Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal
•An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB a...
Saved in:
Published in | Bioresource technology Vol. 250; pp. 564 - 573 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB and nosZ were successfully amplified.
An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3− → NO2− → NO → N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process. |
---|---|
AbstractList | An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N₂O, and 62.4% was converted to N₂. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO₃⁻ → NO₂⁻ → NO → N₂O → N₂ under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process. An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N O, and 62.4% was converted to N . Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO → NO → NO → N O → N under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process. An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3- → NO2- → NO → N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3- → NO2- → NO → N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process. •An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB and nosZ were successfully amplified. An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3− → NO2− → NO → N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process. |
Author | Tan, Pan Cheng, Dan Yang Guo, Jin Song An, Qiang Zhao, Bin |
Author_xml | – sequence: 1 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China – sequence: 2 givenname: Dan Yang surname: Cheng fullname: Cheng, Dan Yang organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China – sequence: 3 givenname: Pan surname: Tan fullname: Tan, Pan organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China – sequence: 4 givenname: Qiang surname: An fullname: An, Qiang email: anqiang@cqu.edu.cn organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China – sequence: 5 givenname: Jin Song surname: Guo fullname: Guo, Jin Song organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29197780$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2L2zAQhkXZ0s1u-xcWHXuxq5G_ZOihJfQLAu2hhd6ELI-Igi2lkhzY_fWVm82ll5xmDu8zA897R26cd0jIA7ASGLTvDuVgfUio9yVn0JUAJavEC7IB0VUF77v2hmxY37JCNLy-JXcxHhhjFXT8FbnlPfRdJ9iGHLd7FZROGOyTStY76g1VjioMfrCajuhsCtZYDPRHxGX0s3cq0piW9JShvARlHf29KzhNniq9t3hCisZYbdEluvIqIQ04-5OaXpOXRk0R3zzPe_Lr86ef26_F7vuXb9uPu0I3rE6FAuwATI0DMiYq0zUoxDAabUBhX_OmQtP0gHUNRujWCNXX0Ip6GNq27ZFV9-Tt-e4x-D8LxiRnGzVOk3Lolyh5ttFUnaj7q9HsilesaTjk6MNzdBlmHOUx2FmFR3kRmgPvzwEdfIwBjdQ2_RO7epokMLn2Jw_y0p9c-5MAMveX8fY__PLhKvjhDGJ2esptybjq1zjagDrJ0dtrJ_4CY-u6cg |
CitedBy_id | crossref_primary_10_1007_s00449_021_02523_9 crossref_primary_10_1016_j_ibiod_2025_106046 crossref_primary_10_1016_j_biortech_2021_125690 crossref_primary_10_1016_j_cej_2024_149109 crossref_primary_10_1007_s00449_021_02581_z crossref_primary_10_1016_j_scitotenv_2019_06_453 crossref_primary_10_1016_j_biortech_2020_123309 crossref_primary_10_1007_s13762_024_05463_5 crossref_primary_10_1016_j_resmic_2019_05_001 crossref_primary_10_1016_j_aquaculture_2020_735211 crossref_primary_10_1016_j_procbio_2022_04_021 crossref_primary_10_1016_j_biortech_2022_127756 crossref_primary_10_1016_j_jenvman_2021_111961 crossref_primary_10_3389_fenvs_2020_556226 crossref_primary_10_1016_j_biortech_2021_125449 crossref_primary_10_1016_j_jenvman_2025_124890 crossref_primary_10_1016_j_jprot_2021_104426 crossref_primary_10_3390_w14091452 crossref_primary_10_3390_microorganisms9071524 crossref_primary_10_3390_molecules26113390 crossref_primary_10_1016_j_scitotenv_2021_148552 crossref_primary_10_1016_j_watres_2019_114956 crossref_primary_10_1007_s00449_024_02977_7 crossref_primary_10_3389_fmicb_2022_882890 crossref_primary_10_1016_j_biortech_2021_125582 crossref_primary_10_5004_dwt_2020_25289 crossref_primary_10_1016_j_biortech_2020_124507 crossref_primary_10_1016_j_biortech_2018_10_052 crossref_primary_10_1016_j_biortech_2021_125621 crossref_primary_10_1016_j_chemosphere_2020_129521 crossref_primary_10_1016_j_biortech_2020_123301 crossref_primary_10_1111_jwas_12789 crossref_primary_10_3389_fmicb_2022_961815 crossref_primary_10_1007_s12649_023_02061_3 crossref_primary_10_1016_j_cej_2024_155501 crossref_primary_10_1016_j_procbio_2021_02_007 crossref_primary_10_1016_j_aquaculture_2023_739713 crossref_primary_10_1071_EN20097 crossref_primary_10_3390_catal11101214 crossref_primary_10_3389_fmicb_2021_764241 crossref_primary_10_1111_jam_14476 crossref_primary_10_1007_s10529_024_03529_5 crossref_primary_10_1016_j_synbio_2023_03_002 crossref_primary_10_1016_j_eti_2021_101458 crossref_primary_10_1139_gen_2022_0055 crossref_primary_10_1002_wer_10850 crossref_primary_10_1007_s11270_024_07001_y crossref_primary_10_1016_j_bej_2025_109663 crossref_primary_10_3390_w16131799 crossref_primary_10_1021_acs_analchem_3c00676 crossref_primary_10_1016_j_biortech_2020_123888 crossref_primary_10_1098_rsos_191275 crossref_primary_10_1080_09593330_2020_1780476 crossref_primary_10_1016_j_scitotenv_2022_156475 crossref_primary_10_1080_09593330_2023_2283781 crossref_primary_10_1002_jctb_5863 crossref_primary_10_3390_ijerph16040583 crossref_primary_10_1007_s13762_022_04219_3 crossref_primary_10_1016_j_clay_2022_106550 crossref_primary_10_1016_j_scitotenv_2018_09_160 crossref_primary_10_1002_jobm_202100446 crossref_primary_10_3389_fmicb_2023_1040201 crossref_primary_10_1016_j_scitotenv_2021_149023 crossref_primary_10_1007_s00449_020_02451_0 crossref_primary_10_1016_j_biortech_2023_128994 crossref_primary_10_1016_j_jbiosc_2021_03_012 crossref_primary_10_1016_j_chemosphere_2022_135093 crossref_primary_10_1016_j_scitotenv_2024_171034 crossref_primary_10_1007_s00253_021_11189_y crossref_primary_10_1264_jsme2_ME22025 crossref_primary_10_1002_jctb_6160 crossref_primary_10_1007_s11274_021_03035_0 crossref_primary_10_1016_j_bej_2022_108759 crossref_primary_10_1016_j_jwpe_2024_106044 crossref_primary_10_1016_j_isci_2023_106824 crossref_primary_10_1016_j_biortech_2023_129569 crossref_primary_10_1016_j_biortech_2020_123633 crossref_primary_10_1016_j_jiec_2024_08_007 crossref_primary_10_3390_ijerph16224451 crossref_primary_10_1016_j_scitotenv_2022_157452 crossref_primary_10_1016_j_biombioe_2020_105677 crossref_primary_10_1016_j_biortech_2019_02_037 crossref_primary_10_1016_j_aquaculture_2018_09_041 crossref_primary_10_1016_j_jhazmat_2022_128616 crossref_primary_10_1016_j_biortech_2023_130047 crossref_primary_10_1007_s00449_021_02525_7 crossref_primary_10_1016_j_ecoenv_2024_116156 crossref_primary_10_1016_j_watres_2022_118962 crossref_primary_10_1007_s00449_020_02376_8 crossref_primary_10_1016_j_biortech_2018_09_015 crossref_primary_10_3390_microorganisms12122652 crossref_primary_10_3390_microorganisms10112304 crossref_primary_10_1007_s13762_023_04979_6 crossref_primary_10_3390_ijerph16030364 crossref_primary_10_1016_j_ibiod_2022_105426 crossref_primary_10_3390_catal12040412 crossref_primary_10_1016_j_biortech_2018_09_090 crossref_primary_10_1016_j_biortech_2020_123597 crossref_primary_10_1016_j_cej_2019_04_114 crossref_primary_10_1016_j_envres_2021_110797 crossref_primary_10_1016_j_jbiosc_2019_12_011 crossref_primary_10_1007_s13762_024_05838_8 crossref_primary_10_1016_j_biortech_2020_123196 crossref_primary_10_1016_j_chemosphere_2020_126739 crossref_primary_10_3390_app13074154 crossref_primary_10_1016_j_biortech_2019_122083 crossref_primary_10_1007_s00203_020_01887_y crossref_primary_10_1016_j_biortech_2023_129189 crossref_primary_10_1016_j_scitotenv_2024_175457 crossref_primary_10_1016_j_scitotenv_2023_168348 crossref_primary_10_1007_s00449_019_02191_w crossref_primary_10_1016_j_scitotenv_2021_148910 crossref_primary_10_1016_j_biortech_2020_123976 crossref_primary_10_1007_s11356_021_12673_8 crossref_primary_10_1016_j_biortech_2020_124555 crossref_primary_10_1007_s11356_022_21046_8 crossref_primary_10_1016_j_biortech_2020_123345 crossref_primary_10_1016_j_chemosphere_2022_137655 crossref_primary_10_1016_j_ibiod_2020_105157 crossref_primary_10_1016_j_apsoil_2021_104351 crossref_primary_10_1016_j_biortech_2019_122250 crossref_primary_10_1016_j_isci_2024_110965 crossref_primary_10_1016_j_procbio_2023_05_030 crossref_primary_10_3389_fenvs_2022_887093 crossref_primary_10_1088_1755_1315_300_5_052009 crossref_primary_10_3389_fenvs_2021_818316 crossref_primary_10_1016_j_biortech_2024_130869 crossref_primary_10_1016_j_biortech_2023_130184 crossref_primary_10_3390_separations10090461 crossref_primary_10_1016_j_cjche_2020_08_014 crossref_primary_10_1016_j_biortech_2019_121854 crossref_primary_10_1016_j_biortech_2023_129757 crossref_primary_10_1016_j_ibiod_2022_105404 crossref_primary_10_1016_j_jbiosc_2020_07_010 crossref_primary_10_1007_s00449_023_02854_9 crossref_primary_10_1016_j_jenvman_2021_113641 crossref_primary_10_1016_j_jenvman_2020_111786 crossref_primary_10_1016_j_ecoenv_2021_112693 crossref_primary_10_1016_j_jclepro_2023_137565 crossref_primary_10_1016_j_colsurfb_2022_112972 crossref_primary_10_1016_j_wen_2020_02_001 crossref_primary_10_1016_j_eti_2022_102913 crossref_primary_10_1021_acs_est_1c04113 crossref_primary_10_1016_j_aquaculture_2020_735686 crossref_primary_10_1016_j_scitotenv_2019_06_488 crossref_primary_10_1016_j_egg_2025_100341 crossref_primary_10_1016_j_marpolbul_2025_117711 crossref_primary_10_1021_acs_est_1c07980 crossref_primary_10_1016_j_biortech_2018_03_123 crossref_primary_10_1016_j_eti_2022_102630 crossref_primary_10_1016_j_jece_2024_114969 crossref_primary_10_1016_j_cej_2023_141878 crossref_primary_10_1016_j_biortech_2019_121506 crossref_primary_10_1016_j_envres_2023_118021 crossref_primary_10_1016_j_jhazmat_2022_128281 crossref_primary_10_1016_j_ibiod_2021_105234 crossref_primary_10_1016_j_scitotenv_2020_140476 crossref_primary_10_1007_s00253_019_10188_4 crossref_primary_10_3389_fmicb_2019_02580 crossref_primary_10_1007_s13762_021_03253_x crossref_primary_10_1016_j_memsci_2020_117952 crossref_primary_10_1016_j_envpol_2020_115135 crossref_primary_10_1016_j_heliyon_2023_e14983 |
Cites_doi | 10.1128/aem.54.11.2812-2818.1988 10.1038/nature10332 10.1007/s00284-006-0021-x 10.1006/jmbi.1997.1070 10.1016/0014-5793(90)80889-Q 10.1016/j.biortech.2011.12.033 10.1016/j.biortech.2014.12.057 10.1016/j.biortech.2015.07.059 10.1016/j.biortech.2011.10.026 10.1007/s12010-015-1920-8 10.1016/j.jbiosc.2011.12.012 10.1007/BF00408378 10.1007/s12257-013-0580-1 10.1016/j.jbiotec.2010.12.025 10.1111/j.1365-2958.1996.tb02475.x 10.1007/s12257-015-0009-0 10.1016/j.biortech.2015.02.109 10.1016/j.biortech.2011.04.101 10.1016/j.bbabio.2012.10.002 10.1016/j.jhazmat.2008.01.020 10.1007/PL00000845 10.1016/j.biortech.2013.03.189 10.1007/s00253-014-6221-6 10.1007/BF01570072 10.1263/jbb.106.498 10.1016/j.biortech.2014.03.125 10.1016/j.jhazmat.2016.07.047 10.1046/j.1365-2958.2002.02859.x 10.1039/C3CS60249D 10.1007/s002530000363 10.1016/j.aquaculture.2011.06.018 10.1128/aem.62.7.2421-2426.1996 10.1016/j.biortech.2017.03.053 10.1016/j.biortech.2017.01.049 10.1111/j.1574-6941.1994.tb00092.x 10.1007/s00253-016-7290-5 10.1128/AEM.69.6.3152-3157.2003 10.1007/s12010-013-0109-2 10.1080/09593330.2016.1146338 10.1007/s10529-013-1417-x 10.1007/PL00000849 10.1080/09593339209385217 10.1016/j.biortech.2016.01.066 10.1007/s002530000386 10.1111/j.1574-6941.1995.tb00187.x |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.11.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 573 |
ExternalDocumentID | 29197780 10_1016_j_biortech_2017_11_038 S0960852417320126 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-a1e711f4ebe0083f75e88bdfcf1ae94253ef591e441f8c6f8a941684bb6669e03 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 02 04:51:06 EDT 2025 Tue Aug 05 11:30:17 EDT 2025 Wed Feb 19 02:42:29 EST 2025 Tue Jul 01 02:06:54 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Sat Nov 02 16:01:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrate removal NapA NirS Denitrification genes Aerobic denitrification |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-a1e711f4ebe0083f75e88bdfcf1ae94253ef591e441f8c6f8a941684bb6669e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29197780 |
PQID | 1972305521 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000537849 proquest_miscellaneous_1972305521 pubmed_primary_29197780 crossref_citationtrail_10_1016_j_biortech_2017_11_038 crossref_primary_10_1016_j_biortech_2017_11_038 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_11_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moir, Wood (b0100) 2001; 58 Sparacino-Watkins, Stolz, Basu (b0165) 2014; 43 Duan, Fang, Su, Chen, Lin (b0040) 2015; 179 Song, An, Fu, Yang (b0160) 2011; 319 Bell, Richardson, Ferguson (b0025) 1990; 265 Patureau, Davison, Bernet, Moletta (b0120) 1994; 14 Robertson, Kuenen (b0145) 1984; 139 Yao, Ni, Ma, Li (b0210) 2013; 139 Baker, Saunders, Willis, Ferguson, Hajdu, Fülöp (b0020) 1997; 269 Velusamy, Krishnani (b0190) 2013; 169 Zheng, He, Ma, Chen, Liu, Ahmad, Gui, Ni (b0220) 2014; 162 Patureau, Bernet, Moletta (b0115) 1996; 16 Wan, Yang, Lee, Du, Wan, Chen (b0195) 2011; 102 Li, Wang, Fu, Gao, Zhao, Zhou (b0090) 2017; 230 Otte, Robertson, Jetten, Kuenen (b0105) 1996; 62 Zhou, Ye, Zhao (b0230) 2014; 19 Kraft, Strous, Tegetmeyer (b0080) 2011; 155 Lei, Wang, Liu, Xi, Song (b0085) 2016; 100 Ji, Wang, Yang (b0065) 2014; 36 Zhu, Ding, Feng, Kong, Xu, Xu (b0235) 2012; 108 Takaya, Catalan-Sakairi, Sakaguchi, Kato, Zhou, Shoun (b0185) 2003; 69 Huang, Tseng (b0055) 2001; 55 Liu, Ai, Miao, Liu (b0095) 2016; 206 Kim, Jeong, Yoon, Cho, Kim, Kim, Ryu, Lee (b0075) 2008; 106 Su, Yeh, Tseng (b0170) 2006; 53 Zheng, Li, Liu, Gui, Ni (b0225) 2016; 318 Reyes, Roldán, Klipp, Castillo, Moreno-Vivián (b0135) 1996; 19 Wood, Alizadeh, Richardson, Ferguson, Moir (b0200) 2002; 44 Sun, Li, Zhang, Ma (b0180) 2015; 99 Ye, Zhao, An, Huang (b0215) 2016; 37 Pomowski, Zumft, Kroneck, Einsle (b0125) 2011; 477 Patureau, Bernet, Delgenès, Moletta (b0110) 2000; 54 Yang, Wang, Zhou (b0205) 2012; 104 Huang, Guo, Zhang, Su, Wen, Zhang (b0060) 2015; 196 Arts, Robertson, Gijs Kuenen (b0015) 1995; 18 Chen, Ni (b0035) 2012; 113 Shapleigh, Payne (b0155) 1985; 26 Ji, Yang, Zhu, Jiang, Wang, Zhou, Zhang (b0070) 2015; 20 APHA (b0010) 1998 Guo, Zhao, An, Tian (b0045) 2016; 178 He, Zheng, Ma, Li, Ni (b0050) 2015; 185 Akunna, Bizeau, Moletta (b0005) 1992; 13 Richardson, Berks, Russell, Spiro, Taylor (b0140) 2001; 58 Zumft (b0240) 1997; 61 Sun, Feng, Li, Zhang, Yang, Ma (b0175) 2017; 234 Robertson, van Niel, Kuenen (b0150) 1988; 54 Chen, Strous (b0030) 2013; 1827 Rajakumar, Ayyasamy, Shanthi, Thavamani, Velmurugan, Song, Lakshmanaperumalsamy (b0130) 2008; 157 Kraft (10.1016/j.biortech.2017.11.038_b0080) 2011; 155 Richardson (10.1016/j.biortech.2017.11.038_b0140) 2001; 58 Duan (10.1016/j.biortech.2017.11.038_b0040) 2015; 179 Sun (10.1016/j.biortech.2017.11.038_b0180) 2015; 99 Ye (10.1016/j.biortech.2017.11.038_b0215) 2016; 37 Robertson (10.1016/j.biortech.2017.11.038_b0145) 1984; 139 Huang (10.1016/j.biortech.2017.11.038_b0055) 2001; 55 Lei (10.1016/j.biortech.2017.11.038_b0085) 2016; 100 Baker (10.1016/j.biortech.2017.11.038_b0020) 1997; 269 Rajakumar (10.1016/j.biortech.2017.11.038_b0130) 2008; 157 Zheng (10.1016/j.biortech.2017.11.038_b0220) 2014; 162 Wood (10.1016/j.biortech.2017.11.038_b0200) 2002; 44 Otte (10.1016/j.biortech.2017.11.038_b0105) 1996; 62 Li (10.1016/j.biortech.2017.11.038_b0090) 2017; 230 Moir (10.1016/j.biortech.2017.11.038_b0100) 2001; 58 Patureau (10.1016/j.biortech.2017.11.038_b0110) 2000; 54 Akunna (10.1016/j.biortech.2017.11.038_b0005) 1992; 13 Liu (10.1016/j.biortech.2017.11.038_b0095) 2016; 206 Takaya (10.1016/j.biortech.2017.11.038_b0185) 2003; 69 Zheng (10.1016/j.biortech.2017.11.038_b0225) 2016; 318 Bell (10.1016/j.biortech.2017.11.038_b0025) 1990; 265 Ji (10.1016/j.biortech.2017.11.038_b0070) 2015; 20 Shapleigh (10.1016/j.biortech.2017.11.038_b0155) 1985; 26 Ji (10.1016/j.biortech.2017.11.038_b0065) 2014; 36 Pomowski (10.1016/j.biortech.2017.11.038_b0125) 2011; 477 Robertson (10.1016/j.biortech.2017.11.038_b0150) 1988; 54 Guo (10.1016/j.biortech.2017.11.038_b0045) 2016; 178 Sun (10.1016/j.biortech.2017.11.038_b0175) 2017; 234 Zhu (10.1016/j.biortech.2017.11.038_b0235) 2012; 108 Chen (10.1016/j.biortech.2017.11.038_b0035) 2012; 113 Kim (10.1016/j.biortech.2017.11.038_b0075) 2008; 106 Wan (10.1016/j.biortech.2017.11.038_b0195) 2011; 102 Arts (10.1016/j.biortech.2017.11.038_b0015) 1995; 18 Patureau (10.1016/j.biortech.2017.11.038_b0115) 1996; 16 Song (10.1016/j.biortech.2017.11.038_b0160) 2011; 319 APHA (10.1016/j.biortech.2017.11.038_b0010) 1998 Velusamy (10.1016/j.biortech.2017.11.038_b0190) 2013; 169 Zhou (10.1016/j.biortech.2017.11.038_b0230) 2014; 19 Reyes (10.1016/j.biortech.2017.11.038_b0135) 1996; 19 Yang (10.1016/j.biortech.2017.11.038_b0205) 2012; 104 Chen (10.1016/j.biortech.2017.11.038_b0030) 2013; 1827 Zumft (10.1016/j.biortech.2017.11.038_b0240) 1997; 61 Huang (10.1016/j.biortech.2017.11.038_b0060) 2015; 196 Su (10.1016/j.biortech.2017.11.038_b0170) 2006; 53 He (10.1016/j.biortech.2017.11.038_b0050) 2015; 185 Sparacino-Watkins (10.1016/j.biortech.2017.11.038_b0165) 2014; 43 Patureau (10.1016/j.biortech.2017.11.038_b0120) 1994; 14 Yao (10.1016/j.biortech.2017.11.038_b0210) 2013; 139 |
References_xml | – volume: 13 start-page: 825 year: 1992 end-page: 836 ident: b0005 article-title: Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NO publication-title: Environ. Technol. – volume: 18 start-page: 305 year: 1995 end-page: 315 ident: b0015 article-title: Nitrification and denitrification by publication-title: FEMS Microbiol. Ecol. – volume: 55 start-page: 90 year: 2001 end-page: 94 ident: b0055 article-title: Nitrate reduction by publication-title: Appl. Microbiol. Biotechnol. – volume: 37 start-page: 2206 year: 2016 end-page: 2213 ident: b0215 article-title: Nitrogen removal by publication-title: Environ. Technol. – volume: 61 start-page: 533 year: 1997 end-page: 616 ident: b0240 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiol. Mol. Biol. Rev. – volume: 14 start-page: 71 year: 1994 end-page: 78 ident: b0120 article-title: Denitrification under various aeration conditions in publication-title: FEMS Microbiol. Ecol. – volume: 36 start-page: 719 year: 2014 end-page: 722 ident: b0065 article-title: Tolerance of an aerobic denitrifier ( publication-title: Biotechnol. Lett. – volume: 265 start-page: 85 year: 1990 end-page: 87 ident: b0025 article-title: Periplasmic and membrane-bound respiratory nitrate reductases in publication-title: FEBS Lett. – volume: 102 start-page: 7244 year: 2011 end-page: 7248 ident: b0195 article-title: Aerobic denitrification by novel isolated strain using NO publication-title: Bioresour. Technol. – volume: 1827 start-page: 136 year: 2013 end-page: 144 ident: b0030 article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution publication-title: Biochim. Biophys. Acta – volume: 44 start-page: 157 year: 2002 end-page: 170 ident: b0200 article-title: Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in publication-title: Mol. Microbiol. – volume: 206 start-page: 9 year: 2016 end-page: 15 ident: b0095 article-title: strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N publication-title: Bioresour. Technol. – volume: 100 start-page: 4219 year: 2016 end-page: 4229 ident: b0085 article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, publication-title: Appl. Microbiol. Biotechnol. – volume: 318 start-page: 571 year: 2016 end-page: 578 ident: b0225 article-title: Potential application of aerobic denitrifying bacterium publication-title: J. Hazard. Mater. – volume: 20 start-page: 643 year: 2015 end-page: 651 ident: b0070 article-title: Aerobic denitrification: a review of important advances of the last 30 years publication-title: Biotechnol. Bioproc. Eng. – volume: 157 start-page: 553 year: 2008 end-page: 563 ident: b0130 article-title: Nitrate removal efficiency of bacterial consortium ( publication-title: J. Hazard Mater. – volume: 234 start-page: 264 year: 2017 end-page: 272 ident: b0175 article-title: Ammonium assimilation: An important accessory during aerobic denitrification of publication-title: Bioresour. Technol. – volume: 162 start-page: 80 year: 2014 end-page: 88 ident: b0220 article-title: Reducing NO and N publication-title: Bioresour. Technol. – volume: 106 start-page: 498 year: 2008 end-page: 502 ident: b0075 article-title: Aerobic denitrification of publication-title: J. Biosci. Bioeng. – volume: 178 start-page: 947 year: 2016 end-page: 959 ident: b0045 article-title: Characteristics of a novel aerobic denitrifying bacterium, publication-title: Appl. Biochem. Biotechnol. – volume: 62 start-page: 2421 year: 1996 end-page: 2426 ident: b0105 article-title: Nitrous oxide production by publication-title: Appl. Environ. Microbiol. – volume: 99 start-page: 3243 year: 2015 end-page: 3248 ident: b0180 article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of publication-title: Appl. Microbiol. Biotechnol. – volume: 196 start-page: 209 year: 2015 end-page: 216 ident: b0060 article-title: Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, publication-title: Bioresour. Technol. – volume: 269 start-page: 440 year: 1997 end-page: 455 ident: b0020 article-title: Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds publication-title: J. Mol. Biol. – volume: 54 start-page: 535 year: 2000 end-page: 542 ident: b0110 article-title: Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium publication-title: Appl. Microbiol. Biotechnol. – volume: 185 start-page: 346 year: 2015 end-page: 352 ident: b0050 article-title: Interaction of Cr(VI) reduction and denitrification by strain publication-title: Bioresour. Technol. – volume: 43 start-page: 676 year: 2014 end-page: 706 ident: b0165 article-title: Nitrate and periplasmic nitrate reductases publication-title: Chem. Soc. Rev. – volume: 155 start-page: 104 year: 2011 end-page: 117 ident: b0080 article-title: Microbial nitrate respiration-genes, enzymes and environmental distribution publication-title: J. Biotechnol. – volume: 58 start-page: 215 year: 2001 end-page: 224 ident: b0100 article-title: Nitrate and nitrite transport in bacteria publication-title: Cell. Mol. Life Sci. – volume: 477 start-page: 234 year: 2011 ident: b0125 article-title: N publication-title: Nature – volume: 169 start-page: 1978 year: 2013 end-page: 1992 ident: b0190 article-title: Heterotrophic nitrifying and oxygen tolerant denitrifying bacteria from greenwater system of coastal aquaculture publication-title: Appl. Biochem. Biotechnol. – volume: 139 start-page: 351 year: 1984 end-page: 354 ident: b0145 article-title: Aerobic denitrification: a controversy revived publication-title: Arch. Microbiol. – volume: 69 start-page: 3152 year: 2003 end-page: 3157 ident: b0185 article-title: Aerobic denitrifying bacteria that produce low levels of nitrous oxide publication-title: Appl. Environ. Microbiol. – volume: 104 start-page: 65 year: 2012 end-page: 72 ident: b0205 article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by publication-title: Bioresour. Technol. – volume: 230 start-page: 103 year: 2017 end-page: 111 ident: b0090 article-title: Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium publication-title: Bioresour. Technol. – volume: 19 start-page: 1307 year: 1996 end-page: 1318 ident: b0135 article-title: Isolation of periplasmic nitrate reductase genes from publication-title: Mol. Microbiol. – volume: 108 start-page: 1 year: 2012 end-page: 7 ident: b0235 article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem publication-title: Bioresour. Technol. – volume: 53 start-page: 77 year: 2006 end-page: 81 ident: b0170 article-title: A strain of publication-title: Curr. Microbiol. – volume: 139 start-page: 80 year: 2013 end-page: 86 ident: b0210 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, publication-title: Bioresour. Technol. – volume: 179 start-page: 421 year: 2015 end-page: 428 ident: b0040 article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. – volume: 319 start-page: 188 year: 2011 end-page: 193 ident: b0160 article-title: Isolation and characterization of an aerobic denitrifying publication-title: Aquaculture – year: 1998 ident: b0010 article-title: Standard methods for the examination of water and wastewater – volume: 54 start-page: 2812 year: 1988 end-page: 2818 ident: b0150 article-title: Simultaneous nitrification and denitrification in aerobic chemostat cultures of publication-title: Appl. Environ. Microbiol. – volume: 26 start-page: 275 year: 1985 end-page: 279 ident: b0155 article-title: Differentiation of c, d1 cytochrome and copper nitrite reductase production in denitrifiers publication-title: FEMS Microbiol. Lett. – volume: 16 start-page: 124 year: 1996 end-page: 128 ident: b0115 article-title: Effect of oxygen on denitrification in continuous chemostat culture with publication-title: J. Ind. Microbiol. – volume: 58 start-page: 165 year: 2001 end-page: 178 ident: b0140 article-title: Functional, biochemical and genetic diversity of prokaryotic nitrate reductases publication-title: Cell. Mol. Life Sci. – volume: 113 start-page: 619 year: 2012 end-page: 623 ident: b0035 article-title: Ammonium removal by publication-title: J. Biosci. Bioeng. – volume: 19 start-page: 231 year: 2014 end-page: 238 ident: b0230 article-title: Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium publication-title: Biotechnol. Bioproc. Eng. – volume: 54 start-page: 2812 year: 1988 ident: 10.1016/j.biortech.2017.11.038_b0150 article-title: Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.54.11.2812-2818.1988 – volume: 477 start-page: 234 year: 2011 ident: 10.1016/j.biortech.2017.11.038_b0125 article-title: N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase publication-title: Nature doi: 10.1038/nature10332 – volume: 53 start-page: 77 year: 2006 ident: 10.1016/j.biortech.2017.11.038_b0170 article-title: A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan publication-title: Curr. Microbiol. doi: 10.1007/s00284-006-0021-x – volume: 269 start-page: 440 year: 1997 ident: 10.1016/j.biortech.2017.11.038_b0020 article-title: Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1070 – volume: 265 start-page: 85 year: 1990 ident: 10.1016/j.biortech.2017.11.038_b0025 article-title: Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)80889-Q – volume: 108 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2017.11.038_b0235 article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.033 – volume: 179 start-page: 421 year: 2015 ident: 10.1016/j.biortech.2017.11.038_b0040 article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.057 – volume: 196 start-page: 209 year: 2015 ident: 10.1016/j.biortech.2017.11.038_b0060 article-title: Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.059 – volume: 104 start-page: 65 year: 2012 ident: 10.1016/j.biortech.2017.11.038_b0205 article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.026 – volume: 178 start-page: 947 year: 2016 ident: 10.1016/j.biortech.2017.11.038_b0045 article-title: Characteristics of a novel aerobic denitrifying bacterium, Enterobacter cloacae strain HNR publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-015-1920-8 – volume: 113 start-page: 619 year: 2012 ident: 10.1016/j.biortech.2017.11.038_b0035 article-title: Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2011.12.012 – volume: 139 start-page: 351 year: 1984 ident: 10.1016/j.biortech.2017.11.038_b0145 article-title: Aerobic denitrification: a controversy revived publication-title: Arch. Microbiol. doi: 10.1007/BF00408378 – volume: 19 start-page: 231 year: 2014 ident: 10.1016/j.biortech.2017.11.038_b0230 article-title: Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater publication-title: Biotechnol. Bioproc. Eng. doi: 10.1007/s12257-013-0580-1 – volume: 155 start-page: 104 year: 2011 ident: 10.1016/j.biortech.2017.11.038_b0080 article-title: Microbial nitrate respiration-genes, enzymes and environmental distribution publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.12.025 – volume: 19 start-page: 1307 year: 1996 ident: 10.1016/j.biortech.2017.11.038_b0135 article-title: Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1996.tb02475.x – volume: 20 start-page: 643 year: 2015 ident: 10.1016/j.biortech.2017.11.038_b0070 article-title: Aerobic denitrification: a review of important advances of the last 30 years publication-title: Biotechnol. Bioproc. Eng. doi: 10.1007/s12257-015-0009-0 – volume: 185 start-page: 346 year: 2015 ident: 10.1016/j.biortech.2017.11.038_b0050 article-title: Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.109 – volume: 102 start-page: 7244 year: 2011 ident: 10.1016/j.biortech.2017.11.038_b0195 article-title: Aerobic denitrification by novel isolated strain using NO2−-N as nitrogen source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.101 – volume: 1827 start-page: 136 year: 2013 ident: 10.1016/j.biortech.2017.11.038_b0030 article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.10.002 – volume: 157 start-page: 553 year: 2008 ident: 10.1016/j.biortech.2017.11.038_b0130 article-title: Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.01.020 – volume: 58 start-page: 165 year: 2001 ident: 10.1016/j.biortech.2017.11.038_b0140 article-title: Functional, biochemical and genetic diversity of prokaryotic nitrate reductases publication-title: Cell. Mol. Life Sci. doi: 10.1007/PL00000845 – volume: 139 start-page: 80 year: 2013 ident: 10.1016/j.biortech.2017.11.038_b0210 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.189 – volume: 61 start-page: 533 year: 1997 ident: 10.1016/j.biortech.2017.11.038_b0240 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiol. Mol. Biol. Rev. – volume: 99 start-page: 3243 year: 2015 ident: 10.1016/j.biortech.2017.11.038_b0180 article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6221-6 – volume: 16 start-page: 124 year: 1996 ident: 10.1016/j.biortech.2017.11.038_b0115 article-title: Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2 publication-title: J. Ind. Microbiol. doi: 10.1007/BF01570072 – volume: 26 start-page: 275 year: 1985 ident: 10.1016/j.biortech.2017.11.038_b0155 article-title: Differentiation of c, d1 cytochrome and copper nitrite reductase production in denitrifiers publication-title: FEMS Microbiol. Lett. – volume: 106 start-page: 498 year: 2008 ident: 10.1016/j.biortech.2017.11.038_b0075 article-title: Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.106.498 – year: 1998 ident: 10.1016/j.biortech.2017.11.038_b0010 – volume: 162 start-page: 80 year: 2014 ident: 10.1016/j.biortech.2017.11.038_b0220 article-title: Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.125 – volume: 318 start-page: 571 year: 2016 ident: 10.1016/j.biortech.2017.11.038_b0225 article-title: Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.07.047 – volume: 44 start-page: 157 year: 2002 ident: 10.1016/j.biortech.2017.11.038_b0200 article-title: Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02859.x – volume: 43 start-page: 676 year: 2014 ident: 10.1016/j.biortech.2017.11.038_b0165 article-title: Nitrate and periplasmic nitrate reductases publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60249D – volume: 55 start-page: 90 year: 2001 ident: 10.1016/j.biortech.2017.11.038_b0055 article-title: Nitrate reduction by Citrobacter diversus under aerobic environment publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530000363 – volume: 319 start-page: 188 year: 2011 ident: 10.1016/j.biortech.2017.11.038_b0160 article-title: Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds publication-title: Aquaculture doi: 10.1016/j.aquaculture.2011.06.018 – volume: 62 start-page: 2421 year: 1996 ident: 10.1016/j.biortech.2017.11.038_b0105 article-title: Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.62.7.2421-2426.1996 – volume: 234 start-page: 264 year: 2017 ident: 10.1016/j.biortech.2017.11.038_b0175 article-title: Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.053 – volume: 230 start-page: 103 year: 2017 ident: 10.1016/j.biortech.2017.11.038_b0090 article-title: Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1–5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.049 – volume: 14 start-page: 71 year: 1994 ident: 10.1016/j.biortech.2017.11.038_b0120 article-title: Denitrification under various aeration conditions in Comamonas sp., strain SGLY2 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1994.tb00092.x – volume: 100 start-page: 4219 year: 2016 ident: 10.1016/j.biortech.2017.11.038_b0085 article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7290-5 – volume: 69 start-page: 3152 year: 2003 ident: 10.1016/j.biortech.2017.11.038_b0185 article-title: Aerobic denitrifying bacteria that produce low levels of nitrous oxide publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.6.3152-3157.2003 – volume: 169 start-page: 1978 year: 2013 ident: 10.1016/j.biortech.2017.11.038_b0190 article-title: Heterotrophic nitrifying and oxygen tolerant denitrifying bacteria from greenwater system of coastal aquaculture publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-013-0109-2 – volume: 37 start-page: 2206 year: 2016 ident: 10.1016/j.biortech.2017.11.038_b0215 article-title: Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification publication-title: Environ. Technol. doi: 10.1080/09593330.2016.1146338 – volume: 36 start-page: 719 year: 2014 ident: 10.1016/j.biortech.2017.11.038_b0065 article-title: Tolerance of an aerobic denitrifier (Pseudomonas stutzeri) to high O2 concentrations publication-title: Biotechnol. Lett. doi: 10.1007/s10529-013-1417-x – volume: 58 start-page: 215 year: 2001 ident: 10.1016/j.biortech.2017.11.038_b0100 article-title: Nitrate and nitrite transport in bacteria publication-title: Cell. Mol. Life Sci. doi: 10.1007/PL00000849 – volume: 13 start-page: 825 year: 1992 ident: 10.1016/j.biortech.2017.11.038_b0005 article-title: Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NOX ratio publication-title: Environ. Technol. doi: 10.1080/09593339209385217 – volume: 206 start-page: 9 year: 2016 ident: 10.1016/j.biortech.2017.11.038_b0095 article-title: Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.066 – volume: 54 start-page: 535 year: 2000 ident: 10.1016/j.biortech.2017.11.038_b0110 article-title: Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530000386 – volume: 18 start-page: 305 year: 1995 ident: 10.1016/j.biortech.2017.11.038_b0015 article-title: Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1995.tb00187.x |
SSID | ssj0003172 |
Score | 2.6100926 |
Snippet | •An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was... An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 564 |
SubjectTerms | Aerobic denitrification Aerobiosis biochemical pathways Denitrification Denitrification genes denitrifying microorganisms dissolved oxygen NapA NirS Nitrate removal Nitrates Nitrogen nitrogen balance Pseudomonas stutzeri technology temperature |
Title | Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal |
URI | https://dx.doi.org/10.1016/j.biortech.2017.11.038 https://www.ncbi.nlm.nih.gov/pubmed/29197780 https://www.proquest.com/docview/1972305521 https://www.proquest.com/docview/2000537849 |
Volume | 250 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcEJTX0lIZiWt24zzWznG1arW8KiSotDfLScYoFSSrTZYDB357Z5xkKRJVDxyTeKKJZzLzWR5_A_A2KpUsCKcGDuOQFygusDFioOYFgVmbFs7v6H66mK8uk_frdH0Ay_EsDJdVDrG_j-k-Wg93ZsNszjZVNfvC4FunlIFUTFksYtrtJFHs5dPff8o8KD_6nQQaHPDoG6eEr6Z5xRWtflNCqimzefI5lX8nqNsAqE9E54_h0YAgxaJX8gkcYH0EDxfftgOLBh7B_eXYxo2e3GAcfAqb5Z6guT9_KRonbC0sMh9TISgKVd22cqSL-NzirmzITW0r2m7X_SIh0fqeEmL9MYhE1wguxcSfKNAzUVACEyxP-FVs8UdDXvwMLs_Pvi5XwdB0ISjSMOkCK1FJ6RIyLsMzp1LUOi9d4aTFjP7wGF2aSSQY5XQxd9pmhOl0kue0EMowjJ_DYd3U-BKEk2Fu7TySTmGS21LnHFFKqzKklbGMJ5COM22KgZGcP-K7GUvPrsxoIcMWouWKIQtNYLaX2_ScHHdKZKMhzV_eZShx3Cn7ZrS8IdPxfoqtsdm1xndsC1MCQLePiXrGHJ1kE3jRu81e5yijNygdvvoP7Y7hAV3pvo78BA677Q5fE0zq8lP_H5zCvcW7D6uLa7OVFAo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtUGzdK-u6acCubizbsuRjEKxI1zQYsBbITZBtanCx2UHs9NBfP8qPoANW9NCrZRq0KJEfQeoTwNcglzwjnOpZDH2XoFjPhIiejDMCs0Zktq3oXi7j-XX0fSVWezAbzsK4tsre93c-vfXW_ZNJP5uTdVFMfjrwrQRFIBlSFAviZ7Dv2KnECPan5xfz5c4hU4hsiwn0vucE7h0UvjlNC9fU2tYluDx1hJ7uqMr_Y9RDGLSNRWcv4bAHkWza6fkK9rA8ghfTX5ueSAOP4GA23ORGI_dIB1_DerbjaO6OYLLKMlMyg46SKWPkiIpmU1jShf2ocZtXtFJNzepm29yREKvbayXYauEFrKmY68bEW2TYklFQDGNOniAs2-CfihbyG7g--3Y1m3v9vQteJvyo8QxHybmNyL4OoVkpUKk0t5nlBhPa5CFakXAkJGVVFltlEoJ1KkpTyoUS9MO3MCqrEt8Ds9xPjYkDbiVGqclV6pxKbmSClBzzcAximGmd9aTk7id-66H77EYPFtLOQpSxaLLQGCY7uXVHy_GoRDIYUv-zwDTFjkdlvwyW12Q6V1IxJVbbWreXtvmCMNDD7wQdaY6KkjG865bNTucgoS9I5X94gnaf4WB-dbnQi_PlxTE8pxHVtZV_hFGz2eIJoaYm_dTvir8VVBa7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+an+aerobic+denitrifier+Pseudomonas+stutzeri+strain+XL-2+to+achieve+efficient+nitrate+removal&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Bin&rft.au=Cheng%2C+Dan+Yang&rft.au=Tan%2C+Pan&rft.au=An%2C+Qiang&rft.date=2018-02-01&rft.issn=0960-8524&rft.volume=250+p.564-573&rft.spage=564&rft.epage=573&rft_id=info:doi/10.1016%2Fj.biortech.2017.11.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |