A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics
•A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB ana...
Saved in:
Published in | Food chemistry Vol. 304; p. 125377 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
30.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB analysis of smartphone.
We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries. |
---|---|
AbstractList | We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries. •A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This colorimetric aptasensor displays great tolerance to high salt concentrations.•The method would promote the practical application via RGB analysis of smartphone. We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries. We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries. |
ArticleNumber | 125377 |
Author | Wu, Fang-Ying Huang, Pengcheng Wu, Yang-Yang |
Author_xml | – sequence: 1 givenname: Yang-Yang surname: Wu fullname: Wu, Yang-Yang – sequence: 2 givenname: Pengcheng surname: Huang fullname: Huang, Pengcheng – sequence: 3 givenname: Fang-Ying orcidid: 0000-0002-8524-7904 surname: Wu fullname: Wu, Fang-Ying email: fywu@ncu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31476547$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv3CAURlGVqJmk_QsRy2485WHAlrroKOpLitoskjXicT1hZJsp4Kjtry_pZDbdzAqke76L-M4lOpvjDAhdU7KmhMr3u_UQo3ePMK0Zof2aMsGVeoVWtFO8UUSxM7QinHRNR1t5gS5z3hFCKtu9RhectkqKVq3Qnw0ejYWxGRIAdnGMKUxQUnDY7IvJMOeYsK0Xj-NcgbmkONbICNhstwm2poQ6iAPeLN_vMh4qXh4BeyjgjqNpGUvYj_ALm7kEG2IJLr9B54MZM7x9Oa_Qw-dP9zdfm9sfX77dbG4bJ0hbGi96R9qWcc8oGzpFWutb6J23njvoJe8Mk1L2wlmpLBWUdMYPQkjFmLXE8yv07rB3n-LPBXLRU8gO6idmiEvWjHNBaScEP42yjve96gWt6PULutgJvN7X3kz6rY_VVuDDAXAp5pxg0C6Uf2WVZMKoKdHPJvVOH03qZ5P6YLLG5X_x4wsngx8PQaidPgVIOrsAswMfUjWifQynVvwFnxu9GQ |
CitedBy_id | crossref_primary_10_1016_j_talanta_2020_121054 crossref_primary_10_1039_D4AY01146E crossref_primary_10_31857_S004445022309013X crossref_primary_10_1111_1541_4337_12914 crossref_primary_10_3390_bios13090850 crossref_primary_10_1016_j_bios_2022_114509 crossref_primary_10_1155_2020_5616379 crossref_primary_10_1016_j_microc_2024_112047 crossref_primary_10_1021_acsanm_2c02554 crossref_primary_10_3390_bios13080801 crossref_primary_10_1016_j_bios_2020_112158 crossref_primary_10_3390_foods11244101 crossref_primary_10_1016_j_jhazmat_2021_128135 crossref_primary_10_1016_j_microc_2023_109838 crossref_primary_10_1016_j_snb_2022_133024 crossref_primary_10_21517_1992_7223_2019_7_8_91_99 crossref_primary_10_1016_S1872_2040_21_60097_X crossref_primary_10_1007_s12161_021_02029_w crossref_primary_10_1016_j_foodchem_2022_132072 crossref_primary_10_1039_D3AN00689A crossref_primary_10_1007_s00604_020_04414_4 crossref_primary_10_1021_acs_jafc_3c03565 crossref_primary_10_1021_acs_nanolett_3c02828 crossref_primary_10_1016_j_foodchem_2024_138461 crossref_primary_10_3390_chemosensors10080322 crossref_primary_10_1016_j_saa_2020_118147 crossref_primary_10_1016_j_saa_2022_120855 crossref_primary_10_1016_j_snb_2020_128470 crossref_primary_10_3168_jds_2020_19905 crossref_primary_10_1021_acs_analchem_2c04280 crossref_primary_10_1080_10408347_2020_1828027 crossref_primary_10_1016_j_trac_2020_115882 crossref_primary_10_1007_s00216_022_04398_5 crossref_primary_10_1016_j_trac_2020_115883 crossref_primary_10_1039_D1AY01809D crossref_primary_10_1021_acs_analchem_0c04688 crossref_primary_10_1016_j_jphotochem_2022_113942 crossref_primary_10_1021_acs_analchem_5c00260 crossref_primary_10_1016_j_talanta_2020_121039 crossref_primary_10_1007_s12161_023_02508_2 crossref_primary_10_1021_acssensors_0c01740 crossref_primary_10_1016_j_foodchem_2024_139381 crossref_primary_10_1007_s44211_022_00136_0 crossref_primary_10_1016_j_microc_2023_108920 crossref_primary_10_3389_fchem_2021_793355 crossref_primary_10_1134_S1995078019040116 crossref_primary_10_1016_j_snb_2020_129173 crossref_primary_10_1007_s42250_021_00286_0 crossref_primary_10_1016_j_snb_2023_134215 crossref_primary_10_3390_bios10030021 crossref_primary_10_3390_bios15010030 crossref_primary_10_1016_j_snb_2023_134697 crossref_primary_10_1016_j_jfca_2023_105513 crossref_primary_10_1016_j_talanta_2024_125989 crossref_primary_10_1021_acs_analchem_1c03856 crossref_primary_10_1007_s00604_020_04644_6 crossref_primary_10_1016_j_jfutfo_2023_11_003 crossref_primary_10_1016_j_talanta_2022_123769 crossref_primary_10_1111_1471_0307_13145 crossref_primary_10_1021_acssensors_1c00512 crossref_primary_10_1002_anse_202000023 crossref_primary_10_1149_1945_7111_ac88fb crossref_primary_10_1016_j_bios_2021_113457 crossref_primary_10_1007_s00216_021_03840_4 crossref_primary_10_1021_acssensors_2c02008 crossref_primary_10_1021_acsami_9b23167 crossref_primary_10_1016_j_apsusc_2022_152555 crossref_primary_10_3390_chemosensors10110437 crossref_primary_10_1007_s00604_024_06306_3 crossref_primary_10_1039_D1RA08311B crossref_primary_10_3390_s23020949 crossref_primary_10_3390_chemosensors9100281 crossref_primary_10_1016_j_microc_2022_107207 crossref_primary_10_1007_s00216_022_04354_3 crossref_primary_10_1016_j_foodchem_2022_133534 crossref_primary_10_1016_j_jhazmat_2019_121929 crossref_primary_10_1016_j_foodchem_2023_135554 crossref_primary_10_1007_s10895_020_02631_x crossref_primary_10_1007_s12161_024_02693_8 crossref_primary_10_1016_j_bios_2024_117023 crossref_primary_10_1039_D2AY00368F crossref_primary_10_1021_acsanm_0c01647 crossref_primary_10_1080_05704928_2024_2388521 crossref_primary_10_1016_j_fct_2019_111058 crossref_primary_10_1016_j_foodchem_2024_138656 crossref_primary_10_1016_j_ab_2020_113894 crossref_primary_10_3390_nano11040840 crossref_primary_10_1016_j_rechem_2022_100710 crossref_primary_10_1016_j_snb_2022_132926 crossref_primary_10_1007_s00604_020_04671_3 crossref_primary_10_1016_j_snb_2024_136160 crossref_primary_10_1039_D0AN00139B crossref_primary_10_1039_D1TB00181G crossref_primary_10_1021_acsanm_4c02932 crossref_primary_10_1016_j_snb_2023_134204 crossref_primary_10_1039_D0AN00392A crossref_primary_10_1002_agt2_559 crossref_primary_10_1016_j_aca_2022_340588 crossref_primary_10_1016_j_tifs_2022_04_008 crossref_primary_10_1016_j_aca_2024_343014 crossref_primary_10_1016_j_bbrc_2025_151387 crossref_primary_10_1021_acsomega_1c00359 crossref_primary_10_1039_D1AY00606A crossref_primary_10_1002_slct_202302282 crossref_primary_10_1016_j_snb_2020_129135 crossref_primary_10_1016_j_matlet_2021_131235 crossref_primary_10_1088_1361_6528_ac2c41 crossref_primary_10_1016_j_aca_2023_342139 crossref_primary_10_2116_analsci_21P173 crossref_primary_10_1016_j_trac_2024_117839 crossref_primary_10_1016_j_microc_2024_111736 crossref_primary_10_1016_j_saa_2022_121251 crossref_primary_10_3390_molecules27238403 crossref_primary_10_1016_j_snb_2020_129144 crossref_primary_10_1021_acs_analchem_4c02413 crossref_primary_10_1139_cjc_2022_0253 crossref_primary_10_3390_s23198172 crossref_primary_10_1080_10408347_2022_2162331 crossref_primary_10_1007_s00604_020_04348_x crossref_primary_10_1038_s44222_024_00208_y crossref_primary_10_1039_D1RA04834A |
Cites_doi | 10.1021/ac502440h 10.1016/j.bios.2018.02.051 10.1016/j.foodchem.2018.04.014 10.1021/la205036p 10.1021/acs.analchem.6b05109 10.1021/ar2000293 10.1016/j.bios.2017.09.028 10.1016/j.bios.2018.04.008 10.1021/acs.analchem.7b03468 10.1016/j.bios.2015.03.040 10.1073/pnas.0406115101 10.1021/ja710241b 10.1021/acs.langmuir.7b02529 10.1016/j.bios.2016.08.107 10.1021/acs.chemrev.7b00063 10.1016/j.bios.2017.12.006 10.1016/j.foodchem.2014.08.104 10.1016/j.bios.2018.09.060 10.1016/j.foodchem.2018.01.022 10.1002/anie.201703807 10.1021/ja4097384 10.1021/acs.analchem.5b03926 10.1039/C3CC47108J 10.1021/acs.langmuir.8b00701 10.1016/j.bios.2015.07.024 10.1021/ac502461r 10.1289/ehp.1206316 10.1021/ja9011386 10.1021/acs.analchem.5b00335 10.1021/acs.langmuir.7b02449 10.1016/j.foodchem.2017.11.038 10.1016/j.bios.2016.08.019 10.1016/j.foodchem.2018.02.002 10.1021/cr0306743 10.1021/acs.analchem.8b03739 10.1016/j.jbiotec.2011.06.043 10.1016/j.snb.2017.09.092 10.1016/j.foodchem.2018.04.018 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2019.125377 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
ExternalDocumentID | 31476547 10_1016_j_foodchem_2019_125377 S0308814619314918 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- RIG SCB SEW SSH VH1 WUQ Y6R NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-d59c04423d212f8704bd4e9cdbd3ce9638a266695cb67b15108adf556722bb0d3 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Jul 11 10:03:36 EDT 2025 Fri Jul 11 10:57:26 EDT 2025 Wed Feb 19 02:36:45 EST 2025 Tue Jul 01 03:22:02 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Fri Feb 23 02:33:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Colorimetric aptasensor Controllable aggregation Food safety Multiplex antibiotics |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-d59c04423d212f8704bd4e9cdbd3ce9638a266695cb67b15108adf556722bb0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8524-7904 |
PMID | 31476547 |
PQID | 2283997951 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2335118553 proquest_miscellaneous_2283997951 pubmed_primary_31476547 crossref_citationtrail_10_1016_j_foodchem_2019_125377 crossref_primary_10_1016_j_foodchem_2019_125377 elsevier_sciencedirect_doi_10_1016_j_foodchem_2019_125377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-30 |
PublicationDateYYYYMMDD | 2020-01-30 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food chemistry |
PublicationTitleAlternate | Food Chem |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Famulok, Mayer (b0035) 2011; 44 Wang, Ding, He, Wang, Lou (b0150) 2014; 86 Jiang, Shi, Liu, Wan, Cui, Zhang, Tan (b0065) 2017; 56 Li, Xi, Kong, Liu, Chen (b0085) 2018; 90 Saxena, Rangasamy, Krishnan, Singh, Uke, Malekadi, Gupta (b0135) 2018; 260 Lin, Yu, Cao, Guo, Zhu, Dai, Zheng (b0095) 2018; 100 Ramezani, Mohammad Danesh, Lavaee, Abnous, Mohammad Taghdisi (b0130) 2015; 70 Yan, Gan, Wang, Cao, Chen, Li, Chen (b0170) 2015; 74 Khoshbin, Verdian, Housaindokht, Izadyar, Rouhbakhsh (b0070) 2018; 122 Li, Rothberg (b0080) 2004; 101 Park, Shumaker-Parry (b0120) 2014; 136 Zhang, Servos, Liu (b0180) 2012; 28 Wang, Mi, Beier, Zhang, Sheng, Shi, Shen (b0165) 2015; 171 Huang, Gao, Li, Wu (b0060) 2018; 255 Ashbolt, Amezquita, Backhaus, Borriello, Brandt, Collignon, Topp (b0010) 2013; 121 Ge, Li, Du, Zhu, Chen, Shi, Wang (b0045) 2018; 111 Lin, Yan, Guo, Cao, Yu, Zhang, Wu (b0090) 2018; 245 Tang, Gu, Wang, Song, Zhou, Lou, He (b0145) 2018; 102 Gai, Gu, Hou, Li (b0040) 2017; 89 Suzuki, Hosokawa, Maeda (b0140) 2009; 131 Yan, Zhang, Yao, Xue, Lu, Li, Chen (b0175) 2018; 260 Wang, Dong, Liang (b0155) 2018; 109 Caniça, Manageiro, Abriouel, Moran-Gilad, Franz (b0015) 2018 Mirau, Smith, Chavez, Hagen, Kelley-Loughnane, Naik (b0115) 2018; 34 Ma, Wang, Jia, Xiang (b0105) 2018; 249 Kwon, Ahmad Raston, Gu (b0075) 2014; 50 Mehta, Van Dorst, Rouah-Martin, Herrebout, Scippo, Blust, Robbens (b0110) 2011; 155 Alsager, Kumar, Zhu, Travas-Sejdic, McNatty, Hodgkiss (b0005) 2015; 87 Famulok, Hartig, Mayer (b0030) 2007; 107 Epanchintseva, Vorobjev, Pyshnyi, Pyshnaya (b0025) 2018; 34 Liu, Wang, Xu, Leng, Wang, Guo, Huang (b0100) 2017; 88 Wang, Gan, Zhou, Li, Cao, Chen (b0160) 2017; 87 Zhou, Saran, Liu (b0195) 2017; 117 Zhou, Nie, Chen, Yang, Gong, Zhang, Feng (b0190) 2018; 256 Guo, Zhang, Shao, Wang, Wang, Jiang (b0050) 2014; 86 Phanchai, Srikulwong, Chompoosor, Sakonsinsiri, Puangmali (b0125) 2018; 34 Hizir, Top, Balcioglu, Rana, Robertson, Shen, Yigit (b0055) 2016; 88 Zhao, Chiuman, Lam, McManus, Chen, Cui, Li (b0185) 2008; 130 Deng, Liu, Zhang, Deng, Lei, Shen, Xiang (b0020) 2018; 90 Kwon (10.1016/j.foodchem.2019.125377_b0075) 2014; 50 Phanchai (10.1016/j.foodchem.2019.125377_b0125) 2018; 34 Caniça (10.1016/j.foodchem.2019.125377_b0015) 2018 Suzuki (10.1016/j.foodchem.2019.125377_b0140) 2009; 131 Wang (10.1016/j.foodchem.2019.125377_b0155) 2018; 109 Ma (10.1016/j.foodchem.2019.125377_b0105) 2018; 249 Zhang (10.1016/j.foodchem.2019.125377_b0180) 2012; 28 Famulok (10.1016/j.foodchem.2019.125377_b0030) 2007; 107 Guo (10.1016/j.foodchem.2019.125377_b0050) 2014; 86 Liu (10.1016/j.foodchem.2019.125377_b0100) 2017; 88 Yan (10.1016/j.foodchem.2019.125377_b0170) 2015; 74 Hizir (10.1016/j.foodchem.2019.125377_b0055) 2016; 88 Ashbolt (10.1016/j.foodchem.2019.125377_b0010) 2013; 121 Mehta (10.1016/j.foodchem.2019.125377_b0110) 2011; 155 Zhou (10.1016/j.foodchem.2019.125377_b0195) 2017; 117 Mirau (10.1016/j.foodchem.2019.125377_b0115) 2018; 34 Zhou (10.1016/j.foodchem.2019.125377_b0190) 2018; 256 Yan (10.1016/j.foodchem.2019.125377_b0175) 2018; 260 Ge (10.1016/j.foodchem.2019.125377_b0045) 2018; 111 Wang (10.1016/j.foodchem.2019.125377_b0150) 2014; 86 Lin (10.1016/j.foodchem.2019.125377_b0090) 2018; 245 Wang (10.1016/j.foodchem.2019.125377_b0160) 2017; 87 Li (10.1016/j.foodchem.2019.125377_b0085) 2018; 90 Alsager (10.1016/j.foodchem.2019.125377_b0005) 2015; 87 Park (10.1016/j.foodchem.2019.125377_b0120) 2014; 136 Saxena (10.1016/j.foodchem.2019.125377_b0135) 2018; 260 Wang (10.1016/j.foodchem.2019.125377_b0165) 2015; 171 Zhao (10.1016/j.foodchem.2019.125377_b0185) 2008; 130 Li (10.1016/j.foodchem.2019.125377_b0080) 2004; 101 Deng (10.1016/j.foodchem.2019.125377_b0020) 2018; 90 Jiang (10.1016/j.foodchem.2019.125377_b0065) 2017; 56 Huang (10.1016/j.foodchem.2019.125377_b0060) 2018; 255 Lin (10.1016/j.foodchem.2019.125377_b0095) 2018; 100 Tang (10.1016/j.foodchem.2019.125377_b0145) 2018; 102 Gai (10.1016/j.foodchem.2019.125377_b0040) 2017; 89 Epanchintseva (10.1016/j.foodchem.2019.125377_b0025) 2018; 34 Famulok (10.1016/j.foodchem.2019.125377_b0035) 2011; 44 Khoshbin (10.1016/j.foodchem.2019.125377_b0070) 2018; 122 Ramezani (10.1016/j.foodchem.2019.125377_b0130) 2015; 70 |
References_xml | – volume: 74 start-page: 718 year: 2015 end-page: 724 ident: b0170 article-title: A “signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers publication-title: Biosensors and Bioelectronics – volume: 155 start-page: 361 year: 2011 end-page: 369 ident: b0110 article-title: In vitro selection and characterization of DNA aptamers recognizing chloramphenicol publication-title: Journal of Biotechnology – volume: 34 start-page: 2139 year: 2018 end-page: 2146 ident: b0115 article-title: Structured DNA aptamer interactions with gold nanoparticles publication-title: Langmuir – volume: 107 start-page: 3715 year: 2007 end-page: 3743 ident: b0030 article-title: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy publication-title: Chemical Reviews – volume: 87 start-page: 4201 year: 2015 end-page: 4209 ident: b0005 article-title: Ultrasensitive colorimetric detection of 17beta-estradiol: The effect of shortening DNA aptamer sequences publication-title: Analytical Chemistry – volume: 260 start-page: 208 year: 2018 end-page: 212 ident: b0175 article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food publication-title: Food Chemistry – volume: 90 start-page: 11723 year: 2018 end-page: 11727 ident: b0085 article-title: “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag publication-title: Analytical Chemistry – year: 2018 ident: b0015 article-title: Antibiotic resistance in foodborne bacteria publication-title: Trends in Food Science & Technology – volume: 70 start-page: 181 year: 2015 end-page: 187 ident: b0130 article-title: A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline publication-title: Biosensors and Bioelectronics – volume: 89 start-page: 2163 year: 2017 end-page: 2169 ident: b0040 article-title: Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection publication-title: Analytical Chemistry – volume: 131 start-page: 7518 year: 2009 end-page: 7519 ident: b0140 article-title: Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces publication-title: Journal of the American Chemical Society – volume: 86 start-page: 8530 year: 2014 end-page: 8534 ident: b0050 article-title: Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles publication-title: Analytical Chemistry – volume: 171 start-page: 98 year: 2015 end-page: 107 ident: b0165 article-title: Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme-linked immunosorbent assay for erythromycin in milk publication-title: Food Chemistry – volume: 44 start-page: 1349 year: 2011 end-page: 1358 ident: b0035 article-title: Aptamer modules as sensors and detectors publication-title: Accounts of Chemical Research – volume: 260 start-page: 336 year: 2018 end-page: 343 ident: b0135 article-title: Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS publication-title: Food Chemistry – volume: 249 start-page: 98 year: 2018 end-page: 103 ident: b0105 article-title: Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles publication-title: Food Chemistry – volume: 136 start-page: 1907 year: 2014 end-page: 1921 ident: b0120 article-title: Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles publication-title: Journal of the American Chemical Society – volume: 86 start-page: 10186 year: 2014 end-page: 10192 ident: b0150 article-title: Kinetic adsorption profile and conformation evolution at the DNA-gold nanoparticle interface probed by dynamic light scattering publication-title: Analytical Chemistry – volume: 28 start-page: 3896 year: 2012 end-page: 3902 ident: b0180 article-title: Surface science of DNA adsorption onto citrate-capped gold nanoparticles publication-title: Langmuir – volume: 56 start-page: 11916 year: 2017 end-page: 11920 ident: b0065 article-title: Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins publication-title: Angewandte Chemmie International Edition – volume: 90 start-page: 1710 year: 2018 end-page: 1717 ident: b0020 article-title: Light-up nonthiolated aptasensor for low-mass, soluble amyloid-beta40 oligomers at high salt concentrations publication-title: Analytical Chemistry – volume: 34 start-page: 6161 year: 2018 end-page: 6169 ident: b0125 article-title: Insight into the molecular mechanisms of AuNP-based aptasensor for colorimetric detection: A molecular dynamics approach publication-title: Langmuir – volume: 130 start-page: 3610 year: 2008 end-page: 3618 ident: b0185 article-title: DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors publication-title: Journal of the American Chemical Society – volume: 122 start-page: 263 year: 2018 end-page: 283 ident: b0070 article-title: Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection publication-title: Biosensors and Bioelectronics – volume: 102 start-page: 646 year: 2018 end-page: 651 ident: b0145 article-title: Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching publication-title: Biosensors and Bioelectronics – volume: 121 start-page: 993 year: 2013 end-page: 1001 ident: b0010 article-title: Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance publication-title: Environmental Health Perspectives – volume: 88 start-page: 600 year: 2016 end-page: 605 ident: b0055 article-title: Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase publication-title: Analytical Chemistry – volume: 34 start-page: 164 year: 2018 end-page: 172 ident: b0025 article-title: Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles publication-title: Langmuir – volume: 117 start-page: 8272 year: 2017 end-page: 8325 ident: b0195 article-title: Metal sensing by DNA publication-title: Chemical Reviews – volume: 255 start-page: 2779 year: 2018 end-page: 2784 ident: b0060 article-title: Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine publication-title: Sensors and Actuators B: Chemical – volume: 88 start-page: 181 year: 2017 end-page: 187 ident: b0100 article-title: A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline publication-title: Biosensors and Bioelectronics – volume: 256 start-page: 304 year: 2018 end-page: 310 ident: b0190 article-title: Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk publication-title: Food Chemistry – volume: 87 start-page: 508 year: 2017 end-page: 513 ident: b0160 article-title: Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics publication-title: Biosensors and Bioelectronics – volume: 100 start-page: 482 year: 2018 end-page: 489 ident: b0095 article-title: Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone publication-title: Biosensors and Bioelectronics – volume: 50 start-page: 40 year: 2014 end-page: 42 ident: b0075 article-title: An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity publication-title: Chemical Communications – volume: 111 start-page: 131 year: 2018 end-page: 137 ident: b0045 article-title: Facile one-pot synthesis of visible light-responsive BiPO publication-title: Biosensors and Bioelectronics – volume: 245 start-page: 1176 year: 2018 end-page: 1182 ident: b0090 article-title: Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides publication-title: Food Chemistry – volume: 109 start-page: 1 year: 2018 end-page: 7 ident: b0155 article-title: Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples publication-title: Biosensors and Bioelectronics – volume: 101 start-page: 14036 year: 2004 end-page: 14039 ident: b0080 article-title: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 86 start-page: 10186 issue: 20 year: 2014 ident: 10.1016/j.foodchem.2019.125377_b0150 article-title: Kinetic adsorption profile and conformation evolution at the DNA-gold nanoparticle interface probed by dynamic light scattering publication-title: Analytical Chemistry doi: 10.1021/ac502440h – volume: 109 start-page: 1 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0155 article-title: Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2018.02.051 – volume: 260 start-page: 208 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0175 article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.04.014 – volume: 28 start-page: 3896 issue: 8 year: 2012 ident: 10.1016/j.foodchem.2019.125377_b0180 article-title: Surface science of DNA adsorption onto citrate-capped gold nanoparticles publication-title: Langmuir doi: 10.1021/la205036p – volume: 89 start-page: 2163 issue: 3 year: 2017 ident: 10.1016/j.foodchem.2019.125377_b0040 article-title: Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.6b05109 – volume: 44 start-page: 1349 year: 2011 ident: 10.1016/j.foodchem.2019.125377_b0035 article-title: Aptamer modules as sensors and detectors publication-title: Accounts of Chemical Research doi: 10.1021/ar2000293 – volume: 100 start-page: 482 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0095 article-title: Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2017.09.028 – volume: 111 start-page: 131 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0045 article-title: Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2018.04.008 – volume: 90 start-page: 1710 issue: 3 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0020 article-title: Light-up nonthiolated aptasensor for low-mass, soluble amyloid-beta40 oligomers at high salt concentrations publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.7b03468 – volume: 70 start-page: 181 year: 2015 ident: 10.1016/j.foodchem.2019.125377_b0130 article-title: A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2015.03.040 – volume: 101 start-page: 14036 issue: 39 year: 2004 ident: 10.1016/j.foodchem.2019.125377_b0080 article-title: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0406115101 – volume: 130 start-page: 3610 year: 2008 ident: 10.1016/j.foodchem.2019.125377_b0185 article-title: DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors publication-title: Journal of the American Chemical Society doi: 10.1021/ja710241b – volume: 34 start-page: 164 issue: 1 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0025 article-title: Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02529 – volume: 87 start-page: 508 year: 2017 ident: 10.1016/j.foodchem.2019.125377_b0160 article-title: Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2016.08.107 – volume: 117 start-page: 8272 issue: 12 year: 2017 ident: 10.1016/j.foodchem.2019.125377_b0195 article-title: Metal sensing by DNA publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.7b00063 – volume: 102 start-page: 646 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0145 article-title: Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2017.12.006 – volume: 171 start-page: 98 year: 2015 ident: 10.1016/j.foodchem.2019.125377_b0165 article-title: Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme-linked immunosorbent assay for erythromycin in milk publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.08.104 – volume: 122 start-page: 263 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0070 article-title: Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2018.09.060 – volume: 249 start-page: 98 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0105 article-title: Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.01.022 – volume: 56 start-page: 11916 issue: 39 year: 2017 ident: 10.1016/j.foodchem.2019.125377_b0065 article-title: Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins publication-title: Angewandte Chemmie International Edition doi: 10.1002/anie.201703807 – volume: 136 start-page: 1907 issue: 5 year: 2014 ident: 10.1016/j.foodchem.2019.125377_b0120 article-title: Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles publication-title: Journal of the American Chemical Society doi: 10.1021/ja4097384 – volume: 88 start-page: 600 issue: 1 year: 2016 ident: 10.1016/j.foodchem.2019.125377_b0055 article-title: Multiplexed activity of perauxidase: DNA-capped AuNPs act as adjustable peroxidase publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.5b03926 – volume: 50 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.foodchem.2019.125377_b0075 article-title: An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity publication-title: Chemical Communications doi: 10.1039/C3CC47108J – volume: 34 start-page: 6161 issue: 21 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0125 article-title: Insight into the molecular mechanisms of AuNP-based aptasensor for colorimetric detection: A molecular dynamics approach publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00701 – volume: 74 start-page: 718 year: 2015 ident: 10.1016/j.foodchem.2019.125377_b0170 article-title: A “signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2015.07.024 – volume: 86 start-page: 8530 issue: 17 year: 2014 ident: 10.1016/j.foodchem.2019.125377_b0050 article-title: Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles publication-title: Analytical Chemistry doi: 10.1021/ac502461r – volume: 121 start-page: 993 issue: 9 year: 2013 ident: 10.1016/j.foodchem.2019.125377_b0010 article-title: Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1206316 – volume: 131 start-page: 7518 year: 2009 ident: 10.1016/j.foodchem.2019.125377_b0140 article-title: Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces publication-title: Journal of the American Chemical Society doi: 10.1021/ja9011386 – volume: 87 start-page: 4201 issue: 8 year: 2015 ident: 10.1016/j.foodchem.2019.125377_b0005 article-title: Ultrasensitive colorimetric detection of 17beta-estradiol: The effect of shortening DNA aptamer sequences publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.5b00335 – volume: 34 start-page: 2139 issue: 5 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0115 article-title: Structured DNA aptamer interactions with gold nanoparticles publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02449 – year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0015 article-title: Antibiotic resistance in foodborne bacteria publication-title: Trends in Food Science & Technology – volume: 245 start-page: 1176 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0090 article-title: Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.11.038 – volume: 88 start-page: 181 year: 2017 ident: 10.1016/j.foodchem.2019.125377_b0100 article-title: A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2016.08.019 – volume: 256 start-page: 304 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0190 article-title: Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.02.002 – volume: 107 start-page: 3715 year: 2007 ident: 10.1016/j.foodchem.2019.125377_b0030 article-title: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy publication-title: Chemical Reviews doi: 10.1021/cr0306743 – volume: 90 start-page: 11723 issue: 19 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0085 article-title: “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag(+) detection at the femtomolar level with dark-field microscope observation publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.8b03739 – volume: 155 start-page: 361 issue: 4 year: 2011 ident: 10.1016/j.foodchem.2019.125377_b0110 article-title: In vitro selection and characterization of DNA aptamers recognizing chloramphenicol publication-title: Journal of Biotechnology doi: 10.1016/j.jbiotec.2011.06.043 – volume: 255 start-page: 2779 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0060 article-title: Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2017.09.092 – volume: 260 start-page: 336 year: 2018 ident: 10.1016/j.foodchem.2019.125377_b0135 article-title: Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.04.018 |
SSID | ssj0002018 |
Score | 2.6132305 |
Snippet | •A colorimetric aptasensor for the detection of multiple antibiotics is presented.•The method allows for multiplex antibiotics detection by the naked eye.•This... We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125377 |
SubjectTerms | aptasensors chloramphenicol color Colorimetric aptasensor colorimetry Controllable aggregation detection limit Food safety mobile telephones Multiplex antibiotics nanogold oligonucleotides single-stranded DNA spectroscopy tetracycline |
Title | A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics |
URI | https://dx.doi.org/10.1016/j.foodchem.2019.125377 https://www.ncbi.nlm.nih.gov/pubmed/31476547 https://www.proquest.com/docview/2283997951 https://www.proquest.com/docview/2335118553 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWywEuCJav8rEaJMQtbRrbcXKsCqsCokKClfZm2bG9yqpKqjaVEAd-OzNJvMBh2QPXJJYsv7Hfiz3zzNgbgSTqDA8J55lJRF4ViQ1eIiDIhS7N09D_KH5e56tz8fFCXhyxZayFobTKce0f1vR-tR6fzMbRnG3revaVnFZoAwslCMr8ORX8CqEoyqc_f6d5IMEVw0lC0W93_VElfDUNbetwbKgifV5Okeu5UjcR1E0CtCeiswfs_qggYTF08iE78s0Ju7uMF7edsMm72nfwFkbLzw2so-M-fhcLkfeP2I8FYAj4TRJ23gO5V5PVPzn2g9l2yG7Nvt0B0ZyDtoExqX1DtVZgLvE__bJHFdoAi8P6yx5Q_wLqSXC-6xO8-lcxY_E7IIa1rVvyhX7Mzs_ef1uukvEqhqSSqegSJ8sqFSi9HFJdwDkurBO-rJx1vPI0iQ0yfV7KyubKoopIC-OClLnKMmtTx5-w46Zt_DMGKkdJlNuimnMjHFc2c95741OLkMt5mDAZx19Xo085XZex0TEh7UpH3DThpgfcJmx23W47OHXc2qKM8Oq_Yk4jndza9nWMB43w0imLaXx72GvyEypLhcr1H99wOr8tpOQT9nQIpus-YzAruhH6-X_07gW7l9G-QEp7iy_Zcbc7-Fconjp72s-OU3Zn8eHTav0Leaoafg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzSG9lDb9yPZThdKbs17L8sdx2TZsmsQUmkBuwrKk4LDYy64XQn59Z2xpaQ9pDr3aFgi9kd6zNPME8CVGEtUltwHnURnESZUFyhqBgCAX6jAJbf-jeFEki6v4x7W43oO5r4WhtEq39g9rer9auycTN5qTVV1PfpHTCm1goQRBmT_NnsA-uVOJEezPTs8WxW5BRo7LhsOErN_x-qNQ-PbYtq3G4aGi9Gl-jHTP0_QhjnpIg_ZcdPIcnjkRyWZDP1_AnmkO4WDu7247hPG32nTsK3Oun0tWeNN9_M7XIm9ewv2MYRSYZWDXxjAysCa3fzLtZ-WqQ4JrNu2aEdNp1jbM5bUvqdyKlTf4q37TA8tay2bb4ueGoQRmKCmZNl2f49W_8kmLdwxhrFXdkjX0K7g6-X45XwTuNoagEmHcBVrkVRij-tLIdhaneax0bPJKK80rQ_O4RLJPclGpJFUoJMKs1FaIJI0ipULNX8OoaRtzBCxNUBUlKqumvIw1T1WkjTGlCRWiLqZ2DMKPv6ycVTndmLGUPiftVnrcJOEmB9zGMNm1Ww1mHY-2yD288q-wk8goj7b97ONBIrx00FI2pt1uJFkK5XmK4vUf33A6ws2E4GN4MwTTrs8YzyldCv32P3r3CQ4Wlxfn8vy0OHsHTyPaJghpq_E9jLr11nxALdWpj26u_AYSHB0v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+label-free+colorimetric+aptasensor+based+on+controllable+aggregation+of+AuNPs+for+the+detection+of+multiplex+antibiotics&rft.jtitle=Food+chemistry&rft.au=Wu%2C+Yang-Yang&rft.au=Huang%2C+Pengcheng&rft.au=Wu%2C+Fang-Ying&rft.date=2020-01-30&rft.issn=0308-8146&rft_id=info:doi/10.1016%2Fj.foodchem.2019.125377&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |