dynamics approach
  publication-title: Langmuir
– volume: 130
  start-page: 3610
  year: 2008
  end-page: 3618
  ident: b0185
  article-title: DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors
  publication-title: Journal of the American Chemical Society
– volume: 122
  start-page: 263
  year: 2018
  end-page: 283
  ident: b0070
  article-title: Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection
  publication-title: Biosensors and Bioelectronics
– volume: 102
  start-page: 646
  year: 2018
  end-page: 651
  ident: b0145
  article-title: Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching
  publication-title: Biosensors and Bioelectronics
– volume: 121
  start-page: 993
  year: 2013
  end-page: 1001
  ident: b0010
  article-title: Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance
  publication-title: Environmental Health Perspectives
– volume: 88
  start-page: 600
  year: 2016
  end-page: 605
  ident: b0055
  article-title: Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase
  publication-title: Analytical Chemistry
– volume: 34
  start-page: 164
  year: 2018
  end-page: 172
  ident: b0025
  article-title: Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles
  publication-title: Langmuir
– volume: 117
  start-page: 8272
  year: 2017
  end-page: 8325
  ident: b0195
  article-title: Metal sensing by DNA
  publication-title: Chemical Reviews
– volume: 255
  start-page: 2779
  year: 2018
  end-page: 2784
  ident: b0060
  article-title: Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine
  publication-title: Sensors and Actuators B: Chemical
– volume: 88
  start-page: 181
  year: 2017
  end-page: 187
  ident: b0100
  article-title: A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline
  publication-title: Biosensors and Bioelectronics
– volume: 256
  start-page: 304
  year: 2018
  end-page: 310
  ident: b0190
  article-title: Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk
  publication-title: Food Chemistry
– volume: 87
  start-page: 508
  year: 2017
  end-page: 513
  ident: b0160
  article-title: Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics
  publication-title: Biosensors and Bioelectronics
– volume: 100
  start-page: 482
  year: 2018
  end-page: 489
  ident: b0095
  article-title: Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone
  publication-title: Biosensors and Bioelectronics
– volume: 50
  start-page: 40
  year: 2014
  end-page: 42
  ident: b0075
  article-title: An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity
  publication-title: Chemical Communications
– volume: 111
  start-page: 131
  year: 2018
  end-page: 137
  ident: b0045
  article-title: Facile one-pot synthesis of visible light-responsive BiPO
  publication-title: Biosensors and Bioelectronics
– volume: 245
  start-page: 1176
  year: 2018
  end-page: 1182
  ident: b0090
  article-title: Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides
  publication-title: Food Chemistry
– volume: 109
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0155
  article-title: Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples
  publication-title: Biosensors and Bioelectronics
– volume: 101
  start-page: 14036
  year: 2004
  end-page: 14039
  ident: b0080
  article-title: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 86
  start-page: 10186
  issue: 20
  year: 2014
  ident: 10.1016/j.foodchem.2019.125377_b0150
  article-title: Kinetic adsorption profile and conformation evolution at the DNA-gold nanoparticle interface probed by dynamic light scattering
  publication-title: Analytical Chemistry
  doi: 10.1021/ac502440h
– volume: 109
  start-page: 1
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0155
  article-title: Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2018.02.051
– volume: 260
  start-page: 208
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0175
  article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.04.014
– volume: 28
  start-page: 3896
  issue: 8
  year: 2012
  ident: 10.1016/j.foodchem.2019.125377_b0180
  article-title: Surface science of DNA adsorption onto citrate-capped gold nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la205036p
– volume: 89
  start-page: 2163
  issue: 3
  year: 2017
  ident: 10.1016/j.foodchem.2019.125377_b0040
  article-title: Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.6b05109
– volume: 44
  start-page: 1349
  year: 2011
  ident: 10.1016/j.foodchem.2019.125377_b0035
  article-title: Aptamer modules as sensors and detectors
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar2000293
– volume: 100
  start-page: 482
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0095
  article-title: Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2017.09.028
– volume: 111
  start-page: 131
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0045
  article-title: Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2018.04.008
– volume: 90
  start-page: 1710
  issue: 3
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0020
  article-title: Light-up nonthiolated aptasensor for low-mass, soluble amyloid-beta40 oligomers at high salt concentrations
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.7b03468
– volume: 70
  start-page: 181
  year: 2015
  ident: 10.1016/j.foodchem.2019.125377_b0130
  article-title: A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2015.03.040
– volume: 101
  start-page: 14036
  issue: 39
  year: 2004
  ident: 10.1016/j.foodchem.2019.125377_b0080
  article-title: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0406115101
– volume: 130
  start-page: 3610
  year: 2008
  ident: 10.1016/j.foodchem.2019.125377_b0185
  article-title: DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja710241b
– volume: 34
  start-page: 164
  issue: 1
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0025
  article-title: Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02529
– volume: 87
  start-page: 508
  year: 2017
  ident: 10.1016/j.foodchem.2019.125377_b0160
  article-title: Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2016.08.107
– volume: 117
  start-page: 8272
  issue: 12
  year: 2017
  ident: 10.1016/j.foodchem.2019.125377_b0195
  article-title: Metal sensing by DNA
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.7b00063
– volume: 102
  start-page: 646
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0145
  article-title: Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2017.12.006
– volume: 171
  start-page: 98
  year: 2015
  ident: 10.1016/j.foodchem.2019.125377_b0165
  article-title: Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme-linked immunosorbent assay for erythromycin in milk
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.08.104
– volume: 122
  start-page: 263
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0070
  article-title: Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2018.09.060
– volume: 249
  start-page: 98
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0105
  article-title: Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.01.022
– volume: 56
  start-page: 11916
  issue: 39
  year: 2017
  ident: 10.1016/j.foodchem.2019.125377_b0065
  article-title: Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins
  publication-title: Angewandte Chemmie International Edition
  doi: 10.1002/anie.201703807
– volume: 136
  start-page: 1907
  issue: 5
  year: 2014
  ident: 10.1016/j.foodchem.2019.125377_b0120
  article-title: Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja4097384
– volume: 88
  start-page: 600
  issue: 1
  year: 2016
  ident: 10.1016/j.foodchem.2019.125377_b0055
  article-title: Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.5b03926
– volume: 50
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.foodchem.2019.125377_b0075
  article-title: An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity
  publication-title: Chemical Communications
  doi: 10.1039/C3CC47108J
– volume: 34
  start-page: 6161
  issue: 21
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0125
  article-title: Insight into the molecular mechanisms of AuNP-based aptasensor for colorimetric detection: A molecular dynamics approach
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00701
– volume: 74
  start-page: 718
  year: 2015
  ident: 10.1016/j.foodchem.2019.125377_b0170
  article-title: A “signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2015.07.024
– volume: 86
  start-page: 8530
  issue: 17
  year: 2014
  ident: 10.1016/j.foodchem.2019.125377_b0050
  article-title: Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles
  publication-title: Analytical Chemistry
  doi: 10.1021/ac502461r
– volume: 121
  start-page: 993
  issue: 9
  year: 2013
  ident: 10.1016/j.foodchem.2019.125377_b0010
  article-title: Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1206316
– volume: 131
  start-page: 7518
  year: 2009
  ident: 10.1016/j.foodchem.2019.125377_b0140
  article-title: Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja9011386
– volume: 87
  start-page: 4201
  issue: 8
  year: 2015
  ident: 10.1016/j.foodchem.2019.125377_b0005
  article-title: Ultrasensitive colorimetric detection of 17beta-estradiol: The effect of shortening DNA aptamer sequences
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.5b00335
– volume: 34
  start-page: 2139
  issue: 5
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0115
  article-title: Structured DNA aptamer interactions with gold nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02449
– year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0015
  article-title: Antibiotic resistance in foodborne bacteria
  publication-title: Trends in Food Science & Technology
– volume: 245
  start-page: 1176
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0090
  article-title: Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.11.038
– volume: 88
  start-page: 181
  year: 2017
  ident: 10.1016/j.foodchem.2019.125377_b0100
  article-title: A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2016.08.019
– volume: 256
  start-page: 304
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0190
  article-title: Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.02.002
– volume: 107
  start-page: 3715
  year: 2007
  ident: 10.1016/j.foodchem.2019.125377_b0030
  article-title: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy
  publication-title: Chemical Reviews
  doi: 10.1021/cr0306743
– volume: 90
  start-page: 11723
  issue: 19
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0085
  article-title: “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag(+) detection at the femtomolar level with dark-field microscope observation
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.8b03739
– volume: 155
  start-page: 361
  issue: 4
  year: 2011
  ident: 10.1016/j.foodchem.2019.125377_b0110
  article-title: In vitro selection and characterization of DNA aptamers recognizing chloramphenicol
  publication-title: Journal of Biotechnology
  doi: 10.1016/j.jbiotec.2011.06.043
– volume: 255
  start-page: 2779
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0060
  article-title: Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2017.09.092
– volume: 260
  start-page: 336
  year: 2018
  ident: 10.1016/j.foodchem.2019.125377_b0135
  article-title: Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.04.018
SSID ssj0002018
Score 2.6132305
Snippet •A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This...
We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125377
SubjectTerms aptasensors
chloramphenicol
color
Colorimetric aptasensor
colorimetry
Controllable aggregation
detection limit
Food safety
mobile telephones
Multiplex antibiotics
nanogold
oligonucleotides
single-stranded DNA
spectroscopy
tetracycline
Title A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics
URI https://dx.doi.org/10.1016/j.foodchem.2019.125377
https://www.ncbi.nlm.nih.gov/pubmed/31476547
https://www.proquest.com/docview/2283997951
https://www.proquest.com/docview/2335118553
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWywEuCJav8rEaJMQtbRrbcXKsCqsCokKClfZm2bG9yqpKqjaVEAd-OzNJvMBh2QPXJJYsv7Hfiz3zzNgbgSTqDA8J55lJRF4ViQ1eIiDIhS7N09D_KH5e56tz8fFCXhyxZayFobTKce0f1vR-tR6fzMbRnG3revaVnFZoAwslCMr8ORX8CqEoyqc_f6d5IMEVw0lC0W93_VElfDUNbetwbKgifV5Okeu5UjcR1E0CtCeiswfs_qggYTF08iE78s0Ju7uMF7edsMm72nfwFkbLzw2so-M-fhcLkfeP2I8FYAj4TRJ23gO5V5PVPzn2g9l2yG7Nvt0B0ZyDtoExqX1DtVZgLvE__bJHFdoAi8P6yx5Q_wLqSXC-6xO8-lcxY_E7IIa1rVvyhX7Mzs_ef1uukvEqhqSSqegSJ8sqFSi9HFJdwDkurBO-rJx1vPI0iQ0yfV7KyubKoopIC-OClLnKMmtTx5-w46Zt_DMGKkdJlNuimnMjHFc2c95741OLkMt5mDAZx19Xo085XZex0TEh7UpH3DThpgfcJmx23W47OHXc2qKM8Oq_Yk4jndza9nWMB43w0imLaXx72GvyEypLhcr1H99wOr8tpOQT9nQIpus-YzAruhH6-X_07gW7l9G-QEp7iy_Zcbc7-Fconjp72s-OU3Zn8eHTav0Leaoafg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzSG9lDb9yPZThdKbs17L8sdx2TZsmsQUmkBuwrKk4LDYy64XQn59Z2xpaQ9pDr3aFgi9kd6zNPME8CVGEtUltwHnURnESZUFyhqBgCAX6jAJbf-jeFEki6v4x7W43oO5r4WhtEq39g9rer9auycTN5qTVV1PfpHTCm1goQRBmT_NnsA-uVOJEezPTs8WxW5BRo7LhsOErN_x-qNQ-PbYtq3G4aGi9Gl-jHTP0_QhjnpIg_ZcdPIcnjkRyWZDP1_AnmkO4WDu7247hPG32nTsK3Oun0tWeNN9_M7XIm9ewv2MYRSYZWDXxjAysCa3fzLtZ-WqQ4JrNu2aEdNp1jbM5bUvqdyKlTf4q37TA8tay2bb4ueGoQRmKCmZNl2f49W_8kmLdwxhrFXdkjX0K7g6-X45XwTuNoagEmHcBVrkVRij-tLIdhaneax0bPJKK80rQ_O4RLJPclGpJFUoJMKs1FaIJI0ipULNX8OoaRtzBCxNUBUlKqumvIw1T1WkjTGlCRWiLqZ2DMKPv6ycVTndmLGUPiftVnrcJOEmB9zGMNm1Ww1mHY-2yD288q-wk8goj7b97ONBIrx00FI2pt1uJFkK5XmK4vUf33A6ws2E4GN4MwTTrs8YzyldCv32P3r3CQ4Wlxfn8vy0OHsHTyPaJghpq_E9jLr11nxALdWpj26u_AYSHB0v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+label-free+colorimetric+aptasensor+based+on+controllable+aggregation+of+AuNPs+for+the+detection+of+multiplex+antibiotics&rft.jtitle=Food+chemistry&rft.au=Wu%2C+Yang-Yang&rft.au=Huang%2C+Pengcheng&rft.au=Wu%2C+Fang-Ying&rft.date=2020-01-30&rft.issn=0308-8146&rft_id=info:doi/10.1016%2Fj.foodchem.2019.125377&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon