In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application

[Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 177; pp. 370 - 376
Main Authors Li, Man, Jiang, Xingxing, Wang, Dan, Xu, Zeyu, Yang, Minghui
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to cells. Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.
AbstractList Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.
Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.
[Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the antimicrobial effect.•The hydrogel shows good antibacterial properties towards both S. aureus and E. coli.•The hydrogel displays low toxicity to cells. Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.
Author Yang, Minghui
Li, Man
Xu, Zeyu
Wang, Dan
Jiang, Xingxing
Author_xml – sequence: 1
  givenname: Man
  surname: Li
  fullname: Li, Man
  organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
– sequence: 2
  givenname: Xingxing
  surname: Jiang
  fullname: Jiang, Xingxing
  organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
– sequence: 3
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Department of Engineering Management, Hunan College of Finance and Economics, Changsha, 410083, China
– sequence: 4
  givenname: Zeyu
  surname: Xu
  fullname: Xu, Zeyu
  organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
– sequence: 5
  givenname: Minghui
  orcidid: 0000-0002-7612-8137
  surname: Yang
  fullname: Yang, Minghui
  email: yangminghui@csu.edu.cn
  organization: Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30785034$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAQxUVJaTZpv0LQsRdv9ceWbOihJbRNINBLexaSPM5q0UquJAfy7SN3s5dcFgZmGH7vCc27QhchBkDohpItJVR82W9t9HlJk9kyQoctYbWGd2hDe8mblgt5gTZkYLKRUnSX6CrnPSGEtVR-QJecyL4jvN2gw33A2ZUFJxgXW1wMOE51458g4aBDnHUqznrI2AVcdoC9ewx1NDrDiHfPY4qP4PEUE4aw08HWrQ7FGW0LJKc91vPsndWr90f0ftI-w6fXfo3-_vzx5_auefj96_72-0NjO9KWxhgihJG0s8Ap0YOlU0uMsaMQmnWD7IU0fT8QwUdhNbfG9j2h_ch0BSV0_Bp9PvrOKf5bIBd1cNmC9zpAXLJijFHC-cDpeZT2Le0oG1b05hVdzAFGNSd30OlZna5Zga9HwKaYc4JJWVf-f7wk7byiRK3hqb06hafW8BRhtYYqF2_kpxfOCr8dhVBv-uQgqWwdrFG4BLaoMbpzFi-tVblS
CitedBy_id crossref_primary_10_1016_j_jhazmat_2020_124330
crossref_primary_10_1016_j_mtsust_2024_100885
crossref_primary_10_3390_app10134626
crossref_primary_10_1016_j_ijbiomac_2023_125994
crossref_primary_10_1016_j_ijbiomac_2024_129877
crossref_primary_10_1007_s42114_022_00460_z
crossref_primary_10_1016_j_ijbiomac_2024_131953
crossref_primary_10_1016_j_ijbiomac_2024_135959
crossref_primary_10_26599_PBM_2023_9260007
crossref_primary_10_1007_s10854_020_03595_1
crossref_primary_10_1016_j_ijbiomac_2023_125913
crossref_primary_10_1007_s10570_019_02806_1
crossref_primary_10_1016_j_ijbiomac_2020_06_168
crossref_primary_10_3390_gels8110700
crossref_primary_10_52711_0974_360X_2023_00016
crossref_primary_10_1002_app_48640
crossref_primary_10_1021_acsapm_2c00482
crossref_primary_10_1039_D1GC01842F
crossref_primary_10_1093_jbcr_iraa205
crossref_primary_10_3390_ijms24032191
crossref_primary_10_1016_j_jclepro_2022_133980
crossref_primary_10_1016_j_compositesb_2022_109982
crossref_primary_10_1002_slct_202404578
crossref_primary_10_1016_j_ijbiomac_2019_08_142
crossref_primary_10_1007_s10570_020_03161_2
crossref_primary_10_1016_j_smaim_2021_06_002
crossref_primary_10_1016_j_matchemphys_2020_122902
crossref_primary_10_1080_09205063_2021_2009184
crossref_primary_10_1016_j_biombioe_2020_105728
crossref_primary_10_1002_cssc_202000783
crossref_primary_10_1002_cssc_202000216
crossref_primary_10_3390_antibiotics10080964
crossref_primary_10_1016_j_carbpol_2020_116767
crossref_primary_10_1016_j_ijbiomac_2023_124601
crossref_primary_10_1155_2023_8854311
crossref_primary_10_1016_j_carbpol_2022_119830
crossref_primary_10_1039_D1PY00694K
crossref_primary_10_1016_j_ijbiomac_2024_129753
crossref_primary_10_1016_j_ijbiomac_2020_01_094
crossref_primary_10_3390_pharmaceutics15041114
crossref_primary_10_3390_ma16124271
crossref_primary_10_1007_s12221_020_9101_y
crossref_primary_10_3390_polym12010081
crossref_primary_10_3390_ijms22137202
crossref_primary_10_1007_s00253_020_10521_2
crossref_primary_10_1016_j_mtcomm_2025_111893
crossref_primary_10_1007_s10876_019_01688_4
crossref_primary_10_1016_j_surfin_2019_100419
crossref_primary_10_1039_D2NA00423B
crossref_primary_10_1016_j_bioactmat_2021_06_023
crossref_primary_10_1002_app_51280
crossref_primary_10_1016_j_indcrop_2022_115930
crossref_primary_10_1080_10601325_2022_2101924
crossref_primary_10_1039_D2NR01350A
crossref_primary_10_1039_D1GC03841A
crossref_primary_10_3390_polym15153177
crossref_primary_10_1016_j_carbpol_2022_119404
crossref_primary_10_1007_s11356_020_08096_6
crossref_primary_10_1016_j_ijbiomac_2022_09_267
crossref_primary_10_1016_j_ijbiomac_2021_09_183
crossref_primary_10_1080_09205063_2023_2278814
crossref_primary_10_1016_j_jiec_2019_09_037
crossref_primary_10_1016_j_ijbiomac_2024_133823
crossref_primary_10_1016_j_ijbiomac_2021_12_146
crossref_primary_10_1021_acsinfecdis_4c00115
crossref_primary_10_1039_D2TB02306G
crossref_primary_10_3390_antibiotics12020351
crossref_primary_10_1134_S1070427224030029
crossref_primary_10_1002_slct_202204451
crossref_primary_10_1016_j_ijbiomac_2023_126281
crossref_primary_10_1016_j_msec_2020_111265
crossref_primary_10_1007_s13399_024_05973_9
crossref_primary_10_1002_app_49583
crossref_primary_10_1021_acssuschemeng_4c06064
crossref_primary_10_1016_j_ijbiomac_2021_11_108
crossref_primary_10_1016_j_eurpolymj_2020_109609
crossref_primary_10_1016_j_indcrop_2023_116259
crossref_primary_10_1016_j_jddst_2022_103458
crossref_primary_10_3390_ijms241713493
Cites_doi 10.1016/j.rser.2017.03.098
10.1016/j.pharmthera.2010.05.004
10.1016/j.ijbiomac.2015.05.002
10.1007/s100860300026
10.1021/acsami.5b03313
10.1021/bm100048q
10.1021/acsomega.6b00296
10.1021/ie0009435
10.1021/acsami.8b19021
10.1016/j.jconrel.2014.03.052
10.1016/j.nano.2006.12.001
10.1016/j.ijbiomac.2014.09.044
10.1016/j.ijbiomac.2009.12.014
10.1021/la302011x
10.1039/C5GC02616D
10.1080/03602559.2011.593082
10.1016/j.jiec.2014.08.021
10.1016/j.progpolymsci.2013.11.004
10.1016/j.carbpol.2012.04.033
10.1021/acsami.8b05171
10.1021/jp910232x
10.1016/j.polymer.2006.10.045
10.1016/j.jcis.2007.06.068
10.1016/j.carbpol.2018.05.078
10.1007/s11051-010-9900-y
10.1016/j.biotechadv.2008.09.002
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.colsurfb.2019.02.029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1873-4367
EndPage 376
ExternalDocumentID 30785034
10_1016_j_colsurfb_2019_02_029
S0927776519301110
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SSG
SSK
SSM
SSQ
SSU
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
SMS
SSH
VH1
WUQ
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-bb066b715ce310a9c1f40bbcd66a2597867b889063d6ca3cbc88018d2a1f47e53
IEDL.DBID .~1
ISSN 0927-7765
1873-4367
IngestDate Fri Jul 11 13:30:52 EDT 2025
Thu Jul 10 19:18:55 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 03:27:03 EDT 2025
Fri Feb 23 02:28:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lignin amine
Antibacterial
Hydrogel
Silver nanoparticles
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-bb066b715ce310a9c1f40bbcd66a2597867b889063d6ca3cbc88018d2a1f47e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7612-8137
PMID 30785034
PQID 2184151291
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2221033931
proquest_miscellaneous_2184151291
pubmed_primary_30785034
crossref_citationtrail_10_1016_j_colsurfb_2019_02_029
crossref_primary_10_1016_j_colsurfb_2019_02_029
elsevier_sciencedirect_doi_10_1016_j_colsurfb_2019_02_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationTitleAlternate Colloids Surf B Biointerfaces
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang, Kim, Lee, Jeong, Cho (bib0030) 2007; 3
Laftah, Hashim, Ibrahim (bib0005) 2011; 50
Asina, Brzonova, Kozliak, Kubátová, Ji (bib0090) 2017; 77
Laurichesse, Avérous (bib0095) 2014; 39
Cai, Anderson, Gupta (bib0070) 2001; 40
Zhou, Kang, Bielec, Wu, Cheng, Wei, Dai (bib0020) 2018; 197
Gils, Ray, Sahoo (bib0050) 2010; 46
Thakur, Thakur (bib0080) 2015; 72
Buwalda, Boere, Dijkstra, Feijen, Vermonden, Hennink (bib0015) 2014; 190
Thomas, Yallapu, Sreedhar, Bajpai (bib0060) 2007; 315
Murali Mohan, Lee, Premkumar, Geckeler (bib0025) 2007; 48
Xie, Zhou, Guo, Wang, Li, Zhao, Liu, Li, Jiang, Wu, Hao (bib0140) 2019
Matsushita, Yasuda (bib0100) 2003; 49
Ge, Song, Li (bib0115) 2015; 23
Teng, Xu, Song, Shi, Xin, Hiscox, Zhang (bib0110) 2017; 2
Peng, Zhou, Xu, Zhong, Yang (bib0125) 2018; 10
Baek, Liang, Lim, Zhao, Kim, Kong (bib0040) 2015; 7
Juby, Dwivedi, Kumar, Kota, Misra, Bajaj (bib0055) 2012; 89
Kai, Tan, Chee, Chua, Yap, Loh (bib0075) 2016; 18
Yadollahi, Namazi, Aghazadeh (bib0010) 2015; 79
Rolim, Pieretti, Reno, Lima, Nascimento, Ambrosio, Lombello (bib0135) 2019; 11
Passauer, Fischer, Liebner (bib0105) 2011
Rai, Yadav, Gade (bib0045) 2009; 27
Xia, Cui, He, Li (bib0065) 2012; 28
Yang, Pan, Huang, Li (bib0120) 2010; 114
Marambio-Jones, Hoek (bib0035) 2010; 12
Sakagami, Kushida, Oizumi, Nakashima, Makino (bib0085) 2010; 128
Zhan, Kozlov, McCarthy, Su (bib0130) 2010; 11
Xia (10.1016/j.colsurfb.2019.02.029_bib0065) 2012; 28
Ge (10.1016/j.colsurfb.2019.02.029_bib0115) 2015; 23
Zhou (10.1016/j.colsurfb.2019.02.029_bib0020) 2018; 197
Kai (10.1016/j.colsurfb.2019.02.029_bib0075) 2016; 18
Xie (10.1016/j.colsurfb.2019.02.029_bib0140) 2019
Zhan (10.1016/j.colsurfb.2019.02.029_bib0130) 2010; 11
Marambio-Jones (10.1016/j.colsurfb.2019.02.029_bib0035) 2010; 12
Teng (10.1016/j.colsurfb.2019.02.029_bib0110) 2017; 2
Yadollahi (10.1016/j.colsurfb.2019.02.029_bib0010) 2015; 79
Rolim (10.1016/j.colsurfb.2019.02.029_bib0135) 2019; 11
Cai (10.1016/j.colsurfb.2019.02.029_bib0070) 2001; 40
Murali Mohan (10.1016/j.colsurfb.2019.02.029_bib0025) 2007; 48
Kim (10.1016/j.colsurfb.2019.02.029_bib0030) 2007; 3
Laurichesse (10.1016/j.colsurfb.2019.02.029_bib0095) 2014; 39
Thakur (10.1016/j.colsurfb.2019.02.029_bib0080) 2015; 72
Asina (10.1016/j.colsurfb.2019.02.029_bib0090) 2017; 77
Sakagami (10.1016/j.colsurfb.2019.02.029_bib0085) 2010; 128
Peng (10.1016/j.colsurfb.2019.02.029_bib0125) 2018; 10
Gils (10.1016/j.colsurfb.2019.02.029_bib0050) 2010; 46
Thomas (10.1016/j.colsurfb.2019.02.029_bib0060) 2007; 315
Passauer (10.1016/j.colsurfb.2019.02.029_bib0105) 2011
Laftah (10.1016/j.colsurfb.2019.02.029_bib0005) 2011; 50
Yang (10.1016/j.colsurfb.2019.02.029_bib0120) 2010; 114
Baek (10.1016/j.colsurfb.2019.02.029_bib0040) 2015; 7
Juby (10.1016/j.colsurfb.2019.02.029_bib0055) 2012; 89
Rai (10.1016/j.colsurfb.2019.02.029_bib0045) 2009; 27
Matsushita (10.1016/j.colsurfb.2019.02.029_bib0100) 2003; 49
Buwalda (10.1016/j.colsurfb.2019.02.029_bib0015) 2014; 190
References_xml – volume: 89
  start-page: 906
  year: 2012
  end-page: 913
  ident: bib0055
  article-title: Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study
  publication-title: Carbohydr. Polym.
– year: 2019
  ident: bib0140
  article-title: Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity
  publication-title: Adv. Health Mater.
– volume: 50
  start-page: 1475
  year: 2011
  end-page: 1486
  ident: bib0005
  article-title: Polymer hydrogels: a review
  publication-title: Polym.-Plast. Technol. Eng.
– volume: 46
  start-page: 237
  year: 2010
  end-page: 244
  ident: bib0050
  article-title: Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel
  publication-title: Int. J. Biol. Macromol.
– volume: 10
  start-page: 22190
  year: 2018
  end-page: 22200
  ident: bib0125
  article-title: High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels
  publication-title: ACS Appl. Mater. Interfaces
– volume: 77
  start-page: 1179
  year: 2017
  end-page: 1205
  ident: bib0090
  article-title: Microbial treatment of industrial lignin: successes, problems and challenges
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 309
  year: 2011
  ident: bib0105
  article-title: Preparation and physical characterization of strongly swellable oligo(oxyethylene) lignin hydrogels
  publication-title: Holzforschungz
– volume: 12
  start-page: 1531
  year: 2010
  end-page: 1551
  ident: bib0035
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
– volume: 39
  start-page: 1266
  year: 2014
  end-page: 1290
  ident: bib0095
  article-title: Chemical modification of lignins: towards biobased polymers
  publication-title: Prog. Polym. Sci.
– volume: 3
  start-page: 95
  year: 2007
  end-page: 101
  ident: bib0030
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 11
  start-page: 6589
  year: 2019
  end-page: 6604
  ident: bib0135
  article-title: Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 15359
  year: 2015
  end-page: 15367
  ident: bib0040
  article-title: In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1082
  year: 2010
  end-page: 1088
  ident: bib0130
  article-title: Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(L-lactic acid)
  publication-title: Biomacromolecules
– volume: 315
  start-page: 389
  year: 2007
  end-page: 395
  ident: bib0060
  article-title: A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity
  publication-title: J. Colloid Interface Sci.
– volume: 40
  start-page: 2283
  year: 2001
  end-page: 2288
  ident: bib0070
  article-title: Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 166
  year: 2003
  end-page: 171
  ident: bib0100
  article-title: Reactivity of a condensed–type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin
  publication-title: J. Wood Sci.
– volume: 190
  start-page: 254
  year: 2014
  end-page: 273
  ident: bib0015
  article-title: Hydrogels in a historical perspective: from simple networks to smart materials
  publication-title: J. Control. Release
– volume: 197
  start-page: 292
  year: 2018
  end-page: 304
  ident: bib0020
  article-title: Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing
  publication-title: Carbohydr. Polym.
– volume: 114
  start-page: 3811
  year: 2010
  end-page: 3816
  ident: bib0120
  article-title: Fabrication of high concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 1175
  year: 2016
  end-page: 1200
  ident: bib0075
  article-title: Towards lignin-based functional materials in a sustainable world
  publication-title: Green Chem.
– volume: 128
  start-page: 91
  year: 2010
  end-page: 105
  ident: bib0085
  article-title: Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine
  publication-title: Pharmacol. Ther.
– volume: 2
  start-page: 251
  year: 2017
  end-page: 259
  ident: bib0110
  article-title: Preparation and properties of hydrogels based on PEGylated lignosulfonate amine
  publication-title: ACS Omega
– volume: 48
  start-page: 158
  year: 2007
  end-page: 164
  ident: bib0025
  article-title: Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications
  publication-title: Polymer
– volume: 27
  start-page: 76
  year: 2009
  end-page: 83
  ident: bib0045
  article-title: Silver nanoparticles as a new generation of antimicrobials
  publication-title: Biotechnol. Adv.
– volume: 79
  start-page: 269
  year: 2015
  end-page: 277
  ident: bib0010
  article-title: Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  start-page: 228
  year: 2015
  end-page: 234
  ident: bib0115
  article-title: A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution
  publication-title: J. Ind. Eng. Chem.
– volume: 28
  start-page: 11188
  year: 2012
  end-page: 11194
  ident: bib0065
  article-title: Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method
  publication-title: Langmuir
– volume: 72
  start-page: 834
  year: 2015
  end-page: 847
  ident: bib0080
  article-title: Recent advances in green hydrogels from lignin: a review
  publication-title: Int. J. Biol. Macromol.
– volume: 77
  start-page: 1179
  year: 2017
  ident: 10.1016/j.colsurfb.2019.02.029_bib0090
  article-title: Microbial treatment of industrial lignin: successes, problems and challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.098
– volume: 128
  start-page: 91
  year: 2010
  ident: 10.1016/j.colsurfb.2019.02.029_bib0085
  article-title: Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2010.05.004
– volume: 79
  start-page: 269
  year: 2015
  ident: 10.1016/j.colsurfb.2019.02.029_bib0010
  article-title: Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.05.002
– volume: 49
  start-page: 166
  year: 2003
  ident: 10.1016/j.colsurfb.2019.02.029_bib0100
  article-title: Reactivity of a condensed–type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin
  publication-title: J. Wood Sci.
  doi: 10.1007/s100860300026
– volume: 7
  start-page: 15359
  year: 2015
  ident: 10.1016/j.colsurfb.2019.02.029_bib0040
  article-title: In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03313
– volume: 11
  start-page: 1082
  year: 2010
  ident: 10.1016/j.colsurfb.2019.02.029_bib0130
  article-title: Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(L-lactic acid)
  publication-title: Biomacromolecules
  doi: 10.1021/bm100048q
– volume: 2
  start-page: 251
  year: 2017
  ident: 10.1016/j.colsurfb.2019.02.029_bib0110
  article-title: Preparation and properties of hydrogels based on PEGylated lignosulfonate amine
  publication-title: ACS Omega
  doi: 10.1021/acsomega.6b00296
– volume: 40
  start-page: 2283
  year: 2001
  ident: 10.1016/j.colsurfb.2019.02.029_bib0070
  article-title: Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0009435
– volume: 11
  start-page: 6589
  year: 2019
  ident: 10.1016/j.colsurfb.2019.02.029_bib0135
  article-title: Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19021
– volume: 190
  start-page: 254
  year: 2014
  ident: 10.1016/j.colsurfb.2019.02.029_bib0015
  article-title: Hydrogels in a historical perspective: from simple networks to smart materials
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.03.052
– volume: 3
  start-page: 95
  year: 2007
  ident: 10.1016/j.colsurfb.2019.02.029_bib0030
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2006.12.001
– volume: 72
  start-page: 834
  year: 2015
  ident: 10.1016/j.colsurfb.2019.02.029_bib0080
  article-title: Recent advances in green hydrogels from lignin: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.09.044
– volume: 46
  start-page: 237
  year: 2010
  ident: 10.1016/j.colsurfb.2019.02.029_bib0050
  article-title: Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2009.12.014
– volume: 28
  start-page: 11188
  year: 2012
  ident: 10.1016/j.colsurfb.2019.02.029_bib0065
  article-title: Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method
  publication-title: Langmuir
  doi: 10.1021/la302011x
– volume: 18
  start-page: 1175
  year: 2016
  ident: 10.1016/j.colsurfb.2019.02.029_bib0075
  article-title: Towards lignin-based functional materials in a sustainable world
  publication-title: Green Chem.
  doi: 10.1039/C5GC02616D
– volume: 50
  start-page: 1475
  year: 2011
  ident: 10.1016/j.colsurfb.2019.02.029_bib0005
  article-title: Polymer hydrogels: a review
  publication-title: Polym.-Plast. Technol. Eng.
  doi: 10.1080/03602559.2011.593082
– volume: 23
  start-page: 228
  year: 2015
  ident: 10.1016/j.colsurfb.2019.02.029_bib0115
  article-title: A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.08.021
– volume: 39
  start-page: 1266
  year: 2014
  ident: 10.1016/j.colsurfb.2019.02.029_bib0095
  article-title: Chemical modification of lignins: towards biobased polymers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.11.004
– volume: 89
  start-page: 906
  year: 2012
  ident: 10.1016/j.colsurfb.2019.02.029_bib0055
  article-title: Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.04.033
– volume: 10
  start-page: 22190
  year: 2018
  ident: 10.1016/j.colsurfb.2019.02.029_bib0125
  article-title: High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05171
– year: 2019
  ident: 10.1016/j.colsurfb.2019.02.029_bib0140
  article-title: Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity
  publication-title: Adv. Health Mater.
– start-page: 309
  year: 2011
  ident: 10.1016/j.colsurfb.2019.02.029_bib0105
  article-title: Preparation and physical characterization of strongly swellable oligo(oxyethylene) lignin hydrogels
  publication-title: Holzforschungz
– volume: 114
  start-page: 3811
  year: 2010
  ident: 10.1016/j.colsurfb.2019.02.029_bib0120
  article-title: Fabrication of high concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910232x
– volume: 48
  start-page: 158
  year: 2007
  ident: 10.1016/j.colsurfb.2019.02.029_bib0025
  article-title: Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.10.045
– volume: 315
  start-page: 389
  year: 2007
  ident: 10.1016/j.colsurfb.2019.02.029_bib0060
  article-title: A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.06.068
– volume: 197
  start-page: 292
  year: 2018
  ident: 10.1016/j.colsurfb.2019.02.029_bib0020
  article-title: Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.05.078
– volume: 12
  start-page: 1531
  year: 2010
  ident: 10.1016/j.colsurfb.2019.02.029_bib0035
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9900-y
– volume: 27
  start-page: 76
  year: 2009
  ident: 10.1016/j.colsurfb.2019.02.029_bib0045
  article-title: Silver nanoparticles as a new generation of antimicrobials
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2008.09.002
SSID ssj0002417
Score 2.554311
Snippet [Display omitted] •Lignin based antimicrobial hydrogel was synthesized for antimicrobial application.•Silver nanoparticles were incorporated to enhance the...
Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Antibacterial
antibacterial properties
antibiotics
bacterial infections
biocompatibility
crosslinking
Escherichia coli
Fourier transform infrared spectroscopy
freeze drying
Hydrogel
hydrogels
lignin
Lignin amine
lignosulfonates
nanosilver
nitrogen
polyvinyl alcohol
scanning electron microscopy
Silver nanoparticles
silver nitrate
sodium
Staphylococcus aureus
toxicity testing
X-ray photoelectron spectroscopy
Title In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application
URI https://dx.doi.org/10.1016/j.colsurfb.2019.02.029
https://www.ncbi.nlm.nih.gov/pubmed/30785034
https://www.proquest.com/docview/2184151291
https://www.proquest.com/docview/2221033931
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heoAeqnahLX0gV6p6SzdZO34cVyvQAhIXisTNsh0HghYv2seBS397x05Ct1Iph0o5JNY4GnmcmW_iz2OAr6VF1OoNTl5b8IwVkme2qESmJDeW5aaSNlX7POfTS3Z6VV5twaTfCxNplZ3vb3168tZdy7AbzeF90wwvcjUSQvAIQeKB6TFvZ0zEWf7952-aB0aotGUahbMovbFL-BbfPVuuF7WNFC-VancmqPnXAPUUAE2B6Pg1vOoQJBm3Sr6BLR8GsDcOmD3fPZBvJHE608_yAexM-vPcBvByo_TgHtydBLJsVmuyiLVbo3XIvMaWSJQmwQTMpTvKHGkCQZRIZs11wNsY9ipy81At5td-RhDzEh9uEo-AoJUa25Z_Rg031sb34fL46MdkmnVHL2SuzNkqsxahiBVF6TziP6NcUbPcWldxbjBhEpILK6VCfFNxZ6izDv1AIauRQUHhS_oWtsM8-PdAaqWMQ2DAUA_GKEK8mlJ8fVXWsqY1P4CyH2_turrk8XiMme4JaLe6t5OOdtL5CC91AMPHfvdtZY5ne6jenPqPOaYxfDzb90tvf412i6sqJvj5eqljjpxgU_EPmRFm1pQqijLv2snzqDM6WVnmlH34D-0-wm58aomYn2B7tVj7zwiWVvYwfQ2H8GJ8cjY9_wVrhBXN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK9NDtMGzpHt2j04BhNyN29LB1DIIVydrmshboTZBkuXWRKkUeh_77UbIdpMC2Hgr4YMikQYgy-dGiSIDv3CBqdRoXr8lEwrJCJCYr80QWQhuW6rIwsdrnTEwu2a8rfrUH4-4sTEirbG1_Y9OjtW5HBu1sDu7revA7lcM8z0WAIKFhOsbt-6E6Fe_B_mh6OpltDTI6qXhqGumTwLBzUPgWXz9fbZaVCVleMpbvjGjzrz7qXxg0-qKT1_CqBZFk1Mj5Bvac78PhyGMAffdAfpCY1hn_l_fhYNy1dOvDy53qg4dwN_VkVa83ZBnKtwYFkUWFIyFXmnjtMZxus-ZI7QkCRTKvrz3eBs9XkpuHcrm4dnOCsJc4fxNTCQgqqjZNBWiUcGd7_C1cnvy8GE-StvtCYnnK1okxiEZMnnHrEAJqabOKpcbYUgiNMVNeiNwUhUSIUwqrqTUWTUFWlEONhLnj9B30_MK7D0AqKbVFbMBQDsYooryKUnx9yauiopU4At7Nt7JtafLQIWOuuhy0W9XpSQU9qXSIlzyCwZbvvinO8SSH7NSpHi0zhR7kSd5vnf4V6i1srGjvFpuVCmFyRE7Zf2iGGFxTKinSvG8Wz1ZmtLMFTyn7-AzpvsLB5OL8TJ1NZ6ef4EV40uRlfobeerlxXxA7rc1x-238AdubGH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+reduction+of+silver+nanoparticles+in+the+lignin+based+hydrogel+for+enhanced+antibacterial+application&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Li%2C+Man&rft.au=Jiang%2C+Xingxing&rft.au=Wang%2C+Dan&rft.au=Xu%2C+Zeyu&rft.date=2019-05-01&rft.eissn=1873-4367&rft.volume=177&rft.spage=370&rft_id=info:doi/10.1016%2Fj.colsurfb.2019.02.029&rft_id=info%3Apmid%2F30785034&rft.externalDocID=30785034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon