A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex
Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we...
Saved in:
Published in | BMC bioinformatics Vol. 20; no. 1; pp. 470 - 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
14.09.2019
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. |
---|---|
AbstractList | Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. Abstract Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (symmetric, asymmetric, neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Additional information is provided on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. 2 Introduction The multiple functions of the mammalian cerebral cortex in integrating sensory stimuli, controlling motor output and mediating cognitive functions are supported by an extraordinary diversity of neuronal sub-types mutually connected through complex neuronal circuitry. The formation of this structure requires producing the correct numbers and subtypes of neurons at the proper position during a specific period Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool.BACKGROUNDNeurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool.A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction.RESULTSA multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction.Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.CONCLUSIONSApplying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. |
ArticleNumber | 470 |
Author | Postel, Marie Karam, Alice Schneider-Maunoury, Sylvie Pézeron, Guillaume Clément, Frédérique |
Author_xml | – sequence: 1 givenname: Marie orcidid: 0000-0002-5437-0547 surname: Postel fullname: Postel, Marie – sequence: 2 givenname: Alice surname: Karam fullname: Karam, Alice – sequence: 3 givenname: Guillaume surname: Pézeron fullname: Pézeron, Guillaume – sequence: 4 givenname: Sylvie surname: Schneider-Maunoury fullname: Schneider-Maunoury, Sylvie – sequence: 5 givenname: Frédérique surname: Clément fullname: Clément, Frédérique |
BackLink | https://inria.hal.science/hal-01783141$$DView record in HAL |
BookMark | eNp9Ustu1DAUjVARfcAHsIvEBhYBX8evbJBGFdBKI7GBteXYNzMeJXaxk6r9exymQnQW3IUf1-cc39dldRZiwKp6C-QjgBKfMlDFu4ZA17QEVKNeVBfAJDQUCD_753xeXeZ8IASkIvxVdd4Cp1DsojKbelrG2WdrRqwnM--xLL7c6ik6HOs41BbHsXaPwUze5totyYddHXBJcYcBs8-1D3UhFsaSscAT9qkI2JhmfHhdvRzMmPHN035V_fz65cf1TbP9_u32erNtLCdsbkxnlcNilA-ctoMghIPoB6S0Y-CgRdMZLqyTprfWIbWDFAiAg3HcCNteVbdHXRfNQd8lP5n0qKPx-o8jpp02qWQ2ohYDZ4oJBx2hzBjRcdlSlFwx1VPoV63PR627pZ_QWQxzSeiZ6POX4Pd6F--1kIyJDorAh6PA_oR2s9nq1be2ogUG97Rg3z99luKvBfOsp9KOUnMTsBRUlwKQTkomVtl3J9BDXFIoZV1RVCpJKC8oOKJsijknHP5GAESvg6OPg1OC6PQ6OFoVjjzhWD-XQYhrfn78D_M3-mXI5A |
CitedBy_id | crossref_primary_10_1093_texcom_tgaa063 crossref_primary_10_1016_j_nbd_2020_105236 crossref_primary_10_1016_j_cdev_2023_203849 crossref_primary_10_1016_j_cub_2022_03_004 crossref_primary_10_1016_j_conb_2020_10_014 crossref_primary_10_1016_j_mbs_2024_109185 crossref_primary_10_3389_fcell_2021_630161 crossref_primary_10_1016_j_coemr_2021_02_003 crossref_primary_10_7554_eLife_58162 |
Cites_doi | 10.1038/nrn4021 10.1016/j.neuron.2007.12.028 10.1038/nn.3525 10.1242/dev.090571 10.1137/15M1030327 10.1371/journal.pbio.1002217 10.1242/dev.153544 10.1016/j.neuron.2004.12.036 10.1111/j.1539-6924.1996.tb01092.x 10.1097/WCO.0b013e3283444d05 10.1242/dev.059808 10.1523/JNEUROSCI.2199-18.2019 10.1016/j.neuron.2007.04.019 10.1038/nrn2097 10.1093/cercor/bhu125 10.1073/pnas.1409271111 10.1002/ajmg.c.30231 10.1093/hmg/ddv221 10.1093/cercor/bhl151 10.1242/dev.138271 10.1038/nrn2151 10.1098/rsif.2014.0144 10.1073/pnas.0308600100 10.1016/j.neuron.2013.09.032 10.1093/cercor/bhn112 10.3389/fnins.2018.00571 10.1093/cercor/13.6.592 10.1242/dev.003715 10.1038/nn.4307 10.1523/JNEUROSCI.2899-04.2005 10.1038/nn1172 10.1371/journal.pcbi.1004814 10.1093/cercor/bhw264 10.1038/srep13265 10.1038/s41540-017-0017-0 10.1007/s00158-003-0368-6 10.1093/cercor/bhn260 10.1093/cercor/bhy068 10.1002/embr.201438447 10.1038/ng2039 10.1016/j.cell.2018.06.007 10.1016/j.ydbio.2005.04.005 10.1186/s12918-017-0468-3 10.1038/nrn3586 10.1111/j.1365-2184.2009.00627.x 10.1016/j.ceb.2012.01.010 10.1046/j.1365-2184.2003.00257.x 10.1016/0025-5564(70)90132-X 10.3389/fncel.2015.00070 10.1242/dev.01173 10.1038/ncomms1155 10.1007/s11538-016-0163-3 10.4161/19336918.2014.969990 10.1016/j.jtbi.2018.08.019 10.1371/journal.pone.0002388 10.1016/j.neuroimage.2012.06.066 10.1242/dev.101907 10.1016/j.jtbi.2008.09.034 10.1007/3-540-32494-1_4 10.1007/s12064-010-0107-7 10.1016/j.neuroimage.2013.01.017 10.1038/ncomms10936 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2019 |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2019 |
DBID | AAYXX CITATION 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1186/s12859-019-3018-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest - Health and Medical ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_6f54846d19024aa695732e75848b21bc PMC6744691 oai_HAL_hal_01783141v2 10_1186_s12859_019_3018_8 |
GrantInformation_xml | – fundername: ; grantid: `CILIAINTHEBRAIN', project 11-BSV2-0006 – fundername: ; grantid: FRM DEQ20140329544 – fundername: ; grantid: PJA 20171206591 – fundername: ; grantid: SU- 15-R-EMR-05 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB 3V. 7QO 7SC 7XB 8AL 8FD 8FK EJD FR3 JQ2 K9. L7M L~C L~D M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 123 1XC 2VQ 4.4 ADRAZ AHSBF C1A H13 IPNFZ PUEGO RIG VOOES 5PM |
ID | FETCH-LOGICAL-c504t-a9c8deeee25f523f600516bfe22941d13ea9a56cd7abccde2cf76e11efad5a6c3 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:24:16 EDT 2025 Thu Aug 21 13:50:44 EDT 2025 Tue Aug 26 06:21:26 EDT 2025 Fri Jul 11 07:19:25 EDT 2025 Fri Jul 25 10:49:42 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 03:38:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Numerical simulations Development of the cerebral cortex Cell cycle indexes Mouse mutant for Ftm/Rpgrip1l Time varying transfer rates Neural progenitors Neurogenesis Cell dynamics Multiscale mathematical modeling |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-a9c8deeee25f523f600516bfe22941d13ea9a56cd7abccde2cf76e11efad5a6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5437-0547 0000-0003-1395-6397 0000-0002-0797-4735 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-019-3018-8 |
PMID | 31521111 |
PQID | 2292787025 |
PQPubID | 44065 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f54846d19024aa695732e75848b21bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744691 hal_primary_oai_HAL_hal_01783141v2 proquest_miscellaneous_2290977461 proquest_journals_2292787025 crossref_primary_10_1186_s12859_019_3018_8 crossref_citationtrail_10_1186_s12859_019_3018_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-14 |
PublicationDateYYYYMMDD | 2019-09-14 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | BMC bioinformatics |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | M Delous (3018_CR30) 2007; 39 C Englund (3018_CR37) 2005; 25 P Arlotta (3018_CR38) 2004; 45 J Lee (3018_CR33) 2011; 24 L Besse (3018_CR31) 2011; 138 B Martynoga (3018_CR47) 2005; 283 L Wang (3018_CR45) 2016; 19 M Okamoto (3018_CR41) 2013; 16 A Cárdenas (3018_CR58) 2018; 174 H Tabata (3018_CR35) 2015; 9 T Miyata (3018_CR5) 2004; 131 DG Míguez (3018_CR10) 2015; 19 FD Miller (3018_CR34) 2007; 54 W Wang (3018_CR59) 2016; 7 M Florio (3018_CR14) 2014; 141 J Laussu (3018_CR24) 2014; 8 B Molyneaux (3018_CR1) 2007; 8 VSJr Caviness (3018_CR22) 2003; 13 K Baker (3018_CR32) 2009; 151C W Haubensak (3018_CR7) 2004; 101 T Kowalczyk (3018_CR46) 2009; 19 R Bellman (3018_CR54) 1970; 7 S Baloch (3018_CR50) 2008; 19 J Hasenauer (3018_CR27) 2012; 74 NJ Savill (3018_CR17) 2003; 36 E Calabrese (3018_CR51) 2013; 71 3018_CR57 3018_CR16 J Vierkotten (3018_CR29) 2007; 134 O Britanova (3018_CR39) 2008; 57 C Laclef (3018_CR48) 2015; 24 C Gaser (3018_CR52) 2012; 63 Y Arai (3018_CR6) 2011; 2 NA Vasistha (3018_CR9) 2014; 25 B Li (3018_CR19) 2017; 11 M Betizeau (3018_CR43) 2013; 80 HR MacMillan (3018_CR11) 2011; 130 A Andreu-Cervera (3018_CR49) 2019; 39 SC Noctor (3018_CR4) 2004; 7 LC Greig (3018_CR3) 2013; 14 CC Homem (3018_CR26) 2015; 16 3018_CR61 JL Slater (3018_CR12) 2009; 256 C Dehay (3018_CR65) 2007; 8 RT Marler (3018_CR44) 2004; 26 (3018_CR56) 2006 MN Manuel (3018_CR2) 2015; 9 JM Gohlke (3018_CR13) 2007; 17 3018_CR25 B Aymard (3018_CR36) 2016; 76 FK Wong (3018_CR40) 2015; 13 3018_CR21 JT Paridaen (3018_CR60) 2014; 15 3018_CR20 A Attardo (3018_CR8) 2015; 3 N Picco (3018_CR55) 2018; 28 SR Leffler (3018_CR18) 2016; 78 GE Elsen (3018_CR63) 2018; 12 IM Van Leeuwen (3018_CR28) 2009; 42 DJ Cahalane (3018_CR23) 2014; 111 BG Leroux (3018_CR15) 1996; 16 S Kunche (3018_CR62) 2016; 12 JT Paridaen (3018_CR42) 2014; 15 L Tiberi (3018_CR64) 2012; 24 D Stenzel (3018_CR53) 2014; 141 |
References_xml | – volume: 16 start-page: 647 issue: 11 year: 2015 ident: 3018_CR26 publication-title: Nat Rev Neurosci doi: 10.1038/nrn4021 – volume: 57 start-page: 378 issue: 3 year: 2008 ident: 3018_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2007.12.028 – volume: 16 start-page: 1556 issue: 11 year: 2013 ident: 3018_CR41 publication-title: Nat Neurosci doi: 10.1038/nn.3525 – volume: 141 start-page: 2182 issue: 11 year: 2014 ident: 3018_CR14 publication-title: Development doi: 10.1242/dev.090571 – volume: 76 start-page: 1471 issue: 4 year: 2016 ident: 3018_CR36 publication-title: SIAM J Appl Math doi: 10.1137/15M1030327 – volume: 13 start-page: 1002217 issue: 8 year: 2015 ident: 3018_CR40 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002217 – ident: 3018_CR21 doi: 10.1242/dev.153544 – volume: 45 start-page: 207 issue: 2 year: 2004 ident: 3018_CR38 publication-title: Neuron doi: 10.1016/j.neuron.2004.12.036 – volume: 16 start-page: 449 issue: 4 year: 1996 ident: 3018_CR15 publication-title: Risk Anal doi: 10.1111/j.1539-6924.1996.tb01092.x – volume: 24 start-page: 98 issue: 2 year: 2011 ident: 3018_CR33 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e3283444d05 – volume: 138 start-page: 2079 issue: 10 year: 2011 ident: 3018_CR31 publication-title: Development doi: 10.1242/dev.059808 – volume: 39 start-page: 2398 issue: 13 year: 2019 ident: 3018_CR49 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2199-18.2019 – volume: 54 start-page: 357 year: 2007 ident: 3018_CR34 publication-title: Neuron doi: 10.1016/j.neuron.2007.04.019 – volume: 8 start-page: 438 issue: 6 year: 2007 ident: 3018_CR65 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2097 – volume: 25 start-page: 3290 issue: 10 year: 2014 ident: 3018_CR9 publication-title: Cereb Cortex doi: 10.1093/cercor/bhu125 – volume: 111 start-page: 17642 issue: 49 year: 2014 ident: 3018_CR23 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1409271111 – volume: 151C start-page: 281 year: 2009 ident: 3018_CR32 publication-title: Am J Med Genet C Semin Med Genet doi: 10.1002/ajmg.c.30231 – volume: 24 start-page: 4997 issue: 17 year: 2015 ident: 3018_CR48 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv221 – volume: 17 start-page: 2433 issue: 10 year: 2007 ident: 3018_CR13 publication-title: Cereb Cortex doi: 10.1093/cercor/bhl151 – ident: 3018_CR61 doi: 10.1242/dev.138271 – volume: 8 start-page: 427 year: 2007 ident: 3018_CR1 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2151 – ident: 3018_CR20 doi: 10.1098/rsif.2014.0144 – volume: 101 start-page: 3196 issue: 9 year: 2004 ident: 3018_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308600100 – volume: 80 start-page: 442 issue: 2 year: 2013 ident: 3018_CR43 publication-title: Neuron doi: 10.1016/j.neuron.2013.09.032 – volume: 19 start-page: 675 issue: 3 year: 2008 ident: 3018_CR50 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn112 – volume: 12 start-page: 571 year: 2018 ident: 3018_CR63 publication-title: Front Neurosci doi: 10.3389/fnins.2018.00571 – volume: 13 start-page: 592 issue: 6 year: 2003 ident: 3018_CR22 publication-title: Cereb Cortex doi: 10.1093/cercor/13.6.592 – volume: 74 start-page: 2692 issue: 11 year: 2012 ident: 3018_CR27 publication-title: Bull Math biol – volume: 134 start-page: 2569 issue: 14 year: 2007 ident: 3018_CR29 publication-title: Development doi: 10.1242/dev.003715 – volume: 19 start-page: 888 issue: 7 year: 2016 ident: 3018_CR45 publication-title: Nat Neurosci doi: 10.1038/nn.4307 – volume: 25 start-page: 247 issue: 1 year: 2005 ident: 3018_CR37 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2899-04.2005 – volume: 7 start-page: 136 issue: 2 year: 2004 ident: 3018_CR4 publication-title: Nat Neurosci doi: 10.1038/nn1172 – volume: 12 start-page: 1 issue: 3 year: 2016 ident: 3018_CR62 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004814 – ident: 3018_CR16 doi: 10.1093/cercor/bhw264 – volume: 19 start-page: 13265 issue: 5 year: 2015 ident: 3018_CR10 publication-title: Sci Rep doi: 10.1038/srep13265 – ident: 3018_CR57 doi: 10.1038/s41540-017-0017-0 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 3018_CR44 publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-003-0368-6 – volume: 19 start-page: 2439 issue: 10 year: 2009 ident: 3018_CR46 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn260 – volume: 28 start-page: 2540 issue: 7 year: 2018 ident: 3018_CR55 publication-title: Cereb Cortex doi: 10.1093/cercor/bhy068 – volume: 15 start-page: 351 issue: 4 year: 2014 ident: 3018_CR42 publication-title: EMBO Rep doi: 10.1002/embr.201438447 – volume: 39 start-page: 875 issue: 7 year: 2007 ident: 3018_CR30 publication-title: Nat Genet doi: 10.1038/ng2039 – volume: 174 start-page: 590 issue: 3 year: 2018 ident: 3018_CR58 publication-title: Cell doi: 10.1016/j.cell.2018.06.007 – volume: 283 start-page: 113 issue: 1 year: 2005 ident: 3018_CR47 publication-title: Dev Biol doi: 10.1016/j.ydbio.2005.04.005 – volume: 11 start-page: 90 issue: 5 year: 2017 ident: 3018_CR19 publication-title: BMC Syst Biol doi: 10.1186/s12918-017-0468-3 – volume: 14 start-page: 755 issue: 11 year: 2013 ident: 3018_CR3 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3586 – volume: 42 start-page: 617 issue: 5 year: 2009 ident: 3018_CR28 publication-title: Cell Prolif doi: 10.1111/j.1365-2184.2009.00627.x – volume: 24 start-page: 269 issue: 2 year: 2012 ident: 3018_CR64 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2012.01.010 – volume: 9 start-page: 1 issue: 114 year: 2015 ident: 3018_CR35 publication-title: Front Neurosci – volume: 36 start-page: 1 issue: 1 year: 2003 ident: 3018_CR17 publication-title: Cell Prolif doi: 10.1046/j.1365-2184.2003.00257.x – volume: 7 start-page: 329 year: 1970 ident: 3018_CR54 publication-title: Math Biosci doi: 10.1016/0025-5564(70)90132-X – volume: 9 start-page: 70 year: 2015 ident: 3018_CR2 publication-title: Front Cell Neurosci doi: 10.3389/fncel.2015.00070 – volume: 131 start-page: 3133 year: 2004 ident: 3018_CR5 publication-title: Development doi: 10.1242/dev.01173 – volume: 2 start-page: 154 year: 2011 ident: 3018_CR6 publication-title: Nat Commun doi: 10.1038/ncomms1155 – volume: 15 start-page: 351 issue: 4 year: 2014 ident: 3018_CR60 publication-title: EMBO Rep doi: 10.1002/embr.201438447 – volume: 78 start-page: 859 issue: 5 year: 2016 ident: 3018_CR18 publication-title: Bull Math Biol doi: 10.1007/s11538-016-0163-3 – volume: 8 start-page: 349 issue: 4 year: 2014 ident: 3018_CR24 publication-title: Cell Adh Migr doi: 10.4161/19336918.2014.969990 – ident: 3018_CR25 doi: 10.1016/j.jtbi.2018.08.019 – volume: 3 start-page: 2388 issue: 6 year: 2015 ident: 3018_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0002388 – volume: 63 start-page: 47 issue: 1 year: 2012 ident: 3018_CR52 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.066 – volume: 141 start-page: 795 issue: 4 year: 2014 ident: 3018_CR53 publication-title: Development doi: 10.1242/dev.101907 – volume: 256 start-page: 164 issue: 2 year: 2009 ident: 3018_CR12 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.09.034 – volume-title: The CMA Evolution Strategy: A Comparing Review year: 2006 ident: 3018_CR56 doi: 10.1007/3-540-32494-1_4 – volume: 130 start-page: 31 issue: 1 year: 2011 ident: 3018_CR11 publication-title: Theory Biosci doi: 10.1007/s12064-010-0107-7 – volume: 71 start-page: 196 year: 2013 ident: 3018_CR51 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.017 – volume: 7 start-page: 10936 year: 2016 ident: 3018_CR59 publication-title: Nat Commun doi: 10.1038/ncomms10936 |
SSID | ssj0017805 |
Score | 2.3532107 |
Snippet | Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes... Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell... Abstract Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers,... |
SourceID | doaj pubmedcentral hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 470 |
SubjectTerms | Abnormalities Cell cycle Cell dynamics Cells (biology) Cellular Biology Cerebral cortex Computer simulation Development Biology Development of the cerebral cortex Developmental stages Division Dynamics Embryos Evolution In vivo methods and tests Life Sciences Mathematical models Mouse mutant for Ftm/Rpgrip1l Multiscale mathematical modeling Neural progenitors Neural stem cells Neurogenesis Neurons Progenitor cells S phase Temporal lobe |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI-mSUi7IGBMFAbKEKdJ1ZrESdvjAzE9TYMTk3aL8smeNDq0PtD232O3fU-vF7jQY2r3w3Ziu3F_ZuwDeelQKSi90qFEDxVL5yOUGXKuvVEgK_pR-MtXs7yCi2t9vdPqi2rCRnjgUXBnJmNMDSai45LgnGl1rWTCKBcaL4UPtPqiz9skU9P-ASH1T3uYojFnvSCcNkybaZ9fNGUz80IDWD_6lhsqhdyJM-dVkjtu5_wZezrFi3wxPudztpe6F-zJ2EHy8ZC5BR9KAnsUdeI_thisyDL0uOF3mdO3eR7HzvM9H_9L5AOO5Xda6FY9X3UcGTl9BUhIfk-bybc8UB3uw0t2df7526dlOXVNKIOuYF26NjQx4SF1xiwzG5p3xuckZQsiCpVc67QJsXY-hJhkyLVJQqTsonYmqCO239116RXjFdQYELUVRKVBBWQAg4TIFUBLDwWrNlK0YYIUp84Wt3ZILRpjR8FbFLwlwdumYKdblp8jnsbfiD-SaraEBIU9DKCB2MlA7L8MpGDvUbGzaywXl5bGyE6UAPFbFux4o3c7TeLeosAkrWdSF-xkexqnH-nNdQmVQjQVhdBGFKye2cvsjvMz3epmAPI2NSbjrXj9P17zDTuQZN_U3QKO2f76_ld6i_HS2r8bpsYf9kwR9A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADB5BERIXxFMEChoQJ6SomWeSE1oQywoBJyr1NprMo12pzZbNUpV_jz2ZDc2lOSZ2ItmesT12PhPyHr20q4QsO6FcCR7Kl7bzsowyxrrTQvIKfxT-8VOvjuW3E3WSD9yG3Fa53xPTRu03Ds_IjzhvORoXVx8vf5c4NQqrq3mExl1yj4GnwZauZvl1qiIgXn-uZLJGHw0M0dogecZqP2vKZuaLEmQ_eJgzbIi8EW3OeyVvOJ_lI_IwR410Mar5MbkT-ifk_jhH8u9TYhc0NQYOIPBALyYkVmBJk27oJlI8oad-nD8_0PHvRJrQLE9xu1sPdN1TYKR4FhCAfIsl5XPqsBv3-hk5Xn759XlV5tkJpVOV3JW2dY0PcHEVIdeMGlef7mIAOUrmmQi2tUo7X9vOOR-4i7UOjIVovbLaiefkoN_04QWhlawhLGor6YWSwgGD1EAIXE4q3smCVHspGpeBxXG-xblJCUajzSh4A4I3KHjTFOTDxHI5omrcRvwJVTMRIiB2urHZnpq8voyOkHpJ7SG-4dJa3apa8ADJkGw6zjpXkHeg2Nk7VovvBu-hnQgm2RUvyOFe7yYv5cH8N7yCvJ0ewyJEvdk-gFKQpsJAWrOC1DN7mX1x_qRfnyU4b11DSt6yl7d__BV5wNFycXqFPCQHu-2f8BrioV33Jhn9PyhNCsw priority: 102 providerName: ProQuest |
Title | A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex |
URI | https://www.proquest.com/docview/2292787025 https://www.proquest.com/docview/2290977461 https://inria.hal.science/hal-01783141 https://pubmed.ncbi.nlm.nih.gov/PMC6744691 https://doaj.org/article/6f54846d19024aa695732e75848b21bc |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_ugeAX8YnRs6ziJyGa3ewj-SCSk6uleIeohX5bNpvNXaGXalPl7r93ZpPWCxyC-ZBAMpPAPDIz-_gNIa8xSrskFXGZShdDhKpiW1YirkVd61Klgie4Ufj0TE1mYjqX8z2ybW_VC7C9tbTDflKz9fLt1c_rD-Dw74PDZ-pdyxCFDYpinMVnWZztk0MITBobGpyKv5MKCN8fNhtpFkOlI_tJzltfMQhTAc0fgs8FrpW8kYgOl1HeiEvj--Ren1DSorOAB2TPNw_Jna7F5PUjYgsa1gy2oAtPL3cgrcASmuDQVU1x8J5WXWv6lnYbF2kAujzHP-GipYuGAiPFYQIP5GucbV5Shwt1rx6T2fjk-8dJ3LdViJ1MxCa2ucsqDweXNZShtULHVGXtOc8Fq1jqbW6lcpW2pXOV567WyjPma1tJq1z6hBw0q8Y_JTQRGjKmPBFVKkXqgEEoIAQuJyQvRUSSrRSN6zHHsfXF0oTaI1OmE7wBwRsUvMki8mbH8qMD3PgX8TGqZkeIWNnhxmp9bnrXM6qGqkyoClIfLqxVudQp91AniazkrHQReQWKHbxjUnw2eA9tJmWC_eYROdrq3WyN1IDAOP7wuIzIy91j8E_Um208KAVpEsyxFYuIHtjL4IvDJ83iIiB9Kw3Ves6e_Y9MnpO7HO0Y21yII3KwWf_yLyBx2pQjsq_nGs7Z-NOIHBbF9NsUrscnZ1--jsJgxCg4zB8FHhkp |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDAILkhRY8dxkgNCy2PZ0m1PrdSbcWynXalky2Z59E_xG5nJi-bSW3NMZmLJM_bMeMbzAbwmK22jWIZFnNgQLZQLTeFkWMqyTAsVSxHRReH9AzU7kl-Pk-MN-NvfhaGyyn5PbDZqt7R0Rr4jRC5IuUTy_vxHSKhRlF3tITRatdjzF78xZKvf7X5C-b4RYvr58OMs7FAFQptEch2a3GbO4yOSEqOwUpFeqqL0OILkjsfe5CZR1qWmsNZ5YctUec59aVxilI3xvzfgpozRktPN9OmXIWtB-ABd5pRnaqfm1B0Og3WqLuBZmI1sXwMRgBbtlAowL3m349rMS8Zueg_udl4qm7RqdR82fPUAbrW4lRcPwUxYU4hYo4A9-z50fkWWBlmHLUtGGQHmWrz7mrW3IVnTPfOEttdFzRYVQ0ZGZw8eyVeUwj5jlqp__zyCo2uZ1cewWS0rvwUskim6YXkkXZzI2CKDVEiIXFYmopABRP0sats1Mic8jTPdBDSZ0u3Ea5x4TROvswDeDiznbRePq4g_kGgGQmrA3bxYrk50t561KjHUk8qhPyWkMSpP0lh4DL5kVghe2ABeoWBH_5hN5prekZ7EXPJfIoDtXu662zpq_V_RA3g5fMZFT3IzlUehEE1EjrviAaQjfRmNOP5SLU6b9uEqlVLl_MnVg7-A27PD_bme7x7sPYU7grSYkDPkNmyuVz_9M_TF1sXzZgEw-HbdK-4fAbdKwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+mathematical+model+of+cell+dynamics+during+neurogenesis+in+the+mouse+cerebral+cortex&rft.jtitle=BMC+bioinformatics&rft.au=Postel%2C+Marie&rft.au=Karam%2C+Alice&rft.au=P%C3%A9zeron%2C+Guillaume&rft.au=Schneider-Maunoury%2C+Sylvie&rft.date=2019-09-14&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3018-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_019_3018_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |