Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal

•An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB a...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 250; pp. 564 - 573
Main Authors Zhao, Bin, Cheng, Dan Yang, Tan, Pan, An, Qiang, Guo, Jin Song
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB and nosZ were successfully amplified. An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3− → NO2− → NO  →  N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.
AbstractList An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N₂O, and 62.4% was converted to N₂. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO₃⁻ → NO₂⁻ → NO → N₂O → N₂ under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.
An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N O, and 62.4% was converted to N . Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO  → NO  → NO  →  N O → N under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.
An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3- → NO2- → NO  →  N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3- → NO2- → NO  →  N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.
•An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was much greater than N2O by strain XL-2.•The optimal conditions for nitrate removal were investigated.•Denitrification genes of napA, nirS, norB and nosZ were successfully amplified. An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial concentration about 100 mg/L. Nitrogen balance indicates that 12.4% of the initial nitrogen was converted to N2O, and 62.4% was converted to N2. Single factor experiments indicate that the optimal conditions for nitrate removal were C/N ratio of 10, temperature of 30 °C and shaking speed of 120 rpm. Sequence amplification indicates that the denitrification genes of napA, nirS, norB and nosZ were present in strain XL-2. Combined with nitrogen balance, strain XL-2 presents the metabolic pathway of NO3− → NO2− → NO  →  N2O → N2 under aerobic conditions. The expression of napA and nirS might be responsible for the tolerance of dissolved oxygen by strain XL-2 during denitrification process.
Author Tan, Pan
Cheng, Dan Yang
Guo, Jin Song
An, Qiang
Zhao, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
– sequence: 2
  givenname: Dan Yang
  surname: Cheng
  fullname: Cheng, Dan Yang
  organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
– sequence: 3
  givenname: Pan
  surname: Tan
  fullname: Tan, Pan
  organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
– sequence: 4
  givenname: Qiang
  surname: An
  fullname: An, Qiang
  email: anqiang@cqu.edu.cn
  organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
– sequence: 5
  givenname: Jin Song
  surname: Guo
  fullname: Guo, Jin Song
  organization: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29197780$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2L2zAQhkXZ0s1u-xcWHXuxq5G_ZOihJfQLAu2hhd6ELI-Igi2lkhzY_fWVm82ll5xmDu8zA897R26cd0jIA7ASGLTvDuVgfUio9yVn0JUAJavEC7IB0VUF77v2hmxY37JCNLy-JXcxHhhjFXT8FbnlPfRdJ9iGHLd7FZROGOyTStY76g1VjioMfrCajuhsCtZYDPRHxGX0s3cq0piW9JShvARlHf29KzhNniq9t3hCisZYbdEluvIqIQ04-5OaXpOXRk0R3zzPe_Lr86ef26_F7vuXb9uPu0I3rE6FAuwATI0DMiYq0zUoxDAabUBhX_OmQtP0gHUNRujWCNXX0Ip6GNq27ZFV9-Tt-e4x-D8LxiRnGzVOk3Lolyh5ttFUnaj7q9HsilesaTjk6MNzdBlmHOUx2FmFR3kRmgPvzwEdfIwBjdQ2_RO7epokMLn2Jw_y0p9c-5MAMveX8fY__PLhKvjhDGJ2esptybjq1zjagDrJ0dtrJ_4CY-u6cg
CitedBy_id crossref_primary_10_1007_s00449_021_02523_9
crossref_primary_10_1016_j_ibiod_2025_106046
crossref_primary_10_1016_j_biortech_2021_125690
crossref_primary_10_1016_j_cej_2024_149109
crossref_primary_10_1007_s00449_021_02581_z
crossref_primary_10_1016_j_scitotenv_2019_06_453
crossref_primary_10_1016_j_biortech_2020_123309
crossref_primary_10_1007_s13762_024_05463_5
crossref_primary_10_1016_j_resmic_2019_05_001
crossref_primary_10_1016_j_aquaculture_2020_735211
crossref_primary_10_1016_j_procbio_2022_04_021
crossref_primary_10_1016_j_biortech_2022_127756
crossref_primary_10_1016_j_jenvman_2021_111961
crossref_primary_10_3389_fenvs_2020_556226
crossref_primary_10_1016_j_biortech_2021_125449
crossref_primary_10_1016_j_jenvman_2025_124890
crossref_primary_10_1016_j_jprot_2021_104426
crossref_primary_10_3390_w14091452
crossref_primary_10_3390_microorganisms9071524
crossref_primary_10_3390_molecules26113390
crossref_primary_10_1016_j_scitotenv_2021_148552
crossref_primary_10_1016_j_watres_2019_114956
crossref_primary_10_1007_s00449_024_02977_7
crossref_primary_10_3389_fmicb_2022_882890
crossref_primary_10_1016_j_biortech_2021_125582
crossref_primary_10_5004_dwt_2020_25289
crossref_primary_10_1016_j_biortech_2020_124507
crossref_primary_10_1016_j_biortech_2018_10_052
crossref_primary_10_1016_j_biortech_2021_125621
crossref_primary_10_1016_j_chemosphere_2020_129521
crossref_primary_10_1016_j_biortech_2020_123301
crossref_primary_10_1111_jwas_12789
crossref_primary_10_3389_fmicb_2022_961815
crossref_primary_10_1007_s12649_023_02061_3
crossref_primary_10_1016_j_cej_2024_155501
crossref_primary_10_1016_j_procbio_2021_02_007
crossref_primary_10_1016_j_aquaculture_2023_739713
crossref_primary_10_1071_EN20097
crossref_primary_10_3390_catal11101214
crossref_primary_10_3389_fmicb_2021_764241
crossref_primary_10_1111_jam_14476
crossref_primary_10_1007_s10529_024_03529_5
crossref_primary_10_1016_j_synbio_2023_03_002
crossref_primary_10_1016_j_eti_2021_101458
crossref_primary_10_1139_gen_2022_0055
crossref_primary_10_1002_wer_10850
crossref_primary_10_1007_s11270_024_07001_y
crossref_primary_10_1016_j_bej_2025_109663
crossref_primary_10_3390_w16131799
crossref_primary_10_1021_acs_analchem_3c00676
crossref_primary_10_1016_j_biortech_2020_123888
crossref_primary_10_1098_rsos_191275
crossref_primary_10_1080_09593330_2020_1780476
crossref_primary_10_1016_j_scitotenv_2022_156475
crossref_primary_10_1080_09593330_2023_2283781
crossref_primary_10_1002_jctb_5863
crossref_primary_10_3390_ijerph16040583
crossref_primary_10_1007_s13762_022_04219_3
crossref_primary_10_1016_j_clay_2022_106550
crossref_primary_10_1016_j_scitotenv_2018_09_160
crossref_primary_10_1002_jobm_202100446
crossref_primary_10_3389_fmicb_2023_1040201
crossref_primary_10_1016_j_scitotenv_2021_149023
crossref_primary_10_1007_s00449_020_02451_0
crossref_primary_10_1016_j_biortech_2023_128994
crossref_primary_10_1016_j_jbiosc_2021_03_012
crossref_primary_10_1016_j_chemosphere_2022_135093
crossref_primary_10_1016_j_scitotenv_2024_171034
crossref_primary_10_1007_s00253_021_11189_y
crossref_primary_10_1264_jsme2_ME22025
crossref_primary_10_1002_jctb_6160
crossref_primary_10_1007_s11274_021_03035_0
crossref_primary_10_1016_j_bej_2022_108759
crossref_primary_10_1016_j_jwpe_2024_106044
crossref_primary_10_1016_j_isci_2023_106824
crossref_primary_10_1016_j_biortech_2023_129569
crossref_primary_10_1016_j_biortech_2020_123633
crossref_primary_10_1016_j_jiec_2024_08_007
crossref_primary_10_3390_ijerph16224451
crossref_primary_10_1016_j_scitotenv_2022_157452
crossref_primary_10_1016_j_biombioe_2020_105677
crossref_primary_10_1016_j_biortech_2019_02_037
crossref_primary_10_1016_j_aquaculture_2018_09_041
crossref_primary_10_1016_j_jhazmat_2022_128616
crossref_primary_10_1016_j_biortech_2023_130047
crossref_primary_10_1007_s00449_021_02525_7
crossref_primary_10_1016_j_ecoenv_2024_116156
crossref_primary_10_1016_j_watres_2022_118962
crossref_primary_10_1007_s00449_020_02376_8
crossref_primary_10_1016_j_biortech_2018_09_015
crossref_primary_10_3390_microorganisms12122652
crossref_primary_10_3390_microorganisms10112304
crossref_primary_10_1007_s13762_023_04979_6
crossref_primary_10_3390_ijerph16030364
crossref_primary_10_1016_j_ibiod_2022_105426
crossref_primary_10_3390_catal12040412
crossref_primary_10_1016_j_biortech_2018_09_090
crossref_primary_10_1016_j_biortech_2020_123597
crossref_primary_10_1016_j_cej_2019_04_114
crossref_primary_10_1016_j_envres_2021_110797
crossref_primary_10_1016_j_jbiosc_2019_12_011
crossref_primary_10_1007_s13762_024_05838_8
crossref_primary_10_1016_j_biortech_2020_123196
crossref_primary_10_1016_j_chemosphere_2020_126739
crossref_primary_10_3390_app13074154
crossref_primary_10_1016_j_biortech_2019_122083
crossref_primary_10_1007_s00203_020_01887_y
crossref_primary_10_1016_j_biortech_2023_129189
crossref_primary_10_1016_j_scitotenv_2024_175457
crossref_primary_10_1016_j_scitotenv_2023_168348
crossref_primary_10_1007_s00449_019_02191_w
crossref_primary_10_1016_j_scitotenv_2021_148910
crossref_primary_10_1016_j_biortech_2020_123976
crossref_primary_10_1007_s11356_021_12673_8
crossref_primary_10_1016_j_biortech_2020_124555
crossref_primary_10_1007_s11356_022_21046_8
crossref_primary_10_1016_j_biortech_2020_123345
crossref_primary_10_1016_j_chemosphere_2022_137655
crossref_primary_10_1016_j_ibiod_2020_105157
crossref_primary_10_1016_j_apsoil_2021_104351
crossref_primary_10_1016_j_biortech_2019_122250
crossref_primary_10_1016_j_isci_2024_110965
crossref_primary_10_1016_j_procbio_2023_05_030
crossref_primary_10_3389_fenvs_2022_887093
crossref_primary_10_1088_1755_1315_300_5_052009
crossref_primary_10_3389_fenvs_2021_818316
crossref_primary_10_1016_j_biortech_2024_130869
crossref_primary_10_1016_j_biortech_2023_130184
crossref_primary_10_3390_separations10090461
crossref_primary_10_1016_j_cjche_2020_08_014
crossref_primary_10_1016_j_biortech_2019_121854
crossref_primary_10_1016_j_biortech_2023_129757
crossref_primary_10_1016_j_ibiod_2022_105404
crossref_primary_10_1016_j_jbiosc_2020_07_010
crossref_primary_10_1007_s00449_023_02854_9
crossref_primary_10_1016_j_jenvman_2021_113641
crossref_primary_10_1016_j_jenvman_2020_111786
crossref_primary_10_1016_j_ecoenv_2021_112693
crossref_primary_10_1016_j_jclepro_2023_137565
crossref_primary_10_1016_j_colsurfb_2022_112972
crossref_primary_10_1016_j_wen_2020_02_001
crossref_primary_10_1016_j_eti_2022_102913
crossref_primary_10_1021_acs_est_1c04113
crossref_primary_10_1016_j_aquaculture_2020_735686
crossref_primary_10_1016_j_scitotenv_2019_06_488
crossref_primary_10_1016_j_egg_2025_100341
crossref_primary_10_1016_j_marpolbul_2025_117711
crossref_primary_10_1021_acs_est_1c07980
crossref_primary_10_1016_j_biortech_2018_03_123
crossref_primary_10_1016_j_eti_2022_102630
crossref_primary_10_1016_j_jece_2024_114969
crossref_primary_10_1016_j_cej_2023_141878
crossref_primary_10_1016_j_biortech_2019_121506
crossref_primary_10_1016_j_envres_2023_118021
crossref_primary_10_1016_j_jhazmat_2022_128281
crossref_primary_10_1016_j_ibiod_2021_105234
crossref_primary_10_1016_j_scitotenv_2020_140476
crossref_primary_10_1007_s00253_019_10188_4
crossref_primary_10_3389_fmicb_2019_02580
crossref_primary_10_1007_s13762_021_03253_x
crossref_primary_10_1016_j_memsci_2020_117952
crossref_primary_10_1016_j_envpol_2020_115135
crossref_primary_10_1016_j_heliyon_2023_e14983
Cites_doi 10.1128/aem.54.11.2812-2818.1988
10.1038/nature10332
10.1007/s00284-006-0021-x
10.1006/jmbi.1997.1070
10.1016/0014-5793(90)80889-Q
10.1016/j.biortech.2011.12.033
10.1016/j.biortech.2014.12.057
10.1016/j.biortech.2015.07.059
10.1016/j.biortech.2011.10.026
10.1007/s12010-015-1920-8
10.1016/j.jbiosc.2011.12.012
10.1007/BF00408378
10.1007/s12257-013-0580-1
10.1016/j.jbiotec.2010.12.025
10.1111/j.1365-2958.1996.tb02475.x
10.1007/s12257-015-0009-0
10.1016/j.biortech.2015.02.109
10.1016/j.biortech.2011.04.101
10.1016/j.bbabio.2012.10.002
10.1016/j.jhazmat.2008.01.020
10.1007/PL00000845
10.1016/j.biortech.2013.03.189
10.1007/s00253-014-6221-6
10.1007/BF01570072
10.1263/jbb.106.498
10.1016/j.biortech.2014.03.125
10.1016/j.jhazmat.2016.07.047
10.1046/j.1365-2958.2002.02859.x
10.1039/C3CS60249D
10.1007/s002530000363
10.1016/j.aquaculture.2011.06.018
10.1128/aem.62.7.2421-2426.1996
10.1016/j.biortech.2017.03.053
10.1016/j.biortech.2017.01.049
10.1111/j.1574-6941.1994.tb00092.x
10.1007/s00253-016-7290-5
10.1128/AEM.69.6.3152-3157.2003
10.1007/s12010-013-0109-2
10.1080/09593330.2016.1146338
10.1007/s10529-013-1417-x
10.1007/PL00000849
10.1080/09593339209385217
10.1016/j.biortech.2016.01.066
10.1007/s002530000386
10.1111/j.1574-6941.1995.tb00187.x
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.11.038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 573
ExternalDocumentID 29197780
10_1016_j_biortech_2017_11_038
S0960852417320126
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c504t-a1e711f4ebe0083f75e88bdfcf1ae94253ef591e441f8c6f8a941684bb6669e03
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 02 04:51:06 EDT 2025
Tue Aug 05 11:30:17 EDT 2025
Wed Feb 19 02:42:29 EST 2025
Tue Jul 01 02:06:54 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Sat Nov 02 16:01:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nitrate removal
NapA
NirS
Denitrification genes
Aerobic denitrification
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-a1e711f4ebe0083f75e88bdfcf1ae94253ef591e441f8c6f8a941684bb6669e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29197780
PQID 1972305521
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000537849
proquest_miscellaneous_1972305521
pubmed_primary_29197780
crossref_citationtrail_10_1016_j_biortech_2017_11_038
crossref_primary_10_1016_j_biortech_2017_11_038
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moir, Wood (b0100) 2001; 58
Sparacino-Watkins, Stolz, Basu (b0165) 2014; 43
Duan, Fang, Su, Chen, Lin (b0040) 2015; 179
Song, An, Fu, Yang (b0160) 2011; 319
Bell, Richardson, Ferguson (b0025) 1990; 265
Patureau, Davison, Bernet, Moletta (b0120) 1994; 14
Robertson, Kuenen (b0145) 1984; 139
Yao, Ni, Ma, Li (b0210) 2013; 139
Baker, Saunders, Willis, Ferguson, Hajdu, Fülöp (b0020) 1997; 269
Velusamy, Krishnani (b0190) 2013; 169
Zheng, He, Ma, Chen, Liu, Ahmad, Gui, Ni (b0220) 2014; 162
Patureau, Bernet, Moletta (b0115) 1996; 16
Wan, Yang, Lee, Du, Wan, Chen (b0195) 2011; 102
Li, Wang, Fu, Gao, Zhao, Zhou (b0090) 2017; 230
Otte, Robertson, Jetten, Kuenen (b0105) 1996; 62
Zhou, Ye, Zhao (b0230) 2014; 19
Kraft, Strous, Tegetmeyer (b0080) 2011; 155
Lei, Wang, Liu, Xi, Song (b0085) 2016; 100
Ji, Wang, Yang (b0065) 2014; 36
Zhu, Ding, Feng, Kong, Xu, Xu (b0235) 2012; 108
Takaya, Catalan-Sakairi, Sakaguchi, Kato, Zhou, Shoun (b0185) 2003; 69
Huang, Tseng (b0055) 2001; 55
Liu, Ai, Miao, Liu (b0095) 2016; 206
Kim, Jeong, Yoon, Cho, Kim, Kim, Ryu, Lee (b0075) 2008; 106
Su, Yeh, Tseng (b0170) 2006; 53
Zheng, Li, Liu, Gui, Ni (b0225) 2016; 318
Reyes, Roldán, Klipp, Castillo, Moreno-Vivián (b0135) 1996; 19
Wood, Alizadeh, Richardson, Ferguson, Moir (b0200) 2002; 44
Sun, Li, Zhang, Ma (b0180) 2015; 99
Ye, Zhao, An, Huang (b0215) 2016; 37
Pomowski, Zumft, Kroneck, Einsle (b0125) 2011; 477
Patureau, Bernet, Delgenès, Moletta (b0110) 2000; 54
Yang, Wang, Zhou (b0205) 2012; 104
Huang, Guo, Zhang, Su, Wen, Zhang (b0060) 2015; 196
Arts, Robertson, Gijs Kuenen (b0015) 1995; 18
Chen, Ni (b0035) 2012; 113
Shapleigh, Payne (b0155) 1985; 26
Ji, Yang, Zhu, Jiang, Wang, Zhou, Zhang (b0070) 2015; 20
APHA (b0010) 1998
Guo, Zhao, An, Tian (b0045) 2016; 178
He, Zheng, Ma, Li, Ni (b0050) 2015; 185
Akunna, Bizeau, Moletta (b0005) 1992; 13
Richardson, Berks, Russell, Spiro, Taylor (b0140) 2001; 58
Zumft (b0240) 1997; 61
Sun, Feng, Li, Zhang, Yang, Ma (b0175) 2017; 234
Robertson, van Niel, Kuenen (b0150) 1988; 54
Chen, Strous (b0030) 2013; 1827
Rajakumar, Ayyasamy, Shanthi, Thavamani, Velmurugan, Song, Lakshmanaperumalsamy (b0130) 2008; 157
Kraft (10.1016/j.biortech.2017.11.038_b0080) 2011; 155
Richardson (10.1016/j.biortech.2017.11.038_b0140) 2001; 58
Duan (10.1016/j.biortech.2017.11.038_b0040) 2015; 179
Sun (10.1016/j.biortech.2017.11.038_b0180) 2015; 99
Ye (10.1016/j.biortech.2017.11.038_b0215) 2016; 37
Robertson (10.1016/j.biortech.2017.11.038_b0145) 1984; 139
Huang (10.1016/j.biortech.2017.11.038_b0055) 2001; 55
Lei (10.1016/j.biortech.2017.11.038_b0085) 2016; 100
Baker (10.1016/j.biortech.2017.11.038_b0020) 1997; 269
Rajakumar (10.1016/j.biortech.2017.11.038_b0130) 2008; 157
Zheng (10.1016/j.biortech.2017.11.038_b0220) 2014; 162
Wood (10.1016/j.biortech.2017.11.038_b0200) 2002; 44
Otte (10.1016/j.biortech.2017.11.038_b0105) 1996; 62
Li (10.1016/j.biortech.2017.11.038_b0090) 2017; 230
Moir (10.1016/j.biortech.2017.11.038_b0100) 2001; 58
Patureau (10.1016/j.biortech.2017.11.038_b0110) 2000; 54
Akunna (10.1016/j.biortech.2017.11.038_b0005) 1992; 13
Liu (10.1016/j.biortech.2017.11.038_b0095) 2016; 206
Takaya (10.1016/j.biortech.2017.11.038_b0185) 2003; 69
Zheng (10.1016/j.biortech.2017.11.038_b0225) 2016; 318
Bell (10.1016/j.biortech.2017.11.038_b0025) 1990; 265
Ji (10.1016/j.biortech.2017.11.038_b0070) 2015; 20
Shapleigh (10.1016/j.biortech.2017.11.038_b0155) 1985; 26
Ji (10.1016/j.biortech.2017.11.038_b0065) 2014; 36
Pomowski (10.1016/j.biortech.2017.11.038_b0125) 2011; 477
Robertson (10.1016/j.biortech.2017.11.038_b0150) 1988; 54
Guo (10.1016/j.biortech.2017.11.038_b0045) 2016; 178
Sun (10.1016/j.biortech.2017.11.038_b0175) 2017; 234
Zhu (10.1016/j.biortech.2017.11.038_b0235) 2012; 108
Chen (10.1016/j.biortech.2017.11.038_b0035) 2012; 113
Kim (10.1016/j.biortech.2017.11.038_b0075) 2008; 106
Wan (10.1016/j.biortech.2017.11.038_b0195) 2011; 102
Arts (10.1016/j.biortech.2017.11.038_b0015) 1995; 18
Patureau (10.1016/j.biortech.2017.11.038_b0115) 1996; 16
Song (10.1016/j.biortech.2017.11.038_b0160) 2011; 319
APHA (10.1016/j.biortech.2017.11.038_b0010) 1998
Velusamy (10.1016/j.biortech.2017.11.038_b0190) 2013; 169
Zhou (10.1016/j.biortech.2017.11.038_b0230) 2014; 19
Reyes (10.1016/j.biortech.2017.11.038_b0135) 1996; 19
Yang (10.1016/j.biortech.2017.11.038_b0205) 2012; 104
Chen (10.1016/j.biortech.2017.11.038_b0030) 2013; 1827
Zumft (10.1016/j.biortech.2017.11.038_b0240) 1997; 61
Huang (10.1016/j.biortech.2017.11.038_b0060) 2015; 196
Su (10.1016/j.biortech.2017.11.038_b0170) 2006; 53
He (10.1016/j.biortech.2017.11.038_b0050) 2015; 185
Sparacino-Watkins (10.1016/j.biortech.2017.11.038_b0165) 2014; 43
Patureau (10.1016/j.biortech.2017.11.038_b0120) 1994; 14
Yao (10.1016/j.biortech.2017.11.038_b0210) 2013; 139
References_xml – volume: 13
  start-page: 825
  year: 1992
  end-page: 836
  ident: b0005
  article-title: Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NO
  publication-title: Environ. Technol.
– volume: 18
  start-page: 305
  year: 1995
  end-page: 315
  ident: b0015
  article-title: Nitrification and denitrification by
  publication-title: FEMS Microbiol. Ecol.
– volume: 55
  start-page: 90
  year: 2001
  end-page: 94
  ident: b0055
  article-title: Nitrate reduction by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 37
  start-page: 2206
  year: 2016
  end-page: 2213
  ident: b0215
  article-title: Nitrogen removal by
  publication-title: Environ. Technol.
– volume: 61
  start-page: 533
  year: 1997
  end-page: 616
  ident: b0240
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 14
  start-page: 71
  year: 1994
  end-page: 78
  ident: b0120
  article-title: Denitrification under various aeration conditions in
  publication-title: FEMS Microbiol. Ecol.
– volume: 36
  start-page: 719
  year: 2014
  end-page: 722
  ident: b0065
  article-title: Tolerance of an aerobic denitrifier (
  publication-title: Biotechnol. Lett.
– volume: 265
  start-page: 85
  year: 1990
  end-page: 87
  ident: b0025
  article-title: Periplasmic and membrane-bound respiratory nitrate reductases in
  publication-title: FEBS Lett.
– volume: 102
  start-page: 7244
  year: 2011
  end-page: 7248
  ident: b0195
  article-title: Aerobic denitrification by novel isolated strain using NO
  publication-title: Bioresour. Technol.
– volume: 1827
  start-page: 136
  year: 2013
  end-page: 144
  ident: b0030
  article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution
  publication-title: Biochim. Biophys. Acta
– volume: 44
  start-page: 157
  year: 2002
  end-page: 170
  ident: b0200
  article-title: Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in
  publication-title: Mol. Microbiol.
– volume: 206
  start-page: 9
  year: 2016
  end-page: 15
  ident: b0095
  article-title: strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 4219
  year: 2016
  end-page: 4229
  ident: b0085
  article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium,
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 318
  start-page: 571
  year: 2016
  end-page: 578
  ident: b0225
  article-title: Potential application of aerobic denitrifying bacterium
  publication-title: J. Hazard. Mater.
– volume: 20
  start-page: 643
  year: 2015
  end-page: 651
  ident: b0070
  article-title: Aerobic denitrification: a review of important advances of the last 30 years
  publication-title: Biotechnol. Bioproc. Eng.
– volume: 157
  start-page: 553
  year: 2008
  end-page: 563
  ident: b0130
  article-title: Nitrate removal efficiency of bacterial consortium (
  publication-title: J. Hazard Mater.
– volume: 234
  start-page: 264
  year: 2017
  end-page: 272
  ident: b0175
  article-title: Ammonium assimilation: An important accessory during aerobic denitrification of
  publication-title: Bioresour. Technol.
– volume: 162
  start-page: 80
  year: 2014
  end-page: 88
  ident: b0220
  article-title: Reducing NO and N
  publication-title: Bioresour. Technol.
– volume: 106
  start-page: 498
  year: 2008
  end-page: 502
  ident: b0075
  article-title: Aerobic denitrification of
  publication-title: J. Biosci. Bioeng.
– volume: 178
  start-page: 947
  year: 2016
  end-page: 959
  ident: b0045
  article-title: Characteristics of a novel aerobic denitrifying bacterium,
  publication-title: Appl. Biochem. Biotechnol.
– volume: 62
  start-page: 2421
  year: 1996
  end-page: 2426
  ident: b0105
  article-title: Nitrous oxide production by
  publication-title: Appl. Environ. Microbiol.
– volume: 99
  start-page: 3243
  year: 2015
  end-page: 3248
  ident: b0180
  article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 196
  start-page: 209
  year: 2015
  end-page: 216
  ident: b0060
  article-title: Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium,
  publication-title: Bioresour. Technol.
– volume: 269
  start-page: 440
  year: 1997
  end-page: 455
  ident: b0020
  article-title: Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds
  publication-title: J. Mol. Biol.
– volume: 54
  start-page: 535
  year: 2000
  end-page: 542
  ident: b0110
  article-title: Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 185
  start-page: 346
  year: 2015
  end-page: 352
  ident: b0050
  article-title: Interaction of Cr(VI) reduction and denitrification by strain
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 676
  year: 2014
  end-page: 706
  ident: b0165
  article-title: Nitrate and periplasmic nitrate reductases
  publication-title: Chem. Soc. Rev.
– volume: 155
  start-page: 104
  year: 2011
  end-page: 117
  ident: b0080
  article-title: Microbial nitrate respiration-genes, enzymes and environmental distribution
  publication-title: J. Biotechnol.
– volume: 58
  start-page: 215
  year: 2001
  end-page: 224
  ident: b0100
  article-title: Nitrate and nitrite transport in bacteria
  publication-title: Cell. Mol. Life Sci.
– volume: 477
  start-page: 234
  year: 2011
  ident: b0125
  article-title: N
  publication-title: Nature
– volume: 169
  start-page: 1978
  year: 2013
  end-page: 1992
  ident: b0190
  article-title: Heterotrophic nitrifying and oxygen tolerant denitrifying bacteria from greenwater system of coastal aquaculture
  publication-title: Appl. Biochem. Biotechnol.
– volume: 139
  start-page: 351
  year: 1984
  end-page: 354
  ident: b0145
  article-title: Aerobic denitrification: a controversy revived
  publication-title: Arch. Microbiol.
– volume: 69
  start-page: 3152
  year: 2003
  end-page: 3157
  ident: b0185
  article-title: Aerobic denitrifying bacteria that produce low levels of nitrous oxide
  publication-title: Appl. Environ. Microbiol.
– volume: 104
  start-page: 65
  year: 2012
  end-page: 72
  ident: b0205
  article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by
  publication-title: Bioresour. Technol.
– volume: 230
  start-page: 103
  year: 2017
  end-page: 111
  ident: b0090
  article-title: Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 1307
  year: 1996
  end-page: 1318
  ident: b0135
  article-title: Isolation of periplasmic nitrate reductase genes from
  publication-title: Mol. Microbiol.
– volume: 108
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0235
  article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem
  publication-title: Bioresour. Technol.
– volume: 53
  start-page: 77
  year: 2006
  end-page: 81
  ident: b0170
  article-title: A strain of
  publication-title: Curr. Microbiol.
– volume: 139
  start-page: 80
  year: 2013
  end-page: 86
  ident: b0210
  article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium,
  publication-title: Bioresour. Technol.
– volume: 179
  start-page: 421
  year: 2015
  end-page: 428
  ident: b0040
  article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
– volume: 319
  start-page: 188
  year: 2011
  end-page: 193
  ident: b0160
  article-title: Isolation and characterization of an aerobic denitrifying
  publication-title: Aquaculture
– year: 1998
  ident: b0010
  article-title: Standard methods for the examination of water and wastewater
– volume: 54
  start-page: 2812
  year: 1988
  end-page: 2818
  ident: b0150
  article-title: Simultaneous nitrification and denitrification in aerobic chemostat cultures of
  publication-title: Appl. Environ. Microbiol.
– volume: 26
  start-page: 275
  year: 1985
  end-page: 279
  ident: b0155
  article-title: Differentiation of c, d1 cytochrome and copper nitrite reductase production in denitrifiers
  publication-title: FEMS Microbiol. Lett.
– volume: 16
  start-page: 124
  year: 1996
  end-page: 128
  ident: b0115
  article-title: Effect of oxygen on denitrification in continuous chemostat culture with
  publication-title: J. Ind. Microbiol.
– volume: 58
  start-page: 165
  year: 2001
  end-page: 178
  ident: b0140
  article-title: Functional, biochemical and genetic diversity of prokaryotic nitrate reductases
  publication-title: Cell. Mol. Life Sci.
– volume: 113
  start-page: 619
  year: 2012
  end-page: 623
  ident: b0035
  article-title: Ammonium removal by
  publication-title: J. Biosci. Bioeng.
– volume: 19
  start-page: 231
  year: 2014
  end-page: 238
  ident: b0230
  article-title: Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium
  publication-title: Biotechnol. Bioproc. Eng.
– volume: 54
  start-page: 2812
  year: 1988
  ident: 10.1016/j.biortech.2017.11.038_b0150
  article-title: Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.54.11.2812-2818.1988
– volume: 477
  start-page: 234
  year: 2011
  ident: 10.1016/j.biortech.2017.11.038_b0125
  article-title: N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase
  publication-title: Nature
  doi: 10.1038/nature10332
– volume: 53
  start-page: 77
  year: 2006
  ident: 10.1016/j.biortech.2017.11.038_b0170
  article-title: A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-006-0021-x
– volume: 269
  start-page: 440
  year: 1997
  ident: 10.1016/j.biortech.2017.11.038_b0020
  article-title: Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1070
– volume: 265
  start-page: 85
  year: 1990
  ident: 10.1016/j.biortech.2017.11.038_b0025
  article-title: Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)80889-Q
– volume: 108
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2017.11.038_b0235
  article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.12.033
– volume: 179
  start-page: 421
  year: 2015
  ident: 10.1016/j.biortech.2017.11.038_b0040
  article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.057
– volume: 196
  start-page: 209
  year: 2015
  ident: 10.1016/j.biortech.2017.11.038_b0060
  article-title: Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.07.059
– volume: 104
  start-page: 65
  year: 2012
  ident: 10.1016/j.biortech.2017.11.038_b0205
  article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.026
– volume: 178
  start-page: 947
  year: 2016
  ident: 10.1016/j.biortech.2017.11.038_b0045
  article-title: Characteristics of a novel aerobic denitrifying bacterium, Enterobacter cloacae strain HNR
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-015-1920-8
– volume: 113
  start-page: 619
  year: 2012
  ident: 10.1016/j.biortech.2017.11.038_b0035
  article-title: Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2011.12.012
– volume: 139
  start-page: 351
  year: 1984
  ident: 10.1016/j.biortech.2017.11.038_b0145
  article-title: Aerobic denitrification: a controversy revived
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00408378
– volume: 19
  start-page: 231
  year: 2014
  ident: 10.1016/j.biortech.2017.11.038_b0230
  article-title: Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater
  publication-title: Biotechnol. Bioproc. Eng.
  doi: 10.1007/s12257-013-0580-1
– volume: 155
  start-page: 104
  year: 2011
  ident: 10.1016/j.biortech.2017.11.038_b0080
  article-title: Microbial nitrate respiration-genes, enzymes and environmental distribution
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2010.12.025
– volume: 19
  start-page: 1307
  year: 1996
  ident: 10.1016/j.biortech.2017.11.038_b0135
  article-title: Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1996.tb02475.x
– volume: 20
  start-page: 643
  year: 2015
  ident: 10.1016/j.biortech.2017.11.038_b0070
  article-title: Aerobic denitrification: a review of important advances of the last 30 years
  publication-title: Biotechnol. Bioproc. Eng.
  doi: 10.1007/s12257-015-0009-0
– volume: 185
  start-page: 346
  year: 2015
  ident: 10.1016/j.biortech.2017.11.038_b0050
  article-title: Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.109
– volume: 102
  start-page: 7244
  year: 2011
  ident: 10.1016/j.biortech.2017.11.038_b0195
  article-title: Aerobic denitrification by novel isolated strain using NO2−-N as nitrogen source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.04.101
– volume: 1827
  start-page: 136
  year: 2013
  ident: 10.1016/j.biortech.2017.11.038_b0030
  article-title: Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.10.002
– volume: 157
  start-page: 553
  year: 2008
  ident: 10.1016/j.biortech.2017.11.038_b0130
  article-title: Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2008.01.020
– volume: 58
  start-page: 165
  year: 2001
  ident: 10.1016/j.biortech.2017.11.038_b0140
  article-title: Functional, biochemical and genetic diversity of prokaryotic nitrate reductases
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000845
– volume: 139
  start-page: 80
  year: 2013
  ident: 10.1016/j.biortech.2017.11.038_b0210
  article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.189
– volume: 61
  start-page: 533
  year: 1997
  ident: 10.1016/j.biortech.2017.11.038_b0240
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 99
  start-page: 3243
  year: 2015
  ident: 10.1016/j.biortech.2017.11.038_b0180
  article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6221-6
– volume: 16
  start-page: 124
  year: 1996
  ident: 10.1016/j.biortech.2017.11.038_b0115
  article-title: Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2
  publication-title: J. Ind. Microbiol.
  doi: 10.1007/BF01570072
– volume: 26
  start-page: 275
  year: 1985
  ident: 10.1016/j.biortech.2017.11.038_b0155
  article-title: Differentiation of c, d1 cytochrome and copper nitrite reductase production in denitrifiers
  publication-title: FEMS Microbiol. Lett.
– volume: 106
  start-page: 498
  year: 2008
  ident: 10.1016/j.biortech.2017.11.038_b0075
  article-title: Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.106.498
– year: 1998
  ident: 10.1016/j.biortech.2017.11.038_b0010
– volume: 162
  start-page: 80
  year: 2014
  ident: 10.1016/j.biortech.2017.11.038_b0220
  article-title: Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.125
– volume: 318
  start-page: 571
  year: 2016
  ident: 10.1016/j.biortech.2017.11.038_b0225
  article-title: Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.07.047
– volume: 44
  start-page: 157
  year: 2002
  ident: 10.1016/j.biortech.2017.11.038_b0200
  article-title: Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02859.x
– volume: 43
  start-page: 676
  year: 2014
  ident: 10.1016/j.biortech.2017.11.038_b0165
  article-title: Nitrate and periplasmic nitrate reductases
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60249D
– volume: 55
  start-page: 90
  year: 2001
  ident: 10.1016/j.biortech.2017.11.038_b0055
  article-title: Nitrate reduction by Citrobacter diversus under aerobic environment
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530000363
– volume: 319
  start-page: 188
  year: 2011
  ident: 10.1016/j.biortech.2017.11.038_b0160
  article-title: Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2011.06.018
– volume: 62
  start-page: 2421
  year: 1996
  ident: 10.1016/j.biortech.2017.11.038_b0105
  article-title: Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.62.7.2421-2426.1996
– volume: 234
  start-page: 264
  year: 2017
  ident: 10.1016/j.biortech.2017.11.038_b0175
  article-title: Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.053
– volume: 230
  start-page: 103
  year: 2017
  ident: 10.1016/j.biortech.2017.11.038_b0090
  article-title: Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1–5
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.049
– volume: 14
  start-page: 71
  year: 1994
  ident: 10.1016/j.biortech.2017.11.038_b0120
  article-title: Denitrification under various aeration conditions in Comamonas sp., strain SGLY2
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1994.tb00092.x
– volume: 100
  start-page: 4219
  year: 2016
  ident: 10.1016/j.biortech.2017.11.038_b0085
  article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7290-5
– volume: 69
  start-page: 3152
  year: 2003
  ident: 10.1016/j.biortech.2017.11.038_b0185
  article-title: Aerobic denitrifying bacteria that produce low levels of nitrous oxide
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.6.3152-3157.2003
– volume: 169
  start-page: 1978
  year: 2013
  ident: 10.1016/j.biortech.2017.11.038_b0190
  article-title: Heterotrophic nitrifying and oxygen tolerant denitrifying bacteria from greenwater system of coastal aquaculture
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0109-2
– volume: 37
  start-page: 2206
  year: 2016
  ident: 10.1016/j.biortech.2017.11.038_b0215
  article-title: Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2016.1146338
– volume: 36
  start-page: 719
  year: 2014
  ident: 10.1016/j.biortech.2017.11.038_b0065
  article-title: Tolerance of an aerobic denitrifier (Pseudomonas stutzeri) to high O2 concentrations
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-013-1417-x
– volume: 58
  start-page: 215
  year: 2001
  ident: 10.1016/j.biortech.2017.11.038_b0100
  article-title: Nitrate and nitrite transport in bacteria
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000849
– volume: 13
  start-page: 825
  year: 1992
  ident: 10.1016/j.biortech.2017.11.038_b0005
  article-title: Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NOX ratio
  publication-title: Environ. Technol.
  doi: 10.1080/09593339209385217
– volume: 206
  start-page: 9
  year: 2016
  ident: 10.1016/j.biortech.2017.11.038_b0095
  article-title: Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.066
– volume: 54
  start-page: 535
  year: 2000
  ident: 10.1016/j.biortech.2017.11.038_b0110
  article-title: Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530000386
– volume: 18
  start-page: 305
  year: 1995
  ident: 10.1016/j.biortech.2017.11.038_b0015
  article-title: Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1995.tb00187.x
SSID ssj0003172
Score 2.6100926
Snippet •An aerobic denitrifier, P. stutzeri XL-2, was newly isolated.•Strain XL-2 presents great capability to reduce nitrate aerobically.•The production of N2 was...
An aerobic denitrifier was newly isolated and identified as Pseudomonas stutzeri strain XL-2. Strain XL-2 removed 97.9% of nitrate with an initial...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 564
SubjectTerms Aerobic denitrification
Aerobiosis
biochemical pathways
Denitrification
Denitrification genes
denitrifying microorganisms
dissolved oxygen
NapA
NirS
Nitrate removal
Nitrates
Nitrogen
nitrogen balance
Pseudomonas stutzeri
technology
temperature
Title Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal
URI https://dx.doi.org/10.1016/j.biortech.2017.11.038
https://www.ncbi.nlm.nih.gov/pubmed/29197780
https://www.proquest.com/docview/1972305521
https://www.proquest.com/docview/2000537849
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcEJTX0lIZiWt24zzWznG1arW8KiSotDfLScYoFSSrTZYDB357Z5xkKRJVDxyTeKKJZzLzWR5_A_A2KpUsCKcGDuOQFygusDFioOYFgVmbFs7v6H66mK8uk_frdH0Ay_EsDJdVDrG_j-k-Wg93ZsNszjZVNfvC4FunlIFUTFksYtrtJFHs5dPff8o8KD_6nQQaHPDoG6eEr6Z5xRWtflNCqimzefI5lX8nqNsAqE9E54_h0YAgxaJX8gkcYH0EDxfftgOLBh7B_eXYxo2e3GAcfAqb5Z6guT9_KRonbC0sMh9TISgKVd22cqSL-NzirmzITW0r2m7X_SIh0fqeEmL9MYhE1wguxcSfKNAzUVACEyxP-FVs8UdDXvwMLs_Pvi5XwdB0ISjSMOkCK1FJ6RIyLsMzp1LUOi9d4aTFjP7wGF2aSSQY5XQxd9pmhOl0kue0EMowjJ_DYd3U-BKEk2Fu7TySTmGS21LnHFFKqzKklbGMJ5COM22KgZGcP-K7GUvPrsxoIcMWouWKIQtNYLaX2_ScHHdKZKMhzV_eZShx3Cn7ZrS8IdPxfoqtsdm1xndsC1MCQLePiXrGHJ1kE3jRu81e5yijNygdvvoP7Y7hAV3pvo78BA677Q5fE0zq8lP_H5zCvcW7D6uLa7OVFAo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtUGzdK-u6acCubizbsuRjEKxI1zQYsBbITZBtanCx2UHs9NBfP8qPoANW9NCrZRq0KJEfQeoTwNcglzwjnOpZDH2XoFjPhIiejDMCs0Zktq3oXi7j-XX0fSVWezAbzsK4tsre93c-vfXW_ZNJP5uTdVFMfjrwrQRFIBlSFAviZ7Dv2KnECPan5xfz5c4hU4hsiwn0vucE7h0UvjlNC9fU2tYluDx1hJ7uqMr_Y9RDGLSNRWcv4bAHkWza6fkK9rA8ghfTX5ueSAOP4GA23ORGI_dIB1_DerbjaO6OYLLKMlMyg46SKWPkiIpmU1jShf2ocZtXtFJNzepm29yREKvbayXYauEFrKmY68bEW2TYklFQDGNOniAs2-CfihbyG7g--3Y1m3v9vQteJvyo8QxHybmNyL4OoVkpUKk0t5nlBhPa5CFakXAkJGVVFltlEoJ1KkpTyoUS9MO3MCqrEt8Ds9xPjYkDbiVGqclV6pxKbmSClBzzcAximGmd9aTk7id-66H77EYPFtLOQpSxaLLQGCY7uXVHy_GoRDIYUv-zwDTFjkdlvwyW12Q6V1IxJVbbWreXtvmCMNDD7wQdaY6KkjG865bNTucgoS9I5X94gnaf4WB-dbnQi_PlxTE8pxHVtZV_hFGz2eIJoaYm_dTvir8VVBa7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+an+aerobic+denitrifier+Pseudomonas+stutzeri+strain+XL-2+to+achieve+efficient+nitrate+removal&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Bin&rft.au=Cheng%2C+Dan+Yang&rft.au=Tan%2C+Pan&rft.au=An%2C+Qiang&rft.date=2018-02-01&rft.issn=0960-8524&rft.volume=250+p.564-573&rft.spage=564&rft.epage=573&rft_id=info:doi/10.1016%2Fj.biortech.2017.11.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon