In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application
[Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 177; pp. 370 - 376 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to cells.
Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel. |
---|---|
AbstractList | Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel. Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel. [Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to cells. Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel. |
Author | Yang, Minghui Li, Man Xu, Zeyu Wang, Dan Jiang, Xingxing |
Author_xml | – sequence: 1 givenname: Man surname: Li fullname: Li, Man organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China – sequence: 2 givenname: Xingxing surname: Jiang fullname: Jiang, Xingxing organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China – sequence: 3 givenname: Dan surname: Wang fullname: Wang, Dan organization: Department of Engineering Management, Hunan College of Finance and Economics, Changsha, 410083, China – sequence: 4 givenname: Zeyu surname: Xu fullname: Xu, Zeyu organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China – sequence: 5 givenname: Minghui orcidid: 0000-0002-7612-8137 surname: Yang fullname: Yang, Minghui email: yangminghui@csu.edu.cn organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30785034$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r3DAQxUVJaTZpv0LQsRdv9ceWbOihJbRNINBLexaSPM5q0UquJAfy7SN3s5dcFgZmGH7vCc27QhchBkDohpItJVR82W9t9HlJk9kyQoctYbWGd2hDe8mblgt5gTZkYLKRUnSX6CrnPSGEtVR-QJecyL4jvN2gw33A2ZUFJxgXW1wMOE51458g4aBDnHUqznrI2AVcdoC9ewx1NDrDiHfPY4qP4PEUE4aw08HWrQ7FGW0LJKc91vPsndWr90f0ftI-w6fXfo3-_vzx5_auefj96_72-0NjO9KWxhgihJG0s8Ap0YOlU0uMsaMQmnWD7IU0fT8QwUdhNbfG9j2h_ch0BSV0_Bp9PvrOKf5bIBd1cNmC9zpAXLJijFHC-cDpeZT2Le0oG1b05hVdzAFGNSd30OlZna5Zga9HwKaYc4JJWVf-f7wk7byiRK3hqb06hafW8BRhtYYqF2_kpxfOCr8dhVBv-uQgqWwdrFG4BLaoMbpzFi-tVblS |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2020_124330 crossref_primary_10_1016_j_mtsust_2024_100885 crossref_primary_10_3390_app10134626 crossref_primary_10_1016_j_ijbiomac_2023_125994 crossref_primary_10_1016_j_ijbiomac_2024_129877 crossref_primary_10_1007_s42114_022_00460_z crossref_primary_10_1016_j_ijbiomac_2024_131953 crossref_primary_10_1016_j_ijbiomac_2024_135959 crossref_primary_10_26599_PBM_2023_9260007 crossref_primary_10_1007_s10854_020_03595_1 crossref_primary_10_1016_j_ijbiomac_2023_125913 crossref_primary_10_1007_s10570_019_02806_1 crossref_primary_10_1016_j_ijbiomac_2020_06_168 crossref_primary_10_3390_gels8110700 crossref_primary_10_52711_0974_360X_2023_00016 crossref_primary_10_1002_app_48640 crossref_primary_10_1021_acsapm_2c00482 crossref_primary_10_1039_D1GC01842F crossref_primary_10_1093_jbcr_iraa205 crossref_primary_10_3390_ijms24032191 crossref_primary_10_1016_j_jclepro_2022_133980 crossref_primary_10_1016_j_compositesb_2022_109982 crossref_primary_10_1002_slct_202404578 crossref_primary_10_1016_j_ijbiomac_2019_08_142 crossref_primary_10_1007_s10570_020_03161_2 crossref_primary_10_1016_j_smaim_2021_06_002 crossref_primary_10_1016_j_matchemphys_2020_122902 crossref_primary_10_1080_09205063_2021_2009184 crossref_primary_10_1016_j_biombioe_2020_105728 crossref_primary_10_1002_cssc_202000783 crossref_primary_10_1002_cssc_202000216 crossref_primary_10_3390_antibiotics10080964 crossref_primary_10_1016_j_carbpol_2020_116767 crossref_primary_10_1016_j_ijbiomac_2023_124601 crossref_primary_10_1155_2023_8854311 crossref_primary_10_1016_j_carbpol_2022_119830 crossref_primary_10_1039_D1PY00694K crossref_primary_10_1016_j_ijbiomac_2024_129753 crossref_primary_10_1016_j_ijbiomac_2020_01_094 crossref_primary_10_3390_pharmaceutics15041114 crossref_primary_10_3390_ma16124271 crossref_primary_10_1007_s12221_020_9101_y crossref_primary_10_3390_polym12010081 crossref_primary_10_3390_ijms22137202 crossref_primary_10_1007_s00253_020_10521_2 crossref_primary_10_1016_j_mtcomm_2025_111893 crossref_primary_10_1007_s10876_019_01688_4 crossref_primary_10_1016_j_surfin_2019_100419 crossref_primary_10_1039_D2NA00423B crossref_primary_10_1016_j_bioactmat_2021_06_023 crossref_primary_10_1002_app_51280 crossref_primary_10_1016_j_indcrop_2022_115930 crossref_primary_10_1080_10601325_2022_2101924 crossref_primary_10_1039_D2NR01350A crossref_primary_10_1039_D1GC03841A crossref_primary_10_3390_polym15153177 crossref_primary_10_1016_j_carbpol_2022_119404 crossref_primary_10_1007_s11356_020_08096_6 crossref_primary_10_1016_j_ijbiomac_2022_09_267 crossref_primary_10_1016_j_ijbiomac_2021_09_183 crossref_primary_10_1080_09205063_2023_2278814 crossref_primary_10_1016_j_jiec_2019_09_037 crossref_primary_10_1016_j_ijbiomac_2024_133823 crossref_primary_10_1016_j_ijbiomac_2021_12_146 crossref_primary_10_1021_acsinfecdis_4c00115 crossref_primary_10_1039_D2TB02306G crossref_primary_10_3390_antibiotics12020351 crossref_primary_10_1134_S1070427224030029 crossref_primary_10_1002_slct_202204451 crossref_primary_10_1016_j_ijbiomac_2023_126281 crossref_primary_10_1016_j_msec_2020_111265 crossref_primary_10_1007_s13399_024_05973_9 crossref_primary_10_1002_app_49583 crossref_primary_10_1021_acssuschemeng_4c06064 crossref_primary_10_1016_j_ijbiomac_2021_11_108 crossref_primary_10_1016_j_eurpolymj_2020_109609 crossref_primary_10_1016_j_indcrop_2023_116259 crossref_primary_10_1016_j_jddst_2022_103458 crossref_primary_10_3390_ijms241713493 |
Cites_doi | 10.1016/j.rser.2017.03.098 10.1016/j.pharmthera.2010.05.004 10.1016/j.ijbiomac.2015.05.002 10.1007/s100860300026 10.1021/acsami.5b03313 10.1021/bm100048q 10.1021/acsomega.6b00296 10.1021/ie0009435 10.1021/acsami.8b19021 10.1016/j.jconrel.2014.03.052 10.1016/j.nano.2006.12.001 10.1016/j.ijbiomac.2014.09.044 10.1016/j.ijbiomac.2009.12.014 10.1021/la302011x 10.1039/C5GC02616D 10.1080/03602559.2011.593082 10.1016/j.jiec.2014.08.021 10.1016/j.progpolymsci.2013.11.004 10.1016/j.carbpol.2012.04.033 10.1021/acsami.8b05171 10.1021/jp910232x 10.1016/j.polymer.2006.10.045 10.1016/j.jcis.2007.06.068 10.1016/j.carbpol.2018.05.078 10.1007/s11051-010-9900-y 10.1016/j.biotechadv.2008.09.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2019.02.029 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
EndPage | 376 |
ExternalDocumentID | 30785034 10_1016_j_colsurfb_2019_02_029 S0927776519301110 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABNEU ABNUV ABUDA ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SSG SSK SSM SSQ SSU SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRDE AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SMS SSH VH1 WUQ EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-bb066b715ce310a9c1f40bbcd66a2597867b889063d6ca3cbc88018d2a1f47e53 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Fri Jul 11 13:30:52 EDT 2025 Thu Jul 10 19:18:55 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 03:27:03 EDT 2025 Fri Feb 23 02:28:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lignin amine Antibacterial Hydrogel Silver nanoparticles |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-bb066b715ce310a9c1f40bbcd66a2597867b889063d6ca3cbc88018d2a1f47e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7612-8137 |
PMID | 30785034 |
PQID | 2184151291 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2221033931 proquest_miscellaneous_2184151291 pubmed_primary_30785034 crossref_citationtrail_10_1016_j_colsurfb_2019_02_029 crossref_primary_10_1016_j_colsurfb_2019_02_029 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2019_02_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationTitleAlternate | Colloids Surf B Biointerfaces |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang, Kim, Lee, Jeong, Cho (bib0030) 2007; 3 Laftah, Hashim, Ibrahim (bib0005) 2011; 50 Asina, Brzonova, Kozliak, Kubátová, Ji (bib0090) 2017; 77 Laurichesse, Avérous (bib0095) 2014; 39 Cai, Anderson, Gupta (bib0070) 2001; 40 Zhou, Kang, Bielec, Wu, Cheng, Wei, Dai (bib0020) 2018; 197 Gils, Ray, Sahoo (bib0050) 2010; 46 Thakur, Thakur (bib0080) 2015; 72 Buwalda, Boere, Dijkstra, Feijen, Vermonden, Hennink (bib0015) 2014; 190 Thomas, Yallapu, Sreedhar, Bajpai (bib0060) 2007; 315 Murali Mohan, Lee, Premkumar, Geckeler (bib0025) 2007; 48 Xie, Zhou, Guo, Wang, Li, Zhao, Liu, Li, Jiang, Wu, Hao (bib0140) 2019 Matsushita, Yasuda (bib0100) 2003; 49 Ge, Song, Li (bib0115) 2015; 23 Teng, Xu, Song, Shi, Xin, Hiscox, Zhang (bib0110) 2017; 2 Peng, Zhou, Xu, Zhong, Yang (bib0125) 2018; 10 Baek, Liang, Lim, Zhao, Kim, Kong (bib0040) 2015; 7 Juby, Dwivedi, Kumar, Kota, Misra, Bajaj (bib0055) 2012; 89 Kai, Tan, Chee, Chua, Yap, Loh (bib0075) 2016; 18 Yadollahi, Namazi, Aghazadeh (bib0010) 2015; 79 Rolim, Pieretti, Reno, Lima, Nascimento, Ambrosio, Lombello (bib0135) 2019; 11 Passauer, Fischer, Liebner (bib0105) 2011 Rai, Yadav, Gade (bib0045) 2009; 27 Xia, Cui, He, Li (bib0065) 2012; 28 Yang, Pan, Huang, Li (bib0120) 2010; 114 Marambio-Jones, Hoek (bib0035) 2010; 12 Sakagami, Kushida, Oizumi, Nakashima, Makino (bib0085) 2010; 128 Zhan, Kozlov, McCarthy, Su (bib0130) 2010; 11 Xia (10.1016/j.colsurfb.2019.02.029_bib0065) 2012; 28 Ge (10.1016/j.colsurfb.2019.02.029_bib0115) 2015; 23 Zhou (10.1016/j.colsurfb.2019.02.029_bib0020) 2018; 197 Kai (10.1016/j.colsurfb.2019.02.029_bib0075) 2016; 18 Xie (10.1016/j.colsurfb.2019.02.029_bib0140) 2019 Zhan (10.1016/j.colsurfb.2019.02.029_bib0130) 2010; 11 Marambio-Jones (10.1016/j.colsurfb.2019.02.029_bib0035) 2010; 12 Teng (10.1016/j.colsurfb.2019.02.029_bib0110) 2017; 2 Yadollahi (10.1016/j.colsurfb.2019.02.029_bib0010) 2015; 79 Rolim (10.1016/j.colsurfb.2019.02.029_bib0135) 2019; 11 Cai (10.1016/j.colsurfb.2019.02.029_bib0070) 2001; 40 Murali Mohan (10.1016/j.colsurfb.2019.02.029_bib0025) 2007; 48 Kim (10.1016/j.colsurfb.2019.02.029_bib0030) 2007; 3 Laurichesse (10.1016/j.colsurfb.2019.02.029_bib0095) 2014; 39 Thakur (10.1016/j.colsurfb.2019.02.029_bib0080) 2015; 72 Asina (10.1016/j.colsurfb.2019.02.029_bib0090) 2017; 77 Sakagami (10.1016/j.colsurfb.2019.02.029_bib0085) 2010; 128 Peng (10.1016/j.colsurfb.2019.02.029_bib0125) 2018; 10 Gils (10.1016/j.colsurfb.2019.02.029_bib0050) 2010; 46 Thomas (10.1016/j.colsurfb.2019.02.029_bib0060) 2007; 315 Passauer (10.1016/j.colsurfb.2019.02.029_bib0105) 2011 Laftah (10.1016/j.colsurfb.2019.02.029_bib0005) 2011; 50 Yang (10.1016/j.colsurfb.2019.02.029_bib0120) 2010; 114 Baek (10.1016/j.colsurfb.2019.02.029_bib0040) 2015; 7 Juby (10.1016/j.colsurfb.2019.02.029_bib0055) 2012; 89 Rai (10.1016/j.colsurfb.2019.02.029_bib0045) 2009; 27 Matsushita (10.1016/j.colsurfb.2019.02.029_bib0100) 2003; 49 Buwalda (10.1016/j.colsurfb.2019.02.029_bib0015) 2014; 190 |
References_xml | – volume: 89 start-page: 906 year: 2012 end-page: 913 ident: bib0055 article-title: Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study publication-title: Carbohydr. Polym. – year: 2019 ident: bib0140 article-title: Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity publication-title: Adv. Health Mater. – volume: 50 start-page: 1475 year: 2011 end-page: 1486 ident: bib0005 article-title: Polymer hydrogels: a review publication-title: Polym.-Plast. Technol. Eng. – volume: 46 start-page: 237 year: 2010 end-page: 244 ident: bib0050 article-title: Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel publication-title: Int. J. Biol. Macromol. – volume: 10 start-page: 22190 year: 2018 end-page: 22200 ident: bib0125 article-title: High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels publication-title: ACS Appl. Mater. Interfaces – volume: 77 start-page: 1179 year: 2017 end-page: 1205 ident: bib0090 article-title: Microbial treatment of industrial lignin: successes, problems and challenges publication-title: Renew. Sustain. Energy Rev. – start-page: 309 year: 2011 ident: bib0105 article-title: Preparation and physical characterization of strongly swellable oligo(oxyethylene) lignin hydrogels publication-title: Holzforschungz – volume: 12 start-page: 1531 year: 2010 end-page: 1551 ident: bib0035 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. – volume: 39 start-page: 1266 year: 2014 end-page: 1290 ident: bib0095 article-title: Chemical modification of lignins: towards biobased polymers publication-title: Prog. Polym. Sci. – volume: 3 start-page: 95 year: 2007 end-page: 101 ident: bib0030 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 11 start-page: 6589 year: 2019 end-page: 6604 ident: bib0135 article-title: Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 15359 year: 2015 end-page: 15367 ident: bib0040 article-title: In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1082 year: 2010 end-page: 1088 ident: bib0130 article-title: Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(L-lactic acid) publication-title: Biomacromolecules – volume: 315 start-page: 389 year: 2007 end-page: 395 ident: bib0060 article-title: A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity publication-title: J. Colloid Interface Sci. – volume: 40 start-page: 2283 year: 2001 end-page: 2288 ident: bib0070 article-title: Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels publication-title: Ind. Eng. Chem. Res. – volume: 49 start-page: 166 year: 2003 end-page: 171 ident: bib0100 article-title: Reactivity of a condensed–type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin publication-title: J. Wood Sci. – volume: 190 start-page: 254 year: 2014 end-page: 273 ident: bib0015 article-title: Hydrogels in a historical perspective: from simple networks to smart materials publication-title: J. Control. Release – volume: 197 start-page: 292 year: 2018 end-page: 304 ident: bib0020 article-title: Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing publication-title: Carbohydr. Polym. – volume: 114 start-page: 3811 year: 2010 end-page: 3816 ident: bib0120 article-title: Fabrication of high concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives publication-title: J. Phys. Chem. C – volume: 18 start-page: 1175 year: 2016 end-page: 1200 ident: bib0075 article-title: Towards lignin-based functional materials in a sustainable world publication-title: Green Chem. – volume: 128 start-page: 91 year: 2010 end-page: 105 ident: bib0085 article-title: Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine publication-title: Pharmacol. Ther. – volume: 2 start-page: 251 year: 2017 end-page: 259 ident: bib0110 article-title: Preparation and properties of hydrogels based on PEGylated lignosulfonate amine publication-title: ACS Omega – volume: 48 start-page: 158 year: 2007 end-page: 164 ident: bib0025 article-title: Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications publication-title: Polymer – volume: 27 start-page: 76 year: 2009 end-page: 83 ident: bib0045 article-title: Silver nanoparticles as a new generation of antimicrobials publication-title: Biotechnol. Adv. – volume: 79 start-page: 269 year: 2015 end-page: 277 ident: bib0010 article-title: Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides publication-title: Int. J. Biol. Macromol. – volume: 23 start-page: 228 year: 2015 end-page: 234 ident: bib0115 article-title: A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution publication-title: J. Ind. Eng. Chem. – volume: 28 start-page: 11188 year: 2012 end-page: 11194 ident: bib0065 article-title: Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method publication-title: Langmuir – volume: 72 start-page: 834 year: 2015 end-page: 847 ident: bib0080 article-title: Recent advances in green hydrogels from lignin: a review publication-title: Int. J. Biol. Macromol. – volume: 77 start-page: 1179 year: 2017 ident: 10.1016/j.colsurfb.2019.02.029_bib0090 article-title: Microbial treatment of industrial lignin: successes, problems and challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.098 – volume: 128 start-page: 91 year: 2010 ident: 10.1016/j.colsurfb.2019.02.029_bib0085 article-title: Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2010.05.004 – volume: 79 start-page: 269 year: 2015 ident: 10.1016/j.colsurfb.2019.02.029_bib0010 article-title: Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.05.002 – volume: 49 start-page: 166 year: 2003 ident: 10.1016/j.colsurfb.2019.02.029_bib0100 article-title: Reactivity of a condensed–type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin publication-title: J. Wood Sci. doi: 10.1007/s100860300026 – volume: 7 start-page: 15359 year: 2015 ident: 10.1016/j.colsurfb.2019.02.029_bib0040 article-title: In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03313 – volume: 11 start-page: 1082 year: 2010 ident: 10.1016/j.colsurfb.2019.02.029_bib0130 article-title: Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(L-lactic acid) publication-title: Biomacromolecules doi: 10.1021/bm100048q – volume: 2 start-page: 251 year: 2017 ident: 10.1016/j.colsurfb.2019.02.029_bib0110 article-title: Preparation and properties of hydrogels based on PEGylated lignosulfonate amine publication-title: ACS Omega doi: 10.1021/acsomega.6b00296 – volume: 40 start-page: 2283 year: 2001 ident: 10.1016/j.colsurfb.2019.02.029_bib0070 article-title: Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0009435 – volume: 11 start-page: 6589 year: 2019 ident: 10.1016/j.colsurfb.2019.02.029_bib0135 article-title: Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19021 – volume: 190 start-page: 254 year: 2014 ident: 10.1016/j.colsurfb.2019.02.029_bib0015 article-title: Hydrogels in a historical perspective: from simple networks to smart materials publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.03.052 – volume: 3 start-page: 95 year: 2007 ident: 10.1016/j.colsurfb.2019.02.029_bib0030 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2006.12.001 – volume: 72 start-page: 834 year: 2015 ident: 10.1016/j.colsurfb.2019.02.029_bib0080 article-title: Recent advances in green hydrogels from lignin: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.09.044 – volume: 46 start-page: 237 year: 2010 ident: 10.1016/j.colsurfb.2019.02.029_bib0050 article-title: Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2009.12.014 – volume: 28 start-page: 11188 year: 2012 ident: 10.1016/j.colsurfb.2019.02.029_bib0065 article-title: Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method publication-title: Langmuir doi: 10.1021/la302011x – volume: 18 start-page: 1175 year: 2016 ident: 10.1016/j.colsurfb.2019.02.029_bib0075 article-title: Towards lignin-based functional materials in a sustainable world publication-title: Green Chem. doi: 10.1039/C5GC02616D – volume: 50 start-page: 1475 year: 2011 ident: 10.1016/j.colsurfb.2019.02.029_bib0005 article-title: Polymer hydrogels: a review publication-title: Polym.-Plast. Technol. Eng. doi: 10.1080/03602559.2011.593082 – volume: 23 start-page: 228 year: 2015 ident: 10.1016/j.colsurfb.2019.02.029_bib0115 article-title: A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.08.021 – volume: 39 start-page: 1266 year: 2014 ident: 10.1016/j.colsurfb.2019.02.029_bib0095 article-title: Chemical modification of lignins: towards biobased polymers publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.11.004 – volume: 89 start-page: 906 year: 2012 ident: 10.1016/j.colsurfb.2019.02.029_bib0055 article-title: Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.04.033 – volume: 10 start-page: 22190 year: 2018 ident: 10.1016/j.colsurfb.2019.02.029_bib0125 article-title: High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05171 – year: 2019 ident: 10.1016/j.colsurfb.2019.02.029_bib0140 article-title: Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity publication-title: Adv. Health Mater. – start-page: 309 year: 2011 ident: 10.1016/j.colsurfb.2019.02.029_bib0105 article-title: Preparation and physical characterization of strongly swellable oligo(oxyethylene) lignin hydrogels publication-title: Holzforschungz – volume: 114 start-page: 3811 year: 2010 ident: 10.1016/j.colsurfb.2019.02.029_bib0120 article-title: Fabrication of high concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives publication-title: J. Phys. Chem. C doi: 10.1021/jp910232x – volume: 48 start-page: 158 year: 2007 ident: 10.1016/j.colsurfb.2019.02.029_bib0025 article-title: Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications publication-title: Polymer doi: 10.1016/j.polymer.2006.10.045 – volume: 315 start-page: 389 year: 2007 ident: 10.1016/j.colsurfb.2019.02.029_bib0060 article-title: A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.06.068 – volume: 197 start-page: 292 year: 2018 ident: 10.1016/j.colsurfb.2019.02.029_bib0020 article-title: Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.05.078 – volume: 12 start-page: 1531 year: 2010 ident: 10.1016/j.colsurfb.2019.02.029_bib0035 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9900-y – volume: 27 start-page: 76 year: 2009 ident: 10.1016/j.colsurfb.2019.02.029_bib0045 article-title: Silver nanoparticles as a new generation of antimicrobials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2008.09.002 |
SSID | ssj0002417 |
Score | 2.554311 |
Snippet | [Display omitted]
•Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the... Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 370 |
SubjectTerms | Antibacterial antibacterial properties antibiotics bacterial infections biocompatibility crosslinking Escherichia coli Fourier transform infrared spectroscopy freeze drying Hydrogel hydrogels lignin Lignin amine lignosulfonates nanosilver nitrogen polyvinyl alcohol scanning electron microscopy Silver nanoparticles silver nitrate sodium Staphylococcus aureus toxicity testing X-ray photoelectron spectroscopy |
Title | In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application |
URI | https://dx.doi.org/10.1016/j.colsurfb.2019.02.029 https://www.ncbi.nlm.nih.gov/pubmed/30785034 https://www.proquest.com/docview/2184151291 https://www.proquest.com/docview/2221033931 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heoAeqnahLX0gV6p6SzdZO34cVyvQAhIXisTNsh0HghYv2seBS397x05Ct1Iph0o5JNY4GnmcmW_iz2OAr6VF1OoNTl5b8IwVkme2qESmJDeW5aaSNlX7POfTS3Z6VV5twaTfCxNplZ3vb3168tZdy7AbzeF90wwvcjUSQvAIQeKB6TFvZ0zEWf7952-aB0aotGUahbMovbFL-BbfPVuuF7WNFC-VancmqPnXAPUUAE2B6Pg1vOoQJBm3Sr6BLR8GsDcOmD3fPZBvJHE608_yAexM-vPcBvByo_TgHtydBLJsVmuyiLVbo3XIvMaWSJQmwQTMpTvKHGkCQZRIZs11wNsY9ipy81At5td-RhDzEh9uEo-AoJUa25Z_Rg031sb34fL46MdkmnVHL2SuzNkqsxahiBVF6TziP6NcUbPcWldxbjBhEpILK6VCfFNxZ6izDv1AIauRQUHhS_oWtsM8-PdAaqWMQ2DAUA_GKEK8mlJ8fVXWsqY1P4CyH2_turrk8XiMme4JaLe6t5OOdtL5CC91AMPHfvdtZY5ne6jenPqPOaYxfDzb90tvf412i6sqJvj5eqljjpxgU_EPmRFm1pQqijLv2snzqDM6WVnmlH34D-0-wm58aomYn2B7tVj7zwiWVvYwfQ2H8GJ8cjY9_wVrhBXN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK9NDtMGzpHt2j04BhNyN29LB1DIIVydrmshboTZBkuXWRKkUeh_77UbIdpMC2Hgr4YMikQYgy-dGiSIDv3CBqdRoXr8lEwrJCJCYr80QWQhuW6rIwsdrnTEwu2a8rfrUH4-4sTEirbG1_Y9OjtW5HBu1sDu7revA7lcM8z0WAIKFhOsbt-6E6Fe_B_mh6OpltDTI6qXhqGumTwLBzUPgWXz9fbZaVCVleMpbvjGjzrz7qXxg0-qKT1_CqBZFk1Mj5Bvac78PhyGMAffdAfpCY1hn_l_fhYNy1dOvDy53qg4dwN_VkVa83ZBnKtwYFkUWFIyFXmnjtMZxus-ZI7QkCRTKvrz3eBs9XkpuHcrm4dnOCsJc4fxNTCQgqqjZNBWiUcGd7_C1cnvy8GE-StvtCYnnK1okxiEZMnnHrEAJqabOKpcbYUgiNMVNeiNwUhUSIUwqrqTUWTUFWlEONhLnj9B30_MK7D0AqKbVFbMBQDsYooryKUnx9yauiopU4At7Nt7JtafLQIWOuuhy0W9XpSQU9qXSIlzyCwZbvvinO8SSH7NSpHi0zhR7kSd5vnf4V6i1srGjvFpuVCmFyRE7Zf2iGGFxTKinSvG8Wz1ZmtLMFTyn7-AzpvsLB5OL8TJ1NZ6ef4EV40uRlfobeerlxXxA7rc1x-238AdubGH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+reduction+of+silver+nanoparticles+in+the+lignin+based+hydrogel+for+enhanced+antibacterial+application&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Li%2C+Man&rft.au=Jiang%2C+Xingxing&rft.au=Wang%2C+Dan&rft.au=Xu%2C+Zeyu&rft.date=2019-05-01&rft.eissn=1873-4367&rft.volume=177&rft.spage=370&rft_id=info:doi/10.1016%2Fj.colsurfb.2019.02.029&rft_id=info%3Apmid%2F30785034&rft.externalDocID=30785034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |