Link prediction on bipartite networks using matrix factorization with negative sample selection

We propose a new method for bipartite link prediction using matrix factorization with negative sample selection. Bipartite link prediction is a problem that aims to predict the missing links or relations in a bipartite network. One of the most popular solutions to the problem is via matrix factoriza...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 8; p. e0289568
Main Authors Peng, Siqi, Yamamoto, Akihiro, Ito, Kimihito
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 16.08.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a new method for bipartite link prediction using matrix factorization with negative sample selection. Bipartite link prediction is a problem that aims to predict the missing links or relations in a bipartite network. One of the most popular solutions to the problem is via matrix factorization (MF), which performs well but requires reliable information on both absent and present network links as training samples. This, however, is sometimes unavailable since there is no ground truth for absent links. To solve the problem, we propose a technique called negative sample selection, which selects reliable negative training samples using formal concept analysis (FCA) of a given bipartite network in advance of the preceding MF process. We conduct experiments on two hypothetical application scenarios to prove that our joint method outperforms the raw MF-based link prediction method as well as all other previously-proposed unsupervised link prediction methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0289568