Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregati...
Saved in:
Published in | Geoderma Vol. 303; pp. 110 - 117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change.
•Biochar can actively promote soil C storage by promoting aggregation and the physical stabilization of SOM.•Soil and biochar types greatly impacted soil chemical properties and microbial communities.•Biochar induced a greater loss of C in a soil where aggregation was not improved. |
---|---|
AbstractList | Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change. Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change. •Biochar can actively promote soil C storage by promoting aggregation and the physical stabilization of SOM.•Soil and biochar types greatly impacted soil chemical properties and microbial communities.•Biochar induced a greater loss of C in a soil where aggregation was not improved. |
Author | Fonte, Steven J. Scow, Kate M. Six, Johan Parikh, Sanjai J. Wang, Daoyuan |
AuthorAffiliation | 4 Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zürich, CH 8092, Zurich, Switzerland 1 Department of Land, Air and Water Resources, University of California, Davis, CA 95616 USA 2 Department of Plant Sciences, University of California, Davis, CA 95616, USA 3 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523 USA |
AuthorAffiliation_xml | – name: 2 Department of Plant Sciences, University of California, Davis, CA 95616, USA – name: 3 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523 USA – name: 1 Department of Land, Air and Water Resources, University of California, Davis, CA 95616 USA – name: 4 Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zürich, CH 8092, Zurich, Switzerland |
Author_xml | – sequence: 1 givenname: Daoyuan surname: Wang fullname: Wang, Daoyuan email: dyuwang@ucdavis.edu organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA – sequence: 2 givenname: Steven J. surname: Fonte fullname: Fonte, Steven J. organization: Department of Plant Sciences, University of California, Davis, CA, 95616, USA – sequence: 3 givenname: Sanjai J. surname: Parikh fullname: Parikh, Sanjai J. organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA – sequence: 4 givenname: Johan surname: Six fullname: Six, Johan organization: Department of Plant Sciences, University of California, Davis, CA, 95616, USA – sequence: 5 givenname: Kate M. surname: Scow fullname: Scow, Kate M. organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29109589$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS1URNPCV6h85JLFdtb2roQQNOKfVIkLXLFm7dldRxs72JtK5dPjkAYBl5ys0bz3_DS_K3IRYkBCbjirOOPq1aYaMDpMW6gE47pismJCPyEL3mixVEK2F2TBinKpmeKX5CrnTRk1E-wZuRQtZ61s2gX5fuujHSFRcM7PPoZMLQSKYYRgkeboJ5rntLfzPiGF4Og8It2ND9lbOKyg85P_CQcrjT1dUx8oDEPCAWbMz8nTHqaMLx7fa_Ltw_uv60_Luy8fP6_f3S2tZPW87IRonexXokUteK0aYA60Ej3vWdP1spNMtiutsS46BY0Dp5xGCYK1vW661TV5c8zd7bstOothTjCZXfJbSA8mgjf_boIfzRDvjVSqFXpVAl4-BqT4Y495NlufLU4TBIz7bIQQrKl5LflZKW8VVzVvBCvSm79r_elzun8RvD4KbIo5J-yN9fPvY5aWfjKcmQNuszEn3OaA2zBpCu5iV__ZTz-cNb49GrFAufeYTLYeC3HnE9rZuOjPRfwCN0fJ8A |
CitedBy_id | crossref_primary_10_2134_jeq2018_10_0354 crossref_primary_10_1016_j_apsoil_2022_104393 crossref_primary_10_5194_soil_9_261_2023 crossref_primary_10_1080_03650340_2018_1532567 crossref_primary_10_1088_1755_1315_1449_1_012102 crossref_primary_10_3390_su13116392 crossref_primary_10_1016_j_fcr_2021_108428 crossref_primary_10_1021_acs_energyfuels_8b03753 crossref_primary_10_1016_j_soilbio_2022_108657 crossref_primary_10_1039_D2RA04847G crossref_primary_10_3390_w17030330 crossref_primary_10_1007_s10533_021_00774_y crossref_primary_10_1371_journal_pone_0320005 crossref_primary_10_7717_peerj_6171 crossref_primary_10_1016_j_ejsobi_2021_103351 crossref_primary_10_1016_j_still_2024_106365 crossref_primary_10_3390_agronomy13071866 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_1007_s42773_024_00327_0 crossref_primary_10_1016_S2095_3119_20_63354_8 crossref_primary_10_1016_j_chemosphere_2023_140725 crossref_primary_10_1038_s41598_024_77368_9 crossref_primary_10_1094_PBIOMES_11_21_0071_R crossref_primary_10_1016_j_geoderma_2022_116117 crossref_primary_10_1016_j_jenvman_2023_117305 crossref_primary_10_1002_jpln_202200297 crossref_primary_10_1016_j_geoderma_2023_116639 crossref_primary_10_1016_j_catena_2023_107774 crossref_primary_10_1139_cgj_2022_0310 crossref_primary_10_1016_j_jhazmat_2021_125378 crossref_primary_10_1680_jenes_24_00107 crossref_primary_10_3390_agriculture9080183 crossref_primary_10_3390_app14135596 crossref_primary_10_1016_j_jclepro_2024_142456 crossref_primary_10_1016_j_scitotenv_2024_172942 crossref_primary_10_1002_ecs2_4736 crossref_primary_10_1371_journal_pone_0264620 crossref_primary_10_1038_s43017_022_00366_w crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_3390_su17052214 crossref_primary_10_1080_03650340_2020_1800642 crossref_primary_10_3389_fenvs_2023_1207887 crossref_primary_10_1016_j_scitotenv_2020_141614 crossref_primary_10_1016_j_crsust_2024_100267 crossref_primary_10_1016_j_jaap_2018_07_011 crossref_primary_10_1016_j_ejsobi_2020_103212 crossref_primary_10_1016_j_ijsrc_2025_01_012 crossref_primary_10_1007_s11356_020_07888_0 crossref_primary_10_1007_s11356_022_21623_x crossref_primary_10_1007_s42773_021_00097_z crossref_primary_10_1038_s41598_022_10898_2 crossref_primary_10_3390_agronomy11010150 crossref_primary_10_1016_j_rser_2024_115273 crossref_primary_10_1016_j_geoderma_2017_07_040 crossref_primary_10_1089_ees_2023_0069 crossref_primary_10_3390_agronomy10121910 crossref_primary_10_1002_ldr_3399 crossref_primary_10_17221_522_2021_PSE crossref_primary_10_5194_soil_11_141_2025 crossref_primary_10_3733_ca_2017a0049 crossref_primary_10_1016_j_heliyon_2021_e07391 crossref_primary_10_3390_su162411191 crossref_primary_10_1016_j_jenvman_2024_121042 crossref_primary_10_1111_ejss_12732 crossref_primary_10_1016_j_scitotenv_2020_138007 crossref_primary_10_1007_s11368_025_03968_1 crossref_primary_10_1038_s41598_024_81232_1 crossref_primary_10_1002_saj2_20699 crossref_primary_10_1007_s12517_022_09539_9 crossref_primary_10_1016_j_jenvman_2023_119745 crossref_primary_10_3390_su13031330 crossref_primary_10_1111_gcb_15742 crossref_primary_10_3390_en16010410 crossref_primary_10_3390_app11041473 crossref_primary_10_1016_j_scitotenv_2024_177379 crossref_primary_10_1016_j_envpol_2022_119609 crossref_primary_10_1016_j_geoderma_2021_115276 crossref_primary_10_1016_j_jhazmat_2019_02_079 crossref_primary_10_1016_j_apsoil_2022_104625 crossref_primary_10_1016_S2095_3119_19_62643_2 crossref_primary_10_1007_s42773_020_00045_3 crossref_primary_10_1016_j_agee_2020_106965 crossref_primary_10_2139_ssrn_4112034 crossref_primary_10_1007_s13399_021_02060_1 crossref_primary_10_1094_PBIOMES_6_2 crossref_primary_10_1007_s11270_023_06294_9 crossref_primary_10_1002_ldr_4599 crossref_primary_10_1111_ejss_13138 crossref_primary_10_3390_microorganisms10081593 crossref_primary_10_1007_s11368_024_03741_w crossref_primary_10_3390_f16020372 crossref_primary_10_1002_ldr_5285 crossref_primary_10_1007_s42729_022_00822_y crossref_primary_10_1016_j_scitotenv_2020_136857 crossref_primary_10_3390_agronomy11050993 crossref_primary_10_1016_j_still_2019_02_014 crossref_primary_10_1016_j_still_2024_106282 crossref_primary_10_3390_su13031460 crossref_primary_10_1007_s42773_020_00039_1 crossref_primary_10_5194_soil_8_59_2022 crossref_primary_10_1071_FP23257 crossref_primary_10_3389_fsoil_2023_1066547 crossref_primary_10_1016_j_apsoil_2025_105967 crossref_primary_10_3390_soilsystems8020054 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_4236_as_2017_89067 crossref_primary_10_1016_j_agee_2021_107408 crossref_primary_10_1016_j_scitotenv_2022_157460 crossref_primary_10_1016_j_jenvman_2021_113943 crossref_primary_10_1038_s41598_024_77700_3 crossref_primary_10_1016_j_scitotenv_2022_161203 crossref_primary_10_1016_j_scitotenv_2022_159368 crossref_primary_10_2139_ssrn_3981407 crossref_primary_10_1111_ejss_12676 crossref_primary_10_3390_ijms252011231 crossref_primary_10_1016_j_still_2020_104809 crossref_primary_10_1111_ejss_13120 crossref_primary_10_1016_j_cej_2023_146542 crossref_primary_10_1016_j_envpol_2025_125655 crossref_primary_10_1016_j_scitotenv_2024_172623 crossref_primary_10_1080_00103624_2020_1845357 crossref_primary_10_1016_j_still_2020_104926 crossref_primary_10_1016_j_still_2021_104942 crossref_primary_10_1007_s11356_020_08171_y crossref_primary_10_2478_johh_2020_0044 crossref_primary_10_3390_su15118700 crossref_primary_10_1016_j_geoderma_2019_01_012 crossref_primary_10_1007_s11368_019_02547_5 crossref_primary_10_3390_agriculture14111986 crossref_primary_10_1016_j_scitotenv_2022_158322 crossref_primary_10_1016_j_catena_2023_107340 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_soilbio_2018_12_011 crossref_primary_10_1088_1755_1315_693_1_012082 crossref_primary_10_1111_ejss_12941 crossref_primary_10_1371_journal_pone_0242209 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_3390_agriculture12030414 crossref_primary_10_1002_saj2_20642 crossref_primary_10_1016_j_jenvman_2024_122964 crossref_primary_10_1016_j_agee_2024_108960 crossref_primary_10_3390_w12061633 crossref_primary_10_1016_j_catena_2021_105607 crossref_primary_10_1002_agg2_20094 crossref_primary_10_1007_s10853_024_10272_9 crossref_primary_10_1016_j_scitotenv_2018_06_231 crossref_primary_10_1080_03650340_2022_2045280 crossref_primary_10_3390_su131810079 crossref_primary_10_3390_su15097158 crossref_primary_10_1016_j_geoderma_2019_02_023 crossref_primary_10_3389_feart_2017_00095 crossref_primary_10_3390_agriculture15030300 crossref_primary_10_1002_saj2_70022 crossref_primary_10_1007_s42729_023_01505_y crossref_primary_10_1016_j_jece_2024_114856 crossref_primary_10_1016_j_agwat_2024_108866 crossref_primary_10_1016_j_scitotenv_2019_133732 crossref_primary_10_29109_gujsc_1393857 crossref_primary_10_3390_agronomy14091958 crossref_primary_10_3390_su152316446 crossref_primary_10_1016_j_catena_2020_104882 crossref_primary_10_1088_1755_1315_724_1_012014 crossref_primary_10_1016_j_chemosphere_2024_142101 crossref_primary_10_3389_fmicb_2022_967746 crossref_primary_10_3390_agriculture11040290 crossref_primary_10_1007_s42729_024_01668_2 crossref_primary_10_1016_j_geoderma_2024_116820 crossref_primary_10_1007_s12517_018_4056_7 crossref_primary_10_1016_j_envres_2023_116489 crossref_primary_10_1016_j_scitotenv_2022_153461 crossref_primary_10_1007_s12517_022_09661_8 crossref_primary_10_1007_s40858_020_00332_1 crossref_primary_10_1016_j_jenvman_2020_110190 crossref_primary_10_1016_j_pedobi_2024_150962 crossref_primary_10_1007_s11104_024_06824_2 crossref_primary_10_3390_agriculture10110519 crossref_primary_10_3390_land12122111 crossref_primary_10_1016_j_catena_2024_108039 crossref_primary_10_1016_j_chemosphere_2023_140417 crossref_primary_10_3390_ijerph20032096 crossref_primary_10_1007_s13399_022_02842_1 crossref_primary_10_1016_j_catena_2021_105460 crossref_primary_10_1007_s42729_024_01762_5 crossref_primary_10_1016_j_geoderma_2019_02_028 crossref_primary_10_1016_j_agee_2024_109080 crossref_primary_10_1016_j_scitotenv_2022_158620 crossref_primary_10_1016_j_jaap_2021_105412 crossref_primary_10_1016_j_geodrs_2023_e00740 crossref_primary_10_3389_fpls_2017_02051 crossref_primary_10_1007_s10333_020_00821_8 crossref_primary_10_1016_j_biombioe_2019_01_040 |
Cites_doi | 10.2134/jeq2016.10.0396 10.1111/j.1365-2486.2012.02665.x 10.1007/s11104-010-0327-0 10.1023/A:1016125726789 10.1016/j.fuel.2011.08.044 10.1016/j.catena.2014.07.005 10.1016/S0167-1987(02)00027-2 10.1111/j.1365-2389.2006.00807.x 10.1016/S0038-0717(03)00154-8 10.2136/sssaj2005.0383 10.1016/j.orggeochem.2005.06.008 10.1016/S0341-8162(00)00176-4 10.1111/j.1574-0862.2008.00336.x 10.1081/AL-120024647 10.1071/SR08036 10.1021/es903140c 10.1023/A:1009738307837 10.1016/j.still.2011.01.002 10.1016/j.soilbio.2014.11.017 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.2136/sssaj1999.6361801x 10.1016/j.soilbio.2008.03.020 10.1038/srep03687 10.1016/j.apsoil.2012.06.005 10.1016/j.geoderma.2010.05.012 10.2136/sssaj1950.036159950014000C0005x 10.2134/jeq2011.0077 10.2134/jeq2011.0132 10.1016/j.soilbio.2005.06.005 10.1111/ejss.12064 10.1016/j.soilbio.2014.10.006 10.1016/B978-0-12-385538-1.00003-2 10.2136/sssaj1986.03615995005000030017x 10.1021/jf3049142 10.1128/AEM.00335-09 10.1111/ejss.12305 10.1016/j.soilbio.2012.03.009 10.1111/gcbb.12234 10.1016/j.jhydrol.2012.10.046 10.1016/j.still.2004.03.008 10.1016/0043-1354(78)90107-0 10.1007/s002489900087 10.1111/j.1365-2389.1996.tb01843.x 10.2136/sssaj2000.6431042x 10.1016/0016-7061(91)90053-V 10.1128/AEM.72.5.3357-3366.2006 10.2136/sssaj2008.0232 10.1111/gcbb.12266 10.1016/j.soilbio.2011.09.019 10.1016/j.geoderma.2013.12.022 10.1016/j.geoderma.2004.03.005 10.1016/j.soilbio.2011.04.022 10.1097/SS.0b013e3181981d9a |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.geoderma.2017.05.027 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 117 |
ExternalDocumentID | PMC5669273 29109589 10_1016_j_geoderma_2017_05_027 S0016706117304627 |
Genre | Journal Article |
GeographicLocations | California |
GeographicLocations_xml | – name: California |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c504t-b229d5f329e721468a0da762f1f08bf5b5059377e429d6a8dad6d7e5a209f78b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Aug 21 13:54:45 EDT 2025 Thu Jul 10 22:21:31 EDT 2025 Mon Jul 21 11:50:58 EDT 2025 Wed Feb 19 02:43:16 EST 2025 Thu Apr 24 22:59:46 EDT 2025 Tue Jul 01 04:04:44 EDT 2025 Fri Feb 23 02:27:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-b229d5f329e721468a0da762f1f08bf5b5059377e429d6a8dad6d7e5a209f78b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0016706117304627 |
PMID | 29109589 |
PQID | 1961641820 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5669273 proquest_miscellaneous_2220841451 proquest_miscellaneous_1961641820 pubmed_primary_29109589 crossref_citationtrail_10_1016_j_geoderma_2017_05_027 crossref_primary_10_1016_j_geoderma_2017_05_027 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Geoderma |
PublicationTitleAlternate | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Chen, Jing, Li, Zhang, Huang (bb0160) 2014; 123 Major, Rondon, Molina, Riha, Lehmann (bb0170) 2010; 333 Boix-Fayos, Calvo-Cases, Imeson, Soriano-Soto (bb0025) 2001; 44 Mukome, Zhang, Silva, Six, Parikh (bb0185) 2013 Feng, Simpson, Simpson (bb0085) 2005; 36 Kolb, Fermanich, Dornbush (bb0110) 2009; 73 Elliott (bb0075) 1986; 50 Bååth, Anderson (bb0015) 2003; 35 Roth, Pavan (bb0215) 1991; 48 Brodowski, John, Flessa, Amelung (bb0035) 2006; 57 Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bb0195) 2009; 174 Franzluebbers (bb0090) 2002; 66 Liu, Han, Zhang (bb0155) 2012; 14 Peng, Ye, Wang, Zhou, Sun (bb0205) 2011; 112 Chow, Tanji, Gao, Dahlgren (bb0055) 2006; 38 Six, Bossuyt, Degryze, Denef (bb0245) 2004; 79 Six, Elliott, Paustian (bb0235) 2000; 64 Lotze-Campen, Müller, Bondeau, Rost, Popp, Lucht (bb0165) 2008; 39 Six, Conant, Paul, Paustian (bb0240) 2002; 241 Yu, Wu, Fu, Brookes, Lu (bb0275) 2016; 67 Lauber, Hamady, Knight, Fierer (bb0125) 2009; 75 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0150) 2006; 70 Piccolo, Mbagwu (bb0210) 1999; 63 Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0050) 2008; 46 Cordova-Kreylos, Cao, Green, Hwang, Kuivila, LaMontagne, Van De Werfhorst, Holden, Scow (bb0060) 2006; 72 Dungait, Hopkins, Gregory, Whitmore (bb0070) 2012; 18 Fang, Singh, Singh (bb0080) 2015; 80 Mitchell, Simpson, Soong, Simpson (bb0180) 2015; 81 Singh, Cowie (bb0230) 2014; 4 Doane, Horwáth (bb0065) 2003; 36 Kookana, Sarmah, Van Zwieten, Krull, Singh (bb0115) 2011 Verhoeven, Pereira, Decock, Suddick, Angst, Six (bb0260) 2017; 46 Bronick, Lal (bb0040) 2005; 124 Bossio, Scow, Gunapala, Graham (bb0030) 1998; 36 Navarro-García, Casermeiro, Schimel (bb0190) 2012; 44 Le Guillou, Angers, Maron, Leterme, Menasseri-Aubry (bb0135) 2012; 50 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bb0145) 2011; 43 Lehmann (bb0140) 2007; 5 Kammann, Ratering, Eckhard, Mueller (bb0105) 2012; 41 Verdouw, Van Echteld, Dekkers (bb0255) 1978; 12 Buyer, Sasser (bb0045) 2012; 61 Ameloot, Graber, Verheijen, De Neve (bb0010) 2013; 64 Aciego Pietri, Brookes (bb0005) 2008; 40 Soinne, Hovi, Tammeorg, Turtola (bb0250) 2014; 219–220 Haynes, Naidu (bb0095) 1998; 51 Le Bissonnais (bb0130) 1996; 47 Sagrilo, Jeffery, Hoffland, Kuyper (bb0220) 2015; 7 Vrochidou, Tsanis, Grillakis, Koutroulis (bb0265) 2013; 476 Jari Oksanen, Kindt, Legendre, Minchin, O'Hara, Simpson, Peter, Henry, Stevens, Wagner (bb0100) 2015 Schnell, Vietor, Provin, Munster, Capareda (bb0225) 2012; 41 Wang, Xiong, Kuzyakov (bb0270) 2016; 8 van Bavel (bb0020) 1950; 14 Zimmerman (bb0280) 2010; 44 Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (bb0200) 2009; 3 Laird, Fleming, Wang, Horton, Karlen (bb0120) 2010; 158 Mašek, Brownsort, Cross, Sohi (bb0175) 2013; 103 Dungait (10.1016/j.geoderma.2017.05.027_bb0070) 2012; 18 Ameloot (10.1016/j.geoderma.2017.05.027_bb0010) 2013; 64 Bronick (10.1016/j.geoderma.2017.05.027_bb0040) 2005; 124 Kolb (10.1016/j.geoderma.2017.05.027_bb0110) 2009; 73 Kookana (10.1016/j.geoderma.2017.05.027_bb0115) 2011 Piccolo (10.1016/j.geoderma.2017.05.027_bb0210) 1999; 63 Lehmann (10.1016/j.geoderma.2017.05.027_bb0140) 2007; 5 Vrochidou (10.1016/j.geoderma.2017.05.027_bb0265) 2013; 476 Kammann (10.1016/j.geoderma.2017.05.027_bb0105) 2012; 41 Chow (10.1016/j.geoderma.2017.05.027_bb0055) 2006; 38 Yu (10.1016/j.geoderma.2017.05.027_bb0275) 2016; 67 Wang (10.1016/j.geoderma.2017.05.027_bb0270) 2016; 8 Lehmann (10.1016/j.geoderma.2017.05.027_bb0145) 2011; 43 Novak (10.1016/j.geoderma.2017.05.027_bb0200) 2009; 3 Liu (10.1016/j.geoderma.2017.05.027_bb0155) 2012; 14 Roth (10.1016/j.geoderma.2017.05.027_bb0215) 1991; 48 Lauber (10.1016/j.geoderma.2017.05.027_bb0125) 2009; 75 Verdouw (10.1016/j.geoderma.2017.05.027_bb0255) 1978; 12 Schnell (10.1016/j.geoderma.2017.05.027_bb0225) 2012; 41 Feng (10.1016/j.geoderma.2017.05.027_bb0085) 2005; 36 Jari Oksanen (10.1016/j.geoderma.2017.05.027_bb0100) 2015 Cordova-Kreylos (10.1016/j.geoderma.2017.05.027_bb0060) 2006; 72 Boix-Fayos (10.1016/j.geoderma.2017.05.027_bb0025) 2001; 44 Le Guillou (10.1016/j.geoderma.2017.05.027_bb0135) 2012; 50 Buyer (10.1016/j.geoderma.2017.05.027_bb0045) 2012; 61 Brodowski (10.1016/j.geoderma.2017.05.027_bb0035) 2006; 57 Liu (10.1016/j.geoderma.2017.05.027_bb0160) 2014; 123 Sagrilo (10.1016/j.geoderma.2017.05.027_bb0220) 2015; 7 Soinne (10.1016/j.geoderma.2017.05.027_bb0250) 2014; 219–220 Zimmerman (10.1016/j.geoderma.2017.05.027_bb0280) 2010; 44 Bossio (10.1016/j.geoderma.2017.05.027_bb0030) 1998; 36 Novak (10.1016/j.geoderma.2017.05.027_bb0195) 2009; 174 Le Bissonnais (10.1016/j.geoderma.2017.05.027_bb0130) 1996; 47 Elliott (10.1016/j.geoderma.2017.05.027_bb0075) 1986; 50 Six (10.1016/j.geoderma.2017.05.027_bb0240) 2002; 241 Chan (10.1016/j.geoderma.2017.05.027_bb0050) 2008; 46 Bååth (10.1016/j.geoderma.2017.05.027_bb0015) 2003; 35 Mašek (10.1016/j.geoderma.2017.05.027_bb0175) 2013; 103 Doane (10.1016/j.geoderma.2017.05.027_bb0065) 2003; 36 Laird (10.1016/j.geoderma.2017.05.027_bb0120) 2010; 158 Franzluebbers (10.1016/j.geoderma.2017.05.027_bb0090) 2002; 66 Peng (10.1016/j.geoderma.2017.05.027_bb0205) 2011; 112 Major (10.1016/j.geoderma.2017.05.027_bb0170) 2010; 333 Six (10.1016/j.geoderma.2017.05.027_bb0235) 2000; 64 Verhoeven (10.1016/j.geoderma.2017.05.027_bb0260) 2017; 46 Lotze-Campen (10.1016/j.geoderma.2017.05.027_bb0165) 2008; 39 Mukome (10.1016/j.geoderma.2017.05.027_bb0185) 2013 Singh (10.1016/j.geoderma.2017.05.027_bb0230) 2014; 4 Six (10.1016/j.geoderma.2017.05.027_bb0245) 2004; 79 Liang (10.1016/j.geoderma.2017.05.027_bb0150) 2006; 70 Fang (10.1016/j.geoderma.2017.05.027_bb0080) 2015; 80 Haynes (10.1016/j.geoderma.2017.05.027_bb0095) 1998; 51 van Bavel (10.1016/j.geoderma.2017.05.027_bb0020) 1950; 14 Navarro-García (10.1016/j.geoderma.2017.05.027_bb0190) 2012; 44 Mitchell (10.1016/j.geoderma.2017.05.027_bb0180) 2015; 81 Aciego Pietri (10.1016/j.geoderma.2017.05.027_bb0005) 2008; 40 |
References_xml | – volume: 112 start-page: 159 year: 2011 end-page: 166 ident: bb0205 article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China publication-title: Soil Tillage Res. – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: bb0270 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy – volume: 41 start-page: 1052 year: 2012 end-page: 1066 ident: bb0105 article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils publication-title: J. Environ. Qual. – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bb0280 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – year: 2015 ident: bb0100 article-title: Vegan: Community Ecology Package. R package Version 2.3-0 – volume: 57 start-page: 539 year: 2006 end-page: 546 ident: bb0035 article-title: Aggregate-occluded black carbon in soil publication-title: Eur. J. Soil Sci. – volume: 48 start-page: 351 year: 1991 end-page: 361 ident: bb0215 article-title: Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian oxisol publication-title: Geoderma – volume: 39 start-page: 325 year: 2008 end-page: 338 ident: bb0165 article-title: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach publication-title: Agric. Econ. – volume: 66 start-page: 197 year: 2002 end-page: 205 ident: bb0090 article-title: Water infiltration and soil structure related to organic matter and its stratification with depth publication-title: Soil Tillage Res. – volume: 80 start-page: 136 year: 2015 end-page: 145 ident: bb0080 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. – volume: 64 start-page: 379 year: 2013 end-page: 390 ident: bb0010 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. – volume: 50 start-page: 126 year: 2012 end-page: 133 ident: bb0135 article-title: Linking microbial community to soil water-stable aggregation during crop residue decomposition publication-title: Soil Biol. Biochem. – volume: 174 start-page: 105 year: 2009 end-page: 112 ident: bb0195 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. – volume: 18 start-page: 1781 year: 2012 end-page: 1796 ident: bb0070 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Glob. Chang. Biol. – volume: 47 start-page: 425 year: 1996 end-page: 437 ident: bb0130 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. – volume: 4 year: 2014 ident: bb0230 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. – volume: 123 start-page: 45 year: 2014 end-page: 51 ident: bb0160 article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil publication-title: Catena – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bb0150 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bb0145 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. – volume: 63 start-page: 1801 year: 1999 end-page: 1810 ident: bb0210 article-title: Role of hydrophobic components of soil organic matter in soil aggregate stability publication-title: Soil Sci. Soc. Am. J. – volume: 103 start-page: 151 year: 2013 end-page: 155 ident: bb0175 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel – volume: 14 start-page: 20 year: 1950 end-page: 23 ident: bb0020 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation1 publication-title: Soil Sci. Soc. Am. J. – volume: 36 start-page: 1553 year: 2005 end-page: 1566 ident: bb0085 article-title: Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces publication-title: Org. Geochem. – volume: 73 start-page: 1173 year: 2009 end-page: 1181 ident: bb0110 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Sci. Soc. Am. J. – volume: 38 start-page: 477 year: 2006 end-page: 488 ident: bb0055 article-title: Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils publication-title: Soil Biol. Biochem. – year: 2013 ident: bb0185 article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks publication-title: J. Agric. Food Chem. – volume: 44 start-page: 47 year: 2001 end-page: 67 ident: bb0025 article-title: Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators publication-title: Catena – volume: 67 start-page: 109 year: 2016 end-page: 120 ident: bb0275 article-title: Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil publication-title: Eur. J. Soil Sci. – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: bb0240 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: bb0245 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. – volume: 75 start-page: 5111 year: 2009 end-page: 5120 ident: bb0125 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. – volume: 50 start-page: 627 year: 1986 end-page: 633 ident: bb0075 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils1 publication-title: Soil Sci. Soc. Am. J. – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: bb0170 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil – volume: 36 start-page: 2713 year: 2003 end-page: 2722 ident: bb0065 article-title: Spectrophotometric determination of nitrate with a single reagent publication-title: Anal. Lett. – volume: 12 start-page: 399 year: 1978 end-page: 402 ident: bb0255 article-title: Ammonia determination based on indophenol formation with sodium salicylate publication-title: Water Res. – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: bb0120 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bb0140 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. – volume: 61 start-page: 127 year: 2012 end-page: 130 ident: bb0045 article-title: High throughput phospholipid fatty acid analysis of soils publication-title: Appl. Soil Ecol. – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: bb0040 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 476 start-page: 290 year: 2013 end-page: 301 ident: bb0265 article-title: The impact of climate change on hydrometeorological droughts at a basin scale publication-title: J. Hydrol. – volume: 3 start-page: 2 year: 2009 ident: bb0200 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann. Environ. Sci. – volume: 41 start-page: 1044 year: 2012 end-page: 1051 ident: bb0225 article-title: Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects publication-title: J. Environ. Qual. – volume: 7 start-page: 1294 year: 2015 end-page: 1304 ident: bb0220 article-title: Emission of CO2 from biochar-amended soils and implications for soil organic carbon publication-title: GCB Bioenergy – volume: 64 start-page: 1042 year: 2000 end-page: 1049 ident: bb0235 article-title: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy publication-title: Soil Sci. Soc. Am. J. – start-page: 103 year: 2011 end-page: 143 ident: bb0115 article-title: Chapter three - biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Advances in Agronomy – volume: 14 start-page: 975 year: 2012 end-page: 979 ident: bb0155 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 46 start-page: 437 year: 2008 end-page: 444 ident: bb0050 article-title: Using poultry litter biochars as soil amendments publication-title: Aust. J. Soil Res. – volume: 51 start-page: 123 year: 1998 end-page: 137 ident: bb0095 article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review publication-title: Nutr. Cycl. Agroecosyst. – volume: 44 start-page: 1 year: 2012 end-page: 8 ident: bb0190 article-title: When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events publication-title: Soil Biol. Biochem. – volume: 81 start-page: 244 year: 2015 end-page: 254 ident: bb0180 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. – volume: 46 start-page: 237 year: 2017 end-page: 246 ident: bb0260 article-title: Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale publication-title: J. Environ. Qual. – volume: 35 start-page: 955 year: 2003 end-page: 963 ident: bb0015 article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques publication-title: Soil Biol. Biochem. – volume: 40 start-page: 1856 year: 2008 end-page: 1861 ident: bb0005 article-title: Relationships between soil pH and microbial properties in a UK arable soil publication-title: Soil Biol. Biochem. – volume: 36 start-page: 1 year: 1998 end-page: 12 ident: bb0030 article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles publication-title: Microb. Ecol. – volume: 72 start-page: 3357 year: 2006 end-page: 3366 ident: bb0060 article-title: Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments publication-title: Appl. Environ. Microbiol. – volume: 219–220 start-page: 162 year: 2014 end-page: 167 ident: bb0250 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma – volume: 46 start-page: 237 year: 2017 ident: 10.1016/j.geoderma.2017.05.027_bb0260 article-title: Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.10.0396 – volume: 18 start-page: 1781 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0070 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02665.x – volume: 333 start-page: 117 issue: 1–2 year: 2010 ident: 10.1016/j.geoderma.2017.05.027_bb0170 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil doi: 10.1007/s11104-010-0327-0 – volume: 241 start-page: 155 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2017.05.027_bb0240 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 103 start-page: 151 issue: 0 year: 2013 ident: 10.1016/j.geoderma.2017.05.027_bb0175 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel doi: 10.1016/j.fuel.2011.08.044 – volume: 123 start-page: 45 year: 2014 ident: 10.1016/j.geoderma.2017.05.027_bb0160 article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil publication-title: Catena doi: 10.1016/j.catena.2014.07.005 – volume: 66 start-page: 197 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2017.05.027_bb0090 article-title: Water infiltration and soil structure related to organic matter and its stratification with depth publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(02)00027-2 – volume: 57 start-page: 539 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2017.05.027_bb0035 article-title: Aggregate-occluded black carbon in soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00807.x – volume: 35 start-page: 955 issue: 7 year: 2003 ident: 10.1016/j.geoderma.2017.05.027_bb0015 article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00154-8 – volume: 70 start-page: 1719 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2017.05.027_bb0150 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – volume: 3 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2017.05.027_bb0200 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann. Environ. Sci. – volume: 36 start-page: 1553 issue: 11 year: 2005 ident: 10.1016/j.geoderma.2017.05.027_bb0085 article-title: Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2005.06.008 – volume: 44 start-page: 47 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2017.05.027_bb0025 article-title: Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators publication-title: Catena doi: 10.1016/S0341-8162(00)00176-4 – volume: 39 start-page: 325 issue: 3 year: 2008 ident: 10.1016/j.geoderma.2017.05.027_bb0165 article-title: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach publication-title: Agric. Econ. doi: 10.1111/j.1574-0862.2008.00336.x – volume: 36 start-page: 2713 issue: 12 year: 2003 ident: 10.1016/j.geoderma.2017.05.027_bb0065 article-title: Spectrophotometric determination of nitrate with a single reagent publication-title: Anal. Lett. doi: 10.1081/AL-120024647 – volume: 46 start-page: 437 issue: 5 year: 2008 ident: 10.1016/j.geoderma.2017.05.027_bb0050 article-title: Using poultry litter biochars as soil amendments publication-title: Aust. J. Soil Res. doi: 10.1071/SR08036 – volume: 44 start-page: 1295 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2017.05.027_bb0280 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 51 start-page: 123 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2017.05.027_bb0095 article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1009738307837 – year: 2015 ident: 10.1016/j.geoderma.2017.05.027_bb0100 – volume: 112 start-page: 159 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2017.05.027_bb0205 article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2011.01.002 – volume: 81 start-page: 244 year: 2015 ident: 10.1016/j.geoderma.2017.05.027_bb0180 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.017 – volume: 14 start-page: 975 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0155 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 5 start-page: 381 issue: 7 year: 2007 ident: 10.1016/j.geoderma.2017.05.027_bb0140 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 63 start-page: 1801 issue: 6 year: 1999 ident: 10.1016/j.geoderma.2017.05.027_bb0210 article-title: Role of hydrophobic components of soil organic matter in soil aggregate stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6361801x – volume: 40 start-page: 1856 issue: 7 year: 2008 ident: 10.1016/j.geoderma.2017.05.027_bb0005 article-title: Relationships between soil pH and microbial properties in a UK arable soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.03.020 – volume: 4 year: 2014 ident: 10.1016/j.geoderma.2017.05.027_bb0230 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. doi: 10.1038/srep03687 – volume: 61 start-page: 127 issue: 0 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0045 article-title: High throughput phospholipid fatty acid analysis of soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.06.005 – volume: 158 start-page: 436 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2017.05.027_bb0120 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 14 start-page: 20 issue: C year: 1950 ident: 10.1016/j.geoderma.2017.05.027_bb0020 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1950.036159950014000C0005x – volume: 41 start-page: 1044 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0225 article-title: Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0077 – volume: 41 start-page: 1052 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0105 article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0132 – volume: 38 start-page: 477 issue: 3 year: 2006 ident: 10.1016/j.geoderma.2017.05.027_bb0055 article-title: Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.06.005 – volume: 64 start-page: 379 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2017.05.027_bb0010 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12064 – volume: 80 start-page: 136 issue: 0 year: 2015 ident: 10.1016/j.geoderma.2017.05.027_bb0080 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.006 – start-page: 103 year: 2011 ident: 10.1016/j.geoderma.2017.05.027_bb0115 article-title: Chapter three - biochar application to soil: agronomic and environmental benefits and unintended consequences doi: 10.1016/B978-0-12-385538-1.00003-2 – volume: 50 start-page: 627 issue: 3 year: 1986 ident: 10.1016/j.geoderma.2017.05.027_bb0075 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000030017x – year: 2013 ident: 10.1016/j.geoderma.2017.05.027_bb0185 article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks publication-title: J. Agric. Food Chem. doi: 10.1021/jf3049142 – volume: 75 start-page: 5111 issue: 15 year: 2009 ident: 10.1016/j.geoderma.2017.05.027_bb0125 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 67 start-page: 109 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2017.05.027_bb0275 article-title: Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12305 – volume: 50 start-page: 126 issue: 0 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0135 article-title: Linking microbial community to soil water-stable aggregation during crop residue decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.009 – volume: 7 start-page: 1294 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2017.05.027_bb0220 article-title: Emission of CO2 from biochar-amended soils and implications for soil organic carbon publication-title: GCB Bioenergy doi: 10.1111/gcbb.12234 – volume: 476 start-page: 290 issue: 0 year: 2013 ident: 10.1016/j.geoderma.2017.05.027_bb0265 article-title: The impact of climate change on hydrometeorological droughts at a basin scale publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.10.046 – volume: 79 start-page: 7 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2017.05.027_bb0245 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 12 start-page: 399 issue: 6 year: 1978 ident: 10.1016/j.geoderma.2017.05.027_bb0255 article-title: Ammonia determination based on indophenol formation with sodium salicylate publication-title: Water Res. doi: 10.1016/0043-1354(78)90107-0 – volume: 36 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.geoderma.2017.05.027_bb0030 article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles publication-title: Microb. Ecol. doi: 10.1007/s002489900087 – volume: 47 start-page: 425 issue: 4 year: 1996 ident: 10.1016/j.geoderma.2017.05.027_bb0130 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01843.x – volume: 64 start-page: 1042 issue: 3 year: 2000 ident: 10.1016/j.geoderma.2017.05.027_bb0235 article-title: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6431042x – volume: 48 start-page: 351 issue: 3–4 year: 1991 ident: 10.1016/j.geoderma.2017.05.027_bb0215 article-title: Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian oxisol publication-title: Geoderma doi: 10.1016/0016-7061(91)90053-V – volume: 72 start-page: 3357 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2017.05.027_bb0060 article-title: Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.5.3357-3366.2006 – volume: 73 start-page: 1173 issue: 4 year: 2009 ident: 10.1016/j.geoderma.2017.05.027_bb0110 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0232 – volume: 8 start-page: 512 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2017.05.027_bb0270 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 44 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2017.05.027_bb0190 article-title: When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.09.019 – volume: 219–220 start-page: 162 year: 2014 ident: 10.1016/j.geoderma.2017.05.027_bb0250 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 124 start-page: 3 issue: 1–2 year: 2005 ident: 10.1016/j.geoderma.2017.05.027_bb0040 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 43 start-page: 1812 issue: 9 year: 2011 ident: 10.1016/j.geoderma.2017.05.027_bb0145 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 174 start-page: 105 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2017.05.027_bb0195 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181981d9a |
SSID | ssj0017020 |
Score | 2.615565 |
Snippet | Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110 |
SubjectTerms | aggregate stability agricultural soils agroecosystems algae biochar California carbon sequestration clay fraction climate change community structure microaggregates microbial biomass microbial communities silt softwood soil aggregation soil amendments soil carbon soil chemical properties soil organic matter soil quality soil structure walnut hulls |
Title | Biochar additions can enhance soil structure and the physical stabilization of C in aggregates |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.05.027 https://www.ncbi.nlm.nih.gov/pubmed/29109589 https://www.proquest.com/docview/1961641820 https://www.proquest.com/docview/2220841451 https://pubmed.ncbi.nlm.nih.gov/PMC5669273 |
Volume | 303 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDghba5VG5Etd0bSd-HZcV1QKiJyr1VMtZ222qKlmx5cpvZyZxVl2g6oFjYltyPOOZz_HMN4R8KA0TyUtfJF_CAaUUdWF1UIXkSjE440bLMd_525lanFdfLuTFDpmPuTAYVplt_2DTe2ud30zzak5XTYM5vlxpcEdc4-2ewIzyqtKo5Se_NmEeXLNMzchVgb3vZQnfgIyw4FjPP8QHBk-sLvNvB_U3AP0zjvKeYzp9QZ5nRElnw6Rfkp3Y7pFns6sfmVUj7pPLj02H6VUUo4d6RaOwojS21yhzuu6aWzoQyUJ36ttAARbSVRYhNPU0vEPCJu0SndOmpf4Kjur4E279ipyffvo-XxS5sEKxlKy6K2ohbJCpFDZqLOxtPAserGLiiZk6yVpioT-tIziroLwJPqigo_SC2aRNXb4mu23XxkNCVQlO0DBvJSCrxHzNdRBxKYM3lU0lmxA5rqZbZtZxLH5x68bwshs3SsGhFByTDqQwIdPNuNXAu_HoCDsKy21pkAPn8OjY41G6DrYX3pn4NnY_1w4MFBwokeX-4T4AsZipsOTxhBwMGrGZswA4ZqWxE6K3dGXTAem9t1va5rqn-QagbQFcvvmP73pLnuLTEHz4juyCJsX3AKLu6qN-lxyRJ7PPXxdnvwEZ4h3H |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDfL00hwDOs4cRwfOJRCtaWPUyv1hHHW9jZVlay6RYgLf4o_yEzirLo81APqNbYjxzOe-RzPfAPwOiu5CFbaJNgMDyiZqBKtXJHItCg4nnG9TinfeW-_mBzmn47k0Rr8HHJhKKwy2v7epnfWOj4Zx9Ucz-uacnzTQqE7ShXd7gkVIyt3_PdveG5bvNv-gEJ-I8TWx4PNSRJLCyRTyfPzpBJCOxkyob2i0tal5c6iXQhp4GUVZCWp1J1SHs21K2zprCuc8tIKroMqqwzfew2u52guqGzC2x_LuJJU8cgFmRYJTe9CWvIJKgVVOOsIj9KeMpTK2fzdI_6JeH8P3LzgCbfuwO0IYdlGv0p3Yc039-DWxuws0nj4-_D5fd1SPhejcKVOsxmKkPnmmJSMLdr6lPXMtdid2cYxxKFsHnUGmzre3z5DlLWBbbK6YXY2O_P012_xAA6vZLkfwnrTNv4xsCJDr1tyqyVCucBtlSon_FQ6W-Y6ZHwEclhNM40051Rt49QM8WwnZpCCISkYLg1KYQTj5bh5T_Rx6Qg9CMusqKxBb3Tp2FeDdA3uZ7qksY1vvy4MWkQ8wRKt_r_7IKbjZU41lkfwqNeI5ZwF4j8tSz0CtaIryw7EJ77a0tTHHa84InuNaPbJf3zXS7gxOdjbNbvb-ztP4Sa19JGPz2Adtco_RwR3Xr3odgyDL1e9RX8BNe1Y7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+additions+can+enhance+soil+structure+and+the+physical+stabilization+of+C+in+aggregates&rft.jtitle=Geoderma&rft.au=Wang%2C+Daoyuan&rft.au=Fonte%2C+Steven+J.&rft.au=Parikh%2C+Sanjai+J.&rft.au=Six%2C+Johan&rft.date=2017-10-01&rft.issn=0016-7061&rft.volume=303&rft.spage=110&rft.epage=117&rft_id=info:doi/10.1016%2Fj.geoderma.2017.05.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2017_05_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |