A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex

Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 470 - 24
Main Authors Postel, Marie, Karam, Alice, Pézeron, Guillaume, Schneider-Maunoury, Sylvie, Clément, Frédérique
Format Journal Article
LanguageEnglish
Published London BioMed Central 14.09.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.
AbstractList Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.
Abstract Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.
Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (symmetric, asymmetric, neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Additional information is provided on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. 2 Introduction The multiple functions of the mammalian cerebral cortex in integrating sensory stimuli, controlling motor output and mediating cognitive functions are supported by an extraordinary diversity of neuronal sub-types mutually connected through complex neuronal circuitry. The formation of this structure requires producing the correct numbers and subtypes of neurons at the proper position during a specific period
Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool.BACKGROUNDNeurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool.A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction.RESULTSA multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction.Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.CONCLUSIONSApplying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.
ArticleNumber 470
Author Postel, Marie
Karam, Alice
Schneider-Maunoury, Sylvie
Pézeron, Guillaume
Clément, Frédérique
Author_xml – sequence: 1
  givenname: Marie
  orcidid: 0000-0002-5437-0547
  surname: Postel
  fullname: Postel, Marie
– sequence: 2
  givenname: Alice
  surname: Karam
  fullname: Karam, Alice
– sequence: 3
  givenname: Guillaume
  surname: Pézeron
  fullname: Pézeron, Guillaume
– sequence: 4
  givenname: Sylvie
  surname: Schneider-Maunoury
  fullname: Schneider-Maunoury, Sylvie
– sequence: 5
  givenname: Frédérique
  surname: Clément
  fullname: Clément, Frédérique
BackLink https://inria.hal.science/hal-01783141$$DView record in HAL
BookMark eNp9Ustu1DAUjVARfcAHsIvEBhYBX8evbJBGFdBKI7GBteXYNzMeJXaxk6r9exymQnQW3IUf1-cc39dldRZiwKp6C-QjgBKfMlDFu4ZA17QEVKNeVBfAJDQUCD_753xeXeZ8IASkIvxVdd4Cp1DsojKbelrG2WdrRqwnM--xLL7c6ik6HOs41BbHsXaPwUze5totyYddHXBJcYcBs8-1D3UhFsaSscAT9qkI2JhmfHhdvRzMmPHN035V_fz65cf1TbP9_u32erNtLCdsbkxnlcNilA-ctoMghIPoB6S0Y-CgRdMZLqyTprfWIbWDFAiAg3HcCNteVbdHXRfNQd8lP5n0qKPx-o8jpp02qWQ2ohYDZ4oJBx2hzBjRcdlSlFwx1VPoV63PR627pZ_QWQxzSeiZ6POX4Pd6F--1kIyJDorAh6PA_oR2s9nq1be2ogUG97Rg3z99luKvBfOsp9KOUnMTsBRUlwKQTkomVtl3J9BDXFIoZV1RVCpJKC8oOKJsijknHP5GAESvg6OPg1OC6PQ6OFoVjjzhWD-XQYhrfn78D_M3-mXI5A
CitedBy_id crossref_primary_10_1093_texcom_tgaa063
crossref_primary_10_1016_j_nbd_2020_105236
crossref_primary_10_1016_j_cdev_2023_203849
crossref_primary_10_1016_j_cub_2022_03_004
crossref_primary_10_1016_j_conb_2020_10_014
crossref_primary_10_1016_j_mbs_2024_109185
crossref_primary_10_3389_fcell_2021_630161
crossref_primary_10_1016_j_coemr_2021_02_003
crossref_primary_10_7554_eLife_58162
Cites_doi 10.1038/nrn4021
10.1016/j.neuron.2007.12.028
10.1038/nn.3525
10.1242/dev.090571
10.1137/15M1030327
10.1371/journal.pbio.1002217
10.1242/dev.153544
10.1016/j.neuron.2004.12.036
10.1111/j.1539-6924.1996.tb01092.x
10.1097/WCO.0b013e3283444d05
10.1242/dev.059808
10.1523/JNEUROSCI.2199-18.2019
10.1016/j.neuron.2007.04.019
10.1038/nrn2097
10.1093/cercor/bhu125
10.1073/pnas.1409271111
10.1002/ajmg.c.30231
10.1093/hmg/ddv221
10.1093/cercor/bhl151
10.1242/dev.138271
10.1038/nrn2151
10.1098/rsif.2014.0144
10.1073/pnas.0308600100
10.1016/j.neuron.2013.09.032
10.1093/cercor/bhn112
10.3389/fnins.2018.00571
10.1093/cercor/13.6.592
10.1242/dev.003715
10.1038/nn.4307
10.1523/JNEUROSCI.2899-04.2005
10.1038/nn1172
10.1371/journal.pcbi.1004814
10.1093/cercor/bhw264
10.1038/srep13265
10.1038/s41540-017-0017-0
10.1007/s00158-003-0368-6
10.1093/cercor/bhn260
10.1093/cercor/bhy068
10.1002/embr.201438447
10.1038/ng2039
10.1016/j.cell.2018.06.007
10.1016/j.ydbio.2005.04.005
10.1186/s12918-017-0468-3
10.1038/nrn3586
10.1111/j.1365-2184.2009.00627.x
10.1016/j.ceb.2012.01.010
10.1046/j.1365-2184.2003.00257.x
10.1016/0025-5564(70)90132-X
10.3389/fncel.2015.00070
10.1242/dev.01173
10.1038/ncomms1155
10.1007/s11538-016-0163-3
10.4161/19336918.2014.969990
10.1016/j.jtbi.2018.08.019
10.1371/journal.pone.0002388
10.1016/j.neuroimage.2012.06.066
10.1242/dev.101907
10.1016/j.jtbi.2008.09.034
10.1007/3-540-32494-1_4
10.1007/s12064-010-0107-7
10.1016/j.neuroimage.2013.01.017
10.1038/ncomms10936
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2019
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2019
DBID AAYXX
CITATION
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s12859-019-3018-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest - Health and Medical
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 24
ExternalDocumentID oai_doaj_org_article_6f54846d19024aa695732e75848b21bc
PMC6744691
oai_HAL_hal_01783141v2
10_1186_s12859_019_3018_8
GrantInformation_xml – fundername: ;
  grantid: `CILIAINTHEBRAIN', project 11-BSV2-0006
– fundername: ;
  grantid: FRM DEQ20140329544
– fundername: ;
  grantid: PJA 20171206591
– fundername: ;
  grantid: SU- 15-R-EMR-05
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
3V.
7QO
7SC
7XB
8AL
8FD
8FK
EJD
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
123
1XC
2VQ
4.4
ADRAZ
AHSBF
C1A
H13
IPNFZ
PUEGO
RIG
VOOES
5PM
ID FETCH-LOGICAL-c504t-a9c8deeee25f523f600516bfe22941d13ea9a56cd7abccde2cf76e11efad5a6c3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:24:16 EDT 2025
Thu Aug 21 13:50:44 EDT 2025
Tue Aug 26 06:21:26 EDT 2025
Fri Jul 11 07:19:25 EDT 2025
Fri Jul 25 10:49:42 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 03:38:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Numerical simulations
Development of the cerebral cortex
Cell cycle indexes
Mouse mutant for Ftm/Rpgrip1l
Time varying transfer rates
Neural progenitors
Neurogenesis
Cell dynamics
Multiscale mathematical modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-a9c8deeee25f523f600516bfe22941d13ea9a56cd7abccde2cf76e11efad5a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5437-0547
0000-0003-1395-6397
0000-0002-0797-4735
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-019-3018-8
PMID 31521111
PQID 2292787025
PQPubID 44065
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_6f54846d19024aa695732e75848b21bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744691
hal_primary_oai_HAL_hal_01783141v2
proquest_miscellaneous_2290977461
proquest_journals_2292787025
crossref_primary_10_1186_s12859_019_3018_8
crossref_citationtrail_10_1186_s12859_019_3018_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-14
PublicationDateYYYYMMDD 2019-09-14
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-14
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References M Delous (3018_CR30) 2007; 39
C Englund (3018_CR37) 2005; 25
P Arlotta (3018_CR38) 2004; 45
J Lee (3018_CR33) 2011; 24
L Besse (3018_CR31) 2011; 138
B Martynoga (3018_CR47) 2005; 283
L Wang (3018_CR45) 2016; 19
M Okamoto (3018_CR41) 2013; 16
A Cárdenas (3018_CR58) 2018; 174
H Tabata (3018_CR35) 2015; 9
T Miyata (3018_CR5) 2004; 131
DG Míguez (3018_CR10) 2015; 19
FD Miller (3018_CR34) 2007; 54
W Wang (3018_CR59) 2016; 7
M Florio (3018_CR14) 2014; 141
J Laussu (3018_CR24) 2014; 8
B Molyneaux (3018_CR1) 2007; 8
VSJr Caviness (3018_CR22) 2003; 13
K Baker (3018_CR32) 2009; 151C
W Haubensak (3018_CR7) 2004; 101
T Kowalczyk (3018_CR46) 2009; 19
R Bellman (3018_CR54) 1970; 7
S Baloch (3018_CR50) 2008; 19
J Hasenauer (3018_CR27) 2012; 74
NJ Savill (3018_CR17) 2003; 36
E Calabrese (3018_CR51) 2013; 71
3018_CR57
3018_CR16
J Vierkotten (3018_CR29) 2007; 134
O Britanova (3018_CR39) 2008; 57
C Laclef (3018_CR48) 2015; 24
C Gaser (3018_CR52) 2012; 63
Y Arai (3018_CR6) 2011; 2
NA Vasistha (3018_CR9) 2014; 25
B Li (3018_CR19) 2017; 11
M Betizeau (3018_CR43) 2013; 80
HR MacMillan (3018_CR11) 2011; 130
A Andreu-Cervera (3018_CR49) 2019; 39
SC Noctor (3018_CR4) 2004; 7
LC Greig (3018_CR3) 2013; 14
CC Homem (3018_CR26) 2015; 16
3018_CR61
JL Slater (3018_CR12) 2009; 256
C Dehay (3018_CR65) 2007; 8
RT Marler (3018_CR44) 2004; 26
(3018_CR56) 2006
MN Manuel (3018_CR2) 2015; 9
JM Gohlke (3018_CR13) 2007; 17
3018_CR25
B Aymard (3018_CR36) 2016; 76
FK Wong (3018_CR40) 2015; 13
3018_CR21
JT Paridaen (3018_CR60) 2014; 15
3018_CR20
A Attardo (3018_CR8) 2015; 3
N Picco (3018_CR55) 2018; 28
SR Leffler (3018_CR18) 2016; 78
GE Elsen (3018_CR63) 2018; 12
IM Van Leeuwen (3018_CR28) 2009; 42
DJ Cahalane (3018_CR23) 2014; 111
BG Leroux (3018_CR15) 1996; 16
S Kunche (3018_CR62) 2016; 12
JT Paridaen (3018_CR42) 2014; 15
L Tiberi (3018_CR64) 2012; 24
D Stenzel (3018_CR53) 2014; 141
References_xml – volume: 16
  start-page: 647
  issue: 11
  year: 2015
  ident: 3018_CR26
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn4021
– volume: 57
  start-page: 378
  issue: 3
  year: 2008
  ident: 3018_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.028
– volume: 16
  start-page: 1556
  issue: 11
  year: 2013
  ident: 3018_CR41
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3525
– volume: 141
  start-page: 2182
  issue: 11
  year: 2014
  ident: 3018_CR14
  publication-title: Development
  doi: 10.1242/dev.090571
– volume: 76
  start-page: 1471
  issue: 4
  year: 2016
  ident: 3018_CR36
  publication-title: SIAM J Appl Math
  doi: 10.1137/15M1030327
– volume: 13
  start-page: 1002217
  issue: 8
  year: 2015
  ident: 3018_CR40
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002217
– ident: 3018_CR21
  doi: 10.1242/dev.153544
– volume: 45
  start-page: 207
  issue: 2
  year: 2004
  ident: 3018_CR38
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.036
– volume: 16
  start-page: 449
  issue: 4
  year: 1996
  ident: 3018_CR15
  publication-title: Risk Anal
  doi: 10.1111/j.1539-6924.1996.tb01092.x
– volume: 24
  start-page: 98
  issue: 2
  year: 2011
  ident: 3018_CR33
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e3283444d05
– volume: 138
  start-page: 2079
  issue: 10
  year: 2011
  ident: 3018_CR31
  publication-title: Development
  doi: 10.1242/dev.059808
– volume: 39
  start-page: 2398
  issue: 13
  year: 2019
  ident: 3018_CR49
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2199-18.2019
– volume: 54
  start-page: 357
  year: 2007
  ident: 3018_CR34
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.04.019
– volume: 8
  start-page: 438
  issue: 6
  year: 2007
  ident: 3018_CR65
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2097
– volume: 25
  start-page: 3290
  issue: 10
  year: 2014
  ident: 3018_CR9
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhu125
– volume: 111
  start-page: 17642
  issue: 49
  year: 2014
  ident: 3018_CR23
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1409271111
– volume: 151C
  start-page: 281
  year: 2009
  ident: 3018_CR32
  publication-title: Am J Med Genet C Semin Med Genet
  doi: 10.1002/ajmg.c.30231
– volume: 24
  start-page: 4997
  issue: 17
  year: 2015
  ident: 3018_CR48
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv221
– volume: 17
  start-page: 2433
  issue: 10
  year: 2007
  ident: 3018_CR13
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl151
– ident: 3018_CR61
  doi: 10.1242/dev.138271
– volume: 8
  start-page: 427
  year: 2007
  ident: 3018_CR1
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2151
– ident: 3018_CR20
  doi: 10.1098/rsif.2014.0144
– volume: 101
  start-page: 3196
  issue: 9
  year: 2004
  ident: 3018_CR7
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308600100
– volume: 80
  start-page: 442
  issue: 2
  year: 2013
  ident: 3018_CR43
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.032
– volume: 19
  start-page: 675
  issue: 3
  year: 2008
  ident: 3018_CR50
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn112
– volume: 12
  start-page: 571
  year: 2018
  ident: 3018_CR63
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00571
– volume: 13
  start-page: 592
  issue: 6
  year: 2003
  ident: 3018_CR22
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/13.6.592
– volume: 74
  start-page: 2692
  issue: 11
  year: 2012
  ident: 3018_CR27
  publication-title: Bull Math biol
– volume: 134
  start-page: 2569
  issue: 14
  year: 2007
  ident: 3018_CR29
  publication-title: Development
  doi: 10.1242/dev.003715
– volume: 19
  start-page: 888
  issue: 7
  year: 2016
  ident: 3018_CR45
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4307
– volume: 25
  start-page: 247
  issue: 1
  year: 2005
  ident: 3018_CR37
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2899-04.2005
– volume: 7
  start-page: 136
  issue: 2
  year: 2004
  ident: 3018_CR4
  publication-title: Nat Neurosci
  doi: 10.1038/nn1172
– volume: 12
  start-page: 1
  issue: 3
  year: 2016
  ident: 3018_CR62
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004814
– ident: 3018_CR16
  doi: 10.1093/cercor/bhw264
– volume: 19
  start-page: 13265
  issue: 5
  year: 2015
  ident: 3018_CR10
  publication-title: Sci Rep
  doi: 10.1038/srep13265
– ident: 3018_CR57
  doi: 10.1038/s41540-017-0017-0
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 3018_CR44
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-003-0368-6
– volume: 19
  start-page: 2439
  issue: 10
  year: 2009
  ident: 3018_CR46
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn260
– volume: 28
  start-page: 2540
  issue: 7
  year: 2018
  ident: 3018_CR55
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhy068
– volume: 15
  start-page: 351
  issue: 4
  year: 2014
  ident: 3018_CR42
  publication-title: EMBO Rep
  doi: 10.1002/embr.201438447
– volume: 39
  start-page: 875
  issue: 7
  year: 2007
  ident: 3018_CR30
  publication-title: Nat Genet
  doi: 10.1038/ng2039
– volume: 174
  start-page: 590
  issue: 3
  year: 2018
  ident: 3018_CR58
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.007
– volume: 283
  start-page: 113
  issue: 1
  year: 2005
  ident: 3018_CR47
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.04.005
– volume: 11
  start-page: 90
  issue: 5
  year: 2017
  ident: 3018_CR19
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-017-0468-3
– volume: 14
  start-page: 755
  issue: 11
  year: 2013
  ident: 3018_CR3
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3586
– volume: 42
  start-page: 617
  issue: 5
  year: 2009
  ident: 3018_CR28
  publication-title: Cell Prolif
  doi: 10.1111/j.1365-2184.2009.00627.x
– volume: 24
  start-page: 269
  issue: 2
  year: 2012
  ident: 3018_CR64
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2012.01.010
– volume: 9
  start-page: 1
  issue: 114
  year: 2015
  ident: 3018_CR35
  publication-title: Front Neurosci
– volume: 36
  start-page: 1
  issue: 1
  year: 2003
  ident: 3018_CR17
  publication-title: Cell Prolif
  doi: 10.1046/j.1365-2184.2003.00257.x
– volume: 7
  start-page: 329
  year: 1970
  ident: 3018_CR54
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(70)90132-X
– volume: 9
  start-page: 70
  year: 2015
  ident: 3018_CR2
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2015.00070
– volume: 131
  start-page: 3133
  year: 2004
  ident: 3018_CR5
  publication-title: Development
  doi: 10.1242/dev.01173
– volume: 2
  start-page: 154
  year: 2011
  ident: 3018_CR6
  publication-title: Nat Commun
  doi: 10.1038/ncomms1155
– volume: 15
  start-page: 351
  issue: 4
  year: 2014
  ident: 3018_CR60
  publication-title: EMBO Rep
  doi: 10.1002/embr.201438447
– volume: 78
  start-page: 859
  issue: 5
  year: 2016
  ident: 3018_CR18
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-016-0163-3
– volume: 8
  start-page: 349
  issue: 4
  year: 2014
  ident: 3018_CR24
  publication-title: Cell Adh Migr
  doi: 10.4161/19336918.2014.969990
– ident: 3018_CR25
  doi: 10.1016/j.jtbi.2018.08.019
– volume: 3
  start-page: 2388
  issue: 6
  year: 2015
  ident: 3018_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002388
– volume: 63
  start-page: 47
  issue: 1
  year: 2012
  ident: 3018_CR52
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.066
– volume: 141
  start-page: 795
  issue: 4
  year: 2014
  ident: 3018_CR53
  publication-title: Development
  doi: 10.1242/dev.101907
– volume: 256
  start-page: 164
  issue: 2
  year: 2009
  ident: 3018_CR12
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.09.034
– volume-title: The CMA Evolution Strategy: A Comparing Review
  year: 2006
  ident: 3018_CR56
  doi: 10.1007/3-540-32494-1_4
– volume: 130
  start-page: 31
  issue: 1
  year: 2011
  ident: 3018_CR11
  publication-title: Theory Biosci
  doi: 10.1007/s12064-010-0107-7
– volume: 71
  start-page: 196
  year: 2013
  ident: 3018_CR51
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.017
– volume: 7
  start-page: 10936
  year: 2016
  ident: 3018_CR59
  publication-title: Nat Commun
  doi: 10.1038/ncomms10936
SSID ssj0017805
Score 2.3532107
Snippet Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes...
Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell...
Abstract Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers,...
SourceID doaj
pubmedcentral
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 470
SubjectTerms Abnormalities
Cell cycle
Cell dynamics
Cells (biology)
Cellular Biology
Cerebral cortex
Computer simulation
Development Biology
Development of the cerebral cortex
Developmental stages
Division
Dynamics
Embryos
Evolution
In vivo methods and tests
Life Sciences
Mathematical models
Mouse mutant for Ftm/Rpgrip1l
Multiscale mathematical modeling
Neural progenitors
Neural stem cells
Neurogenesis
Neurons
Progenitor cells
S phase
Temporal lobe
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI-mSUi7IGBMFAbKEKdJ1ZrESdvjAzE9TYMTk3aL8smeNDq0PtD232O3fU-vF7jQY2r3w3Ziu3F_ZuwDeelQKSi90qFEDxVL5yOUGXKuvVEgK_pR-MtXs7yCi2t9vdPqi2rCRnjgUXBnJmNMDSai45LgnGl1rWTCKBcaL4UPtPqiz9skU9P-ASH1T3uYojFnvSCcNkybaZ9fNGUz80IDWD_6lhsqhdyJM-dVkjtu5_wZezrFi3wxPudztpe6F-zJ2EHy8ZC5BR9KAnsUdeI_thisyDL0uOF3mdO3eR7HzvM9H_9L5AOO5Xda6FY9X3UcGTl9BUhIfk-bybc8UB3uw0t2df7526dlOXVNKIOuYF26NjQx4SF1xiwzG5p3xuckZQsiCpVc67QJsXY-hJhkyLVJQqTsonYmqCO239116RXjFdQYELUVRKVBBWQAg4TIFUBLDwWrNlK0YYIUp84Wt3ZILRpjR8FbFLwlwdumYKdblp8jnsbfiD-SaraEBIU9DKCB2MlA7L8MpGDvUbGzaywXl5bGyE6UAPFbFux4o3c7TeLeosAkrWdSF-xkexqnH-nNdQmVQjQVhdBGFKye2cvsjvMz3epmAPI2NSbjrXj9P17zDTuQZN_U3QKO2f76_ld6i_HS2r8bpsYf9kwR9A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADB5BERIXxFMEChoQJ6SomWeSE1oQywoBJyr1NprMo12pzZbNUpV_jz2ZDc2lOSZ2ItmesT12PhPyHr20q4QsO6FcCR7Kl7bzsowyxrrTQvIKfxT-8VOvjuW3E3WSD9yG3Fa53xPTRu03Ds_IjzhvORoXVx8vf5c4NQqrq3mExl1yj4GnwZauZvl1qiIgXn-uZLJGHw0M0dogecZqP2vKZuaLEmQ_eJgzbIi8EW3OeyVvOJ_lI_IwR410Mar5MbkT-ifk_jhH8u9TYhc0NQYOIPBALyYkVmBJk27oJlI8oad-nD8_0PHvRJrQLE9xu1sPdN1TYKR4FhCAfIsl5XPqsBv3-hk5Xn759XlV5tkJpVOV3JW2dY0PcHEVIdeMGlef7mIAOUrmmQi2tUo7X9vOOR-4i7UOjIVovbLaiefkoN_04QWhlawhLGor6YWSwgGD1EAIXE4q3smCVHspGpeBxXG-xblJCUajzSh4A4I3KHjTFOTDxHI5omrcRvwJVTMRIiB2urHZnpq8voyOkHpJ7SG-4dJa3apa8ADJkGw6zjpXkHeg2Nk7VovvBu-hnQgm2RUvyOFe7yYv5cH8N7yCvJ0ewyJEvdk-gFKQpsJAWrOC1DN7mX1x_qRfnyU4b11DSt6yl7d__BV5wNFycXqFPCQHu-2f8BrioV33Jhn9PyhNCsw
  priority: 102
  providerName: ProQuest
Title A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex
URI https://www.proquest.com/docview/2292787025
https://www.proquest.com/docview/2290977461
https://inria.hal.science/hal-01783141
https://pubmed.ncbi.nlm.nih.gov/PMC6744691
https://doaj.org/article/6f54846d19024aa695732e75848b21bc
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_ugeAX8YnRs6ziJyGa3ewj-SCSk6uleIeohX5bNpvNXaGXalPl7r93ZpPWCxyC-ZBAMpPAPDIz-_gNIa8xSrskFXGZShdDhKpiW1YirkVd61Klgie4Ufj0TE1mYjqX8z2ybW_VC7C9tbTDflKz9fLt1c_rD-Dw74PDZ-pdyxCFDYpinMVnWZztk0MITBobGpyKv5MKCN8fNhtpFkOlI_tJzltfMQhTAc0fgs8FrpW8kYgOl1HeiEvj--Ren1DSorOAB2TPNw_Jna7F5PUjYgsa1gy2oAtPL3cgrcASmuDQVU1x8J5WXWv6lnYbF2kAujzHP-GipYuGAiPFYQIP5GucbV5Shwt1rx6T2fjk-8dJ3LdViJ1MxCa2ucsqDweXNZShtULHVGXtOc8Fq1jqbW6lcpW2pXOV567WyjPma1tJq1z6hBw0q8Y_JTQRGjKmPBFVKkXqgEEoIAQuJyQvRUSSrRSN6zHHsfXF0oTaI1OmE7wBwRsUvMki8mbH8qMD3PgX8TGqZkeIWNnhxmp9bnrXM6qGqkyoClIfLqxVudQp91AniazkrHQReQWKHbxjUnw2eA9tJmWC_eYROdrq3WyN1IDAOP7wuIzIy91j8E_Um208KAVpEsyxFYuIHtjL4IvDJ83iIiB9Kw3Ves6e_Y9MnpO7HO0Y21yII3KwWf_yLyBx2pQjsq_nGs7Z-NOIHBbF9NsUrscnZ1--jsJgxCg4zB8FHhkp
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDAILkhRY8dxkgNCy2PZ0m1PrdSbcWynXalky2Z59E_xG5nJi-bSW3NMZmLJM_bMeMbzAbwmK22jWIZFnNgQLZQLTeFkWMqyTAsVSxHRReH9AzU7kl-Pk-MN-NvfhaGyyn5PbDZqt7R0Rr4jRC5IuUTy_vxHSKhRlF3tITRatdjzF78xZKvf7X5C-b4RYvr58OMs7FAFQptEch2a3GbO4yOSEqOwUpFeqqL0OILkjsfe5CZR1qWmsNZ5YctUec59aVxilI3xvzfgpozRktPN9OmXIWtB-ABd5pRnaqfm1B0Og3WqLuBZmI1sXwMRgBbtlAowL3m349rMS8Zueg_udl4qm7RqdR82fPUAbrW4lRcPwUxYU4hYo4A9-z50fkWWBlmHLUtGGQHmWrz7mrW3IVnTPfOEttdFzRYVQ0ZGZw8eyVeUwj5jlqp__zyCo2uZ1cewWS0rvwUskim6YXkkXZzI2CKDVEiIXFYmopABRP0sats1Mic8jTPdBDSZ0u3Ea5x4TROvswDeDiznbRePq4g_kGgGQmrA3bxYrk50t561KjHUk8qhPyWkMSpP0lh4DL5kVghe2ABeoWBH_5hN5prekZ7EXPJfIoDtXu662zpq_V_RA3g5fMZFT3IzlUehEE1EjrviAaQjfRmNOP5SLU6b9uEqlVLl_MnVg7-A27PD_bme7x7sPYU7grSYkDPkNmyuVz_9M_TF1sXzZgEw-HbdK-4fAbdKwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+mathematical+model+of+cell+dynamics+during+neurogenesis+in+the+mouse+cerebral+cortex&rft.jtitle=BMC+bioinformatics&rft.au=Postel%2C+Marie&rft.au=Karam%2C+Alice&rft.au=P%C3%A9zeron%2C+Guillaume&rft.au=Schneider-Maunoury%2C+Sylvie&rft.date=2019-09-14&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3018-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_019_3018_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon