Gesture recognition by instantaneous surface EMG images
Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present th...
Saved in:
Published in | Scientific reports Vol. 6; no. 1; p. 36571 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.11.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. |
---|---|
AbstractList | Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. |
ArticleNumber | 36571 |
Author | Geng, Weidong Li, Jiajun Wei, Wentao Jin, Wenguang Du, Yu Hu, Yu |
Author_xml | – sequence: 1 givenname: Weidong surname: Geng fullname: Geng, Weidong organization: Zhejiang University, College of Computer Science – sequence: 2 givenname: Yu surname: Du fullname: Du, Yu organization: Zhejiang University, College of Computer Science – sequence: 3 givenname: Wenguang surname: Jin fullname: Jin, Wenguang organization: Zhejiang University, College of Computer Science – sequence: 4 givenname: Wentao surname: Wei fullname: Wei, Wentao organization: Zhejiang University, College of Computer Science – sequence: 5 givenname: Yu surname: Hu fullname: Hu, Yu organization: Zhejiang University, College of Computer Science – sequence: 6 givenname: Jiajun surname: Li fullname: Li, Jiajun organization: Zhejiang University, College of Computer Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27845347$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYMoPrvwD8iAGxVq85zMbAQptQoVN7oOmfROjUyTmswI_fdGqqVWQyCBfPdwTs4R2nXeAUKnBF8TzIpBDLBguZBkBx1SzEWfMkp3N-4HqBfjG05L0JKTch8dUFlwwbg8RHIMse0CZAGMnznbWu-yaplZF1vt0gbfxSx2odYGstHjOLNzPYN4gvZq3UTofZ_H6OVu9Dy870-exg_D20nfCMzbfgU1y-VUGA41FlzjEqayLjTQcloUFVSC4prUXHKd84pSLrTBRBQVYUBzXrBjdLPSXXTVHKYGXBt0oxYh2QhL5bVVv1-cfVUz_6EEwSWlNAlcfAsE_96lsGpuo4GmWUVTpGClZFLQPKHnW-ib74JL8RJVloxJKXCizjYdra38_GkCLleACT6mduo1QrD6qkytK0vsYIs1ttVfJaQwtvl34mo1EZOqm0HYMPkH_gQFB6bH |
CitedBy_id | crossref_primary_10_1142_S0219519421500433 crossref_primary_10_1016_j_sna_2019_111738 crossref_primary_10_3389_fnins_2023_1093865 crossref_primary_10_1109_ACCESS_2021_3059499 crossref_primary_10_1109_TCDS_2023_3241632 crossref_primary_10_1007_s11548_022_02790_1 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_1109_JBHI_2022_3179630 crossref_primary_10_1016_j_eswa_2021_114977 crossref_primary_10_1371_journal_pone_0276436 crossref_primary_10_1155_2022_7603319 crossref_primary_10_1088_1742_6596_1230_1_012030 crossref_primary_10_1109_JSEN_2024_3388466 crossref_primary_10_1007_s10846_022_01666_5 crossref_primary_10_1109_JSEN_2024_3371588 crossref_primary_10_1109_TAI_2020_3046160 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_1109_TNSRE_2020_3029099 crossref_primary_10_3390_s24092827 crossref_primary_10_1109_JSEN_2023_3255408 crossref_primary_10_5582_bst_2024_01370 crossref_primary_10_1038_s41598_024_64458_x crossref_primary_10_1109_JBHI_2023_3287979 crossref_primary_10_3390_bios10080085 crossref_primary_10_3390_s17030458 crossref_primary_10_1109_LRA_2021_3111850 crossref_primary_10_1142_S2424905X20410019 crossref_primary_10_1016_j_compbiomed_2024_109525 crossref_primary_10_1007_s42835_023_01736_0 crossref_primary_10_3390_s24092702 crossref_primary_10_1016_j_bspc_2019_101774 crossref_primary_10_1109_JBHI_2020_3041861 crossref_primary_10_13005_bpj_3090 crossref_primary_10_3389_fbioe_2019_00331 crossref_primary_10_1109_TNSRE_2023_3324252 crossref_primary_10_3390_app9081526 crossref_primary_10_1142_S0219843619410019 crossref_primary_10_1088_1742_6596_2327_1_012075 crossref_primary_10_1109_ACCESS_2019_2923455 crossref_primary_10_3389_fnins_2017_00379 crossref_primary_10_3389_fnins_2022_1020086 crossref_primary_10_1097_JPO_0000000000000401 crossref_primary_10_32604_cmc_2022_027474 crossref_primary_10_1109_JBHI_2019_2941535 crossref_primary_10_1371_journal_pone_0203835 crossref_primary_10_1016_j_medntd_2024_100308 crossref_primary_10_1016_j_matpr_2020_11_563 crossref_primary_10_3390_electronics13204106 crossref_primary_10_1002_advs_202410702 crossref_primary_10_1007_s13042_019_00966_x crossref_primary_10_1016_j_bspc_2021_103364 crossref_primary_10_3390_s18103226 crossref_primary_10_1515_bmt_2024_0282 crossref_primary_10_1109_JSEN_2023_3296649 crossref_primary_10_3389_fbioe_2021_548357 crossref_primary_10_3390_app9112331 crossref_primary_10_3390_electronics13214144 crossref_primary_10_1109_TNSRE_2023_3303316 crossref_primary_10_1109_ACCESS_2020_3027497 crossref_primary_10_1109_JSEN_2022_3165988 crossref_primary_10_1109_JBHI_2024_3417236 crossref_primary_10_1186_s12984_021_00832_4 crossref_primary_10_3390_app14083389 crossref_primary_10_3389_fnins_2022_796711 crossref_primary_10_3389_fbioe_2021_771255 crossref_primary_10_1109_TIM_2024_3381288 crossref_primary_10_5050_KSNVE_2018_28_6_670 crossref_primary_10_1109_JBHI_2021_3080502 crossref_primary_10_1109_TNSRE_2023_3236982 crossref_primary_10_1155_2020_6642463 crossref_primary_10_1109_TNSRE_2023_3341220 crossref_primary_10_3390_s24123970 crossref_primary_10_1109_TAI_2021_3098253 crossref_primary_10_1109_JAS_2021_1003865 crossref_primary_10_1155_2021_4454648 crossref_primary_10_1109_JSEN_2022_3179472 crossref_primary_10_1088_1741_2552_ab0e2e crossref_primary_10_3389_fnbot_2019_00114 crossref_primary_10_1109_ACCESS_2022_3158667 crossref_primary_10_1088_2516_1091_acac57 crossref_primary_10_1109_TNSRE_2024_3502624 crossref_primary_10_1109_JSEN_2023_3266872 crossref_primary_10_1007_s11431_020_1710_y crossref_primary_10_1080_01691864_2020_1713886 crossref_primary_10_3390_s19020371 crossref_primary_10_3390_s20174892 crossref_primary_10_1038_s41467_023_37238_w crossref_primary_10_3390_s22103650 crossref_primary_10_1142_S0219843619500130 crossref_primary_10_3389_fnbot_2022_814973 crossref_primary_10_1142_S0218348X19500373 crossref_primary_10_1155_2021_5541269 crossref_primary_10_1063_5_0058617 crossref_primary_10_1109_TBME_2019_2899222 crossref_primary_10_1007_s00221_018_5441_x crossref_primary_10_3934_mbe_2023152 crossref_primary_10_1016_j_eswa_2022_119394 crossref_primary_10_1109_ACCESS_2025_3528902 crossref_primary_10_1080_1448837X_2021_1969729 crossref_primary_10_1109_TBME_2019_2943309 crossref_primary_10_3390_s24113638 crossref_primary_10_1109_TNSRE_2022_3199809 crossref_primary_10_1089_soro_2023_0062 crossref_primary_10_3390_s21248365 crossref_primary_10_1109_ACCESS_2024_3508799 crossref_primary_10_1142_S0219843620500255 crossref_primary_10_1109_TNSRE_2023_3262269 crossref_primary_10_1016_j_patrec_2017_12_005 crossref_primary_10_1016_j_bspc_2019_101574 crossref_primary_10_1109_ACCESS_2024_3451172 crossref_primary_10_3934_mbe_2024252 crossref_primary_10_1038_s41467_020_16040_y crossref_primary_10_3390_s20143994 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1109_TNSRE_2023_3347540 crossref_primary_10_3390_s20030672 crossref_primary_10_1049_csy2_12093 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_1016_j_compbiomed_2022_105978 crossref_primary_10_1109_TNSRE_2022_3197875 crossref_primary_10_1109_TNSRE_2023_3237181 crossref_primary_10_3390_s22051694 crossref_primary_10_1038_s41928_020_00510_8 crossref_primary_10_1109_ACCESS_2024_3514317 crossref_primary_10_1088_1741_2552_ad4c98 crossref_primary_10_1109_THMS_2021_3123186 crossref_primary_10_3390_s20041201 crossref_primary_10_3390_bioengineering10091101 crossref_primary_10_1038_s41598_019_43676_8 crossref_primary_10_1016_j_patrec_2025_02_008 crossref_primary_10_1109_TIM_2022_3164162 crossref_primary_10_1109_TNSRE_2018_2878439 crossref_primary_10_1109_JSEN_2023_3345731 crossref_primary_10_1109_THMS_2023_3329536 crossref_primary_10_1109_TBME_2023_3266575 crossref_primary_10_1109_TNSRE_2019_2961706 crossref_primary_10_1109_MIM_2022_9693438 crossref_primary_10_3389_fbioe_2021_779353 crossref_primary_10_3390_bdcc2030021 crossref_primary_10_1109_JSEN_2024_3419802 crossref_primary_10_1038_s41597_022_01484_2 crossref_primary_10_3390_bioengineering11121283 crossref_primary_10_1038_s41598_023_36490_w crossref_primary_10_3390_app132413332 crossref_primary_10_1109_JSEN_2020_3019053 crossref_primary_10_1109_ACCESS_2019_2930005 crossref_primary_10_1002_aisy_202200412 crossref_primary_10_1109_TMECH_2020_2997799 crossref_primary_10_1109_ACCESS_2024_3350338 crossref_primary_10_3390_app131911071 crossref_primary_10_1080_10255842_2024_2310726 crossref_primary_10_1089_soro_2021_0209 crossref_primary_10_1007_s00521_020_05128_7 crossref_primary_10_3390_app12094540 crossref_primary_10_1109_TNSRE_2022_3165858 crossref_primary_10_1109_JSEN_2021_3099744 crossref_primary_10_1109_LRA_2022_3142721 crossref_primary_10_1109_TIE_2023_3277119 crossref_primary_10_3390_s21082882 crossref_primary_10_1016_j_cmpb_2020_105643 crossref_primary_10_1088_1757_899X_745_1_012020 crossref_primary_10_12677_MOS_2023_123271 crossref_primary_10_1109_TCYB_2020_3016595 crossref_primary_10_3390_app14010299 crossref_primary_10_1109_TNSRE_2024_3447669 crossref_primary_10_1109_TMRB_2022_3216957 crossref_primary_10_1109_TNSRE_2019_2896269 crossref_primary_10_1088_1741_2552_ad5107 crossref_primary_10_3390_s22135054 crossref_primary_10_3390_s20102972 crossref_primary_10_1155_2020_6946294 crossref_primary_10_1146_annurev_control_071020_104336 crossref_primary_10_3390_s25041275 crossref_primary_10_1109_JSEN_2023_3279555 crossref_primary_10_1007_s11706_022_0597_5 crossref_primary_10_3390_s19204503 crossref_primary_10_3390_s21072540 crossref_primary_10_1016_j_bspc_2021_103048 crossref_primary_10_3390_s18061677 crossref_primary_10_3390_s20226451 crossref_primary_10_3389_fbioe_2024_1463377 crossref_primary_10_3390_s22218455 crossref_primary_10_3390_s18010092 crossref_primary_10_1007_s00521_021_06729_6 crossref_primary_10_1007_s40998_020_00353_1 crossref_primary_10_1016_j_neucom_2020_06_139 crossref_primary_10_3390_info15050274 crossref_primary_10_1109_THMS_2019_2925191 crossref_primary_10_1155_2021_6591035 crossref_primary_10_1088_1741_2552_ac1adc crossref_primary_10_1016_j_eswa_2021_115644 crossref_primary_10_1007_s13246_021_00972_w crossref_primary_10_1002_aisy_202300207 crossref_primary_10_18273_revuin_v19n4_2020001 crossref_primary_10_3390_mi14112050 crossref_primary_10_1016_j_rineng_2023_101639 crossref_primary_10_3390_s19163548 crossref_primary_10_1080_10739149_2020_1804932 crossref_primary_10_1088_1741_2552_ad4915 crossref_primary_10_3390_biomimetics9120784 crossref_primary_10_3390_s21217002 crossref_primary_10_1109_TIM_2024_3420372 crossref_primary_10_1016_j_irbm_2023_100773 crossref_primary_10_1142_S2424905X21410026 crossref_primary_10_1002_adfm_202422980 crossref_primary_10_1007_s44174_022_00002_7 crossref_primary_10_1109_TIM_2024_3373045 crossref_primary_10_3390_app8071126 crossref_primary_10_1016_j_bbe_2022_02_005 crossref_primary_10_3390_s19102370 crossref_primary_10_1002_aisy_202000157 crossref_primary_10_1109_TNSRE_2022_3173708 crossref_primary_10_3390_s18082497 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1002_adfm_202311535 crossref_primary_10_3390_s22052002 crossref_primary_10_1109_JBHI_2024_3441600 crossref_primary_10_1109_JBHI_2020_3009383 crossref_primary_10_1109_LRA_2021_3062320 crossref_primary_10_1038_s41597_021_00843_9 crossref_primary_10_1080_10255842_2023_2287419 crossref_primary_10_1109_TCSII_2020_3006430 crossref_primary_10_1371_journal_pone_0206049 crossref_primary_10_3390_signals2010008 crossref_primary_10_1080_10739149_2021_1880933 crossref_primary_10_3233_JIFS_191964 crossref_primary_10_1109_TNSRE_2022_3212705 crossref_primary_10_1016_j_ymeth_2023_06_011 crossref_primary_10_1109_TIE_2019_2946536 crossref_primary_10_1177_09544119221074770 crossref_primary_10_3389_fnins_2022_1020546 crossref_primary_10_1002_cpe_6051 crossref_primary_10_1109_TBCAS_2019_2955641 crossref_primary_10_1109_JBHI_2022_3142034 crossref_primary_10_1109_TIM_2023_3248084 crossref_primary_10_1016_j_bspc_2024_106408 crossref_primary_10_3390_electronics12112444 crossref_primary_10_3390_mi14091697 crossref_primary_10_3390_s17071597 crossref_primary_10_3390_s22103661 crossref_primary_10_1109_JBHI_2021_3130374 crossref_primary_10_1038_s41598_024_72996_7 crossref_primary_10_1109_TNSRE_2017_2687520 crossref_primary_10_1109_JSEN_2021_3068521 crossref_primary_10_1109_TNSRE_2021_3077413 crossref_primary_10_1016_j_bspc_2019_101733 crossref_primary_10_1109_TIE_2021_3050367 crossref_primary_10_1109_TIM_2022_3220286 crossref_primary_10_1109_ACCESS_2023_3312219 crossref_primary_10_1109_JSEN_2021_3098120 crossref_primary_10_3390_computation10070112 crossref_primary_10_1109_JIOT_2020_2979328 crossref_primary_10_1016_j_bspc_2022_103787 crossref_primary_10_1016_j_compbiomed_2023_107139 crossref_primary_10_1016_j_jmsy_2021_04_011 crossref_primary_10_1109_JBHI_2021_3118810 crossref_primary_10_1016_j_compbiomed_2023_107497 crossref_primary_10_1109_TIE_2021_3097666 crossref_primary_10_3389_fncom_2021_770692 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_1088_2057_1976_ac9e04 crossref_primary_10_1002_cpe_6848 crossref_primary_10_1016_j_bspc_2023_105141 crossref_primary_10_1109_JSEN_2020_3042540 crossref_primary_10_1016_j_compeleceng_2025_110094 crossref_primary_10_1016_j_cmpb_2022_106999 crossref_primary_10_1016_j_softx_2023_101509 crossref_primary_10_3390_s22134972 crossref_primary_10_1109_ACCESS_2022_3212064 crossref_primary_10_37636_recit_v6n4e318 crossref_primary_10_1088_1741_2552_ad39a5 crossref_primary_10_1016_j_cmpb_2022_106870 crossref_primary_10_3389_fnins_2024_1306047 crossref_primary_10_1088_2058_8585_acd2e8 crossref_primary_10_1109_JSEN_2022_3191640 crossref_primary_10_1007_s13042_021_01482_7 crossref_primary_10_1038_s41597_023_02223_x crossref_primary_10_1109_ACCESS_2019_2907076 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_1109_TBME_2019_2947089 crossref_primary_10_1109_ACCESS_2020_3021072 crossref_primary_10_3390_su10061865 crossref_primary_10_1088_1741_2552_ac387f crossref_primary_10_1109_JBHI_2022_3197831 crossref_primary_10_1007_s12206_022_0507_x crossref_primary_10_1016_j_ins_2024_120667 crossref_primary_10_3390_s24227147 crossref_primary_10_1109_RBME_2021_3078190 crossref_primary_10_1109_JBHI_2018_2805760 crossref_primary_10_3390_s23052715 crossref_primary_10_1109_TBME_2019_2904398 crossref_primary_10_1109_LRA_2021_3091698 crossref_primary_10_1038_s44182_025_00018_3 crossref_primary_10_1109_JSEN_2021_3081714 crossref_primary_10_1016_j_compbiomed_2022_105359 crossref_primary_10_1016_j_engappai_2023_107251 crossref_primary_10_3389_frai_2021_744476 crossref_primary_10_1109_TIM_2021_3112775 crossref_primary_10_1016_j_eswa_2023_121224 crossref_primary_10_1016_j_sbsr_2020_100353 crossref_primary_10_1038_s41598_021_90688_4 crossref_primary_10_1109_ACCESS_2021_3056412 crossref_primary_10_3390_s24041259 crossref_primary_10_3389_fbioe_2022_909023 crossref_primary_10_1016_j_engappai_2023_106160 crossref_primary_10_3390_app14083237 |
Cites_doi | 10.1016/j.jbiomech.2006.02.001 10.1016/j.bspc.2007.11.005 10.1016/j.bspc.2007.07.009 10.1016/j.jelekin.2012.06.009 10.1038/sdata.2014.53 10.1109/TNSRE.2010.2100828 10.1016/j.bspc.2015.02.009 10.1016/j.berh.2011.01.016 10.1109/TBME.2008.919734 10.1016/S1050-6411(00)00025-0 10.1561/2200000006 10.1109/TNSRE.2014.2305111 10.1016/j.eswa.2012.01.102 10.1126/science.1127647 10.1016/S1050-6411(01)00033-5 10.1109/MCSE.2007.55 10.1109/TNSRE.2007.891391 10.1007/s11517-011-0790-7 10.1186/1743-0003-9-1 10.1016/S1388-2457(99)00306-5 10.1109/THMS.2014.2302794 10.3109/03091908809030173 10.1126/science.1206157 10.1109/TNSRE.2014.2366752 10.1016/j.medengphy.2011.11.018 10.1038/nature14539 10.1109/TBME.2012.2191551 10.1109/TIE.2016.2522385 10.1145/2702123.2702501 10.1145/1240624.1240747 10.1145/1357054.1357138 10.1109/CNE.2007.369733 10.1145/1753326.1753451 10.1109/ICCV.2015.123 10.1109/ICPR.2014.477 10.1109/CVPR.2014.220 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Copyright Nature Publishing Group Nov 2016 Copyright © 2016, The Author(s) 2016 The Author(s) |
Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Nature Publishing Group Nov 2016 – notice: Copyright © 2016, The Author(s) 2016 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep36571 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC5109222 27845347 10_1038_srep36571 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c504t-bef367d5c4ef054a09ed7f8ae29d88beb520f1f474a64b2245ac0158b13e26483 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:10:31 EDT 2025 Fri Jul 11 07:51:37 EDT 2025 Wed Aug 13 07:35:48 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Tue Jul 01 04:02:14 EDT 2025 Fri Feb 21 02:38:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-bef367d5c4ef054a09ed7f8ae29d88beb520f1f474a64b2245ac0158b13e26483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1899337750?pq-origsite=%requestingapplication% |
PMID | 27845347 |
PQID | 1899337750 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5109222 proquest_miscellaneous_1839737526 proquest_journals_1899337750 pubmed_primary_27845347 crossref_primary_10_1038_srep36571 crossref_citationtrail_10_1038_srep36571 springer_journals_10_1038_srep36571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Farina (CR1) 2014; 22 CR38 Kleine, Schumann, Stegeman, Scholle (CR33) 2000; 111 CR37 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR39) 2014; 15 CR34 CR32 CR31 Hinton, Salakhutdinov (CR26) 2006; 313 CR30 Rojas-Martnez, Mañanas, Alonso, Merletti (CR21) 2013; 23 Manal, Rose (CR43) 2007; 40 Phinyomark, Phukpattaranont, Limsakul (CR44) 2012; 39 Casale, Rainoldi (CR24) 2011; 25 Farrell, Weir (CR36) 2007; 15 Kim (CR4) 2011; 333 Pedregosa (CR42) 2011; 12 Stango, Negro, Farina (CR25) 2015; 23 CR8 CR47 CR41 CR40 Goen, Tiwari (CR9) 2013; 7 Bengio (CR27) 2009; 2 Jimenez-Fabian, Verlinden (CR3) 2012; 34 CR19 CR18 CR17 CR16 CR15 Hargrove, Englehart, Hudgins (CR49) 2008; 3 CR10 Atzori (CR35) 2014; 1 Marateb, Rojas-Martnez, Mansourian, Merletti, Villanueva (CR45) 2012; 50 Hakonen, Piitulainen, Visala (CR14) 2015; 18 Smith, Hargrove, Lock, Kuiken (CR6) 2011; 19 Farina, Merletti (CR7) 2000; 10 Clancy, Morin, Merletti (CR11) 2002; 12 Jang, Kim, Lee, Choi (CR2) 2016; 63 Lu, Chen, Li, Zhang, Zhou (CR13) 2014; 44 CR28 Rojas-Martnez, Mañanas, Alonso (CR20) 2012; 9 LeCun, Bengio, Hinton (CR29) 2015; 521 Zhang, Zhou (CR22) 2012; 59 CR23 Oskoei, Hu (CR5) 2007; 2 Oskoei, Hu (CR12) 2008; 55 Scott, Parker (CR46) 1988; 12 Hunter (CR48) 2007; 9 BFsrep36571_CR28 R Casale (BFsrep36571_CR24) 2011; 25 GE Hinton (BFsrep36571_CR26) 2006; 313 BFsrep36571_CR23 A Phinyomark (BFsrep36571_CR44) 2012; 39 D-H Kim (BFsrep36571_CR4) 2011; 333 D Farina (BFsrep36571_CR7) 2000; 10 F Pedregosa (BFsrep36571_CR42) 2011; 12 LH Smith (BFsrep36571_CR6) 2011; 19 M Rojas-Martnez (BFsrep36571_CR20) 2012; 9 BFsrep36571_CR38 BFsrep36571_CR37 BFsrep36571_CR34 BFsrep36571_CR8 K Manal (BFsrep36571_CR43) 2007; 40 G Jang (BFsrep36571_CR2) 2016; 63 Y LeCun (BFsrep36571_CR29) 2015; 521 N Srivastava (BFsrep36571_CR39) 2014; 15 BFsrep36571_CR32 MA Oskoei (BFsrep36571_CR5) 2007; 2 BFsrep36571_CR31 M Hakonen (BFsrep36571_CR14) 2015; 18 BFsrep36571_CR30 JD Hunter (BFsrep36571_CR48) 2007; 9 BFsrep36571_CR47 D Farina (BFsrep36571_CR1) 2014; 22 Z Lu (BFsrep36571_CR13) 2014; 44 M Atzori (BFsrep36571_CR35) 2014; 1 Y Bengio (BFsrep36571_CR27) 2009; 2 BFsrep36571_CR41 BFsrep36571_CR40 MA Oskoei (BFsrep36571_CR12) 2008; 55 BFsrep36571_CR18 RN Scott (BFsrep36571_CR46) 1988; 12 BFsrep36571_CR17 BFsrep36571_CR16 BFsrep36571_CR15 HR Marateb (BFsrep36571_CR45) 2012; 50 M Rojas-Martnez (BFsrep36571_CR21) 2013; 23 B-U Kleine (BFsrep36571_CR33) 2000; 111 TR Farrell (BFsrep36571_CR36) 2007; 15 R Jimenez-Fabian (BFsrep36571_CR3) 2012; 34 EA Clancy (BFsrep36571_CR11) 2002; 12 BFsrep36571_CR19 A Stango (BFsrep36571_CR25) 2015; 23 A Goen (BFsrep36571_CR9) 2013; 7 BFsrep36571_CR10 X Zhang (BFsrep36571_CR22) 2012; 59 L Hargrove (BFsrep36571_CR49) 2008; 3 3057209 - J Med Eng Technol. 1988 Jul-Aug;12(4):143-51 11804807 - J Electromyogr Kinesiol. 2002 Feb;12(1):1-16 21836009 - Science. 2011 Aug 12;333(6044):838-43 22453603 - IEEE Trans Biomed Eng. 2012 Jun;59(6):1649-57 18632358 - IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65 11018443 - J Electromyogr Kinesiol. 2000 Oct;10(5):337-49 22819519 - J Electromyogr Kinesiol. 2013 Feb;23(1):33-42 23216679 - J Neuroeng Rehabil. 2012 Dec 10;9:85 17436883 - IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):111-8 22094199 - Best Pract Res Clin Rheumatol. 2011 Apr;25(2):241-7 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809 16873662 - Science. 2006 Jul 28;313(5786):504-7 25389242 - IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):189-98 1428614 - Int J Psychosom. 1992;39(1-4):18-27 16545388 - J Biomech. 2007;40(3):678-81 22177895 - Med Eng Phys. 2012 May;34(4):397-408 10727920 - Clin Neurophysiol. 2000 Apr;111(4):686-93 26017442 - Nature. 2015 May 28;521(7553):436-44 21698432 - Med Biol Eng Comput. 2012 Jan;50(1):79-89 25977804 - Sci Data. 2014 Dec 23;1:140053 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 |
References_xml | – volume: 40 start-page: 678 year: 2007 end-page: 681 ident: CR43 article-title: A general solution for the time delay introduced by a low-pass Butterworth digital filter: An application to musculoskeletal modeling publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.02.001 – volume: 3 start-page: 175 year: 2008 end-page: 180 ident: CR49 article-title: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.11.005 – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: CR5 article-title: Myoelectric control systems-a survey publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 – ident: CR16 – volume: 23 start-page: 33 year: 2013 end-page: 42 ident: CR21 article-title: Identification of isometric contractions based on high density EMG maps publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/j.jelekin.2012.06.009 – volume: 1 start-page: 140053 year: 2014 ident: CR35 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Scientific Data doi: 10.1038/sdata.2014.53 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR39 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 19 start-page: 186 year: 2011 end-page: 192 ident: CR6 article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2010.2100828 – ident: CR8 – volume: 18 start-page: 334 year: 2015 end-page: 359 ident: CR14 article-title: Current state of digital signal processing in myoelectric interfaces and related applications publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2015.02.009 – ident: CR19 – volume: 25 start-page: 241 year: 2011 end-page: 247 ident: CR24 article-title: Fatigue and fibromyalgia syndrome: clinical and neurophysiologic pattern publication-title: Best Practice & Research Clinical Rheumatology doi: 10.1016/j.berh.2011.01.016 – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: CR12 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.919734 – ident: CR15 – volume: 10 start-page: 337 year: 2000 end-page: 349 ident: CR7 article-title: Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/S1050-6411(00)00025-0 – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: CR27 article-title: Learning deep architectures for ai publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000006 – ident: CR32 – volume: 22 start-page: 797 year: 2014 end-page: 809 ident: CR1 article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2305111 – volume: 39 start-page: 7420 year: 2012 end-page: 7431 ident: CR44 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.102 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR26 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 12 start-page: 1 year: 2002 end-page: 16 ident: CR11 article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/S1050-6411(01)00033-5 – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: CR48 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science and Engineering doi: 10.1109/MCSE.2007.55 – ident: CR18 – ident: CR47 – volume: 15 start-page: 111 year: 2007 end-page: 118 ident: CR36 article-title: The optimal controller delay for myoelectric prostheses publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.891391 – ident: CR37 – volume: 50 start-page: 79 year: 2012 end-page: 89 ident: CR45 article-title: Outlier detection in high-density surface electromyographic signals publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-011-0790-7 – ident: CR30 – volume: 9 start-page: 1 year: 2012 ident: CR20 article-title: High-density surface EMG maps from upper-arm and forearm muscles publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-9-1 – ident: CR10 – ident: CR40 – volume: 111 start-page: 686 year: 2000 end-page: 693 ident: CR33 article-title: Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00306-5 – ident: CR23 – volume: 44 start-page: 293 year: 2014 end-page: 299 ident: CR13 article-title: A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices publication-title: IEEE Transactions on Human-Machine Systems doi: 10.1109/THMS.2014.2302794 – volume: 12 start-page: 143 year: 1988 end-page: 151 ident: CR46 article-title: Myoelectric prostheses: state of the art publication-title: Journal of medical engineering & technology doi: 10.3109/03091908809030173 – volume: 333 start-page: 838 year: 2011 end-page: 843 ident: CR4 article-title: Epidermal electronics publication-title: Science doi: 10.1126/science.1206157 – volume: 23 start-page: 189 year: 2015 end-page: 198 ident: CR25 article-title: Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2366752 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR42 article-title: Scikit-learn: machine learning in Python publication-title: Journal of Machine Learning Research – ident: CR38 – ident: CR17 – ident: CR31 – volume: 7 start-page: 965 year: 2013 end-page: 973 ident: CR9 article-title: Review of surface electromyogram signals: its analysis and applications publication-title: International Journal of Electrical, Electronics, Communication, Energy Science and Engineering – volume: 34 start-page: 397 year: 2012 end-page: 408 ident: CR3 article-title: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2011.11.018 – ident: CR34 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR29 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 59 start-page: 1649 year: 2012 end-page: 1657 ident: CR22 article-title: High-density myoelectric pattern recognition toward improved stroke rehabilitation publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2012.2191551 – ident: CR28 – ident: CR41 – volume: 63 start-page: 3695 year: 2016 end-page: 3705 ident: CR2 article-title: EMG-based continuous control scheme with simple classifier for electric-powered wheelchair publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2522385 – volume: 313 start-page: 504 year: 2006 ident: BFsrep36571_CR26 publication-title: Science doi: 10.1126/science.1127647 – volume: 2 start-page: 275 year: 2007 ident: BFsrep36571_CR5 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 – ident: BFsrep36571_CR18 doi: 10.1038/sdata.2014.53 – volume: 9 start-page: 1 year: 2012 ident: BFsrep36571_CR20 publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-9-1 – volume: 15 start-page: 1929 year: 2014 ident: BFsrep36571_CR39 publication-title: Journal of Machine Learning Research – volume: 23 start-page: 33 year: 2013 ident: BFsrep36571_CR21 publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/j.jelekin.2012.06.009 – ident: BFsrep36571_CR23 doi: 10.1145/2702123.2702501 – volume: 22 start-page: 797 year: 2014 ident: BFsrep36571_CR1 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2305111 – volume: 25 start-page: 241 year: 2011 ident: BFsrep36571_CR24 publication-title: Best Practice & Research Clinical Rheumatology doi: 10.1016/j.berh.2011.01.016 – volume: 55 start-page: 1956 year: 2008 ident: BFsrep36571_CR12 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.919734 – volume: 59 start-page: 1649 year: 2012 ident: BFsrep36571_CR22 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2012.2191551 – ident: BFsrep36571_CR31 – volume: 39 start-page: 7420 year: 2012 ident: BFsrep36571_CR44 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.102 – volume: 3 start-page: 175 year: 2008 ident: BFsrep36571_CR49 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.11.005 – volume: 12 start-page: 2825 year: 2011 ident: BFsrep36571_CR42 publication-title: Journal of Machine Learning Research – volume: 23 start-page: 189 year: 2015 ident: BFsrep36571_CR25 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2366752 – volume: 333 start-page: 838 year: 2011 ident: BFsrep36571_CR4 publication-title: Science doi: 10.1126/science.1206157 – volume: 50 start-page: 79 year: 2012 ident: BFsrep36571_CR45 publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-011-0790-7 – volume: 63 start-page: 3695 year: 2016 ident: BFsrep36571_CR2 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2522385 – volume: 2 start-page: 1 year: 2009 ident: BFsrep36571_CR27 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000006 – ident: BFsrep36571_CR8 – ident: BFsrep36571_CR30 – ident: BFsrep36571_CR15 doi: 10.1145/1240624.1240747 – ident: BFsrep36571_CR28 – volume: 34 start-page: 397 year: 2012 ident: BFsrep36571_CR3 publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2011.11.018 – ident: BFsrep36571_CR16 doi: 10.1145/1357054.1357138 – volume: 44 start-page: 293 year: 2014 ident: BFsrep36571_CR13 publication-title: IEEE Transactions on Human-Machine Systems doi: 10.1109/THMS.2014.2302794 – volume: 19 start-page: 186 year: 2011 ident: BFsrep36571_CR6 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2010.2100828 – volume: 1 start-page: 140053 year: 2014 ident: BFsrep36571_CR35 publication-title: Scientific Data doi: 10.1038/sdata.2014.53 – ident: BFsrep36571_CR32 doi: 10.1109/CNE.2007.369733 – ident: BFsrep36571_CR47 – ident: BFsrep36571_CR17 doi: 10.1145/1753326.1753451 – volume: 40 start-page: 678 year: 2007 ident: BFsrep36571_CR43 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.02.001 – ident: BFsrep36571_CR40 – volume: 521 start-page: 436 year: 2015 ident: BFsrep36571_CR29 publication-title: Nature doi: 10.1038/nature14539 – ident: BFsrep36571_CR41 doi: 10.1109/ICCV.2015.123 – volume: 12 start-page: 1 year: 2002 ident: BFsrep36571_CR11 publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/S1050-6411(01)00033-5 – volume: 15 start-page: 111 year: 2007 ident: BFsrep36571_CR36 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.891391 – ident: BFsrep36571_CR10 – volume: 111 start-page: 686 year: 2000 ident: BFsrep36571_CR33 publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00306-5 – volume: 18 start-page: 334 year: 2015 ident: BFsrep36571_CR14 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2015.02.009 – ident: BFsrep36571_CR19 doi: 10.1109/ICPR.2014.477 – volume: 12 start-page: 143 year: 1988 ident: BFsrep36571_CR46 publication-title: Journal of medical engineering & technology doi: 10.3109/03091908809030173 – ident: BFsrep36571_CR37 doi: 10.1109/CVPR.2014.220 – volume: 9 start-page: 90 year: 2007 ident: BFsrep36571_CR48 publication-title: Computing in Science and Engineering doi: 10.1109/MCSE.2007.55 – volume: 7 start-page: 965 year: 2013 ident: BFsrep36571_CR9 publication-title: International Journal of Electrical, Electronics, Communication, Energy Science and Engineering – ident: BFsrep36571_CR38 – volume: 10 start-page: 337 year: 2000 ident: BFsrep36571_CR7 publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/S1050-6411(00)00025-0 – ident: BFsrep36571_CR34 – reference: 18632358 - IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65 – reference: 10727920 - Clin Neurophysiol. 2000 Apr;111(4):686-93 – reference: 11018443 - J Electromyogr Kinesiol. 2000 Oct;10(5):337-49 – reference: 22819519 - J Electromyogr Kinesiol. 2013 Feb;23(1):33-42 – reference: 17436883 - IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):111-8 – reference: 22094199 - Best Pract Res Clin Rheumatol. 2011 Apr;25(2):241-7 – reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7 – reference: 11804807 - J Electromyogr Kinesiol. 2002 Feb;12(1):1-16 – reference: 1428614 - Int J Psychosom. 1992;39(1-4):18-27 – reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43 – reference: 23216679 - J Neuroeng Rehabil. 2012 Dec 10;9:85 – reference: 16545388 - J Biomech. 2007;40(3):678-81 – reference: 25389242 - IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):189-98 – reference: 22177895 - Med Eng Phys. 2012 May;34(4):397-408 – reference: 21698432 - Med Biol Eng Comput. 2012 Jan;50(1):79-89 – reference: 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809 – reference: 25977804 - Sci Data. 2014 Dec 23;1:140053 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 3057209 - J Med Eng Technol. 1988 Jul-Aug;12(4):143-51 – reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 – reference: 22453603 - IEEE Trans Biomed Eng. 2012 Jun;59(6):1649-57 |
SSID | ssj0000529419 |
Score | 2.6423151 |
Snippet | Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG)... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36571 |
SubjectTerms | 631/114/1314 631/114/2397 Algorithms Classification Computer applications Electrodes Electromyography Experiments Humanities and Social Sciences Interfaces Latency multidisciplinary Prosthetics Science |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB5EEbyIb-uL-jh4qbZN0iQHERF3RVhPLngrSZPiwlp1H-D-eyd94aoIuWXahpk08w0zmQ_gTNHQZJFmQRJKHVAqw0AaqQJlpTYYtSSmZInoPSb3ffrwzJ4XoOHYrBU4_jO0c3xS_dHw4vNjdo0__FV1ZVxcoi95JwlzN8mX0CFxR2TQq1F-1eI7ljSSTV-h70_Me6NfEPN3peSPdGnphTprsFrDR_-msvc6LNhiA5YrQsnZJvAuvnc6sn5bF_RW-HrmD0oQiMNioO-Pp6NcZda_63X9wSseKOMt6Hfunm7vg5oaIchYSCeBtjlJuGEZtTmCLhVKa3gulI2lEUJbzeIwj3LKqUqoRjfNVIaOX-iIWFfTRrZhsXgr7C740phQRUpoHNTEKChya7nV1IEbQT04b1SUZnXfcEdfMUzL_DURaatND05a0feqWcZfQgeNntPG3GmEYR8hHOGLB8ftNO50l76olJM6LMcJZ3HiwU5llvYrLn3KCOUe8DmDtQKui_b8TDF4Kbtp46EkESR5cNqY9tuyfi5-7__F78MKAqrE3VWM2AEsTkZTe4igZaKPyi35BY-A7to priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hVkgsiDeBgsJjYIlIYju2xwq1oEqwAFK3yI4dUQlSRMvAv-ecF7RlQPLmS3I6O77PvvN3AJeKhiaLNAuSUOqAUhkG0kgVKCu1wV1LYsoqEfcPyd0zHY3ZuCaLntVplRWlZblMN9lh1-gv3knC3G3xrmNoxynd7fdHj6P2QMWFrGgkG_YgIn6eWfQ5K0ByNR9yKSha-prhFmzWINHvV2ptw5otdmC9Khv5tQv8Ft-Luvtt9s-08PWXPymhHjaL23l_9vmRq8z6g_tbf_KGy8ZsD56Hg6ebu6AugBBkLKTzQNucJNywjNocoZUKpTU8F8rG0gihrWZxmEc55VQlVKMzZipD9y50RKzLXCP70CmmhT0EXxoTqkgJjY2aGAVFbi23mjoII6gHV42J0qxmB3dFKl7TMkpNRNpa04PzVvS9osT4S6jX2Dmt_4pZGuHmjhCOIMWDs7Yb57MLUlTGSR1i44SzOPHgoBqW9isuSMoI5R7whQFrBRxX9mJPMXkpObNx6ZEIhTy4aIb2l1rLyh_9S-oYNhA9Je5iYsR60Jl_fNoTRChzfVrPzW_LXukc priority: 102 providerName: Springer Nature |
Title | Gesture recognition by instantaneous surface EMG images |
URI | https://link.springer.com/article/10.1038/srep36571 https://www.ncbi.nlm.nih.gov/pubmed/27845347 https://www.proquest.com/docview/1899337750 https://www.proquest.com/docview/1839737526 https://pubmed.ncbi.nlm.nih.gov/PMC5109222 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC5cRdjLou7DrDpEdw9egsn0-yTjMCoDI4sPmFvoTnfYgTUzO4-D_36r83JHRQgJpIukqepUfV1VqQL4qWlss8SwiMfKRJSqOFJW6Ug7ZSzuWrgtu0SMbvj1Ax2O2bh2uC3qtMpGJ5aK2k4z7yM_S3BjQIhAA3c--xv5rlE-ulq30PgAW750mV_VYixaH4uPYtFENQWFiDxDszMjnIlk3Qy9wpavUyRfxElL83O5A59q3Bj2KkHvwoYr9mC76iT59BnEFT53NXdhmxA0LULzFE5K9IeHwx1-uFjNc525cDC6CiePqEkWX-DhcnDfv47qnghRxmK6jIzLCReWZdTliLZ0rJwVudSuq6yUxhnWjfMkp4JqTg3aZ6YztPjSJMT5ZDbyFTaLaeH2IVTWxjrR0uBBbRcJZe6ccIZ6VCNpAKcNi9KsLhju-1b8ScvANZFpy80ATlrSWVUl4y2iw4bPaf2hLNJnsQZw3A7jEvdxi4o5qQdxggjW5QF8q8TSvsXHTRmhIgCxJrCWwJfPXh8pJr_LMtqojRSiowB-NKL9b1ovJ__9_ckfwEdEUtz_pJiwQ9hczlfuCNHK0nTKJdmBrV5veDfE68Xg5tct3u3zfqf0AOB5ROU_w7Dyow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqqq9VPRF0wI1tJV6iUhiO7YPCFUUWB7LCaS9pXbsqCu12e1mV9X-KX4j42QTulD1huSbLceaGc98kxnPAHzSLLJ5bHiYRsqEjKkoVFbpUDtlLHotqa27RPQv0t4VOx3wwQpct29hfFplqxNrRW1Huf9HvhujY0CpQAO3P_4d-q5RPrrattBoxOLMzf-gy1btnXxD_n5OkqPDy4NeuOgqEOY8YtPQuIKmwvKcuQLxio6Us6KQ2iXKSmmc4UlUxAUTTKfMoIXjOkebKU1MnU8Ho7jvI3iMhjfyzp4YiO6fjo-asVi1BYyo3EUzN6YpF_Gy2buHZe-nZN6Jy9bm7mgNni9wKvnaCNYLWHHlS3jSdK6cvwJxjPvOJo50CUijkpg5GdZoE4cbzSpSzSaFzh057B-T4S_UXNVruHoQar2B1XJUurdAlLWRjrU0OJhNcKEsnBPOMI-iJAvgS0uiLF8UKPd9Mn5mdaCcyqyjZgA73dJxU5XjX4s2Wjpni4tZZbdiFMB2N41XysdJGuJkHjQKKniSBrDesKX7io_TcspEAGKJYd0CX657eaYc_qjLdqP2U4jGAvjYsvavY909_Lv_H_4DPO1d9s-z85OLs_fwDFFc6h9IxnwDVqeTmdtEpDQ1W7V4Evj-0PfhBjvPKdk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBpgviZeoSWzH9gNCwNptjFUTYtLeMjt2RCVIS9MK9V_jr-OcL-iGeJvkN58c6-y7-13ufAfwUrPI5rHhYRopEzKmolBZpUPtlLHotaS27hJxNEn3T9jHU366Bb-6tzA-rbLTibWitrPc_yMfxugYUCrQwA2LNi3ieHf8dv4j9B2kfKS1a6fRXJFDt_6J7lv15mAXz_pVkoxHXz7sh22HgTDnEVuGxhU0FZbnzBWIXXSknBWF1C5RVkrjDE-iIi6YYDplBq0d1znaT2li6nxqGMV1r8C28F7RALbfjybHn_s_PD6GxmLVlTOicohGb05TLuJNI3gB2V5M0DwXpa2N3_gm3GhRK3nXXLNbsOXK23C16WO5vgNiD9ddLRzp05FmJTFrMq2xJw43W1WkWi0KnTsyOtoj0--ox6q7cHIp_LoHg3JWugdAlLWRjrU0OJhNkFAWzglnmMdUkgXwumNRlrflyn3XjG9ZHTanMuu5GcDznnTe1Oj4F9FOx-esFdMq-3OpAnjWT6OA-ahJw5zMQ0hBBU_SAO43x9J_xUdtOWUiALFxYD2BL969OVNOv9ZFvFEXKsRmAbzojvavbZ3f_MP_b_4pXENZyD4dTA4fwXWEdKl_LRnzHRgsFyv3GGHT0jxp7yeBs8sWid_cXi90 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gesture+recognition+by+instantaneous+surface+EMG+images&rft.jtitle=Scientific+reports&rft.au=Geng%2C+Weidong&rft.au=Du%2C+Yu&rft.au=Jin%2C+Wenguang&rft.au=Wei%2C+Wentao&rft.date=2016-11-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=6&rft.spage=36571&rft_id=info:doi/10.1038%2Fsrep36571&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |