Biochar additions can enhance soil structure and the physical stabilization of C in aggregates

Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregati...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 303; pp. 110 - 117
Main Authors Wang, Daoyuan, Fonte, Steven J., Parikh, Sanjai J., Six, Johan, Scow, Kate M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change. •Biochar can actively promote soil C storage by promoting aggregation and the physical stabilization of SOM.•Soil and biochar types greatly impacted soil chemical properties and microbial communities.•Biochar induced a greater loss of C in a soil where aggregation was not improved.
AbstractList Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change.
Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and plant production. We investigated the impact of two distinct types of biochar on soil chemical properties, microbial communities, soil aggregation and aggregate-associated C within two California agricultural soils in a laboratory incubation study (60weeks). Water stable aggregation and associated C were examined via wet-sieving to obtain four aggregate size classes: large macroaggregates (2000-8000μm), small macroaggregates (250-2000μm), microaggregates (53-250μm) and silt and clay fraction (<53μm). Biochars enhanced aggregation in the finer textured Yolo soil, with 217% and 126% average increases in mean weight diameter for a softwood biochar (pyrolyzed at 600-700°C with algal digestate) and a walnut shell biochar gasified at 900°C), respectively. The increase in aggregate stability was associated with an increase in physically-protected C incorporated into macroaggregates. Both biochars had substantial impacts on microbial community composition in both soils, but only increased microbial biomass in Yolo soil. In the coarser textured Vina soil, neither biochar had an effect on aggregation and the subsequent lack of soil organic matter (SOM) stabilization in macroaggregates was associated with a significant loss of soil C in both biochar treatments over the course of the incubation. Our results suggest that biochar can increase the physical-protection of SOM in Yolo soil by enhancing the proportion of C stored within macroaggregates and thus offers a novel mechanism by which biochar may contribute to soil C sequestration. Better understanding of these drivers and identifying soil conditions that determine whether biochar will physically protect SOM vs. stimulate soil C loss must be considered in managing agroecosystems for both mitigation of, and adaptation to, climate change. •Biochar can actively promote soil C storage by promoting aggregation and the physical stabilization of SOM.•Soil and biochar types greatly impacted soil chemical properties and microbial communities.•Biochar induced a greater loss of C in a soil where aggregation was not improved.
Author Fonte, Steven J.
Scow, Kate M.
Six, Johan
Parikh, Sanjai J.
Wang, Daoyuan
AuthorAffiliation 4 Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zürich, CH 8092, Zurich, Switzerland
1 Department of Land, Air and Water Resources, University of California, Davis, CA 95616 USA
2 Department of Plant Sciences, University of California, Davis, CA 95616, USA
3 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523 USA
AuthorAffiliation_xml – name: 2 Department of Plant Sciences, University of California, Davis, CA 95616, USA
– name: 3 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523 USA
– name: 1 Department of Land, Air and Water Resources, University of California, Davis, CA 95616 USA
– name: 4 Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zürich, CH 8092, Zurich, Switzerland
Author_xml – sequence: 1
  givenname: Daoyuan
  surname: Wang
  fullname: Wang, Daoyuan
  email: dyuwang@ucdavis.edu
  organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
– sequence: 2
  givenname: Steven J.
  surname: Fonte
  fullname: Fonte, Steven J.
  organization: Department of Plant Sciences, University of California, Davis, CA, 95616, USA
– sequence: 3
  givenname: Sanjai J.
  surname: Parikh
  fullname: Parikh, Sanjai J.
  organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
– sequence: 4
  givenname: Johan
  surname: Six
  fullname: Six, Johan
  organization: Department of Plant Sciences, University of California, Davis, CA, 95616, USA
– sequence: 5
  givenname: Kate M.
  surname: Scow
  fullname: Scow, Kate M.
  organization: Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29109589$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URNPCV6h85JLFdtb2roQQNOKfVIkLXLFm7dldRxs72JtK5dPjkAYBl5ys0bz3_DS_K3IRYkBCbjirOOPq1aYaMDpMW6gE47pismJCPyEL3mixVEK2F2TBinKpmeKX5CrnTRk1E-wZuRQtZ61s2gX5fuujHSFRcM7PPoZMLQSKYYRgkeboJ5rntLfzPiGF4Og8It2ND9lbOKyg85P_CQcrjT1dUx8oDEPCAWbMz8nTHqaMLx7fa_Ltw_uv60_Luy8fP6_f3S2tZPW87IRonexXokUteK0aYA60Ej3vWdP1spNMtiutsS46BY0Dp5xGCYK1vW661TV5c8zd7bstOothTjCZXfJbSA8mgjf_boIfzRDvjVSqFXpVAl4-BqT4Y495NlufLU4TBIz7bIQQrKl5LflZKW8VVzVvBCvSm79r_elzun8RvD4KbIo5J-yN9fPvY5aWfjKcmQNuszEn3OaA2zBpCu5iV__ZTz-cNb49GrFAufeYTLYeC3HnE9rZuOjPRfwCN0fJ8A
CitedBy_id crossref_primary_10_2134_jeq2018_10_0354
crossref_primary_10_1016_j_apsoil_2022_104393
crossref_primary_10_5194_soil_9_261_2023
crossref_primary_10_1080_03650340_2018_1532567
crossref_primary_10_1088_1755_1315_1449_1_012102
crossref_primary_10_3390_su13116392
crossref_primary_10_1016_j_fcr_2021_108428
crossref_primary_10_1021_acs_energyfuels_8b03753
crossref_primary_10_1016_j_soilbio_2022_108657
crossref_primary_10_1039_D2RA04847G
crossref_primary_10_3390_w17030330
crossref_primary_10_1007_s10533_021_00774_y
crossref_primary_10_1371_journal_pone_0320005
crossref_primary_10_7717_peerj_6171
crossref_primary_10_1016_j_ejsobi_2021_103351
crossref_primary_10_1016_j_still_2024_106365
crossref_primary_10_3390_agronomy13071866
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_1007_s42773_024_00327_0
crossref_primary_10_1016_S2095_3119_20_63354_8
crossref_primary_10_1016_j_chemosphere_2023_140725
crossref_primary_10_1038_s41598_024_77368_9
crossref_primary_10_1094_PBIOMES_11_21_0071_R
crossref_primary_10_1016_j_geoderma_2022_116117
crossref_primary_10_1016_j_jenvman_2023_117305
crossref_primary_10_1002_jpln_202200297
crossref_primary_10_1016_j_geoderma_2023_116639
crossref_primary_10_1016_j_catena_2023_107774
crossref_primary_10_1139_cgj_2022_0310
crossref_primary_10_1016_j_jhazmat_2021_125378
crossref_primary_10_1680_jenes_24_00107
crossref_primary_10_3390_agriculture9080183
crossref_primary_10_3390_app14135596
crossref_primary_10_1016_j_jclepro_2024_142456
crossref_primary_10_1016_j_scitotenv_2024_172942
crossref_primary_10_1002_ecs2_4736
crossref_primary_10_1371_journal_pone_0264620
crossref_primary_10_1038_s43017_022_00366_w
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_primary_10_3390_su17052214
crossref_primary_10_1080_03650340_2020_1800642
crossref_primary_10_3389_fenvs_2023_1207887
crossref_primary_10_1016_j_scitotenv_2020_141614
crossref_primary_10_1016_j_crsust_2024_100267
crossref_primary_10_1016_j_jaap_2018_07_011
crossref_primary_10_1016_j_ejsobi_2020_103212
crossref_primary_10_1016_j_ijsrc_2025_01_012
crossref_primary_10_1007_s11356_020_07888_0
crossref_primary_10_1007_s11356_022_21623_x
crossref_primary_10_1007_s42773_021_00097_z
crossref_primary_10_1038_s41598_022_10898_2
crossref_primary_10_3390_agronomy11010150
crossref_primary_10_1016_j_rser_2024_115273
crossref_primary_10_1016_j_geoderma_2017_07_040
crossref_primary_10_1089_ees_2023_0069
crossref_primary_10_3390_agronomy10121910
crossref_primary_10_1002_ldr_3399
crossref_primary_10_17221_522_2021_PSE
crossref_primary_10_5194_soil_11_141_2025
crossref_primary_10_3733_ca_2017a0049
crossref_primary_10_1016_j_heliyon_2021_e07391
crossref_primary_10_3390_su162411191
crossref_primary_10_1016_j_jenvman_2024_121042
crossref_primary_10_1111_ejss_12732
crossref_primary_10_1016_j_scitotenv_2020_138007
crossref_primary_10_1007_s11368_025_03968_1
crossref_primary_10_1038_s41598_024_81232_1
crossref_primary_10_1002_saj2_20699
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_1016_j_jenvman_2023_119745
crossref_primary_10_3390_su13031330
crossref_primary_10_1111_gcb_15742
crossref_primary_10_3390_en16010410
crossref_primary_10_3390_app11041473
crossref_primary_10_1016_j_scitotenv_2024_177379
crossref_primary_10_1016_j_envpol_2022_119609
crossref_primary_10_1016_j_geoderma_2021_115276
crossref_primary_10_1016_j_jhazmat_2019_02_079
crossref_primary_10_1016_j_apsoil_2022_104625
crossref_primary_10_1016_S2095_3119_19_62643_2
crossref_primary_10_1007_s42773_020_00045_3
crossref_primary_10_1016_j_agee_2020_106965
crossref_primary_10_2139_ssrn_4112034
crossref_primary_10_1007_s13399_021_02060_1
crossref_primary_10_1094_PBIOMES_6_2
crossref_primary_10_1007_s11270_023_06294_9
crossref_primary_10_1002_ldr_4599
crossref_primary_10_1111_ejss_13138
crossref_primary_10_3390_microorganisms10081593
crossref_primary_10_1007_s11368_024_03741_w
crossref_primary_10_3390_f16020372
crossref_primary_10_1002_ldr_5285
crossref_primary_10_1007_s42729_022_00822_y
crossref_primary_10_1016_j_scitotenv_2020_136857
crossref_primary_10_3390_agronomy11050993
crossref_primary_10_1016_j_still_2019_02_014
crossref_primary_10_1016_j_still_2024_106282
crossref_primary_10_3390_su13031460
crossref_primary_10_1007_s42773_020_00039_1
crossref_primary_10_5194_soil_8_59_2022
crossref_primary_10_1071_FP23257
crossref_primary_10_3389_fsoil_2023_1066547
crossref_primary_10_1016_j_apsoil_2025_105967
crossref_primary_10_3390_soilsystems8020054
crossref_primary_10_1016_j_rser_2021_111379
crossref_primary_10_4236_as_2017_89067
crossref_primary_10_1016_j_agee_2021_107408
crossref_primary_10_1016_j_scitotenv_2022_157460
crossref_primary_10_1016_j_jenvman_2021_113943
crossref_primary_10_1038_s41598_024_77700_3
crossref_primary_10_1016_j_scitotenv_2022_161203
crossref_primary_10_1016_j_scitotenv_2022_159368
crossref_primary_10_2139_ssrn_3981407
crossref_primary_10_1111_ejss_12676
crossref_primary_10_3390_ijms252011231
crossref_primary_10_1016_j_still_2020_104809
crossref_primary_10_1111_ejss_13120
crossref_primary_10_1016_j_cej_2023_146542
crossref_primary_10_1016_j_envpol_2025_125655
crossref_primary_10_1016_j_scitotenv_2024_172623
crossref_primary_10_1080_00103624_2020_1845357
crossref_primary_10_1016_j_still_2020_104926
crossref_primary_10_1016_j_still_2021_104942
crossref_primary_10_1007_s11356_020_08171_y
crossref_primary_10_2478_johh_2020_0044
crossref_primary_10_3390_su15118700
crossref_primary_10_1016_j_geoderma_2019_01_012
crossref_primary_10_1007_s11368_019_02547_5
crossref_primary_10_3390_agriculture14111986
crossref_primary_10_1016_j_scitotenv_2022_158322
crossref_primary_10_1016_j_catena_2023_107340
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_soilbio_2018_12_011
crossref_primary_10_1088_1755_1315_693_1_012082
crossref_primary_10_1111_ejss_12941
crossref_primary_10_1371_journal_pone_0242209
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_3390_agriculture12030414
crossref_primary_10_1002_saj2_20642
crossref_primary_10_1016_j_jenvman_2024_122964
crossref_primary_10_1016_j_agee_2024_108960
crossref_primary_10_3390_w12061633
crossref_primary_10_1016_j_catena_2021_105607
crossref_primary_10_1002_agg2_20094
crossref_primary_10_1007_s10853_024_10272_9
crossref_primary_10_1016_j_scitotenv_2018_06_231
crossref_primary_10_1080_03650340_2022_2045280
crossref_primary_10_3390_su131810079
crossref_primary_10_3390_su15097158
crossref_primary_10_1016_j_geoderma_2019_02_023
crossref_primary_10_3389_feart_2017_00095
crossref_primary_10_3390_agriculture15030300
crossref_primary_10_1002_saj2_70022
crossref_primary_10_1007_s42729_023_01505_y
crossref_primary_10_1016_j_jece_2024_114856
crossref_primary_10_1016_j_agwat_2024_108866
crossref_primary_10_1016_j_scitotenv_2019_133732
crossref_primary_10_29109_gujsc_1393857
crossref_primary_10_3390_agronomy14091958
crossref_primary_10_3390_su152316446
crossref_primary_10_1016_j_catena_2020_104882
crossref_primary_10_1088_1755_1315_724_1_012014
crossref_primary_10_1016_j_chemosphere_2024_142101
crossref_primary_10_3389_fmicb_2022_967746
crossref_primary_10_3390_agriculture11040290
crossref_primary_10_1007_s42729_024_01668_2
crossref_primary_10_1016_j_geoderma_2024_116820
crossref_primary_10_1007_s12517_018_4056_7
crossref_primary_10_1016_j_envres_2023_116489
crossref_primary_10_1016_j_scitotenv_2022_153461
crossref_primary_10_1007_s12517_022_09661_8
crossref_primary_10_1007_s40858_020_00332_1
crossref_primary_10_1016_j_jenvman_2020_110190
crossref_primary_10_1016_j_pedobi_2024_150962
crossref_primary_10_1007_s11104_024_06824_2
crossref_primary_10_3390_agriculture10110519
crossref_primary_10_3390_land12122111
crossref_primary_10_1016_j_catena_2024_108039
crossref_primary_10_1016_j_chemosphere_2023_140417
crossref_primary_10_3390_ijerph20032096
crossref_primary_10_1007_s13399_022_02842_1
crossref_primary_10_1016_j_catena_2021_105460
crossref_primary_10_1007_s42729_024_01762_5
crossref_primary_10_1016_j_geoderma_2019_02_028
crossref_primary_10_1016_j_agee_2024_109080
crossref_primary_10_1016_j_scitotenv_2022_158620
crossref_primary_10_1016_j_jaap_2021_105412
crossref_primary_10_1016_j_geodrs_2023_e00740
crossref_primary_10_3389_fpls_2017_02051
crossref_primary_10_1007_s10333_020_00821_8
crossref_primary_10_1016_j_biombioe_2019_01_040
Cites_doi 10.2134/jeq2016.10.0396
10.1111/j.1365-2486.2012.02665.x
10.1007/s11104-010-0327-0
10.1023/A:1016125726789
10.1016/j.fuel.2011.08.044
10.1016/j.catena.2014.07.005
10.1016/S0167-1987(02)00027-2
10.1111/j.1365-2389.2006.00807.x
10.1016/S0038-0717(03)00154-8
10.2136/sssaj2005.0383
10.1016/j.orggeochem.2005.06.008
10.1016/S0341-8162(00)00176-4
10.1111/j.1574-0862.2008.00336.x
10.1081/AL-120024647
10.1071/SR08036
10.1021/es903140c
10.1023/A:1009738307837
10.1016/j.still.2011.01.002
10.1016/j.soilbio.2014.11.017
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.2136/sssaj1999.6361801x
10.1016/j.soilbio.2008.03.020
10.1038/srep03687
10.1016/j.apsoil.2012.06.005
10.1016/j.geoderma.2010.05.012
10.2136/sssaj1950.036159950014000C0005x
10.2134/jeq2011.0077
10.2134/jeq2011.0132
10.1016/j.soilbio.2005.06.005
10.1111/ejss.12064
10.1016/j.soilbio.2014.10.006
10.1016/B978-0-12-385538-1.00003-2
10.2136/sssaj1986.03615995005000030017x
10.1021/jf3049142
10.1128/AEM.00335-09
10.1111/ejss.12305
10.1016/j.soilbio.2012.03.009
10.1111/gcbb.12234
10.1016/j.jhydrol.2012.10.046
10.1016/j.still.2004.03.008
10.1016/0043-1354(78)90107-0
10.1007/s002489900087
10.1111/j.1365-2389.1996.tb01843.x
10.2136/sssaj2000.6431042x
10.1016/0016-7061(91)90053-V
10.1128/AEM.72.5.3357-3366.2006
10.2136/sssaj2008.0232
10.1111/gcbb.12266
10.1016/j.soilbio.2011.09.019
10.1016/j.geoderma.2013.12.022
10.1016/j.geoderma.2004.03.005
10.1016/j.soilbio.2011.04.022
10.1097/SS.0b013e3181981d9a
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.geoderma.2017.05.027
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 117
ExternalDocumentID PMC5669273
29109589
10_1016_j_geoderma_2017_05_027
S0016706117304627
Genre Journal Article
GeographicLocations California
GeographicLocations_xml – name: California
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c504t-b229d5f329e721468a0da762f1f08bf5b5059377e429d6a8dad6d7e5a209f78b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Aug 21 13:54:45 EDT 2025
Thu Jul 10 22:21:31 EDT 2025
Mon Jul 21 11:50:58 EDT 2025
Wed Feb 19 02:43:16 EST 2025
Thu Apr 24 22:59:46 EDT 2025
Tue Jul 01 04:04:44 EDT 2025
Fri Feb 23 02:27:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-b229d5f329e721468a0da762f1f08bf5b5059377e429d6a8dad6d7e5a209f78b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0016706117304627
PMID 29109589
PQID 1961641820
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5669273
proquest_miscellaneous_2220841451
proquest_miscellaneous_1961641820
pubmed_primary_29109589
crossref_citationtrail_10_1016_j_geoderma_2017_05_027
crossref_primary_10_1016_j_geoderma_2017_05_027
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_05_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Geoderma
PublicationTitleAlternate Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Chen, Jing, Li, Zhang, Huang (bb0160) 2014; 123
Major, Rondon, Molina, Riha, Lehmann (bb0170) 2010; 333
Boix-Fayos, Calvo-Cases, Imeson, Soriano-Soto (bb0025) 2001; 44
Mukome, Zhang, Silva, Six, Parikh (bb0185) 2013
Feng, Simpson, Simpson (bb0085) 2005; 36
Kolb, Fermanich, Dornbush (bb0110) 2009; 73
Elliott (bb0075) 1986; 50
Bååth, Anderson (bb0015) 2003; 35
Roth, Pavan (bb0215) 1991; 48
Brodowski, John, Flessa, Amelung (bb0035) 2006; 57
Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bb0195) 2009; 174
Franzluebbers (bb0090) 2002; 66
Liu, Han, Zhang (bb0155) 2012; 14
Peng, Ye, Wang, Zhou, Sun (bb0205) 2011; 112
Chow, Tanji, Gao, Dahlgren (bb0055) 2006; 38
Six, Bossuyt, Degryze, Denef (bb0245) 2004; 79
Six, Elliott, Paustian (bb0235) 2000; 64
Lotze-Campen, Müller, Bondeau, Rost, Popp, Lucht (bb0165) 2008; 39
Six, Conant, Paul, Paustian (bb0240) 2002; 241
Yu, Wu, Fu, Brookes, Lu (bb0275) 2016; 67
Lauber, Hamady, Knight, Fierer (bb0125) 2009; 75
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0150) 2006; 70
Piccolo, Mbagwu (bb0210) 1999; 63
Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0050) 2008; 46
Cordova-Kreylos, Cao, Green, Hwang, Kuivila, LaMontagne, Van De Werfhorst, Holden, Scow (bb0060) 2006; 72
Dungait, Hopkins, Gregory, Whitmore (bb0070) 2012; 18
Fang, Singh, Singh (bb0080) 2015; 80
Mitchell, Simpson, Soong, Simpson (bb0180) 2015; 81
Singh, Cowie (bb0230) 2014; 4
Doane, Horwáth (bb0065) 2003; 36
Kookana, Sarmah, Van Zwieten, Krull, Singh (bb0115) 2011
Verhoeven, Pereira, Decock, Suddick, Angst, Six (bb0260) 2017; 46
Bronick, Lal (bb0040) 2005; 124
Bossio, Scow, Gunapala, Graham (bb0030) 1998; 36
Navarro-García, Casermeiro, Schimel (bb0190) 2012; 44
Le Guillou, Angers, Maron, Leterme, Menasseri-Aubry (bb0135) 2012; 50
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bb0145) 2011; 43
Lehmann (bb0140) 2007; 5
Kammann, Ratering, Eckhard, Mueller (bb0105) 2012; 41
Verdouw, Van Echteld, Dekkers (bb0255) 1978; 12
Buyer, Sasser (bb0045) 2012; 61
Ameloot, Graber, Verheijen, De Neve (bb0010) 2013; 64
Aciego Pietri, Brookes (bb0005) 2008; 40
Soinne, Hovi, Tammeorg, Turtola (bb0250) 2014; 219–220
Haynes, Naidu (bb0095) 1998; 51
Le Bissonnais (bb0130) 1996; 47
Sagrilo, Jeffery, Hoffland, Kuyper (bb0220) 2015; 7
Vrochidou, Tsanis, Grillakis, Koutroulis (bb0265) 2013; 476
Jari Oksanen, Kindt, Legendre, Minchin, O'Hara, Simpson, Peter, Henry, Stevens, Wagner (bb0100) 2015
Schnell, Vietor, Provin, Munster, Capareda (bb0225) 2012; 41
Wang, Xiong, Kuzyakov (bb0270) 2016; 8
van Bavel (bb0020) 1950; 14
Zimmerman (bb0280) 2010; 44
Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (bb0200) 2009; 3
Laird, Fleming, Wang, Horton, Karlen (bb0120) 2010; 158
Mašek, Brownsort, Cross, Sohi (bb0175) 2013; 103
Dungait (10.1016/j.geoderma.2017.05.027_bb0070) 2012; 18
Ameloot (10.1016/j.geoderma.2017.05.027_bb0010) 2013; 64
Bronick (10.1016/j.geoderma.2017.05.027_bb0040) 2005; 124
Kolb (10.1016/j.geoderma.2017.05.027_bb0110) 2009; 73
Kookana (10.1016/j.geoderma.2017.05.027_bb0115) 2011
Piccolo (10.1016/j.geoderma.2017.05.027_bb0210) 1999; 63
Lehmann (10.1016/j.geoderma.2017.05.027_bb0140) 2007; 5
Vrochidou (10.1016/j.geoderma.2017.05.027_bb0265) 2013; 476
Kammann (10.1016/j.geoderma.2017.05.027_bb0105) 2012; 41
Chow (10.1016/j.geoderma.2017.05.027_bb0055) 2006; 38
Yu (10.1016/j.geoderma.2017.05.027_bb0275) 2016; 67
Wang (10.1016/j.geoderma.2017.05.027_bb0270) 2016; 8
Lehmann (10.1016/j.geoderma.2017.05.027_bb0145) 2011; 43
Novak (10.1016/j.geoderma.2017.05.027_bb0200) 2009; 3
Liu (10.1016/j.geoderma.2017.05.027_bb0155) 2012; 14
Roth (10.1016/j.geoderma.2017.05.027_bb0215) 1991; 48
Lauber (10.1016/j.geoderma.2017.05.027_bb0125) 2009; 75
Verdouw (10.1016/j.geoderma.2017.05.027_bb0255) 1978; 12
Schnell (10.1016/j.geoderma.2017.05.027_bb0225) 2012; 41
Feng (10.1016/j.geoderma.2017.05.027_bb0085) 2005; 36
Jari Oksanen (10.1016/j.geoderma.2017.05.027_bb0100) 2015
Cordova-Kreylos (10.1016/j.geoderma.2017.05.027_bb0060) 2006; 72
Boix-Fayos (10.1016/j.geoderma.2017.05.027_bb0025) 2001; 44
Le Guillou (10.1016/j.geoderma.2017.05.027_bb0135) 2012; 50
Buyer (10.1016/j.geoderma.2017.05.027_bb0045) 2012; 61
Brodowski (10.1016/j.geoderma.2017.05.027_bb0035) 2006; 57
Liu (10.1016/j.geoderma.2017.05.027_bb0160) 2014; 123
Sagrilo (10.1016/j.geoderma.2017.05.027_bb0220) 2015; 7
Soinne (10.1016/j.geoderma.2017.05.027_bb0250) 2014; 219–220
Zimmerman (10.1016/j.geoderma.2017.05.027_bb0280) 2010; 44
Bossio (10.1016/j.geoderma.2017.05.027_bb0030) 1998; 36
Novak (10.1016/j.geoderma.2017.05.027_bb0195) 2009; 174
Le Bissonnais (10.1016/j.geoderma.2017.05.027_bb0130) 1996; 47
Elliott (10.1016/j.geoderma.2017.05.027_bb0075) 1986; 50
Six (10.1016/j.geoderma.2017.05.027_bb0240) 2002; 241
Chan (10.1016/j.geoderma.2017.05.027_bb0050) 2008; 46
Bååth (10.1016/j.geoderma.2017.05.027_bb0015) 2003; 35
Mašek (10.1016/j.geoderma.2017.05.027_bb0175) 2013; 103
Doane (10.1016/j.geoderma.2017.05.027_bb0065) 2003; 36
Laird (10.1016/j.geoderma.2017.05.027_bb0120) 2010; 158
Franzluebbers (10.1016/j.geoderma.2017.05.027_bb0090) 2002; 66
Peng (10.1016/j.geoderma.2017.05.027_bb0205) 2011; 112
Major (10.1016/j.geoderma.2017.05.027_bb0170) 2010; 333
Six (10.1016/j.geoderma.2017.05.027_bb0235) 2000; 64
Verhoeven (10.1016/j.geoderma.2017.05.027_bb0260) 2017; 46
Lotze-Campen (10.1016/j.geoderma.2017.05.027_bb0165) 2008; 39
Mukome (10.1016/j.geoderma.2017.05.027_bb0185) 2013
Singh (10.1016/j.geoderma.2017.05.027_bb0230) 2014; 4
Six (10.1016/j.geoderma.2017.05.027_bb0245) 2004; 79
Liang (10.1016/j.geoderma.2017.05.027_bb0150) 2006; 70
Fang (10.1016/j.geoderma.2017.05.027_bb0080) 2015; 80
Haynes (10.1016/j.geoderma.2017.05.027_bb0095) 1998; 51
van Bavel (10.1016/j.geoderma.2017.05.027_bb0020) 1950; 14
Navarro-García (10.1016/j.geoderma.2017.05.027_bb0190) 2012; 44
Mitchell (10.1016/j.geoderma.2017.05.027_bb0180) 2015; 81
Aciego Pietri (10.1016/j.geoderma.2017.05.027_bb0005) 2008; 40
References_xml – volume: 112
  start-page: 159
  year: 2011
  end-page: 166
  ident: bb0205
  article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China
  publication-title: Soil Tillage Res.
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: bb0270
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
– volume: 41
  start-page: 1052
  year: 2012
  end-page: 1066
  ident: bb0105
  article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils
  publication-title: J. Environ. Qual.
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bb0280
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– year: 2015
  ident: bb0100
  article-title: Vegan: Community Ecology Package. R package Version 2.3-0
– volume: 57
  start-page: 539
  year: 2006
  end-page: 546
  ident: bb0035
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur. J. Soil Sci.
– volume: 48
  start-page: 351
  year: 1991
  end-page: 361
  ident: bb0215
  article-title: Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian oxisol
  publication-title: Geoderma
– volume: 39
  start-page: 325
  year: 2008
  end-page: 338
  ident: bb0165
  article-title: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach
  publication-title: Agric. Econ.
– volume: 66
  start-page: 197
  year: 2002
  end-page: 205
  ident: bb0090
  article-title: Water infiltration and soil structure related to organic matter and its stratification with depth
  publication-title: Soil Tillage Res.
– volume: 80
  start-page: 136
  year: 2015
  end-page: 145
  ident: bb0080
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
– volume: 64
  start-page: 379
  year: 2013
  end-page: 390
  ident: bb0010
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
– volume: 50
  start-page: 126
  year: 2012
  end-page: 133
  ident: bb0135
  article-title: Linking microbial community to soil water-stable aggregation during crop residue decomposition
  publication-title: Soil Biol. Biochem.
– volume: 174
  start-page: 105
  year: 2009
  end-page: 112
  ident: bb0195
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
– volume: 18
  start-page: 1781
  year: 2012
  end-page: 1796
  ident: bb0070
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Glob. Chang. Biol.
– volume: 47
  start-page: 425
  year: 1996
  end-page: 437
  ident: bb0130
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
– volume: 4
  year: 2014
  ident: bb0230
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
– volume: 123
  start-page: 45
  year: 2014
  end-page: 51
  ident: bb0160
  article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil
  publication-title: Catena
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bb0150
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bb0145
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
– volume: 63
  start-page: 1801
  year: 1999
  end-page: 1810
  ident: bb0210
  article-title: Role of hydrophobic components of soil organic matter in soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
– volume: 103
  start-page: 151
  year: 2013
  end-page: 155
  ident: bb0175
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
– volume: 14
  start-page: 20
  year: 1950
  end-page: 23
  ident: bb0020
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 36
  start-page: 1553
  year: 2005
  end-page: 1566
  ident: bb0085
  article-title: Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces
  publication-title: Org. Geochem.
– volume: 73
  start-page: 1173
  year: 2009
  end-page: 1181
  ident: bb0110
  article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 38
  start-page: 477
  year: 2006
  end-page: 488
  ident: bb0055
  article-title: Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils
  publication-title: Soil Biol. Biochem.
– year: 2013
  ident: bb0185
  article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks
  publication-title: J. Agric. Food Chem.
– volume: 44
  start-page: 47
  year: 2001
  end-page: 67
  ident: bb0025
  article-title: Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators
  publication-title: Catena
– volume: 67
  start-page: 109
  year: 2016
  end-page: 120
  ident: bb0275
  article-title: Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil
  publication-title: Eur. J. Soil Sci.
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: bb0240
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bb0245
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– volume: 75
  start-page: 5111
  year: 2009
  end-page: 5120
  ident: bb0125
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Appl. Environ. Microbiol.
– volume: 50
  start-page: 627
  year: 1986
  end-page: 633
  ident: bb0075
  article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 333
  start-page: 117
  year: 2010
  end-page: 128
  ident: bb0170
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
– volume: 36
  start-page: 2713
  year: 2003
  end-page: 2722
  ident: bb0065
  article-title: Spectrophotometric determination of nitrate with a single reagent
  publication-title: Anal. Lett.
– volume: 12
  start-page: 399
  year: 1978
  end-page: 402
  ident: bb0255
  article-title: Ammonia determination based on indophenol formation with sodium salicylate
  publication-title: Water Res.
– volume: 158
  start-page: 436
  year: 2010
  end-page: 442
  ident: bb0120
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  ident: bb0140
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
– volume: 61
  start-page: 127
  year: 2012
  end-page: 130
  ident: bb0045
  article-title: High throughput phospholipid fatty acid analysis of soils
  publication-title: Appl. Soil Ecol.
– volume: 124
  start-page: 3
  year: 2005
  end-page: 22
  ident: bb0040
  article-title: Soil structure and management: a review
  publication-title: Geoderma
– volume: 476
  start-page: 290
  year: 2013
  end-page: 301
  ident: bb0265
  article-title: The impact of climate change on hydrometeorological droughts at a basin scale
  publication-title: J. Hydrol.
– volume: 3
  start-page: 2
  year: 2009
  ident: bb0200
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann. Environ. Sci.
– volume: 41
  start-page: 1044
  year: 2012
  end-page: 1051
  ident: bb0225
  article-title: Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects
  publication-title: J. Environ. Qual.
– volume: 7
  start-page: 1294
  year: 2015
  end-page: 1304
  ident: bb0220
  article-title: Emission of CO2 from biochar-amended soils and implications for soil organic carbon
  publication-title: GCB Bioenergy
– volume: 64
  start-page: 1042
  year: 2000
  end-page: 1049
  ident: bb0235
  article-title: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 103
  year: 2011
  end-page: 143
  ident: bb0115
  article-title: Chapter three - biochar application to soil: agronomic and environmental benefits and unintended consequences
  publication-title: Advances in Agronomy
– volume: 14
  start-page: 975
  year: 2012
  end-page: 979
  ident: bb0155
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 46
  start-page: 437
  year: 2008
  end-page: 444
  ident: bb0050
  article-title: Using poultry litter biochars as soil amendments
  publication-title: Aust. J. Soil Res.
– volume: 51
  start-page: 123
  year: 1998
  end-page: 137
  ident: bb0095
  article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 44
  start-page: 1
  year: 2012
  end-page: 8
  ident: bb0190
  article-title: When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events
  publication-title: Soil Biol. Biochem.
– volume: 81
  start-page: 244
  year: 2015
  end-page: 254
  ident: bb0180
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 237
  year: 2017
  end-page: 246
  ident: bb0260
  article-title: Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale
  publication-title: J. Environ. Qual.
– volume: 35
  start-page: 955
  year: 2003
  end-page: 963
  ident: bb0015
  article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 1856
  year: 2008
  end-page: 1861
  ident: bb0005
  article-title: Relationships between soil pH and microbial properties in a UK arable soil
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 1
  year: 1998
  end-page: 12
  ident: bb0030
  article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles
  publication-title: Microb. Ecol.
– volume: 72
  start-page: 3357
  year: 2006
  end-page: 3366
  ident: bb0060
  article-title: Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments
  publication-title: Appl. Environ. Microbiol.
– volume: 219–220
  start-page: 162
  year: 2014
  end-page: 167
  ident: bb0250
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
– volume: 46
  start-page: 237
  year: 2017
  ident: 10.1016/j.geoderma.2017.05.027_bb0260
  article-title: Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.10.0396
– volume: 18
  start-page: 1781
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0070
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02665.x
– volume: 333
  start-page: 117
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geoderma.2017.05.027_bb0170
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0327-0
– volume: 241
  start-page: 155
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2017.05.027_bb0240
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 103
  start-page: 151
  issue: 0
  year: 2013
  ident: 10.1016/j.geoderma.2017.05.027_bb0175
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.08.044
– volume: 123
  start-page: 45
  year: 2014
  ident: 10.1016/j.geoderma.2017.05.027_bb0160
  article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil
  publication-title: Catena
  doi: 10.1016/j.catena.2014.07.005
– volume: 66
  start-page: 197
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2017.05.027_bb0090
  article-title: Water infiltration and soil structure related to organic matter and its stratification with depth
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(02)00027-2
– volume: 57
  start-page: 539
  issue: 4
  year: 2006
  ident: 10.1016/j.geoderma.2017.05.027_bb0035
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00807.x
– volume: 35
  start-page: 955
  issue: 7
  year: 2003
  ident: 10.1016/j.geoderma.2017.05.027_bb0015
  article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00154-8
– volume: 70
  start-page: 1719
  issue: 5
  year: 2006
  ident: 10.1016/j.geoderma.2017.05.027_bb0150
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 3
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.05.027_bb0200
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann. Environ. Sci.
– volume: 36
  start-page: 1553
  issue: 11
  year: 2005
  ident: 10.1016/j.geoderma.2017.05.027_bb0085
  article-title: Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2005.06.008
– volume: 44
  start-page: 47
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2017.05.027_bb0025
  article-title: Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators
  publication-title: Catena
  doi: 10.1016/S0341-8162(00)00176-4
– volume: 39
  start-page: 325
  issue: 3
  year: 2008
  ident: 10.1016/j.geoderma.2017.05.027_bb0165
  article-title: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach
  publication-title: Agric. Econ.
  doi: 10.1111/j.1574-0862.2008.00336.x
– volume: 36
  start-page: 2713
  issue: 12
  year: 2003
  ident: 10.1016/j.geoderma.2017.05.027_bb0065
  article-title: Spectrophotometric determination of nitrate with a single reagent
  publication-title: Anal. Lett.
  doi: 10.1081/AL-120024647
– volume: 46
  start-page: 437
  issue: 5
  year: 2008
  ident: 10.1016/j.geoderma.2017.05.027_bb0050
  article-title: Using poultry litter biochars as soil amendments
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR08036
– volume: 44
  start-page: 1295
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2017.05.027_bb0280
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 51
  start-page: 123
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2017.05.027_bb0095
  article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009738307837
– year: 2015
  ident: 10.1016/j.geoderma.2017.05.027_bb0100
– volume: 112
  start-page: 159
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2017.05.027_bb0205
  article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2011.01.002
– volume: 81
  start-page: 244
  year: 2015
  ident: 10.1016/j.geoderma.2017.05.027_bb0180
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.017
– volume: 14
  start-page: 975
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0155
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 5
  start-page: 381
  issue: 7
  year: 2007
  ident: 10.1016/j.geoderma.2017.05.027_bb0140
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 63
  start-page: 1801
  issue: 6
  year: 1999
  ident: 10.1016/j.geoderma.2017.05.027_bb0210
  article-title: Role of hydrophobic components of soil organic matter in soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6361801x
– volume: 40
  start-page: 1856
  issue: 7
  year: 2008
  ident: 10.1016/j.geoderma.2017.05.027_bb0005
  article-title: Relationships between soil pH and microbial properties in a UK arable soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.03.020
– volume: 4
  year: 2014
  ident: 10.1016/j.geoderma.2017.05.027_bb0230
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
  doi: 10.1038/srep03687
– volume: 61
  start-page: 127
  issue: 0
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0045
  article-title: High throughput phospholipid fatty acid analysis of soils
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.06.005
– volume: 158
  start-page: 436
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2017.05.027_bb0120
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.012
– volume: 14
  start-page: 20
  issue: C
  year: 1950
  ident: 10.1016/j.geoderma.2017.05.027_bb0020
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1950.036159950014000C0005x
– volume: 41
  start-page: 1044
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0225
  article-title: Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0077
– volume: 41
  start-page: 1052
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0105
  article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0132
– volume: 38
  start-page: 477
  issue: 3
  year: 2006
  ident: 10.1016/j.geoderma.2017.05.027_bb0055
  article-title: Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.06.005
– volume: 64
  start-page: 379
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2017.05.027_bb0010
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12064
– volume: 80
  start-page: 136
  issue: 0
  year: 2015
  ident: 10.1016/j.geoderma.2017.05.027_bb0080
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.006
– start-page: 103
  year: 2011
  ident: 10.1016/j.geoderma.2017.05.027_bb0115
  article-title: Chapter three - biochar application to soil: agronomic and environmental benefits and unintended consequences
  doi: 10.1016/B978-0-12-385538-1.00003-2
– volume: 50
  start-page: 627
  issue: 3
  year: 1986
  ident: 10.1016/j.geoderma.2017.05.027_bb0075
  article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000030017x
– year: 2013
  ident: 10.1016/j.geoderma.2017.05.027_bb0185
  article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3049142
– volume: 75
  start-page: 5111
  issue: 15
  year: 2009
  ident: 10.1016/j.geoderma.2017.05.027_bb0125
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00335-09
– volume: 67
  start-page: 109
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2017.05.027_bb0275
  article-title: Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12305
– volume: 50
  start-page: 126
  issue: 0
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0135
  article-title: Linking microbial community to soil water-stable aggregation during crop residue decomposition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.03.009
– volume: 7
  start-page: 1294
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2017.05.027_bb0220
  article-title: Emission of CO2 from biochar-amended soils and implications for soil organic carbon
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12234
– volume: 476
  start-page: 290
  issue: 0
  year: 2013
  ident: 10.1016/j.geoderma.2017.05.027_bb0265
  article-title: The impact of climate change on hydrometeorological droughts at a basin scale
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.10.046
– volume: 79
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2017.05.027_bb0245
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 12
  start-page: 399
  issue: 6
  year: 1978
  ident: 10.1016/j.geoderma.2017.05.027_bb0255
  article-title: Ammonia determination based on indophenol formation with sodium salicylate
  publication-title: Water Res.
  doi: 10.1016/0043-1354(78)90107-0
– volume: 36
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.geoderma.2017.05.027_bb0030
  article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles
  publication-title: Microb. Ecol.
  doi: 10.1007/s002489900087
– volume: 47
  start-page: 425
  issue: 4
  year: 1996
  ident: 10.1016/j.geoderma.2017.05.027_bb0130
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01843.x
– volume: 64
  start-page: 1042
  issue: 3
  year: 2000
  ident: 10.1016/j.geoderma.2017.05.027_bb0235
  article-title: Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6431042x
– volume: 48
  start-page: 351
  issue: 3–4
  year: 1991
  ident: 10.1016/j.geoderma.2017.05.027_bb0215
  article-title: Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian oxisol
  publication-title: Geoderma
  doi: 10.1016/0016-7061(91)90053-V
– volume: 72
  start-page: 3357
  issue: 5
  year: 2006
  ident: 10.1016/j.geoderma.2017.05.027_bb0060
  article-title: Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.72.5.3357-3366.2006
– volume: 73
  start-page: 1173
  issue: 4
  year: 2009
  ident: 10.1016/j.geoderma.2017.05.027_bb0110
  article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0232
– volume: 8
  start-page: 512
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2017.05.027_bb0270
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 44
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2017.05.027_bb0190
  article-title: When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.09.019
– volume: 219–220
  start-page: 162
  year: 2014
  ident: 10.1016/j.geoderma.2017.05.027_bb0250
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 124
  start-page: 3
  issue: 1–2
  year: 2005
  ident: 10.1016/j.geoderma.2017.05.027_bb0040
  article-title: Soil structure and management: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  ident: 10.1016/j.geoderma.2017.05.027_bb0145
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 174
  start-page: 105
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2017.05.027_bb0195
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181981d9a
SSID ssj0017020
Score 2.615565
Snippet Biochar soil amendments are often considered as a soil carbon (C) sequestration strategy that can have beneficial impacts on a range of soil properties and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms aggregate stability
agricultural soils
agroecosystems
algae
biochar
California
carbon sequestration
clay fraction
climate change
community structure
microaggregates
microbial biomass
microbial communities
silt
softwood
soil aggregation
soil amendments
soil carbon
soil chemical properties
soil organic matter
soil quality
soil structure
walnut hulls
Title Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
URI https://dx.doi.org/10.1016/j.geoderma.2017.05.027
https://www.ncbi.nlm.nih.gov/pubmed/29109589
https://www.proquest.com/docview/1961641820
https://www.proquest.com/docview/2220841451
https://pubmed.ncbi.nlm.nih.gov/PMC5669273
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDghba5VG5Etd0bSd-HZcV1QKiJyr1VMtZ222qKlmx5cpvZyZxVl2g6oFjYltyPOOZz_HMN4R8KA0TyUtfJF_CAaUUdWF1UIXkSjE440bLMd_525lanFdfLuTFDpmPuTAYVplt_2DTe2ud30zzak5XTYM5vlxpcEdc4-2ewIzyqtKo5Se_NmEeXLNMzchVgb3vZQnfgIyw4FjPP8QHBk-sLvNvB_U3AP0zjvKeYzp9QZ5nRElnw6Rfkp3Y7pFns6sfmVUj7pPLj02H6VUUo4d6RaOwojS21yhzuu6aWzoQyUJ36ttAARbSVRYhNPU0vEPCJu0SndOmpf4Kjur4E279ipyffvo-XxS5sEKxlKy6K2ohbJCpFDZqLOxtPAserGLiiZk6yVpioT-tIziroLwJPqigo_SC2aRNXb4mu23XxkNCVQlO0DBvJSCrxHzNdRBxKYM3lU0lmxA5rqZbZtZxLH5x68bwshs3SsGhFByTDqQwIdPNuNXAu_HoCDsKy21pkAPn8OjY41G6DrYX3pn4NnY_1w4MFBwokeX-4T4AsZipsOTxhBwMGrGZswA4ZqWxE6K3dGXTAem9t1va5rqn-QagbQFcvvmP73pLnuLTEHz4juyCJsX3AKLu6qN-lxyRJ7PPXxdnvwEZ4h3H
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDfL00hwDOs4cRwfOJRCtaWPUyv1hHHW9jZVlay6RYgLf4o_yEzirLo81APqNbYjxzOe-RzPfAPwOiu5CFbaJNgMDyiZqBKtXJHItCg4nnG9TinfeW-_mBzmn47k0Rr8HHJhKKwy2v7epnfWOj4Zx9Ucz-uacnzTQqE7ShXd7gkVIyt3_PdveG5bvNv-gEJ-I8TWx4PNSRJLCyRTyfPzpBJCOxkyob2i0tal5c6iXQhp4GUVZCWp1J1SHs21K2zprCuc8tIKroMqqwzfew2u52guqGzC2x_LuJJU8cgFmRYJTe9CWvIJKgVVOOsIj9KeMpTK2fzdI_6JeH8P3LzgCbfuwO0IYdlGv0p3Yc039-DWxuws0nj4-_D5fd1SPhejcKVOsxmKkPnmmJSMLdr6lPXMtdid2cYxxKFsHnUGmzre3z5DlLWBbbK6YXY2O_P012_xAA6vZLkfwnrTNv4xsCJDr1tyqyVCucBtlSon_FQ6W-Y6ZHwEclhNM40051Rt49QM8WwnZpCCISkYLg1KYQTj5bh5T_Rx6Qg9CMusqKxBb3Tp2FeDdA3uZ7qksY1vvy4MWkQ8wRKt_r_7IKbjZU41lkfwqNeI5ZwF4j8tSz0CtaIryw7EJ77a0tTHHa84InuNaPbJf3zXS7gxOdjbNbvb-ztP4Sa19JGPz2Adtco_RwR3Xr3odgyDL1e9RX8BNe1Y7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+additions+can+enhance+soil+structure+and+the+physical+stabilization+of+C+in+aggregates&rft.jtitle=Geoderma&rft.au=Wang%2C+Daoyuan&rft.au=Fonte%2C+Steven+J.&rft.au=Parikh%2C+Sanjai+J.&rft.au=Six%2C+Johan&rft.date=2017-10-01&rft.issn=0016-7061&rft.volume=303&rft.spage=110&rft.epage=117&rft_id=info:doi/10.1016%2Fj.geoderma.2017.05.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2017_05_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon