Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin

[Display omitted] •Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect o...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 248; no. Pt B; pp. 36 - 43
Main Authors Jia, Mingyun, Wang, Fang, Bian, Yongrong, Stedtfeld, Robert D., Liu, Guangxia, Yu, Jinping, Jiang, Xin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect on the sorption of SMT species.•Sorption of SMT was insignificantly affected by malic acid and sodium alginate. Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.
AbstractList [Display omitted] •Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect on the sorption of SMT species.•Sorption of SMT was insignificantly affected by malic acid and sodium alginate. Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (K ) on BC600 (1.77mg L g ) than BC300 (0.11mg L g ). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1-nLng-1) than BC300 (0.11mg1-nLng-1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT- adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1-nLng-1) than BC300 (0.11mg1-nLng-1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT- adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.
Author Stedtfeld, Robert D.
Bian, Yongrong
Jiang, Xin
Liu, Guangxia
Jia, Mingyun
Yu, Jinping
Wang, Fang
Author_xml – sequence: 1
  givenname: Mingyun
  surname: Jia
  fullname: Jia, Mingyun
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
– sequence: 2
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: wangfang@issas.ac.cn
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
– sequence: 3
  givenname: Yongrong
  surname: Bian
  fullname: Bian, Yongrong
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
– sequence: 4
  givenname: Robert D.
  surname: Stedtfeld
  fullname: Stedtfeld, Robert D.
  organization: Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
– sequence: 5
  givenname: Guangxia
  surname: Liu
  fullname: Liu, Guangxia
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
– sequence: 6
  givenname: Jinping
  surname: Yu
  fullname: Yu, Jinping
  organization: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210008, PR China
– sequence: 7
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28863989$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVJaZy0fyHMsptx9bBe0EVKSJNAIIu2a6HRXMUyM5IjyYHk11fGSRfdGC4Ioe-cK845QycxRUDoguAlwUR82yyHkHIFt15STOQSqzb0A1oQJVlPtRQnaIG1wL3idHWKzkrZYIwZkfQTOqVKCaaVXiD3K-VtDSl2yXdlN3k7Q13b1xChq6lrS9za5tLZNt6DqzB2w0s3hlLS9NwuKT_aGFw321qhgc1mDI3MEGt7DI8hfkYfvZ0KfHk7z9Gfn9e_r277-4ebu6sf973jeFX7AUvvwLLB04F7IrWzfGwfFgR7JcDKQTthqSaUKc0l92LFheJSYypGv2LsHH09-G5zetpBqWYOxcE02QhpVwxtAXCOGSdHUaKZIKLBuKEXb-humGE02xxmm1_Me4YNEAfA5VRKBv8PIdjsyzIb816W2ZdlsGpDm_D7f0IXqt2XUbMN03H55UEOLdPnANkUFyA6GENuRZkxhWMWfwHh9rUL
CitedBy_id crossref_primary_10_1007_s11356_023_28421_z
crossref_primary_10_1155_2018_1254529
crossref_primary_10_1016_j_jenvman_2024_123956
crossref_primary_10_1016_j_jtice_2024_105812
crossref_primary_10_1016_j_rsurfi_2025_100438
crossref_primary_10_1016_j_biortech_2019_122163
crossref_primary_10_1016_j_jece_2024_112256
crossref_primary_10_3390_molecules28052247
crossref_primary_10_1016_j_xinn_2021_100180
crossref_primary_10_1038_s41598_024_75443_9
crossref_primary_10_1016_j_jece_2022_108755
crossref_primary_10_5004_dwt_2022_28913
crossref_primary_10_3390_ijerph15071458
crossref_primary_10_1016_j_watres_2018_09_051
crossref_primary_10_1039_C8TA09250H
crossref_primary_10_3390_ijerph20031679
crossref_primary_10_1016_j_jclepro_2023_137468
crossref_primary_10_1016_j_chemosphere_2021_132113
crossref_primary_10_1016_j_cej_2018_09_055
crossref_primary_10_1016_j_scitotenv_2024_171634
crossref_primary_10_1016_j_cej_2019_03_007
crossref_primary_10_1016_j_cej_2025_161161
crossref_primary_10_1016_j_jwpe_2025_107338
crossref_primary_10_1016_j_molliq_2018_07_085
crossref_primary_10_1016_j_partic_2024_08_005
crossref_primary_10_1016_j_chemosphere_2024_141677
crossref_primary_10_1016_j_chemosphere_2021_129785
crossref_primary_10_1016_j_jwpe_2025_107499
crossref_primary_10_1016_j_biortech_2022_127546
crossref_primary_10_3390_ijms252312730
crossref_primary_10_1007_s11356_023_27228_2
crossref_primary_10_1016_j_envres_2020_110104
crossref_primary_10_1007_s11356_020_09312_z
crossref_primary_10_1007_s11802_021_4412_1
crossref_primary_10_1016_j_jenvman_2021_113530
crossref_primary_10_1007_s13399_023_05074_z
crossref_primary_10_1080_10643389_2020_1818497
crossref_primary_10_1016_j_chemosphere_2018_09_081
crossref_primary_10_1016_j_cherd_2022_12_038
crossref_primary_10_1021_acs_est_9b06287
crossref_primary_10_1016_j_envpol_2019_113016
crossref_primary_10_1016_j_ijbiomac_2019_05_039
crossref_primary_10_1016_S1002_0160_21_60026_7
crossref_primary_10_1016_j_jhazmat_2021_125048
crossref_primary_10_1016_j_colsurfa_2021_127473
crossref_primary_10_1016_j_jconhyd_2020_103680
crossref_primary_10_1016_j_colsurfa_2021_126540
crossref_primary_10_1016_j_envpol_2019_113482
crossref_primary_10_1016_j_seppur_2025_132034
crossref_primary_10_1021_acs_chemrev_8b00299
crossref_primary_10_1016_j_cej_2021_130387
crossref_primary_10_5004_dwt_2019_24179
crossref_primary_10_1016_j_chemosphere_2019_124884
crossref_primary_10_1016_j_chemosphere_2022_134597
crossref_primary_10_1016_j_jes_2018_06_019
crossref_primary_10_1038_s41598_021_81314_4
crossref_primary_10_3390_ijerph19031702
crossref_primary_10_1016_j_biortech_2019_121927
crossref_primary_10_1016_j_scitotenv_2018_02_251
crossref_primary_10_1016_j_ecoenv_2021_112175
crossref_primary_10_1016_j_ecoenv_2022_114113
crossref_primary_10_1016_j_jhazmat_2021_126692
crossref_primary_10_1007_s11783_023_1671_7
crossref_primary_10_1016_j_cej_2019_122785
crossref_primary_10_1007_s11368_024_03929_0
crossref_primary_10_1016_j_scitotenv_2025_178829
crossref_primary_10_1007_s42832_019_0008_8
crossref_primary_10_1016_j_carbon_2020_03_010
crossref_primary_10_1016_j_cej_2020_124611
crossref_primary_10_1007_s10653_024_01936_1
crossref_primary_10_1016_j_jece_2023_110265
crossref_primary_10_1016_j_ecoenv_2019_109656
crossref_primary_10_1007_s13762_022_04116_9
crossref_primary_10_1016_j_chemosphere_2024_141172
crossref_primary_10_1016_j_jclepro_2022_130949
crossref_primary_10_1016_j_chemosphere_2023_140419
crossref_primary_10_1007_s11270_020_04769_7
crossref_primary_10_1016_j_jhazmat_2021_125908
crossref_primary_10_1021_acs_langmuir_2c00482
crossref_primary_10_1039_C8EW00952J
crossref_primary_10_1016_j_scitotenv_2023_161693
crossref_primary_10_1016_j_colsurfa_2024_133244
crossref_primary_10_1016_S1002_0160_18_60063_3
crossref_primary_10_1007_s11771_025_5861_2
crossref_primary_10_1016_j_envres_2022_113953
crossref_primary_10_1080_10643389_2020_1835436
crossref_primary_10_1007_s42773_022_00201_x
Cites_doi 10.1016/j.biortech.2006.11.060
10.1016/j.biortech.2014.01.120
10.1016/j.biortech.2009.09.062
10.1631/jzus.A0820524
10.1016/j.chroma.2010.10.097
10.1016/j.seppur.2013.11.025
10.1016/j.jhazmat.2005.12.043
10.1111/ejss.12227
10.1016/j.jhazmat.2013.07.073
10.1016/j.biortech.2012.11.146
10.1016/j.envpol.2015.05.030
10.1365/s10337-003-0140-5
10.1016/j.envpol.2016.04.017
10.1016/j.envpol.2008.03.011
10.1021/es200483b
10.1016/j.biortech.2013.02.098
10.1021/es202487h
10.1016/j.orggeochem.2015.06.005
10.1016/j.cej.2014.03.021
10.1016/j.chemosphere.2006.03.026
10.1016/j.biortech.2017.04.042
10.1016/j.cej.2016.05.064
10.1016/j.jhazmat.2015.02.046
10.1016/j.scitotenv.2016.03.235
10.1016/j.cej.2008.01.028
10.1016/j.biortech.2014.05.029
10.1016/j.chemosphere.2016.03.083
10.1016/j.cej.2012.12.099
10.1021/es0342087
10.1016/j.jhazmat.2015.08.025
10.1016/j.envpol.2011.01.006
10.1021/acs.est.5b00729
10.1021/es303189f
10.1016/j.biortech.2016.10.033
10.1038/nrmicro2312
10.1021/es8002684
10.1016/j.colsurfb.2009.10.031
10.1016/j.jhazmat.2017.03.064
10.1007/s11356-014-3632-y
10.1021/es201859j
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.08.082
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 43
ExternalDocumentID 28863989
10_1016_j_biortech_2017_08_082
S0960852417313871
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-b07fcea3bf2b5f179ca5d317610f86ea7b9c6a2912389575f64568579026df433
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 11:26:05 EDT 2025
Fri Jul 11 08:07:43 EDT 2025
Mon Jul 21 05:57:44 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 23 02:19:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Antibiotics
Biochar
Low molecular weight organic acids
Protein
Humic acid
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-b07fcea3bf2b5f179ca5d317610f86ea7b9c6a2912389575f64568579026df433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28863989
PQID 1936165500
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000550351
proquest_miscellaneous_1936165500
pubmed_primary_28863989
crossref_primary_10_1016_j_biortech_2017_08_082
crossref_citationtrail_10_1016_j_biortech_2017_08_082
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_08_082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
2018-Jan
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haham, Oren, Chefetz (b0060) 2012; 46
Jia, Wang, Bian, Yang, Gu, Song, Jiang (b0090) 2014; 46
Qiu, Lv, Pan, Zhang, Zhang, Zhang (b0160) 2009; 10
Sarmah, Meyer, Boxall (b0180) 2006; 65
Li, Zhang, Wu, Liu, Lv (b0120) 2017; 334
Zhang, Ying, Pan, Liu, Zhao (b0215) 2015; 49
Caceres-Jensen, Rodriguez-Becerra, Parra-Rivero, Escudey, Barrientos, Castro-Castillo (b0025) 2013; 261
Xiang, Sun, Zheng, Li, Li, Wong, Cai, Mo (b0205) 2016; 560–561
Figueroa, Leonard, Mackay (b0040) 2004; 38
Ho (b0055) 2006; 136
Hou, Wan, Mao, Wang, Mu, Qin, Luo (b0070) 2015; 22
Jia, Wang, Bian, Jin, Song, Fredrick, Xu, Jiang (b0085) 2013; 136
Lian, Sun, Song, Zhu, Qi, Xing (b0135) 2014; 248
Carda-Broch, Berthod (b0030) 2004; 59
Allen, Donato, Wang, Cloud-Hansen, Davies, Handelsman (b0010) 2010; 8
Ji, Wan, Zheng, Zhu (b0080) 2011; 45
Sun, Lian, Bao, Liu, Song, Zhu (b0185) 2016; 214
Aust, Godlinski, Travis, Hao, McAllister, Leinweber, Bruhn (b0015) 2008; 158
Rajapaksha, Vithanage, Zhang, Ahmad, Mohan, Chang, Ok (b0175) 2014; 166
Ling, Sun, Gao, Xu, Li (b0140) 2015; 66
Qu, Wang, Tong, Wu (b0165) 2010; 1217
Keiblinger, Liu, Mentler, Zehetner, Boltenstern (b0105) 2015; 87
Mohan, Sarswat, Ok, Pittman (b0145) 2014; 160
Hameed, Tan, Ahmad (b0065) 2008; 144
Panic, Velickovic (b0195) 2014; 122
Jung, Phal, Oh, Chu, Jang, Yoon (b0100) 2015; 300
Jia, Wang, Jin, Song, Bian, Lisa, Yang, Gu, Jiang, Zhao (b0095) 2016; 304
Binupriya, Sathishkumar, Ku, Yun (b0020) 2010; 76
Rajapaksha, Vithanage, Ahmad, Seo, Cho, Lee, Ok (b0170) 2015; 290
Ahmed, Zhou, Ngo, Guo, Johir, Belhaj (b0005) 2017; 238
Ni, Pignatello, Xing (b0150) 2011; 45
Li, Pignatello, Wang, Xing (b0125) 2013; 47
Hsu, Pan (b0075) 2007; 98
Lian, Sun, Chen, Zhu, Liu, Xing (b0130) 2015; 204
Lei, Hu, He (b0110) 2013; 219
Chen, Zhou, Zhu (b0035) 2008; 42
Li, Mahyoub, Liao, Xia, Zhao, Guo, Ma (b0115) 2017; 223
Teixidó, Pignatello, Beltrán, Granados, Peccia (b0190) 2011; 45
Yu, Li, Han, Ma (b0210) 2016; 153
Wei, Fang, Cai, Huang, Chen, Liang, Rong (b0200) 2011; 159
Foo, Hameed (b0045) 2013; 130
Gao, Ren, Ling, Gong, Sun, Zhang (b0050) 2010; 101
Pignatello (b0155) 2013
Caceres-Jensen (10.1016/j.biortech.2017.08.082_b0025) 2013; 261
Jia (10.1016/j.biortech.2017.08.082_b0085) 2013; 136
Ji (10.1016/j.biortech.2017.08.082_b0080) 2011; 45
Aust (10.1016/j.biortech.2017.08.082_b0015) 2008; 158
Rajapaksha (10.1016/j.biortech.2017.08.082_b0170) 2015; 290
Xiang (10.1016/j.biortech.2017.08.082_b0205) 2016; 560–561
Sarmah (10.1016/j.biortech.2017.08.082_b0180) 2006; 65
Sun (10.1016/j.biortech.2017.08.082_b0185) 2016; 214
Li (10.1016/j.biortech.2017.08.082_b0120) 2017; 334
Binupriya (10.1016/j.biortech.2017.08.082_b0020) 2010; 76
Qu (10.1016/j.biortech.2017.08.082_b0165) 2010; 1217
Ni (10.1016/j.biortech.2017.08.082_b0150) 2011; 45
Zhang (10.1016/j.biortech.2017.08.082_b0215) 2015; 49
Allen (10.1016/j.biortech.2017.08.082_b0010) 2010; 8
Haham (10.1016/j.biortech.2017.08.082_b0060) 2012; 46
Wei (10.1016/j.biortech.2017.08.082_b0200) 2011; 159
Jia (10.1016/j.biortech.2017.08.082_b0095) 2016; 304
Yu (10.1016/j.biortech.2017.08.082_b0210) 2016; 153
Hameed (10.1016/j.biortech.2017.08.082_b0065) 2008; 144
Keiblinger (10.1016/j.biortech.2017.08.082_b0105) 2015; 87
Figueroa (10.1016/j.biortech.2017.08.082_b0040) 2004; 38
Foo (10.1016/j.biortech.2017.08.082_b0045) 2013; 130
Jung (10.1016/j.biortech.2017.08.082_b0100) 2015; 300
Hou (10.1016/j.biortech.2017.08.082_b0070) 2015; 22
Jia (10.1016/j.biortech.2017.08.082_b0090) 2014; 46
Ahmed (10.1016/j.biortech.2017.08.082_b0005) 2017; 238
Panic (10.1016/j.biortech.2017.08.082_b0195) 2014; 122
Carda-Broch (10.1016/j.biortech.2017.08.082_b0030) 2004; 59
Hsu (10.1016/j.biortech.2017.08.082_b0075) 2007; 98
Lei (10.1016/j.biortech.2017.08.082_b0110) 2013; 219
Gao (10.1016/j.biortech.2017.08.082_b0050) 2010; 101
Ling (10.1016/j.biortech.2017.08.082_b0140) 2015; 66
Li (10.1016/j.biortech.2017.08.082_b0115) 2017; 223
Li (10.1016/j.biortech.2017.08.082_b0125) 2013; 47
Teixidó (10.1016/j.biortech.2017.08.082_b0190) 2011; 45
Chen (10.1016/j.biortech.2017.08.082_b0035) 2008; 42
Ho (10.1016/j.biortech.2017.08.082_b0055) 2006; 136
Lian (10.1016/j.biortech.2017.08.082_b0135) 2014; 248
Lian (10.1016/j.biortech.2017.08.082_b0130) 2015; 204
Pignatello (10.1016/j.biortech.2017.08.082_b0155) 2013
Qiu (10.1016/j.biortech.2017.08.082_b0160) 2009; 10
Rajapaksha (10.1016/j.biortech.2017.08.082_b0175) 2014; 166
Mohan (10.1016/j.biortech.2017.08.082_b0145) 2014; 160
References_xml – volume: 45
  start-page: 9240
  year: 2011
  end-page: 9248
  ident: b0150
  article-title: Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 10020
  year: 2011
  end-page: 10027
  ident: b0190
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 11870
  year: 2012
  end-page: 11877
  ident: b0060
  article-title: Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils
  publication-title: Environ. Sci. Technol.
– volume: 1217
  start-page: 8205
  year: 2010
  end-page: 8211
  ident: b0165
  article-title: Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure
  publication-title: J. Chromatogr. A
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: b0145
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review
  publication-title: Bioresour. Technol.
– volume: 59
  start-page: 79
  year: 2004
  end-page: 87
  ident: b0030
  article-title: Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds
  publication-title: Chromatographia
– volume: 223
  start-page: 20
  year: 2017
  end-page: 26
  ident: b0115
  article-title: Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue
  publication-title: Bioresour. Technol.
– volume: 22
  start-page: 4545
  year: 2015
  end-page: 4554
  ident: b0070
  article-title: Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 238
  start-page: 306
  year: 2017
  end-page: 312
  ident: b0005
  article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment
  publication-title: Bioresour. Technol.
– volume: 76
  start-page: 179
  year: 2010
  end-page: 185
  ident: b0020
  article-title: Sequestration of Reactive Blue 4 by free and immobilized
  publication-title: Colloids Surf. B
– volume: 46
  start-page: 489
  year: 2014
  end-page: 497
  ident: b0090
  article-title: Influencing factors of Cu2+ sorption to straw-derived biochar
  publication-title: Soils
– volume: 219
  start-page: 361
  year: 2013
  end-page: 370
  ident: b0110
  article-title: Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites
  publication-title: Chem. Eng. J.
– volume: 136
  start-page: 103
  year: 2006
  end-page: 111
  ident: b0055
  article-title: Review of second-order models for adsorption systems
  publication-title: J. Hazard. Mater.
– volume: 153
  start-page: 365
  year: 2016
  end-page: 385
  ident: b0210
  article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials
  publication-title: Chemosphere
– volume: 300
  start-page: 808
  year: 2015
  end-page: 814
  ident: b0100
  article-title: Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar
  publication-title: J. Hazard. Mater.
– volume: 204
  start-page: 306
  year: 2015
  end-page: 312
  ident: b0130
  article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars
  publication-title: Environ. Pollut.
– volume: 158
  start-page: 1243
  year: 2008
  end-page: 1251
  ident: b0015
  article-title: Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle
  publication-title: Environ. Pollut.
– volume: 45
  start-page: 5580
  year: 2011
  end-page: 5586
  ident: b0080
  article-title: Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 476
  year: 2004
  end-page: 483
  ident: b0040
  article-title: Modeling tetracycline antibiotic sorption to clays
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 714
  year: 2009
  end-page: 724
  ident: b0160
  article-title: Critical review in adsorption kinetic models
  publication-title: J. Zhejiang Univ. Sci. A
– volume: 166
  start-page: 303
  year: 2014
  end-page: 308
  ident: b0175
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
– volume: 47
  start-page: 8334
  year: 2013
  end-page: 8341
  ident: b0125
  article-title: New insight into adsorption mechanism of ionizable compounds on carbon nanotubes
  publication-title: Environ. Sci. Technol.
– volume: 214
  start-page: 142
  year: 2016
  end-page: 148
  ident: b0185
  article-title: Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole
  publication-title: Environ. Pollut.
– volume: 122
  start-page: 284
  year: 2014
  end-page: 394
  ident: b0195
  article-title: Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis
  publication-title: Sep. Purif. Technol.
– volume: 66
  start-page: 339
  year: 2015
  end-page: 347
  ident: b0140
  article-title: Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil
  publication-title: Eur. J. Soil Sci.
– volume: 248
  start-page: 128
  year: 2014
  end-page: 134
  ident: b0135
  article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole
  publication-title: Chem. Eng. J.
– start-page: 359
  year: 2013
  end-page: 385
  ident: b0155
  article-title: Adsorption of dissolved organic compounds by black carbon
  publication-title: Molecular Environmental Soil Science, Progress in Soil Science
– volume: 290
  start-page: 43
  year: 2015
  end-page: 50
  ident: b0170
  article-title: Enhanced sulfamethazine removal by steam–activated invasive plant-derived biochar
  publication-title: J. Hazard. Mater.
– volume: 65
  start-page: 725
  year: 2006
  end-page: 759
  ident: b0180
  article-title: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment
  publication-title: Chemosphere
– volume: 49
  start-page: 6772
  year: 2015
  end-page: 6782
  ident: b0215
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
– volume: 261
  start-page: 602
  year: 2013
  end-page: 613
  ident: b0025
  article-title: Sorption kinetics of diuron on volcanic ash derived soils
  publication-title: J. Hazard. Mater.
– volume: 87
  start-page: 21
  year: 2015
  end-page: 24
  ident: b0105
  article-title: Biochar application reduces protein sorption in soil
  publication-title: Org. Geochem.
– volume: 101
  start-page: 1159
  year: 2010
  end-page: 1165
  ident: b0050
  article-title: Desorption of phenanthrene and pyrene in soils by root exudates
  publication-title: Bioresour. Technol.
– volume: 334
  start-page: 86
  year: 2017
  end-page: 92
  ident: b0120
  article-title: Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance
  publication-title: J. Hazard. Mater.
– volume: 144
  start-page: 235
  year: 2008
  end-page: 244
  ident: b0065
  article-title: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon
  publication-title: Chem. Eng. J.
– volume: 304
  start-page: 934
  year: 2016
  end-page: 940
  ident: b0095
  article-title: Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures
  publication-title: Chem. Eng. J.
– volume: 130
  start-page: 696
  year: 2013
  end-page: 702
  ident: b0045
  article-title: Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular actibated carbon by microwave induced KOH activation
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 251
  year: 2010
  end-page: 259
  ident: b0010
  article-title: Call of the wild: antibiotic resistance genes in natural environments
  publication-title: Nat. Rev. Microbiol.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: b0035
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 98
  start-page: 3617
  year: 2007
  end-page: 3621
  ident: b0075
  article-title: Adsorption of paraquat using methacrylic acid-modified rice husk
  publication-title: Bioresour. Technol.
– volume: 560–561
  start-page: 197
  year: 2016
  end-page: 203
  ident: b0205
  article-title: Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils
  publication-title: Sci. Total Environ.
– volume: 159
  start-page: 1369
  year: 2011
  end-page: 1374
  ident: b0200
  article-title: Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria
  publication-title: Environ. Pollut.
– volume: 136
  start-page: 87
  year: 2013
  end-page: 93
  ident: b0085
  article-title: Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar
  publication-title: Bioresour. Technol.
– volume: 98
  start-page: 3617
  year: 2007
  ident: 10.1016/j.biortech.2017.08.082_b0075
  article-title: Adsorption of paraquat using methacrylic acid-modified rice husk
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.11.060
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.biortech.2017.08.082_b0145
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 101
  start-page: 1159
  year: 2010
  ident: 10.1016/j.biortech.2017.08.082_b0050
  article-title: Desorption of phenanthrene and pyrene in soils by root exudates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.09.062
– volume: 10
  start-page: 714
  issue: 5
  year: 2009
  ident: 10.1016/j.biortech.2017.08.082_b0160
  article-title: Critical review in adsorption kinetic models
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A0820524
– volume: 1217
  start-page: 8205
  year: 2010
  ident: 10.1016/j.biortech.2017.08.082_b0165
  article-title: Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.10.097
– volume: 122
  start-page: 284
  year: 2014
  ident: 10.1016/j.biortech.2017.08.082_b0195
  article-title: Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.11.025
– volume: 136
  start-page: 103
  year: 2006
  ident: 10.1016/j.biortech.2017.08.082_b0055
  article-title: Review of second-order models for adsorption systems
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.12.043
– volume: 66
  start-page: 339
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0140
  article-title: Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12227
– volume: 261
  start-page: 602
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0025
  article-title: Sorption kinetics of diuron on volcanic ash derived soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.07.073
– volume: 130
  start-page: 696
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0045
  article-title: Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular actibated carbon by microwave induced KOH activation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.146
– volume: 204
  start-page: 306
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0130
  article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.05.030
– volume: 59
  start-page: 79
  issue: 1–2
  year: 2004
  ident: 10.1016/j.biortech.2017.08.082_b0030
  article-title: Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds
  publication-title: Chromatographia
  doi: 10.1365/s10337-003-0140-5
– volume: 214
  start-page: 142
  year: 2016
  ident: 10.1016/j.biortech.2017.08.082_b0185
  article-title: Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.04.017
– volume: 158
  start-page: 1243
  year: 2008
  ident: 10.1016/j.biortech.2017.08.082_b0015
  article-title: Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.03.011
– volume: 45
  start-page: 5580
  year: 2011
  ident: 10.1016/j.biortech.2017.08.082_b0080
  article-title: Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es200483b
– volume: 136
  start-page: 87
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0085
  article-title: Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.02.098
– volume: 45
  start-page: 10020
  year: 2011
  ident: 10.1016/j.biortech.2017.08.082_b0190
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202487h
– volume: 87
  start-page: 21
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0105
  article-title: Biochar application reduces protein sorption in soil
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2015.06.005
– volume: 248
  start-page: 128
  year: 2014
  ident: 10.1016/j.biortech.2017.08.082_b0135
  article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.021
– volume: 65
  start-page: 725
  year: 2006
  ident: 10.1016/j.biortech.2017.08.082_b0180
  article-title: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.026
– volume: 238
  start-page: 306
  year: 2017
  ident: 10.1016/j.biortech.2017.08.082_b0005
  article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.042
– volume: 304
  start-page: 934
  year: 2016
  ident: 10.1016/j.biortech.2017.08.082_b0095
  article-title: Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.05.064
– volume: 290
  start-page: 43
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0170
  article-title: Enhanced sulfamethazine removal by steam–activated invasive plant-derived biochar
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.046
– volume: 560–561
  start-page: 197
  year: 2016
  ident: 10.1016/j.biortech.2017.08.082_b0205
  article-title: Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.235
– volume: 144
  start-page: 235
  year: 2008
  ident: 10.1016/j.biortech.2017.08.082_b0065
  article-title: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.01.028
– volume: 166
  start-page: 303
  year: 2014
  ident: 10.1016/j.biortech.2017.08.082_b0175
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.05.029
– volume: 153
  start-page: 365
  year: 2016
  ident: 10.1016/j.biortech.2017.08.082_b0210
  article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.03.083
– volume: 219
  start-page: 361
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0110
  article-title: Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.12.099
– volume: 38
  start-page: 476
  year: 2004
  ident: 10.1016/j.biortech.2017.08.082_b0040
  article-title: Modeling tetracycline antibiotic sorption to clays
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0342087
– volume: 300
  start-page: 808
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0100
  article-title: Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.08.025
– volume: 159
  start-page: 1369
  year: 2011
  ident: 10.1016/j.biortech.2017.08.082_b0200
  article-title: Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.01.006
– volume: 49
  start-page: 6772
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0215
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00729
– volume: 46
  start-page: 11870
  issue: 21
  year: 2012
  ident: 10.1016/j.biortech.2017.08.082_b0060
  article-title: Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303189f
– volume: 46
  start-page: 489
  year: 2014
  ident: 10.1016/j.biortech.2017.08.082_b0090
  article-title: Influencing factors of Cu2+ sorption to straw-derived biochar
  publication-title: Soils
– volume: 223
  start-page: 20
  year: 2017
  ident: 10.1016/j.biortech.2017.08.082_b0115
  article-title: Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.10.033
– volume: 8
  start-page: 251
  year: 2010
  ident: 10.1016/j.biortech.2017.08.082_b0010
  article-title: Call of the wild: antibiotic resistance genes in natural environments
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2312
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.biortech.2017.08.082_b0035
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 76
  start-page: 179
  year: 2010
  ident: 10.1016/j.biortech.2017.08.082_b0020
  article-title: Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2009.10.031
– volume: 334
  start-page: 86
  year: 2017
  ident: 10.1016/j.biortech.2017.08.082_b0120
  article-title: Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.03.064
– volume: 22
  start-page: 4545
  year: 2015
  ident: 10.1016/j.biortech.2017.08.082_b0070
  article-title: Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3632-y
– volume: 45
  start-page: 9240
  year: 2011
  ident: 10.1016/j.biortech.2017.08.082_b0150
  article-title: Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201859j
– volume: 47
  start-page: 8334
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0125
  article-title: New insight into adsorption mechanism of ionizable compounds on carbon nanotubes
  publication-title: Environ. Sci. Technol.
– start-page: 359
  year: 2013
  ident: 10.1016/j.biortech.2017.08.082_b0155
  article-title: Adsorption of dissolved organic compounds by black carbon
SSID ssj0003172
Score 2.5276346
Snippet [Display omitted] •Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally...
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms adsorption
Antibiotics
Biochar
bovine serum albumin
citric acid
graphene
Humic acid
humic acids
Low molecular weight organic acids
malic acid
polysaccharides
Protein
straw
Title Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin
URI https://dx.doi.org/10.1016/j.biortech.2017.08.082
https://www.ncbi.nlm.nih.gov/pubmed/28863989
https://www.proquest.com/docview/1936165500
https://www.proquest.com/docview/2000550351
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CcIAdEOOzGyBP2jU0iZ3YPlYVqNsEF4bEzbIdGxWVBrXppF32t-_ZSRgcKg6TcnFiR09-jt_PeR8_gK-SOZ5TniWldmkSqoEksvIsQSihcUTqXMx6v74pJ3fs-31xvwHjPhcmhFV2e3-7p8fdursz7GZz-DydDm8D-BYFWiBOMypiHjljPKzyiz__wjzQPkZPAnZOQu9XWcKPF2YaIlqjUyLjsZSnyNcZqHUANBqiqz3Y7RAkGbVCfoQNN9-HD6OHRVdFw-3D9rinccMnryoOHoC9rRdxkyC1J8vVzOtAIR1LTJOmJihpSMNaEo1XjPRwFTG_SfDa17Nf2GhZoCx5autyhtf0HCsNaVm2DuHu6vLneJJ0PAuJLVLWJCbl3jpNjc9N4fELtbqocN4QWXlROs2NtKXOJRo5IRHe-RJRlyi4xPMb6pXSI9ic13N3AiS1lorUe-ENZ5WkhnHuQ2SKZt7bKh1A0U-usl0R8sCFMVN9tNmj6pWiglJUIMkU-QCGL-Oe2zIc746Qve7UmwWl0Fa8O_ZLr2yF2gouFD139WqpEO6WWYmnunR9n5D8hD1okQ3guF0pLzLnQiAkFPLTf0j3GXawJdr_QKew2SxW7gyRUWPO49I_h63Rtx-Tm78jWQ-L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONAeqpZ-LaWtK_UaNomT2D6iFWjbAhdA4mbZjl0t2m7QbrYSl_72zjgJhcOKQ6VcEs9Elif2PMcz8wC-qsKLnIssqYxPE6oGkqg6FAlCCYMaqfcx6_3svJpeFd-vy-stmAy5MBRW2a_93ZoeV-v-ybgfzfHtbDa-IPAtS_RAgmdcUh75ToHTl2gMDv_8i_NABxmPElA6IfEHacI3h3ZGIa3xVCITsZanzDd5qE0INHqik5fwooeQ7Kjr5SvY8os9eH70c9mX0fB7sDsZeNyw5UHJwdfgLpplXCVYE9hqPQ-GOKRjjWnWNgx7SnlYK2bwiqEevmb2jtGxfTP_jTcdDZRjv7rCnPSagWSlZR3N1hu4Ojm-nEyTnmghcWVatIlNRXDecBtyWwacos6UNY4bQqsgK2-EVa4yuUIvJxXiu1Ah7JKlULiBQ8Ny_ha2F83CvweWOsdlGoIMVhS14rYQIlBoiilCcHU6gnIYXO36KuREhjHXQ7jZjR6MoskomlgyZT6C8b3ebVeH40kNNdhOP_qiNDqLJ3W_DMbWaC06QzEL36xXGvFulVW4rUs3y1D2E0rwMhvBu-5Lue9zLiViQqn2_6N3n2F3enl2qk-_nf_4AM-wRXY_hQ5gu12u_UeESa39FKfBXzOnERk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+of+sulfamethazine+to+biochars+as+affected+by+dissolved+organic+matters+of+different+origin&rft.jtitle=Bioresource+technology&rft.au=Jia%2C+Mingyun&rft.au=Wang%2C+Fang&rft.au=Bian%2C+Yongrong&rft.au=Stedtfeld%2C+Robert+D&rft.date=2018-01-01&rft.issn=0960-8524&rft.volume=248+p.36-43&rft.spage=36&rft.epage=43&rft_id=info:doi/10.1016%2Fj.biortech.2017.08.082&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon