Gesture recognition by instantaneous surface EMG images

Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present th...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 36571
Main Authors Geng, Weidong, Du, Yu, Jin, Wenguang, Wei, Wentao, Hu, Yu, Li, Jiajun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.11.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.
AbstractList Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.
Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.
ArticleNumber 36571
Author Geng, Weidong
Li, Jiajun
Wei, Wentao
Jin, Wenguang
Du, Yu
Hu, Yu
Author_xml – sequence: 1
  givenname: Weidong
  surname: Geng
  fullname: Geng, Weidong
  organization: Zhejiang University, College of Computer Science
– sequence: 2
  givenname: Yu
  surname: Du
  fullname: Du, Yu
  organization: Zhejiang University, College of Computer Science
– sequence: 3
  givenname: Wenguang
  surname: Jin
  fullname: Jin, Wenguang
  organization: Zhejiang University, College of Computer Science
– sequence: 4
  givenname: Wentao
  surname: Wei
  fullname: Wei, Wentao
  organization: Zhejiang University, College of Computer Science
– sequence: 5
  givenname: Yu
  surname: Hu
  fullname: Hu, Yu
  organization: Zhejiang University, College of Computer Science
– sequence: 6
  givenname: Jiajun
  surname: Li
  fullname: Li, Jiajun
  organization: Zhejiang University, College of Computer Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27845347$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYMoPrvwD8iAGxVq85zMbAQptQoVN7oOmfROjUyTmswI_fdGqqVWQyCBfPdwTs4R2nXeAUKnBF8TzIpBDLBguZBkBx1SzEWfMkp3N-4HqBfjG05L0JKTch8dUFlwwbg8RHIMse0CZAGMnznbWu-yaplZF1vt0gbfxSx2odYGstHjOLNzPYN4gvZq3UTofZ_H6OVu9Dy870-exg_D20nfCMzbfgU1y-VUGA41FlzjEqayLjTQcloUFVSC4prUXHKd84pSLrTBRBQVYUBzXrBjdLPSXXTVHKYGXBt0oxYh2QhL5bVVv1-cfVUz_6EEwSWlNAlcfAsE_96lsGpuo4GmWUVTpGClZFLQPKHnW-ib74JL8RJVloxJKXCizjYdra38_GkCLleACT6mduo1QrD6qkytK0vsYIs1ttVfJaQwtvl34mo1EZOqm0HYMPkH_gQFB6bH
CitedBy_id crossref_primary_10_1142_S0219519421500433
crossref_primary_10_1016_j_sna_2019_111738
crossref_primary_10_3389_fnins_2023_1093865
crossref_primary_10_1109_ACCESS_2021_3059499
crossref_primary_10_1109_TCDS_2023_3241632
crossref_primary_10_1007_s11548_022_02790_1
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_1109_JBHI_2022_3179630
crossref_primary_10_1016_j_eswa_2021_114977
crossref_primary_10_1371_journal_pone_0276436
crossref_primary_10_1155_2022_7603319
crossref_primary_10_1088_1742_6596_1230_1_012030
crossref_primary_10_1109_JSEN_2024_3388466
crossref_primary_10_1007_s10846_022_01666_5
crossref_primary_10_1109_JSEN_2024_3371588
crossref_primary_10_1109_TAI_2020_3046160
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_1109_TNSRE_2020_3029099
crossref_primary_10_3390_s24092827
crossref_primary_10_1109_JSEN_2023_3255408
crossref_primary_10_5582_bst_2024_01370
crossref_primary_10_1038_s41598_024_64458_x
crossref_primary_10_1109_JBHI_2023_3287979
crossref_primary_10_3390_bios10080085
crossref_primary_10_3390_s17030458
crossref_primary_10_1109_LRA_2021_3111850
crossref_primary_10_1142_S2424905X20410019
crossref_primary_10_1016_j_compbiomed_2024_109525
crossref_primary_10_1007_s42835_023_01736_0
crossref_primary_10_3390_s24092702
crossref_primary_10_1016_j_bspc_2019_101774
crossref_primary_10_1109_JBHI_2020_3041861
crossref_primary_10_13005_bpj_3090
crossref_primary_10_3389_fbioe_2019_00331
crossref_primary_10_1109_TNSRE_2023_3324252
crossref_primary_10_3390_app9081526
crossref_primary_10_1142_S0219843619410019
crossref_primary_10_1088_1742_6596_2327_1_012075
crossref_primary_10_1109_ACCESS_2019_2923455
crossref_primary_10_3389_fnins_2017_00379
crossref_primary_10_3389_fnins_2022_1020086
crossref_primary_10_1097_JPO_0000000000000401
crossref_primary_10_32604_cmc_2022_027474
crossref_primary_10_1109_JBHI_2019_2941535
crossref_primary_10_1371_journal_pone_0203835
crossref_primary_10_1016_j_medntd_2024_100308
crossref_primary_10_1016_j_matpr_2020_11_563
crossref_primary_10_3390_electronics13204106
crossref_primary_10_1002_advs_202410702
crossref_primary_10_1007_s13042_019_00966_x
crossref_primary_10_1016_j_bspc_2021_103364
crossref_primary_10_3390_s18103226
crossref_primary_10_1515_bmt_2024_0282
crossref_primary_10_1109_JSEN_2023_3296649
crossref_primary_10_3389_fbioe_2021_548357
crossref_primary_10_3390_app9112331
crossref_primary_10_3390_electronics13214144
crossref_primary_10_1109_TNSRE_2023_3303316
crossref_primary_10_1109_ACCESS_2020_3027497
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_1109_JBHI_2024_3417236
crossref_primary_10_1186_s12984_021_00832_4
crossref_primary_10_3390_app14083389
crossref_primary_10_3389_fnins_2022_796711
crossref_primary_10_3389_fbioe_2021_771255
crossref_primary_10_1109_TIM_2024_3381288
crossref_primary_10_5050_KSNVE_2018_28_6_670
crossref_primary_10_1109_JBHI_2021_3080502
crossref_primary_10_1109_TNSRE_2023_3236982
crossref_primary_10_1155_2020_6642463
crossref_primary_10_1109_TNSRE_2023_3341220
crossref_primary_10_3390_s24123970
crossref_primary_10_1109_TAI_2021_3098253
crossref_primary_10_1109_JAS_2021_1003865
crossref_primary_10_1155_2021_4454648
crossref_primary_10_1109_JSEN_2022_3179472
crossref_primary_10_1088_1741_2552_ab0e2e
crossref_primary_10_3389_fnbot_2019_00114
crossref_primary_10_1109_ACCESS_2022_3158667
crossref_primary_10_1088_2516_1091_acac57
crossref_primary_10_1109_TNSRE_2024_3502624
crossref_primary_10_1109_JSEN_2023_3266872
crossref_primary_10_1007_s11431_020_1710_y
crossref_primary_10_1080_01691864_2020_1713886
crossref_primary_10_3390_s19020371
crossref_primary_10_3390_s20174892
crossref_primary_10_1038_s41467_023_37238_w
crossref_primary_10_3390_s22103650
crossref_primary_10_1142_S0219843619500130
crossref_primary_10_3389_fnbot_2022_814973
crossref_primary_10_1142_S0218348X19500373
crossref_primary_10_1155_2021_5541269
crossref_primary_10_1063_5_0058617
crossref_primary_10_1109_TBME_2019_2899222
crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_3934_mbe_2023152
crossref_primary_10_1016_j_eswa_2022_119394
crossref_primary_10_1109_ACCESS_2025_3528902
crossref_primary_10_1080_1448837X_2021_1969729
crossref_primary_10_1109_TBME_2019_2943309
crossref_primary_10_3390_s24113638
crossref_primary_10_1109_TNSRE_2022_3199809
crossref_primary_10_1089_soro_2023_0062
crossref_primary_10_3390_s21248365
crossref_primary_10_1109_ACCESS_2024_3508799
crossref_primary_10_1142_S0219843620500255
crossref_primary_10_1109_TNSRE_2023_3262269
crossref_primary_10_1016_j_patrec_2017_12_005
crossref_primary_10_1016_j_bspc_2019_101574
crossref_primary_10_1109_ACCESS_2024_3451172
crossref_primary_10_3934_mbe_2024252
crossref_primary_10_1038_s41467_020_16040_y
crossref_primary_10_3390_s20143994
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1109_TNSRE_2023_3347540
crossref_primary_10_3390_s20030672
crossref_primary_10_1049_csy2_12093
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1016_j_compbiomed_2022_105978
crossref_primary_10_1109_TNSRE_2022_3197875
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_3390_s22051694
crossref_primary_10_1038_s41928_020_00510_8
crossref_primary_10_1109_ACCESS_2024_3514317
crossref_primary_10_1088_1741_2552_ad4c98
crossref_primary_10_1109_THMS_2021_3123186
crossref_primary_10_3390_s20041201
crossref_primary_10_3390_bioengineering10091101
crossref_primary_10_1038_s41598_019_43676_8
crossref_primary_10_1016_j_patrec_2025_02_008
crossref_primary_10_1109_TIM_2022_3164162
crossref_primary_10_1109_TNSRE_2018_2878439
crossref_primary_10_1109_JSEN_2023_3345731
crossref_primary_10_1109_THMS_2023_3329536
crossref_primary_10_1109_TBME_2023_3266575
crossref_primary_10_1109_TNSRE_2019_2961706
crossref_primary_10_1109_MIM_2022_9693438
crossref_primary_10_3389_fbioe_2021_779353
crossref_primary_10_3390_bdcc2030021
crossref_primary_10_1109_JSEN_2024_3419802
crossref_primary_10_1038_s41597_022_01484_2
crossref_primary_10_3390_bioengineering11121283
crossref_primary_10_1038_s41598_023_36490_w
crossref_primary_10_3390_app132413332
crossref_primary_10_1109_JSEN_2020_3019053
crossref_primary_10_1109_ACCESS_2019_2930005
crossref_primary_10_1002_aisy_202200412
crossref_primary_10_1109_TMECH_2020_2997799
crossref_primary_10_1109_ACCESS_2024_3350338
crossref_primary_10_3390_app131911071
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_1089_soro_2021_0209
crossref_primary_10_1007_s00521_020_05128_7
crossref_primary_10_3390_app12094540
crossref_primary_10_1109_TNSRE_2022_3165858
crossref_primary_10_1109_JSEN_2021_3099744
crossref_primary_10_1109_LRA_2022_3142721
crossref_primary_10_1109_TIE_2023_3277119
crossref_primary_10_3390_s21082882
crossref_primary_10_1016_j_cmpb_2020_105643
crossref_primary_10_1088_1757_899X_745_1_012020
crossref_primary_10_12677_MOS_2023_123271
crossref_primary_10_1109_TCYB_2020_3016595
crossref_primary_10_3390_app14010299
crossref_primary_10_1109_TNSRE_2024_3447669
crossref_primary_10_1109_TMRB_2022_3216957
crossref_primary_10_1109_TNSRE_2019_2896269
crossref_primary_10_1088_1741_2552_ad5107
crossref_primary_10_3390_s22135054
crossref_primary_10_3390_s20102972
crossref_primary_10_1155_2020_6946294
crossref_primary_10_1146_annurev_control_071020_104336
crossref_primary_10_3390_s25041275
crossref_primary_10_1109_JSEN_2023_3279555
crossref_primary_10_1007_s11706_022_0597_5
crossref_primary_10_3390_s19204503
crossref_primary_10_3390_s21072540
crossref_primary_10_1016_j_bspc_2021_103048
crossref_primary_10_3390_s18061677
crossref_primary_10_3390_s20226451
crossref_primary_10_3389_fbioe_2024_1463377
crossref_primary_10_3390_s22218455
crossref_primary_10_3390_s18010092
crossref_primary_10_1007_s00521_021_06729_6
crossref_primary_10_1007_s40998_020_00353_1
crossref_primary_10_1016_j_neucom_2020_06_139
crossref_primary_10_3390_info15050274
crossref_primary_10_1109_THMS_2019_2925191
crossref_primary_10_1155_2021_6591035
crossref_primary_10_1088_1741_2552_ac1adc
crossref_primary_10_1016_j_eswa_2021_115644
crossref_primary_10_1007_s13246_021_00972_w
crossref_primary_10_1002_aisy_202300207
crossref_primary_10_18273_revuin_v19n4_2020001
crossref_primary_10_3390_mi14112050
crossref_primary_10_1016_j_rineng_2023_101639
crossref_primary_10_3390_s19163548
crossref_primary_10_1080_10739149_2020_1804932
crossref_primary_10_1088_1741_2552_ad4915
crossref_primary_10_3390_biomimetics9120784
crossref_primary_10_3390_s21217002
crossref_primary_10_1109_TIM_2024_3420372
crossref_primary_10_1016_j_irbm_2023_100773
crossref_primary_10_1142_S2424905X21410026
crossref_primary_10_1002_adfm_202422980
crossref_primary_10_1007_s44174_022_00002_7
crossref_primary_10_1109_TIM_2024_3373045
crossref_primary_10_3390_app8071126
crossref_primary_10_1016_j_bbe_2022_02_005
crossref_primary_10_3390_s19102370
crossref_primary_10_1002_aisy_202000157
crossref_primary_10_1109_TNSRE_2022_3173708
crossref_primary_10_3390_s18082497
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1002_adfm_202311535
crossref_primary_10_3390_s22052002
crossref_primary_10_1109_JBHI_2024_3441600
crossref_primary_10_1109_JBHI_2020_3009383
crossref_primary_10_1109_LRA_2021_3062320
crossref_primary_10_1038_s41597_021_00843_9
crossref_primary_10_1080_10255842_2023_2287419
crossref_primary_10_1109_TCSII_2020_3006430
crossref_primary_10_1371_journal_pone_0206049
crossref_primary_10_3390_signals2010008
crossref_primary_10_1080_10739149_2021_1880933
crossref_primary_10_3233_JIFS_191964
crossref_primary_10_1109_TNSRE_2022_3212705
crossref_primary_10_1016_j_ymeth_2023_06_011
crossref_primary_10_1109_TIE_2019_2946536
crossref_primary_10_1177_09544119221074770
crossref_primary_10_3389_fnins_2022_1020546
crossref_primary_10_1002_cpe_6051
crossref_primary_10_1109_TBCAS_2019_2955641
crossref_primary_10_1109_JBHI_2022_3142034
crossref_primary_10_1109_TIM_2023_3248084
crossref_primary_10_1016_j_bspc_2024_106408
crossref_primary_10_3390_electronics12112444
crossref_primary_10_3390_mi14091697
crossref_primary_10_3390_s17071597
crossref_primary_10_3390_s22103661
crossref_primary_10_1109_JBHI_2021_3130374
crossref_primary_10_1038_s41598_024_72996_7
crossref_primary_10_1109_TNSRE_2017_2687520
crossref_primary_10_1109_JSEN_2021_3068521
crossref_primary_10_1109_TNSRE_2021_3077413
crossref_primary_10_1016_j_bspc_2019_101733
crossref_primary_10_1109_TIE_2021_3050367
crossref_primary_10_1109_TIM_2022_3220286
crossref_primary_10_1109_ACCESS_2023_3312219
crossref_primary_10_1109_JSEN_2021_3098120
crossref_primary_10_3390_computation10070112
crossref_primary_10_1109_JIOT_2020_2979328
crossref_primary_10_1016_j_bspc_2022_103787
crossref_primary_10_1016_j_compbiomed_2023_107139
crossref_primary_10_1016_j_jmsy_2021_04_011
crossref_primary_10_1109_JBHI_2021_3118810
crossref_primary_10_1016_j_compbiomed_2023_107497
crossref_primary_10_1109_TIE_2021_3097666
crossref_primary_10_3389_fncom_2021_770692
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_1088_2057_1976_ac9e04
crossref_primary_10_1002_cpe_6848
crossref_primary_10_1016_j_bspc_2023_105141
crossref_primary_10_1109_JSEN_2020_3042540
crossref_primary_10_1016_j_compeleceng_2025_110094
crossref_primary_10_1016_j_cmpb_2022_106999
crossref_primary_10_1016_j_softx_2023_101509
crossref_primary_10_3390_s22134972
crossref_primary_10_1109_ACCESS_2022_3212064
crossref_primary_10_37636_recit_v6n4e318
crossref_primary_10_1088_1741_2552_ad39a5
crossref_primary_10_1016_j_cmpb_2022_106870
crossref_primary_10_3389_fnins_2024_1306047
crossref_primary_10_1088_2058_8585_acd2e8
crossref_primary_10_1109_JSEN_2022_3191640
crossref_primary_10_1007_s13042_021_01482_7
crossref_primary_10_1038_s41597_023_02223_x
crossref_primary_10_1109_ACCESS_2019_2907076
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1109_TBME_2019_2947089
crossref_primary_10_1109_ACCESS_2020_3021072
crossref_primary_10_3390_su10061865
crossref_primary_10_1088_1741_2552_ac387f
crossref_primary_10_1109_JBHI_2022_3197831
crossref_primary_10_1007_s12206_022_0507_x
crossref_primary_10_1016_j_ins_2024_120667
crossref_primary_10_3390_s24227147
crossref_primary_10_1109_RBME_2021_3078190
crossref_primary_10_1109_JBHI_2018_2805760
crossref_primary_10_3390_s23052715
crossref_primary_10_1109_TBME_2019_2904398
crossref_primary_10_1109_LRA_2021_3091698
crossref_primary_10_1038_s44182_025_00018_3
crossref_primary_10_1109_JSEN_2021_3081714
crossref_primary_10_1016_j_compbiomed_2022_105359
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_3389_frai_2021_744476
crossref_primary_10_1109_TIM_2021_3112775
crossref_primary_10_1016_j_eswa_2023_121224
crossref_primary_10_1016_j_sbsr_2020_100353
crossref_primary_10_1038_s41598_021_90688_4
crossref_primary_10_1109_ACCESS_2021_3056412
crossref_primary_10_3390_s24041259
crossref_primary_10_3389_fbioe_2022_909023
crossref_primary_10_1016_j_engappai_2023_106160
crossref_primary_10_3390_app14083237
Cites_doi 10.1016/j.jbiomech.2006.02.001
10.1016/j.bspc.2007.11.005
10.1016/j.bspc.2007.07.009
10.1016/j.jelekin.2012.06.009
10.1038/sdata.2014.53
10.1109/TNSRE.2010.2100828
10.1016/j.bspc.2015.02.009
10.1016/j.berh.2011.01.016
10.1109/TBME.2008.919734
10.1016/S1050-6411(00)00025-0
10.1561/2200000006
10.1109/TNSRE.2014.2305111
10.1016/j.eswa.2012.01.102
10.1126/science.1127647
10.1016/S1050-6411(01)00033-5
10.1109/MCSE.2007.55
10.1109/TNSRE.2007.891391
10.1007/s11517-011-0790-7
10.1186/1743-0003-9-1
10.1016/S1388-2457(99)00306-5
10.1109/THMS.2014.2302794
10.3109/03091908809030173
10.1126/science.1206157
10.1109/TNSRE.2014.2366752
10.1016/j.medengphy.2011.11.018
10.1038/nature14539
10.1109/TBME.2012.2191551
10.1109/TIE.2016.2522385
10.1145/2702123.2702501
10.1145/1240624.1240747
10.1145/1357054.1357138
10.1109/CNE.2007.369733
10.1145/1753326.1753451
10.1109/ICCV.2015.123
10.1109/ICPR.2014.477
10.1109/CVPR.2014.220
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Nov 2016
Copyright © 2016, The Author(s) 2016 The Author(s)
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Nov 2016
– notice: Copyright © 2016, The Author(s) 2016 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep36571
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC5109222
27845347
10_1038_srep36571
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c504t-bef367d5c4ef054a09ed7f8ae29d88beb520f1f474a64b2245ac0158b13e26483
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Thu Aug 21 18:10:31 EDT 2025
Fri Jul 11 07:51:37 EDT 2025
Wed Aug 13 07:35:48 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Tue Jul 01 04:02:14 EDT 2025
Fri Feb 21 02:38:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-bef367d5c4ef054a09ed7f8ae29d88beb520f1f474a64b2245ac0158b13e26483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1899337750?pq-origsite=%requestingapplication%
PMID 27845347
PQID 1899337750
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5109222
proquest_miscellaneous_1839737526
proquest_journals_1899337750
pubmed_primary_27845347
crossref_primary_10_1038_srep36571
crossref_citationtrail_10_1038_srep36571
springer_journals_10_1038_srep36571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Farina (CR1) 2014; 22
CR38
Kleine, Schumann, Stegeman, Scholle (CR33) 2000; 111
CR37
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR39) 2014; 15
CR34
CR32
CR31
Hinton, Salakhutdinov (CR26) 2006; 313
CR30
Rojas-Martnez, Mañanas, Alonso, Merletti (CR21) 2013; 23
Manal, Rose (CR43) 2007; 40
Phinyomark, Phukpattaranont, Limsakul (CR44) 2012; 39
Casale, Rainoldi (CR24) 2011; 25
Farrell, Weir (CR36) 2007; 15
Kim (CR4) 2011; 333
Pedregosa (CR42) 2011; 12
Stango, Negro, Farina (CR25) 2015; 23
CR8
CR47
CR41
CR40
Goen, Tiwari (CR9) 2013; 7
Bengio (CR27) 2009; 2
Jimenez-Fabian, Verlinden (CR3) 2012; 34
CR19
CR18
CR17
CR16
CR15
Hargrove, Englehart, Hudgins (CR49) 2008; 3
CR10
Atzori (CR35) 2014; 1
Marateb, Rojas-Martnez, Mansourian, Merletti, Villanueva (CR45) 2012; 50
Hakonen, Piitulainen, Visala (CR14) 2015; 18
Smith, Hargrove, Lock, Kuiken (CR6) 2011; 19
Farina, Merletti (CR7) 2000; 10
Clancy, Morin, Merletti (CR11) 2002; 12
Jang, Kim, Lee, Choi (CR2) 2016; 63
Lu, Chen, Li, Zhang, Zhou (CR13) 2014; 44
CR28
Rojas-Martnez, Mañanas, Alonso (CR20) 2012; 9
LeCun, Bengio, Hinton (CR29) 2015; 521
Zhang, Zhou (CR22) 2012; 59
CR23
Oskoei, Hu (CR5) 2007; 2
Oskoei, Hu (CR12) 2008; 55
Scott, Parker (CR46) 1988; 12
Hunter (CR48) 2007; 9
BFsrep36571_CR28
R Casale (BFsrep36571_CR24) 2011; 25
GE Hinton (BFsrep36571_CR26) 2006; 313
BFsrep36571_CR23
A Phinyomark (BFsrep36571_CR44) 2012; 39
D-H Kim (BFsrep36571_CR4) 2011; 333
D Farina (BFsrep36571_CR7) 2000; 10
F Pedregosa (BFsrep36571_CR42) 2011; 12
LH Smith (BFsrep36571_CR6) 2011; 19
M Rojas-Martnez (BFsrep36571_CR20) 2012; 9
BFsrep36571_CR38
BFsrep36571_CR37
BFsrep36571_CR34
BFsrep36571_CR8
K Manal (BFsrep36571_CR43) 2007; 40
G Jang (BFsrep36571_CR2) 2016; 63
Y LeCun (BFsrep36571_CR29) 2015; 521
N Srivastava (BFsrep36571_CR39) 2014; 15
BFsrep36571_CR32
MA Oskoei (BFsrep36571_CR5) 2007; 2
BFsrep36571_CR31
M Hakonen (BFsrep36571_CR14) 2015; 18
BFsrep36571_CR30
JD Hunter (BFsrep36571_CR48) 2007; 9
BFsrep36571_CR47
D Farina (BFsrep36571_CR1) 2014; 22
Z Lu (BFsrep36571_CR13) 2014; 44
M Atzori (BFsrep36571_CR35) 2014; 1
Y Bengio (BFsrep36571_CR27) 2009; 2
BFsrep36571_CR41
BFsrep36571_CR40
MA Oskoei (BFsrep36571_CR12) 2008; 55
BFsrep36571_CR18
RN Scott (BFsrep36571_CR46) 1988; 12
BFsrep36571_CR17
BFsrep36571_CR16
BFsrep36571_CR15
HR Marateb (BFsrep36571_CR45) 2012; 50
M Rojas-Martnez (BFsrep36571_CR21) 2013; 23
B-U Kleine (BFsrep36571_CR33) 2000; 111
TR Farrell (BFsrep36571_CR36) 2007; 15
R Jimenez-Fabian (BFsrep36571_CR3) 2012; 34
EA Clancy (BFsrep36571_CR11) 2002; 12
BFsrep36571_CR19
A Stango (BFsrep36571_CR25) 2015; 23
A Goen (BFsrep36571_CR9) 2013; 7
BFsrep36571_CR10
X Zhang (BFsrep36571_CR22) 2012; 59
L Hargrove (BFsrep36571_CR49) 2008; 3
3057209 - J Med Eng Technol. 1988 Jul-Aug;12(4):143-51
11804807 - J Electromyogr Kinesiol. 2002 Feb;12(1):1-16
21836009 - Science. 2011 Aug 12;333(6044):838-43
22453603 - IEEE Trans Biomed Eng. 2012 Jun;59(6):1649-57
18632358 - IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65
11018443 - J Electromyogr Kinesiol. 2000 Oct;10(5):337-49
22819519 - J Electromyogr Kinesiol. 2013 Feb;23(1):33-42
23216679 - J Neuroeng Rehabil. 2012 Dec 10;9:85
17436883 - IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):111-8
22094199 - Best Pract Res Clin Rheumatol. 2011 Apr;25(2):241-7
24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809
16873662 - Science. 2006 Jul 28;313(5786):504-7
25389242 - IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):189-98
1428614 - Int J Psychosom. 1992;39(1-4):18-27
16545388 - J Biomech. 2007;40(3):678-81
22177895 - Med Eng Phys. 2012 May;34(4):397-408
10727920 - Clin Neurophysiol. 2000 Apr;111(4):686-93
26017442 - Nature. 2015 May 28;521(7553):436-44
21698432 - Med Biol Eng Comput. 2012 Jan;50(1):79-89
25977804 - Sci Data. 2014 Dec 23;1:140053
21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
References_xml – volume: 40
  start-page: 678
  year: 2007
  end-page: 681
  ident: CR43
  article-title: A general solution for the time delay introduced by a low-pass Butterworth digital filter: An application to musculoskeletal modeling
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.02.001
– volume: 3
  start-page: 175
  year: 2008
  end-page: 180
  ident: CR49
  article-title: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.11.005
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: CR5
  article-title: Myoelectric control systems-a survey
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.07.009
– ident: CR16
– volume: 23
  start-page: 33
  year: 2013
  end-page: 42
  ident: CR21
  article-title: Identification of isometric contractions based on high density EMG maps
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2012.06.009
– volume: 1
  start-page: 140053
  year: 2014
  ident: CR35
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Scientific Data
  doi: 10.1038/sdata.2014.53
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR39
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 19
  start-page: 186
  year: 2011
  end-page: 192
  ident: CR6
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2010.2100828
– ident: CR8
– volume: 18
  start-page: 334
  year: 2015
  end-page: 359
  ident: CR14
  article-title: Current state of digital signal processing in myoelectric interfaces and related applications
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.02.009
– ident: CR19
– volume: 25
  start-page: 241
  year: 2011
  end-page: 247
  ident: CR24
  article-title: Fatigue and fibromyalgia syndrome: clinical and neurophysiologic pattern
  publication-title: Best Practice & Research Clinical Rheumatology
  doi: 10.1016/j.berh.2011.01.016
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: CR12
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.919734
– ident: CR15
– volume: 10
  start-page: 337
  year: 2000
  end-page: 349
  ident: CR7
  article-title: Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/S1050-6411(00)00025-0
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: CR27
  article-title: Learning deep architectures for ai
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000006
– ident: CR32
– volume: 22
  start-page: 797
  year: 2014
  end-page: 809
  ident: CR1
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2014.2305111
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: CR44
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.102
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 12
  start-page: 1
  year: 2002
  end-page: 16
  ident: CR11
  article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/S1050-6411(01)00033-5
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: CR48
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing in Science and Engineering
  doi: 10.1109/MCSE.2007.55
– ident: CR18
– ident: CR47
– volume: 15
  start-page: 111
  year: 2007
  end-page: 118
  ident: CR36
  article-title: The optimal controller delay for myoelectric prostheses
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.891391
– ident: CR37
– volume: 50
  start-page: 79
  year: 2012
  end-page: 89
  ident: CR45
  article-title: Outlier detection in high-density surface electromyographic signals
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-011-0790-7
– ident: CR30
– volume: 9
  start-page: 1
  year: 2012
  ident: CR20
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-9-1
– ident: CR10
– ident: CR40
– volume: 111
  start-page: 686
  year: 2000
  end-page: 693
  ident: CR33
  article-title: Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00306-5
– ident: CR23
– volume: 44
  start-page: 293
  year: 2014
  end-page: 299
  ident: CR13
  article-title: A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices
  publication-title: IEEE Transactions on Human-Machine Systems
  doi: 10.1109/THMS.2014.2302794
– volume: 12
  start-page: 143
  year: 1988
  end-page: 151
  ident: CR46
  article-title: Myoelectric prostheses: state of the art
  publication-title: Journal of medical engineering & technology
  doi: 10.3109/03091908809030173
– volume: 333
  start-page: 838
  year: 2011
  end-page: 843
  ident: CR4
  article-title: Epidermal electronics
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 23
  start-page: 189
  year: 2015
  end-page: 198
  ident: CR25
  article-title: Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2014.2366752
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR42
  article-title: Scikit-learn: machine learning in Python
  publication-title: Journal of Machine Learning Research
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 7
  start-page: 965
  year: 2013
  end-page: 973
  ident: CR9
  article-title: Review of surface electromyogram signals: its analysis and applications
  publication-title: International Journal of Electrical, Electronics, Communication, Energy Science and Engineering
– volume: 34
  start-page: 397
  year: 2012
  end-page: 408
  ident: CR3
  article-title: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2011.11.018
– ident: CR34
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR29
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 59
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: CR22
  article-title: High-density myoelectric pattern recognition toward improved stroke rehabilitation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2191551
– ident: CR28
– ident: CR41
– volume: 63
  start-page: 3695
  year: 2016
  end-page: 3705
  ident: CR2
  article-title: EMG-based continuous control scheme with simple classifier for electric-powered wheelchair
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2522385
– volume: 313
  start-page: 504
  year: 2006
  ident: BFsrep36571_CR26
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 2
  start-page: 275
  year: 2007
  ident: BFsrep36571_CR5
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.07.009
– ident: BFsrep36571_CR18
  doi: 10.1038/sdata.2014.53
– volume: 9
  start-page: 1
  year: 2012
  ident: BFsrep36571_CR20
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-9-1
– volume: 15
  start-page: 1929
  year: 2014
  ident: BFsrep36571_CR39
  publication-title: Journal of Machine Learning Research
– volume: 23
  start-page: 33
  year: 2013
  ident: BFsrep36571_CR21
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2012.06.009
– ident: BFsrep36571_CR23
  doi: 10.1145/2702123.2702501
– volume: 22
  start-page: 797
  year: 2014
  ident: BFsrep36571_CR1
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2014.2305111
– volume: 25
  start-page: 241
  year: 2011
  ident: BFsrep36571_CR24
  publication-title: Best Practice & Research Clinical Rheumatology
  doi: 10.1016/j.berh.2011.01.016
– volume: 55
  start-page: 1956
  year: 2008
  ident: BFsrep36571_CR12
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.919734
– volume: 59
  start-page: 1649
  year: 2012
  ident: BFsrep36571_CR22
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2191551
– ident: BFsrep36571_CR31
– volume: 39
  start-page: 7420
  year: 2012
  ident: BFsrep36571_CR44
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.102
– volume: 3
  start-page: 175
  year: 2008
  ident: BFsrep36571_CR49
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.11.005
– volume: 12
  start-page: 2825
  year: 2011
  ident: BFsrep36571_CR42
  publication-title: Journal of Machine Learning Research
– volume: 23
  start-page: 189
  year: 2015
  ident: BFsrep36571_CR25
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2014.2366752
– volume: 333
  start-page: 838
  year: 2011
  ident: BFsrep36571_CR4
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 50
  start-page: 79
  year: 2012
  ident: BFsrep36571_CR45
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-011-0790-7
– volume: 63
  start-page: 3695
  year: 2016
  ident: BFsrep36571_CR2
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2522385
– volume: 2
  start-page: 1
  year: 2009
  ident: BFsrep36571_CR27
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000006
– ident: BFsrep36571_CR8
– ident: BFsrep36571_CR30
– ident: BFsrep36571_CR15
  doi: 10.1145/1240624.1240747
– ident: BFsrep36571_CR28
– volume: 34
  start-page: 397
  year: 2012
  ident: BFsrep36571_CR3
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2011.11.018
– ident: BFsrep36571_CR16
  doi: 10.1145/1357054.1357138
– volume: 44
  start-page: 293
  year: 2014
  ident: BFsrep36571_CR13
  publication-title: IEEE Transactions on Human-Machine Systems
  doi: 10.1109/THMS.2014.2302794
– volume: 19
  start-page: 186
  year: 2011
  ident: BFsrep36571_CR6
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2010.2100828
– volume: 1
  start-page: 140053
  year: 2014
  ident: BFsrep36571_CR35
  publication-title: Scientific Data
  doi: 10.1038/sdata.2014.53
– ident: BFsrep36571_CR32
  doi: 10.1109/CNE.2007.369733
– ident: BFsrep36571_CR47
– ident: BFsrep36571_CR17
  doi: 10.1145/1753326.1753451
– volume: 40
  start-page: 678
  year: 2007
  ident: BFsrep36571_CR43
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.02.001
– ident: BFsrep36571_CR40
– volume: 521
  start-page: 436
  year: 2015
  ident: BFsrep36571_CR29
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: BFsrep36571_CR41
  doi: 10.1109/ICCV.2015.123
– volume: 12
  start-page: 1
  year: 2002
  ident: BFsrep36571_CR11
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/S1050-6411(01)00033-5
– volume: 15
  start-page: 111
  year: 2007
  ident: BFsrep36571_CR36
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.891391
– ident: BFsrep36571_CR10
– volume: 111
  start-page: 686
  year: 2000
  ident: BFsrep36571_CR33
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00306-5
– volume: 18
  start-page: 334
  year: 2015
  ident: BFsrep36571_CR14
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.02.009
– ident: BFsrep36571_CR19
  doi: 10.1109/ICPR.2014.477
– volume: 12
  start-page: 143
  year: 1988
  ident: BFsrep36571_CR46
  publication-title: Journal of medical engineering & technology
  doi: 10.3109/03091908809030173
– ident: BFsrep36571_CR37
  doi: 10.1109/CVPR.2014.220
– volume: 9
  start-page: 90
  year: 2007
  ident: BFsrep36571_CR48
  publication-title: Computing in Science and Engineering
  doi: 10.1109/MCSE.2007.55
– volume: 7
  start-page: 965
  year: 2013
  ident: BFsrep36571_CR9
  publication-title: International Journal of Electrical, Electronics, Communication, Energy Science and Engineering
– ident: BFsrep36571_CR38
– volume: 10
  start-page: 337
  year: 2000
  ident: BFsrep36571_CR7
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/S1050-6411(00)00025-0
– ident: BFsrep36571_CR34
– reference: 18632358 - IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65
– reference: 10727920 - Clin Neurophysiol. 2000 Apr;111(4):686-93
– reference: 11018443 - J Electromyogr Kinesiol. 2000 Oct;10(5):337-49
– reference: 22819519 - J Electromyogr Kinesiol. 2013 Feb;23(1):33-42
– reference: 17436883 - IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):111-8
– reference: 22094199 - Best Pract Res Clin Rheumatol. 2011 Apr;25(2):241-7
– reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7
– reference: 11804807 - J Electromyogr Kinesiol. 2002 Feb;12(1):1-16
– reference: 1428614 - Int J Psychosom. 1992;39(1-4):18-27
– reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43
– reference: 23216679 - J Neuroeng Rehabil. 2012 Dec 10;9:85
– reference: 16545388 - J Biomech. 2007;40(3):678-81
– reference: 25389242 - IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):189-98
– reference: 22177895 - Med Eng Phys. 2012 May;34(4):397-408
– reference: 21698432 - Med Biol Eng Comput. 2012 Jan;50(1):79-89
– reference: 24760934 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809
– reference: 25977804 - Sci Data. 2014 Dec 23;1:140053
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
– reference: 3057209 - J Med Eng Technol. 1988 Jul-Aug;12(4):143-51
– reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
– reference: 22453603 - IEEE Trans Biomed Eng. 2012 Jun;59(6):1649-57
SSID ssj0000529419
Score 2.6423151
Snippet Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG)...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36571
SubjectTerms 631/114/1314
631/114/2397
Algorithms
Classification
Computer applications
Electrodes
Electromyography
Experiments
Humanities and Social Sciences
Interfaces
Latency
multidisciplinary
Prosthetics
Science
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB5EEbyIb-uL-jh4qbZN0iQHERF3RVhPLngrSZPiwlp1H-D-eyd94aoIuWXahpk08w0zmQ_gTNHQZJFmQRJKHVAqw0AaqQJlpTYYtSSmZInoPSb3ffrwzJ4XoOHYrBU4_jO0c3xS_dHw4vNjdo0__FV1ZVxcoi95JwlzN8mX0CFxR2TQq1F-1eI7ljSSTV-h70_Me6NfEPN3peSPdGnphTprsFrDR_-msvc6LNhiA5YrQsnZJvAuvnc6sn5bF_RW-HrmD0oQiMNioO-Pp6NcZda_63X9wSseKOMt6Hfunm7vg5oaIchYSCeBtjlJuGEZtTmCLhVKa3gulI2lEUJbzeIwj3LKqUqoRjfNVIaOX-iIWFfTRrZhsXgr7C740phQRUpoHNTEKChya7nV1IEbQT04b1SUZnXfcEdfMUzL_DURaatND05a0feqWcZfQgeNntPG3GmEYR8hHOGLB8ftNO50l76olJM6LMcJZ3HiwU5llvYrLn3KCOUe8DmDtQKui_b8TDF4Kbtp46EkESR5cNqY9tuyfi5-7__F78MKAqrE3VWM2AEsTkZTe4igZaKPyi35BY-A7to
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hVkgsiDeBgsJjYIlIYju2xwq1oEqwAFK3yI4dUQlSRMvAv-ecF7RlQPLmS3I6O77PvvN3AJeKhiaLNAuSUOqAUhkG0kgVKCu1wV1LYsoqEfcPyd0zHY3ZuCaLntVplRWlZblMN9lh1-gv3knC3G3xrmNoxynd7fdHj6P2QMWFrGgkG_YgIn6eWfQ5K0ByNR9yKSha-prhFmzWINHvV2ptw5otdmC9Khv5tQv8Ft-Luvtt9s-08PWXPymhHjaL23l_9vmRq8z6g_tbf_KGy8ZsD56Hg6ebu6AugBBkLKTzQNucJNywjNocoZUKpTU8F8rG0gihrWZxmEc55VQlVKMzZipD9y50RKzLXCP70CmmhT0EXxoTqkgJjY2aGAVFbi23mjoII6gHV42J0qxmB3dFKl7TMkpNRNpa04PzVvS9osT4S6jX2Dmt_4pZGuHmjhCOIMWDs7Yb57MLUlTGSR1i44SzOPHgoBqW9isuSMoI5R7whQFrBRxX9mJPMXkpObNx6ZEIhTy4aIb2l1rLyh_9S-oYNhA9Je5iYsR60Jl_fNoTRChzfVrPzW_LXukc
  priority: 102
  providerName: Springer Nature
Title Gesture recognition by instantaneous surface EMG images
URI https://link.springer.com/article/10.1038/srep36571
https://www.ncbi.nlm.nih.gov/pubmed/27845347
https://www.proquest.com/docview/1899337750
https://www.proquest.com/docview/1839737526
https://pubmed.ncbi.nlm.nih.gov/PMC5109222
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC5cRdjLou7DrDpEdw9egsn0-yTjMCoDI4sPmFvoTnfYgTUzO4-D_36r83JHRQgJpIukqepUfV1VqQL4qWlss8SwiMfKRJSqOFJW6Ug7ZSzuWrgtu0SMbvj1Ax2O2bh2uC3qtMpGJ5aK2k4z7yM_S3BjQIhAA3c--xv5rlE-ulq30PgAW750mV_VYixaH4uPYtFENQWFiDxDszMjnIlk3Qy9wpavUyRfxElL83O5A59q3Bj2KkHvwoYr9mC76iT59BnEFT53NXdhmxA0LULzFE5K9IeHwx1-uFjNc525cDC6CiePqEkWX-DhcnDfv47qnghRxmK6jIzLCReWZdTliLZ0rJwVudSuq6yUxhnWjfMkp4JqTg3aZ6YztPjSJMT5ZDbyFTaLaeH2IVTWxjrR0uBBbRcJZe6ccIZ6VCNpAKcNi9KsLhju-1b8ScvANZFpy80ATlrSWVUl4y2iw4bPaf2hLNJnsQZw3A7jEvdxi4o5qQdxggjW5QF8q8TSvsXHTRmhIgCxJrCWwJfPXh8pJr_LMtqojRSiowB-NKL9b1ovJ__9_ckfwEdEUtz_pJiwQ9hczlfuCNHK0nTKJdmBrV5veDfE68Xg5tct3u3zfqf0AOB5ROU_w7Dyow
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqqq9VPRF0wI1tJV6iUhiO7YPCFUUWB7LCaS9pXbsqCu12e1mV9X-KX4j42QTulD1huSbLceaGc98kxnPAHzSLLJ5bHiYRsqEjKkoVFbpUDtlLHotqa27RPQv0t4VOx3wwQpct29hfFplqxNrRW1Huf9HvhujY0CpQAO3P_4d-q5RPrrattBoxOLMzf-gy1btnXxD_n5OkqPDy4NeuOgqEOY8YtPQuIKmwvKcuQLxio6Us6KQ2iXKSmmc4UlUxAUTTKfMoIXjOkebKU1MnU8Ho7jvI3iMhjfyzp4YiO6fjo-asVi1BYyo3EUzN6YpF_Gy2buHZe-nZN6Jy9bm7mgNni9wKvnaCNYLWHHlS3jSdK6cvwJxjPvOJo50CUijkpg5GdZoE4cbzSpSzSaFzh057B-T4S_UXNVruHoQar2B1XJUurdAlLWRjrU0OJhNcKEsnBPOMI-iJAvgS0uiLF8UKPd9Mn5mdaCcyqyjZgA73dJxU5XjX4s2Wjpni4tZZbdiFMB2N41XysdJGuJkHjQKKniSBrDesKX7io_TcspEAGKJYd0CX657eaYc_qjLdqP2U4jGAvjYsvavY909_Lv_H_4DPO1d9s-z85OLs_fwDFFc6h9IxnwDVqeTmdtEpDQ1W7V4Evj-0PfhBjvPKdk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBpgviZeoSWzH9gNCwNptjFUTYtLeMjt2RCVIS9MK9V_jr-OcL-iGeJvkN58c6-y7-13ufAfwUrPI5rHhYRopEzKmolBZpUPtlLHotaS27hJxNEn3T9jHU366Bb-6tzA-rbLTibWitrPc_yMfxugYUCrQwA2LNi3ieHf8dv4j9B2kfKS1a6fRXJFDt_6J7lv15mAXz_pVkoxHXz7sh22HgTDnEVuGxhU0FZbnzBWIXXSknBWF1C5RVkrjDE-iIi6YYDplBq0d1znaT2li6nxqGMV1r8C28F7RALbfjybHn_s_PD6GxmLVlTOicohGb05TLuJNI3gB2V5M0DwXpa2N3_gm3GhRK3nXXLNbsOXK23C16WO5vgNiD9ddLRzp05FmJTFrMq2xJw43W1WkWi0KnTsyOtoj0--ox6q7cHIp_LoHg3JWugdAlLWRjrU0OJhNkFAWzglnmMdUkgXwumNRlrflyn3XjG9ZHTanMuu5GcDznnTe1Oj4F9FOx-esFdMq-3OpAnjWT6OA-ahJw5zMQ0hBBU_SAO43x9J_xUdtOWUiALFxYD2BL969OVNOv9ZFvFEXKsRmAbzojvavbZ3f_MP_b_4pXENZyD4dTA4fwXWEdKl_LRnzHRgsFyv3GGHT0jxp7yeBs8sWid_cXi90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gesture+recognition+by+instantaneous+surface+EMG+images&rft.jtitle=Scientific+reports&rft.au=Geng%2C+Weidong&rft.au=Du%2C+Yu&rft.au=Jin%2C+Wenguang&rft.au=Wei%2C+Wentao&rft.date=2016-11-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=6&rft.spage=36571&rft_id=info:doi/10.1038%2Fsrep36571&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon