Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin
[Display omitted] •Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect o...
Saved in:
Published in | Bioresource technology Vol. 248; no. Pt B; pp. 36 - 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect on the sorption of SMT species.•Sorption of SMT was insignificantly affected by malic acid and sodium alginate.
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption. |
---|---|
AbstractList | [Display omitted]
•Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally enhanced SMT adsorption.•Humic acid restrained the sorption of SMT to biochar produced at 600°C.•Bovine serum albumin showed a complicated effect on the sorption of SMT species.•Sorption of SMT was insignificantly affected by malic acid and sodium alginate.
Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption. Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (K ) on BC600 (1.77mg L g ) than BC300 (0.11mg L g ). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption. Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1−nLng−1) than BC300 (0.11mg1−nLng−1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT− adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption. Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1-nLng-1) than BC300 (0.11mg1-nLng-1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT- adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption.Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were investigated. Results showed that physisorption (partition) and weak chemical binding (π-π EDA interaction) dominated the sorption of SMT to BC300 and BC600, respectively. Graphene sheets in biochar played important roles in the sorption of SMT, leading to higher sorption capacity (Kf) on BC600 (1.77mg1-nLng-1) than BC300 (0.11mg1-nLng-1). Sorption amount of SMT to BC300 was not affected by polysaccharide and malic acid, while it was slightly promoted by citric acid, but dramatically increased 1.25 times by methacrylic acid through decreasing solution pH and providing new sorption sites. Humic acid and bovine serum albumin restrained the sorption of SMT to BC600, but enhanced SMT- adsorption to BC300. The chemical nature of DOM, biochar properties and antibiotic species co-determined the impact of DOM on antibiotics adsorption. |
Author | Stedtfeld, Robert D. Bian, Yongrong Jiang, Xin Liu, Guangxia Jia, Mingyun Yu, Jinping Wang, Fang |
Author_xml | – sequence: 1 givenname: Mingyun surname: Jia fullname: Jia, Mingyun organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 2 givenname: Fang surname: Wang fullname: Wang, Fang email: wangfang@issas.ac.cn organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 3 givenname: Yongrong surname: Bian fullname: Bian, Yongrong organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 4 givenname: Robert D. surname: Stedtfeld fullname: Stedtfeld, Robert D. organization: Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA – sequence: 5 givenname: Guangxia surname: Liu fullname: Liu, Guangxia organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 6 givenname: Jinping surname: Yu fullname: Yu, Jinping organization: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 7 givenname: Xin surname: Jiang fullname: Jiang, Xin organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28863989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVJaZy0fyHMsptx9bBe0EVKSJNAIIu2a6HRXMUyM5IjyYHk11fGSRfdGC4Ioe-cK845QycxRUDoguAlwUR82yyHkHIFt15STOQSqzb0A1oQJVlPtRQnaIG1wL3idHWKzkrZYIwZkfQTOqVKCaaVXiD3K-VtDSl2yXdlN3k7Q13b1xChq6lrS9za5tLZNt6DqzB2w0s3hlLS9NwuKT_aGFw321qhgc1mDI3MEGt7DI8hfkYfvZ0KfHk7z9Gfn9e_r277-4ebu6sf973jeFX7AUvvwLLB04F7IrWzfGwfFgR7JcDKQTthqSaUKc0l92LFheJSYypGv2LsHH09-G5zetpBqWYOxcE02QhpVwxtAXCOGSdHUaKZIKLBuKEXb-humGE02xxmm1_Me4YNEAfA5VRKBv8PIdjsyzIb816W2ZdlsGpDm_D7f0IXqt2XUbMN03H55UEOLdPnANkUFyA6GENuRZkxhWMWfwHh9rUL |
CitedBy_id | crossref_primary_10_1007_s11356_023_28421_z crossref_primary_10_1155_2018_1254529 crossref_primary_10_1016_j_jenvman_2024_123956 crossref_primary_10_1016_j_jtice_2024_105812 crossref_primary_10_1016_j_rsurfi_2025_100438 crossref_primary_10_1016_j_biortech_2019_122163 crossref_primary_10_1016_j_jece_2024_112256 crossref_primary_10_3390_molecules28052247 crossref_primary_10_1016_j_xinn_2021_100180 crossref_primary_10_1038_s41598_024_75443_9 crossref_primary_10_1016_j_jece_2022_108755 crossref_primary_10_5004_dwt_2022_28913 crossref_primary_10_3390_ijerph15071458 crossref_primary_10_1016_j_watres_2018_09_051 crossref_primary_10_1039_C8TA09250H crossref_primary_10_3390_ijerph20031679 crossref_primary_10_1016_j_jclepro_2023_137468 crossref_primary_10_1016_j_chemosphere_2021_132113 crossref_primary_10_1016_j_cej_2018_09_055 crossref_primary_10_1016_j_scitotenv_2024_171634 crossref_primary_10_1016_j_cej_2019_03_007 crossref_primary_10_1016_j_cej_2025_161161 crossref_primary_10_1016_j_jwpe_2025_107338 crossref_primary_10_1016_j_molliq_2018_07_085 crossref_primary_10_1016_j_partic_2024_08_005 crossref_primary_10_1016_j_chemosphere_2024_141677 crossref_primary_10_1016_j_chemosphere_2021_129785 crossref_primary_10_1016_j_jwpe_2025_107499 crossref_primary_10_1016_j_biortech_2022_127546 crossref_primary_10_3390_ijms252312730 crossref_primary_10_1007_s11356_023_27228_2 crossref_primary_10_1016_j_envres_2020_110104 crossref_primary_10_1007_s11356_020_09312_z crossref_primary_10_1007_s11802_021_4412_1 crossref_primary_10_1016_j_jenvman_2021_113530 crossref_primary_10_1007_s13399_023_05074_z crossref_primary_10_1080_10643389_2020_1818497 crossref_primary_10_1016_j_chemosphere_2018_09_081 crossref_primary_10_1016_j_cherd_2022_12_038 crossref_primary_10_1021_acs_est_9b06287 crossref_primary_10_1016_j_envpol_2019_113016 crossref_primary_10_1016_j_ijbiomac_2019_05_039 crossref_primary_10_1016_S1002_0160_21_60026_7 crossref_primary_10_1016_j_jhazmat_2021_125048 crossref_primary_10_1016_j_colsurfa_2021_127473 crossref_primary_10_1016_j_jconhyd_2020_103680 crossref_primary_10_1016_j_colsurfa_2021_126540 crossref_primary_10_1016_j_envpol_2019_113482 crossref_primary_10_1016_j_seppur_2025_132034 crossref_primary_10_1021_acs_chemrev_8b00299 crossref_primary_10_1016_j_cej_2021_130387 crossref_primary_10_5004_dwt_2019_24179 crossref_primary_10_1016_j_chemosphere_2019_124884 crossref_primary_10_1016_j_chemosphere_2022_134597 crossref_primary_10_1016_j_jes_2018_06_019 crossref_primary_10_1038_s41598_021_81314_4 crossref_primary_10_3390_ijerph19031702 crossref_primary_10_1016_j_biortech_2019_121927 crossref_primary_10_1016_j_scitotenv_2018_02_251 crossref_primary_10_1016_j_ecoenv_2021_112175 crossref_primary_10_1016_j_ecoenv_2022_114113 crossref_primary_10_1016_j_jhazmat_2021_126692 crossref_primary_10_1007_s11783_023_1671_7 crossref_primary_10_1016_j_cej_2019_122785 crossref_primary_10_1007_s11368_024_03929_0 crossref_primary_10_1016_j_scitotenv_2025_178829 crossref_primary_10_1007_s42832_019_0008_8 crossref_primary_10_1016_j_carbon_2020_03_010 crossref_primary_10_1016_j_cej_2020_124611 crossref_primary_10_1007_s10653_024_01936_1 crossref_primary_10_1016_j_jece_2023_110265 crossref_primary_10_1016_j_ecoenv_2019_109656 crossref_primary_10_1007_s13762_022_04116_9 crossref_primary_10_1016_j_chemosphere_2024_141172 crossref_primary_10_1016_j_jclepro_2022_130949 crossref_primary_10_1016_j_chemosphere_2023_140419 crossref_primary_10_1007_s11270_020_04769_7 crossref_primary_10_1016_j_jhazmat_2021_125908 crossref_primary_10_1021_acs_langmuir_2c00482 crossref_primary_10_1039_C8EW00952J crossref_primary_10_1016_j_scitotenv_2023_161693 crossref_primary_10_1016_j_colsurfa_2024_133244 crossref_primary_10_1016_S1002_0160_18_60063_3 crossref_primary_10_1007_s11771_025_5861_2 crossref_primary_10_1016_j_envres_2022_113953 crossref_primary_10_1080_10643389_2020_1835436 crossref_primary_10_1007_s42773_022_00201_x |
Cites_doi | 10.1016/j.biortech.2006.11.060 10.1016/j.biortech.2014.01.120 10.1016/j.biortech.2009.09.062 10.1631/jzus.A0820524 10.1016/j.chroma.2010.10.097 10.1016/j.seppur.2013.11.025 10.1016/j.jhazmat.2005.12.043 10.1111/ejss.12227 10.1016/j.jhazmat.2013.07.073 10.1016/j.biortech.2012.11.146 10.1016/j.envpol.2015.05.030 10.1365/s10337-003-0140-5 10.1016/j.envpol.2016.04.017 10.1016/j.envpol.2008.03.011 10.1021/es200483b 10.1016/j.biortech.2013.02.098 10.1021/es202487h 10.1016/j.orggeochem.2015.06.005 10.1016/j.cej.2014.03.021 10.1016/j.chemosphere.2006.03.026 10.1016/j.biortech.2017.04.042 10.1016/j.cej.2016.05.064 10.1016/j.jhazmat.2015.02.046 10.1016/j.scitotenv.2016.03.235 10.1016/j.cej.2008.01.028 10.1016/j.biortech.2014.05.029 10.1016/j.chemosphere.2016.03.083 10.1016/j.cej.2012.12.099 10.1021/es0342087 10.1016/j.jhazmat.2015.08.025 10.1016/j.envpol.2011.01.006 10.1021/acs.est.5b00729 10.1021/es303189f 10.1016/j.biortech.2016.10.033 10.1038/nrmicro2312 10.1021/es8002684 10.1016/j.colsurfb.2009.10.031 10.1016/j.jhazmat.2017.03.064 10.1007/s11356-014-3632-y 10.1021/es201859j |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.08.082 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 43 |
ExternalDocumentID | 28863989 10_1016_j_biortech_2017_08_082 S0960852417313871 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-b07fcea3bf2b5f179ca5d317610f86ea7b9c6a2912389575f64568579026df433 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 11:26:05 EDT 2025 Fri Jul 11 08:07:43 EDT 2025 Mon Jul 21 05:57:44 EDT 2025 Tue Jul 01 02:06:52 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 23 02:19:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Antibiotics Biochar Low molecular weight organic acids Protein Humic acid |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-b07fcea3bf2b5f179ca5d317610f86ea7b9c6a2912389575f64568579026df433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28863989 |
PQID | 1936165500 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000550351 proquest_miscellaneous_1936165500 pubmed_primary_28863989 crossref_primary_10_1016_j_biortech_2017_08_082 crossref_citationtrail_10_1016_j_biortech_2017_08_082 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_08_082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 2018-Jan 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Haham, Oren, Chefetz (b0060) 2012; 46 Jia, Wang, Bian, Yang, Gu, Song, Jiang (b0090) 2014; 46 Qiu, Lv, Pan, Zhang, Zhang, Zhang (b0160) 2009; 10 Sarmah, Meyer, Boxall (b0180) 2006; 65 Li, Zhang, Wu, Liu, Lv (b0120) 2017; 334 Zhang, Ying, Pan, Liu, Zhao (b0215) 2015; 49 Caceres-Jensen, Rodriguez-Becerra, Parra-Rivero, Escudey, Barrientos, Castro-Castillo (b0025) 2013; 261 Xiang, Sun, Zheng, Li, Li, Wong, Cai, Mo (b0205) 2016; 560–561 Figueroa, Leonard, Mackay (b0040) 2004; 38 Ho (b0055) 2006; 136 Hou, Wan, Mao, Wang, Mu, Qin, Luo (b0070) 2015; 22 Jia, Wang, Bian, Jin, Song, Fredrick, Xu, Jiang (b0085) 2013; 136 Lian, Sun, Song, Zhu, Qi, Xing (b0135) 2014; 248 Carda-Broch, Berthod (b0030) 2004; 59 Allen, Donato, Wang, Cloud-Hansen, Davies, Handelsman (b0010) 2010; 8 Ji, Wan, Zheng, Zhu (b0080) 2011; 45 Sun, Lian, Bao, Liu, Song, Zhu (b0185) 2016; 214 Aust, Godlinski, Travis, Hao, McAllister, Leinweber, Bruhn (b0015) 2008; 158 Rajapaksha, Vithanage, Zhang, Ahmad, Mohan, Chang, Ok (b0175) 2014; 166 Ling, Sun, Gao, Xu, Li (b0140) 2015; 66 Qu, Wang, Tong, Wu (b0165) 2010; 1217 Keiblinger, Liu, Mentler, Zehetner, Boltenstern (b0105) 2015; 87 Mohan, Sarswat, Ok, Pittman (b0145) 2014; 160 Hameed, Tan, Ahmad (b0065) 2008; 144 Panic, Velickovic (b0195) 2014; 122 Jung, Phal, Oh, Chu, Jang, Yoon (b0100) 2015; 300 Jia, Wang, Jin, Song, Bian, Lisa, Yang, Gu, Jiang, Zhao (b0095) 2016; 304 Binupriya, Sathishkumar, Ku, Yun (b0020) 2010; 76 Rajapaksha, Vithanage, Ahmad, Seo, Cho, Lee, Ok (b0170) 2015; 290 Ahmed, Zhou, Ngo, Guo, Johir, Belhaj (b0005) 2017; 238 Ni, Pignatello, Xing (b0150) 2011; 45 Li, Pignatello, Wang, Xing (b0125) 2013; 47 Hsu, Pan (b0075) 2007; 98 Lian, Sun, Chen, Zhu, Liu, Xing (b0130) 2015; 204 Lei, Hu, He (b0110) 2013; 219 Chen, Zhou, Zhu (b0035) 2008; 42 Li, Mahyoub, Liao, Xia, Zhao, Guo, Ma (b0115) 2017; 223 Teixidó, Pignatello, Beltrán, Granados, Peccia (b0190) 2011; 45 Yu, Li, Han, Ma (b0210) 2016; 153 Wei, Fang, Cai, Huang, Chen, Liang, Rong (b0200) 2011; 159 Foo, Hameed (b0045) 2013; 130 Gao, Ren, Ling, Gong, Sun, Zhang (b0050) 2010; 101 Pignatello (b0155) 2013 Caceres-Jensen (10.1016/j.biortech.2017.08.082_b0025) 2013; 261 Jia (10.1016/j.biortech.2017.08.082_b0085) 2013; 136 Ji (10.1016/j.biortech.2017.08.082_b0080) 2011; 45 Aust (10.1016/j.biortech.2017.08.082_b0015) 2008; 158 Rajapaksha (10.1016/j.biortech.2017.08.082_b0170) 2015; 290 Xiang (10.1016/j.biortech.2017.08.082_b0205) 2016; 560–561 Sarmah (10.1016/j.biortech.2017.08.082_b0180) 2006; 65 Sun (10.1016/j.biortech.2017.08.082_b0185) 2016; 214 Li (10.1016/j.biortech.2017.08.082_b0120) 2017; 334 Binupriya (10.1016/j.biortech.2017.08.082_b0020) 2010; 76 Qu (10.1016/j.biortech.2017.08.082_b0165) 2010; 1217 Ni (10.1016/j.biortech.2017.08.082_b0150) 2011; 45 Zhang (10.1016/j.biortech.2017.08.082_b0215) 2015; 49 Allen (10.1016/j.biortech.2017.08.082_b0010) 2010; 8 Haham (10.1016/j.biortech.2017.08.082_b0060) 2012; 46 Wei (10.1016/j.biortech.2017.08.082_b0200) 2011; 159 Jia (10.1016/j.biortech.2017.08.082_b0095) 2016; 304 Yu (10.1016/j.biortech.2017.08.082_b0210) 2016; 153 Hameed (10.1016/j.biortech.2017.08.082_b0065) 2008; 144 Keiblinger (10.1016/j.biortech.2017.08.082_b0105) 2015; 87 Figueroa (10.1016/j.biortech.2017.08.082_b0040) 2004; 38 Foo (10.1016/j.biortech.2017.08.082_b0045) 2013; 130 Jung (10.1016/j.biortech.2017.08.082_b0100) 2015; 300 Hou (10.1016/j.biortech.2017.08.082_b0070) 2015; 22 Jia (10.1016/j.biortech.2017.08.082_b0090) 2014; 46 Ahmed (10.1016/j.biortech.2017.08.082_b0005) 2017; 238 Panic (10.1016/j.biortech.2017.08.082_b0195) 2014; 122 Carda-Broch (10.1016/j.biortech.2017.08.082_b0030) 2004; 59 Hsu (10.1016/j.biortech.2017.08.082_b0075) 2007; 98 Lei (10.1016/j.biortech.2017.08.082_b0110) 2013; 219 Gao (10.1016/j.biortech.2017.08.082_b0050) 2010; 101 Ling (10.1016/j.biortech.2017.08.082_b0140) 2015; 66 Li (10.1016/j.biortech.2017.08.082_b0115) 2017; 223 Li (10.1016/j.biortech.2017.08.082_b0125) 2013; 47 Teixidó (10.1016/j.biortech.2017.08.082_b0190) 2011; 45 Chen (10.1016/j.biortech.2017.08.082_b0035) 2008; 42 Ho (10.1016/j.biortech.2017.08.082_b0055) 2006; 136 Lian (10.1016/j.biortech.2017.08.082_b0135) 2014; 248 Lian (10.1016/j.biortech.2017.08.082_b0130) 2015; 204 Pignatello (10.1016/j.biortech.2017.08.082_b0155) 2013 Qiu (10.1016/j.biortech.2017.08.082_b0160) 2009; 10 Rajapaksha (10.1016/j.biortech.2017.08.082_b0175) 2014; 166 Mohan (10.1016/j.biortech.2017.08.082_b0145) 2014; 160 |
References_xml | – volume: 45 start-page: 9240 year: 2011 end-page: 9248 ident: b0150 article-title: Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water publication-title: Environ. Sci. Technol. – volume: 45 start-page: 10020 year: 2011 end-page: 10027 ident: b0190 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 46 start-page: 11870 year: 2012 end-page: 11877 ident: b0060 article-title: Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils publication-title: Environ. Sci. Technol. – volume: 1217 start-page: 8205 year: 2010 end-page: 8211 ident: b0165 article-title: Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure publication-title: J. Chromatogr. A – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: b0145 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review publication-title: Bioresour. Technol. – volume: 59 start-page: 79 year: 2004 end-page: 87 ident: b0030 article-title: Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds publication-title: Chromatographia – volume: 223 start-page: 20 year: 2017 end-page: 26 ident: b0115 article-title: Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue publication-title: Bioresour. Technol. – volume: 22 start-page: 4545 year: 2015 end-page: 4554 ident: b0070 article-title: Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China publication-title: Environ. Sci. Pollut. Res. – volume: 238 start-page: 306 year: 2017 end-page: 312 ident: b0005 article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment publication-title: Bioresour. Technol. – volume: 76 start-page: 179 year: 2010 end-page: 185 ident: b0020 article-title: Sequestration of Reactive Blue 4 by free and immobilized publication-title: Colloids Surf. B – volume: 46 start-page: 489 year: 2014 end-page: 497 ident: b0090 article-title: Influencing factors of Cu2+ sorption to straw-derived biochar publication-title: Soils – volume: 219 start-page: 361 year: 2013 end-page: 370 ident: b0110 article-title: Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites publication-title: Chem. Eng. J. – volume: 136 start-page: 103 year: 2006 end-page: 111 ident: b0055 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard. Mater. – volume: 153 start-page: 365 year: 2016 end-page: 385 ident: b0210 article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials publication-title: Chemosphere – volume: 300 start-page: 808 year: 2015 end-page: 814 ident: b0100 article-title: Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar publication-title: J. Hazard. Mater. – volume: 204 start-page: 306 year: 2015 end-page: 312 ident: b0130 article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars publication-title: Environ. Pollut. – volume: 158 start-page: 1243 year: 2008 end-page: 1251 ident: b0015 article-title: Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle publication-title: Environ. Pollut. – volume: 45 start-page: 5580 year: 2011 end-page: 5586 ident: b0080 article-title: Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption publication-title: Environ. Sci. Technol. – volume: 38 start-page: 476 year: 2004 end-page: 483 ident: b0040 article-title: Modeling tetracycline antibiotic sorption to clays publication-title: Environ. Sci. Technol. – volume: 10 start-page: 714 year: 2009 end-page: 724 ident: b0160 article-title: Critical review in adsorption kinetic models publication-title: J. Zhejiang Univ. Sci. A – volume: 166 start-page: 303 year: 2014 end-page: 308 ident: b0175 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. – volume: 47 start-page: 8334 year: 2013 end-page: 8341 ident: b0125 article-title: New insight into adsorption mechanism of ionizable compounds on carbon nanotubes publication-title: Environ. Sci. Technol. – volume: 214 start-page: 142 year: 2016 end-page: 148 ident: b0185 article-title: Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole publication-title: Environ. Pollut. – volume: 122 start-page: 284 year: 2014 end-page: 394 ident: b0195 article-title: Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis publication-title: Sep. Purif. Technol. – volume: 66 start-page: 339 year: 2015 end-page: 347 ident: b0140 article-title: Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil publication-title: Eur. J. Soil Sci. – volume: 248 start-page: 128 year: 2014 end-page: 134 ident: b0135 article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole publication-title: Chem. Eng. J. – start-page: 359 year: 2013 end-page: 385 ident: b0155 article-title: Adsorption of dissolved organic compounds by black carbon publication-title: Molecular Environmental Soil Science, Progress in Soil Science – volume: 290 start-page: 43 year: 2015 end-page: 50 ident: b0170 article-title: Enhanced sulfamethazine removal by steam–activated invasive plant-derived biochar publication-title: J. Hazard. Mater. – volume: 65 start-page: 725 year: 2006 end-page: 759 ident: b0180 article-title: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment publication-title: Chemosphere – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: b0215 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. – volume: 261 start-page: 602 year: 2013 end-page: 613 ident: b0025 article-title: Sorption kinetics of diuron on volcanic ash derived soils publication-title: J. Hazard. Mater. – volume: 87 start-page: 21 year: 2015 end-page: 24 ident: b0105 article-title: Biochar application reduces protein sorption in soil publication-title: Org. Geochem. – volume: 101 start-page: 1159 year: 2010 end-page: 1165 ident: b0050 article-title: Desorption of phenanthrene and pyrene in soils by root exudates publication-title: Bioresour. Technol. – volume: 334 start-page: 86 year: 2017 end-page: 92 ident: b0120 article-title: Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance publication-title: J. Hazard. Mater. – volume: 144 start-page: 235 year: 2008 end-page: 244 ident: b0065 article-title: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon publication-title: Chem. Eng. J. – volume: 304 start-page: 934 year: 2016 end-page: 940 ident: b0095 article-title: Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures publication-title: Chem. Eng. J. – volume: 130 start-page: 696 year: 2013 end-page: 702 ident: b0045 article-title: Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular actibated carbon by microwave induced KOH activation publication-title: Bioresour. Technol. – volume: 8 start-page: 251 year: 2010 end-page: 259 ident: b0010 article-title: Call of the wild: antibiotic resistance genes in natural environments publication-title: Nat. Rev. Microbiol. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: b0035 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 98 start-page: 3617 year: 2007 end-page: 3621 ident: b0075 article-title: Adsorption of paraquat using methacrylic acid-modified rice husk publication-title: Bioresour. Technol. – volume: 560–561 start-page: 197 year: 2016 end-page: 203 ident: b0205 article-title: Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils publication-title: Sci. Total Environ. – volume: 159 start-page: 1369 year: 2011 end-page: 1374 ident: b0200 article-title: Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria publication-title: Environ. Pollut. – volume: 136 start-page: 87 year: 2013 end-page: 93 ident: b0085 article-title: Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar publication-title: Bioresour. Technol. – volume: 98 start-page: 3617 year: 2007 ident: 10.1016/j.biortech.2017.08.082_b0075 article-title: Adsorption of paraquat using methacrylic acid-modified rice husk publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.11.060 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.biortech.2017.08.082_b0145 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 101 start-page: 1159 year: 2010 ident: 10.1016/j.biortech.2017.08.082_b0050 article-title: Desorption of phenanthrene and pyrene in soils by root exudates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.09.062 – volume: 10 start-page: 714 issue: 5 year: 2009 ident: 10.1016/j.biortech.2017.08.082_b0160 article-title: Critical review in adsorption kinetic models publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A0820524 – volume: 1217 start-page: 8205 year: 2010 ident: 10.1016/j.biortech.2017.08.082_b0165 article-title: Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.10.097 – volume: 122 start-page: 284 year: 2014 ident: 10.1016/j.biortech.2017.08.082_b0195 article-title: Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.11.025 – volume: 136 start-page: 103 year: 2006 ident: 10.1016/j.biortech.2017.08.082_b0055 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.12.043 – volume: 66 start-page: 339 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0140 article-title: Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12227 – volume: 261 start-page: 602 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0025 article-title: Sorption kinetics of diuron on volcanic ash derived soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.07.073 – volume: 130 start-page: 696 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0045 article-title: Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular actibated carbon by microwave induced KOH activation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.146 – volume: 204 start-page: 306 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0130 article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.05.030 – volume: 59 start-page: 79 issue: 1–2 year: 2004 ident: 10.1016/j.biortech.2017.08.082_b0030 article-title: Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds publication-title: Chromatographia doi: 10.1365/s10337-003-0140-5 – volume: 214 start-page: 142 year: 2016 ident: 10.1016/j.biortech.2017.08.082_b0185 article-title: Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.017 – volume: 158 start-page: 1243 year: 2008 ident: 10.1016/j.biortech.2017.08.082_b0015 article-title: Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.03.011 – volume: 45 start-page: 5580 year: 2011 ident: 10.1016/j.biortech.2017.08.082_b0080 article-title: Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption publication-title: Environ. Sci. Technol. doi: 10.1021/es200483b – volume: 136 start-page: 87 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0085 article-title: Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.02.098 – volume: 45 start-page: 10020 year: 2011 ident: 10.1016/j.biortech.2017.08.082_b0190 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es202487h – volume: 87 start-page: 21 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0105 article-title: Biochar application reduces protein sorption in soil publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2015.06.005 – volume: 248 start-page: 128 year: 2014 ident: 10.1016/j.biortech.2017.08.082_b0135 article-title: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.021 – volume: 65 start-page: 725 year: 2006 ident: 10.1016/j.biortech.2017.08.082_b0180 article-title: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.026 – volume: 238 start-page: 306 year: 2017 ident: 10.1016/j.biortech.2017.08.082_b0005 article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.042 – volume: 304 start-page: 934 year: 2016 ident: 10.1016/j.biortech.2017.08.082_b0095 article-title: Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.05.064 – volume: 290 start-page: 43 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0170 article-title: Enhanced sulfamethazine removal by steam–activated invasive plant-derived biochar publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.046 – volume: 560–561 start-page: 197 year: 2016 ident: 10.1016/j.biortech.2017.08.082_b0205 article-title: Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.235 – volume: 144 start-page: 235 year: 2008 ident: 10.1016/j.biortech.2017.08.082_b0065 article-title: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.01.028 – volume: 166 start-page: 303 year: 2014 ident: 10.1016/j.biortech.2017.08.082_b0175 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.029 – volume: 153 start-page: 365 year: 2016 ident: 10.1016/j.biortech.2017.08.082_b0210 article-title: Adsorptive removal of antibiotics from aqueous solution using carbon materials publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.03.083 – volume: 219 start-page: 361 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0110 article-title: Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.099 – volume: 38 start-page: 476 year: 2004 ident: 10.1016/j.biortech.2017.08.082_b0040 article-title: Modeling tetracycline antibiotic sorption to clays publication-title: Environ. Sci. Technol. doi: 10.1021/es0342087 – volume: 300 start-page: 808 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0100 article-title: Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.08.025 – volume: 159 start-page: 1369 year: 2011 ident: 10.1016/j.biortech.2017.08.082_b0200 article-title: Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.01.006 – volume: 49 start-page: 6772 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0215 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 46 start-page: 11870 issue: 21 year: 2012 ident: 10.1016/j.biortech.2017.08.082_b0060 article-title: Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils publication-title: Environ. Sci. Technol. doi: 10.1021/es303189f – volume: 46 start-page: 489 year: 2014 ident: 10.1016/j.biortech.2017.08.082_b0090 article-title: Influencing factors of Cu2+ sorption to straw-derived biochar publication-title: Soils – volume: 223 start-page: 20 year: 2017 ident: 10.1016/j.biortech.2017.08.082_b0115 article-title: Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.10.033 – volume: 8 start-page: 251 year: 2010 ident: 10.1016/j.biortech.2017.08.082_b0010 article-title: Call of the wild: antibiotic resistance genes in natural environments publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2312 – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.biortech.2017.08.082_b0035 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 76 start-page: 179 year: 2010 ident: 10.1016/j.biortech.2017.08.082_b0020 article-title: Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2009.10.031 – volume: 334 start-page: 86 year: 2017 ident: 10.1016/j.biortech.2017.08.082_b0120 article-title: Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.03.064 – volume: 22 start-page: 4545 year: 2015 ident: 10.1016/j.biortech.2017.08.082_b0070 article-title: Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3632-y – volume: 45 start-page: 9240 year: 2011 ident: 10.1016/j.biortech.2017.08.082_b0150 article-title: Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water publication-title: Environ. Sci. Technol. doi: 10.1021/es201859j – volume: 47 start-page: 8334 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0125 article-title: New insight into adsorption mechanism of ionizable compounds on carbon nanotubes publication-title: Environ. Sci. Technol. – start-page: 359 year: 2013 ident: 10.1016/j.biortech.2017.08.082_b0155 article-title: Adsorption of dissolved organic compounds by black carbon |
SSID | ssj0003172 |
Score | 2.5276346 |
Snippet | [Display omitted]
•Sorption mechanism of sulfamethazine (SMT) to different biochars was observed.•The presence of methacrylic and citric acids generally... Sorption characteristic of sulfamethazine (SMT) to straw biochars pyrolyzed at 300°C (BC300) and 600°C (BC600), and the effect of ubiquitous DOM were... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | adsorption Antibiotics Biochar bovine serum albumin citric acid graphene Humic acid humic acids Low molecular weight organic acids malic acid polysaccharides Protein straw |
Title | Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin |
URI | https://dx.doi.org/10.1016/j.biortech.2017.08.082 https://www.ncbi.nlm.nih.gov/pubmed/28863989 https://www.proquest.com/docview/1936165500 https://www.proquest.com/docview/2000550351 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CcIAdEOOzGyBP2jU0iZ3YPlYVqNsEF4bEzbIdGxWVBrXppF32t-_ZSRgcKg6TcnFiR09-jt_PeR8_gK-SOZ5TniWldmkSqoEksvIsQSihcUTqXMx6v74pJ3fs-31xvwHjPhcmhFV2e3-7p8fdursz7GZz-DydDm8D-BYFWiBOMypiHjljPKzyiz__wjzQPkZPAnZOQu9XWcKPF2YaIlqjUyLjsZSnyNcZqHUANBqiqz3Y7RAkGbVCfoQNN9-HD6OHRVdFw-3D9rinccMnryoOHoC9rRdxkyC1J8vVzOtAIR1LTJOmJihpSMNaEo1XjPRwFTG_SfDa17Nf2GhZoCx5autyhtf0HCsNaVm2DuHu6vLneJJ0PAuJLVLWJCbl3jpNjc9N4fELtbqocN4QWXlROs2NtKXOJRo5IRHe-RJRlyi4xPMb6pXSI9ic13N3AiS1lorUe-ENZ5WkhnHuQ2SKZt7bKh1A0U-usl0R8sCFMVN9tNmj6pWiglJUIMkU-QCGL-Oe2zIc746Qve7UmwWl0Fa8O_ZLr2yF2gouFD139WqpEO6WWYmnunR9n5D8hD1okQ3guF0pLzLnQiAkFPLTf0j3GXawJdr_QKew2SxW7gyRUWPO49I_h63Rtx-Tm78jWQ-L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONAeqpZ-LaWtK_UaNomT2D6iFWjbAhdA4mbZjl0t2m7QbrYSl_72zjgJhcOKQ6VcEs9Elif2PMcz8wC-qsKLnIssqYxPE6oGkqg6FAlCCYMaqfcx6_3svJpeFd-vy-stmAy5MBRW2a_93ZoeV-v-ybgfzfHtbDa-IPAtS_RAgmdcUh75ToHTl2gMDv_8i_NABxmPElA6IfEHacI3h3ZGIa3xVCITsZanzDd5qE0INHqik5fwooeQ7Kjr5SvY8os9eH70c9mX0fB7sDsZeNyw5UHJwdfgLpplXCVYE9hqPQ-GOKRjjWnWNgx7SnlYK2bwiqEevmb2jtGxfTP_jTcdDZRjv7rCnPSagWSlZR3N1hu4Ojm-nEyTnmghcWVatIlNRXDecBtyWwacos6UNY4bQqsgK2-EVa4yuUIvJxXiu1Ah7JKlULiBQ8Ny_ha2F83CvweWOsdlGoIMVhS14rYQIlBoiilCcHU6gnIYXO36KuREhjHXQ7jZjR6MoskomlgyZT6C8b3ebVeH40kNNdhOP_qiNDqLJ3W_DMbWaC06QzEL36xXGvFulVW4rUs3y1D2E0rwMhvBu-5Lue9zLiViQqn2_6N3n2F3enl2qk-_nf_4AM-wRXY_hQ5gu12u_UeESa39FKfBXzOnERk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+of+sulfamethazine+to+biochars+as+affected+by+dissolved+organic+matters+of+different+origin&rft.jtitle=Bioresource+technology&rft.au=Jia%2C+Mingyun&rft.au=Wang%2C+Fang&rft.au=Bian%2C+Yongrong&rft.au=Stedtfeld%2C+Robert+D&rft.date=2018-01-01&rft.issn=0960-8524&rft.volume=248+p.36-43&rft.spage=36&rft.epage=43&rft_id=info:doi/10.1016%2Fj.biortech.2017.08.082&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |