iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework
Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart i...
Saved in:
Published in | BMC bioinformatics Vol. 23; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
14.11.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. |
---|---|
AbstractList | Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. Keywords: Enhancer, Word embedding, k-mers, Convolutional neural network, Bidirectional long short-term memory network, Attention mechanism Abstract Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. |
ArticleNumber | 480 |
Audience | Academic |
Author | Liao, Meng Zhao, Jian-ping Tian, Jing Zheng, Chun-Hou |
Author_xml | – sequence: 1 givenname: Meng surname: Liao fullname: Liao, Meng – sequence: 2 givenname: Jian-ping surname: Zhao fullname: Zhao, Jian-ping – sequence: 3 givenname: Jing surname: Tian fullname: Tian, Jing – sequence: 4 givenname: Chun-Hou surname: Zheng fullname: Zheng, Chun-Hou |
BookMark | eNp9kl2P1CAYhRuzJu6O_gGvSLzRi65AW2i9MJmMq04yiYkf14TCS4exAyNQd_ffy3wYnY0xXJS8fc6hPZyr4sJ5B0XxnOBrQlr2OhLaNl2JKS1xg6uqvHtUXJKak5IS3Fz8tX9SXMW4wZjwFjeXxa29cWvpFITy3WI1f4OmaN2A0hqQD3awTo4owo8JMoKSR1aDS9bcIzjJIpJO73kbUEwB3JDWqJcRNPIOSaQBdmgEGdze1wS5hVsfvj8tHhs5Rnh2es6Kb-9vvi4-lqtPH5aL-apUDa5T2UHLWdvJltS67jVQDlBhhnXNu65qTNvoDrcGFANmWG8aDFwSqg1hymjdVbNiefTVXm7ELtitDPfCSysOAx8GIUOyagTBjaqNrHOOPaspJZ3BpOtrxo1utMI8e709eu2mfgta5SSCHM9Mz984uxaD_yk6xuqWsGzw8mQQfI40JrG1UcE4Sgd-ioLyimWU5hucFS8eoBs_hXwbB4qzJmP1H2qQ-QesMz6fq_amYs4pY1X--ipT1_-g8tKwtSoXydg8PxO8OhNkJsFdGuQUo1h--XzOtkdWBR9jACOUTTJZv4_AjoJgsW-oODZU5IaKQ0PFXZbSB9LfUf5H9AtSsOq5 |
CitedBy_id | crossref_primary_10_3390_ani13182935 crossref_primary_10_1002_pmic_202200409 crossref_primary_10_3390_molecules29153512 crossref_primary_10_1016_j_compbiomed_2025_109821 crossref_primary_10_1016_j_isci_2024_110030 crossref_primary_10_3390_ijms252312942 crossref_primary_10_1016_j_compbiomed_2023_107848 crossref_primary_10_1016_j_gene_2024_148598 crossref_primary_10_1093_bib_bbae030 |
Cites_doi | 10.1038/ng.1006 10.1093/bioinformatics/btx257 10.1016/j.cell.2015.03.010 10.1093/bioinformatics/bty937 10.1002/bies.201600106 10.1038/nature07730 10.3389/fgene.2021.665498 10.1016/j.cell.2008.04.043 10.1359/jbmr.1999.14.2.24 10.1038/srep38741 10.1093/bioinformatics/btaa914 10.1038/s41467-018-03766-z 10.1261/rna.069112.118 10.1093/bioinformatics/bty458 10.1038/ng.3167 10.1093/nar/gkx920 10.1109/TMM.2015.2477044 10.1038/nmeth721 10.1109/TCBB.2017.2666141 10.1021/acs.jcim.0c00409 10.1007/s11604-018-0726-3 10.1109/TNNLS.2016.2541681 10.1093/bib/bbz133 10.1186/gb-2011-12-11-r113 10.1101/gr.133546.111 10.1038/nature14906 10.1093/bioinformatics/btx228 10.1093/bioinformatics/btaa211 10.1186/s13073-014-0085-3 10.3791/57883 10.3390/ijms22115521 10.1093/bioinformatics/bts565 10.1016/j.jtbi.2018.04.037 10.1093/bioinformatics/btv604 10.1128/MCB.01127-12 10.1371/journal.pbio.0030007 10.1038/nature05295 10.1109/TKDE.2018.2831682 10.1186/s12864-019-6336-3 10.1006/jmbi.1998.1700 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). The Author(s) 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: The Author(s) 2022 |
DBID | AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-022-05033-x |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_7fc4fa4859b642219f019b467fd5dc07 PMC9664816 A726634673 10_1186_s12859_022_05033_x |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: IMIS202105; IMIS202105; IMIS202105 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c504t-9e87689a814d4bde27ee3060d479935f85d908fec6e6f6bf50e7a12df16cfdd93 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:20:07 EDT 2025 Thu Aug 21 18:39:44 EDT 2025 Mon Jul 21 10:26:36 EDT 2025 Fri Jul 25 10:45:56 EDT 2025 Tue Jun 17 21:41:57 EDT 2025 Tue Jun 10 20:22:47 EDT 2025 Fri Jun 27 04:38:51 EDT 2025 Tue Jul 01 03:38:36 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-9e87689a814d4bde27ee3060d479935f85d908fec6e6f6bf50e7a12df16cfdd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-05033-x |
PQID | 2737656424 |
PQPubID | 44065 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7fc4fa4859b642219f019b467fd5dc07 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9664816 proquest_miscellaneous_2736664250 proquest_journals_2737656424 gale_infotracmisc_A726634673 gale_infotracacademiconefile_A726634673 gale_incontextgauss_ISR_A726634673 crossref_citationtrail_10_1186_s12859_022_05033_x crossref_primary_10_1186_s12859_022_05033_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-14 |
PublicationDateYYYYMMDD | 2022-11-14 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | BMC bioinformatics |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | G Zhang (5033_CR7) 2018; 46 OI Kulaeva (5033_CR2) 2012; 32 F Lai (5033_CR17) 2015; 525 H Lin (5033_CR40) 2019; 16 X Chen (5033_CR14) 2008; 133 H Sasaki-Iwaoka (5033_CR4) 1999; 14 K Niu (5033_CR25) 2021; 12 L Cai (5033_CR24) 2021; 37 B Liu (5033_CR22) 2018; 34 Q Zou (5033_CR30) 2019; 25 J Li (5033_CR35) 2017; 28 A Woolfe (5033_CR10) 2005; 3 S Pott (5033_CR6) 2015; 47 MN Hamid (5033_CR29) 2019; 35 5033_CR26 L Fu (5033_CR27) 2012; 28 K Yasaka (5033_CR33) 2018; 36 QH Nguyen (5033_CR23) 2019; 20 RY Birnbaum (5033_CR3) 2012; 22 JB Carleton (5033_CR5) 2018 M Boyd (5033_CR9) 2018; 9 C Jia (5033_CR21) 2016; 6 A Mayer (5033_CR19) 2015; 161 X He (5033_CR39) 2018; 30 MO Dorschner (5033_CR13) 2004; 1 M Habibi (5033_CR28) 2017; 33 MF Melgar (5033_CR18) 2011; 12 CC Li (5033_CR34) 2020; 21 MF Sabooh (5033_CR41) 2018; 452 Y Yang (5033_CR42) 2017; 33 LA Pennacchio (5033_CR11) 2006; 444 5033_CR32 WW Wasserman (5033_CR12) 1998; 278 R Cai (5033_CR36) 2020; 36 R Jing (5033_CR43) 2020; 60 5033_CR31 B Liu (5033_CR20) 2016; 32 HM Herz (5033_CR8) 2016; 38 A Visel (5033_CR15) 2009; 457 D May (5033_CR16) 2011; 44 K Cho (5033_CR38) 2015; 17 O Corradin (5033_CR1) 2014; 6 L Deng (5033_CR37) 2021; 22 |
References_xml | – volume: 44 start-page: 89 issue: 1 year: 2011 ident: 5033_CR16 publication-title: Nat Genet doi: 10.1038/ng.1006 – volume: 33 start-page: i252 issue: 14 year: 2017 ident: 5033_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx257 – volume: 161 start-page: 541 issue: 3 year: 2015 ident: 5033_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.03.010 – volume: 35 start-page: 2009 issue: 12 year: 2019 ident: 5033_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty937 – volume: 38 start-page: 1003 issue: 10 year: 2016 ident: 5033_CR8 publication-title: BioEssays doi: 10.1002/bies.201600106 – volume: 457 start-page: 854 issue: 7231 year: 2009 ident: 5033_CR15 publication-title: Nature doi: 10.1038/nature07730 – volume: 12 start-page: 665498 year: 2021 ident: 5033_CR25 publication-title: Front Genet doi: 10.3389/fgene.2021.665498 – volume: 133 start-page: 1106 issue: 6 year: 2008 ident: 5033_CR14 publication-title: Cell doi: 10.1016/j.cell.2008.04.043 – volume: 14 start-page: 248 issue: 2 year: 1999 ident: 5033_CR4 publication-title: J Bone Miner Res doi: 10.1359/jbmr.1999.14.2.24 – volume: 6 start-page: 38741 year: 2016 ident: 5033_CR21 publication-title: Sci Rep doi: 10.1038/srep38741 – volume: 37 start-page: 1060 issue: 8 year: 2021 ident: 5033_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa914 – ident: 5033_CR31 – volume: 9 start-page: 1661 issue: 1 year: 2018 ident: 5033_CR9 publication-title: Nat Commun doi: 10.1038/s41467-018-03766-z – volume: 25 start-page: 205 issue: 2 year: 2019 ident: 5033_CR30 publication-title: RNA doi: 10.1261/rna.069112.118 – volume: 34 start-page: 3835 issue: 22 year: 2018 ident: 5033_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty458 – ident: 5033_CR26 – volume: 47 start-page: 8 issue: 1 year: 2015 ident: 5033_CR6 publication-title: Nat Genet doi: 10.1038/ng.3167 – volume: 46 start-page: D78 issue: D1 year: 2018 ident: 5033_CR7 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx920 – volume: 17 start-page: 1875 issue: 11 year: 2015 ident: 5033_CR38 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2015.2477044 – volume: 1 start-page: 219 issue: 3 year: 2004 ident: 5033_CR13 publication-title: Nat Methods doi: 10.1038/nmeth721 – volume: 16 start-page: 1316 issue: 4 year: 2019 ident: 5033_CR40 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2666141 – volume: 60 start-page: 3755 issue: 8 year: 2020 ident: 5033_CR43 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00409 – volume: 36 start-page: 257 issue: 4 year: 2018 ident: 5033_CR33 publication-title: Jpn J Radiol doi: 10.1007/s11604-018-0726-3 – volume: 28 start-page: 1425 issue: 6 year: 2017 ident: 5033_CR35 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2541681 – volume: 21 start-page: 2133 issue: 6 year: 2020 ident: 5033_CR34 publication-title: Br Bioinform doi: 10.1093/bib/bbz133 – volume: 12 start-page: R113 issue: 11 year: 2011 ident: 5033_CR18 publication-title: Genome Biol doi: 10.1186/gb-2011-12-11-r113 – volume: 22 start-page: 1059 issue: 6 year: 2012 ident: 5033_CR3 publication-title: Genome Res doi: 10.1101/gr.133546.111 – volume: 525 start-page: 399 issue: 7569 year: 2015 ident: 5033_CR17 publication-title: Nature doi: 10.1038/nature14906 – volume: 33 start-page: i37 issue: 14 year: 2017 ident: 5033_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx228 – volume: 36 start-page: 4458 issue: 16 year: 2020 ident: 5033_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa211 – volume: 6 start-page: 85 issue: 10 year: 2014 ident: 5033_CR1 publication-title: Genome Med doi: 10.1186/s13073-014-0085-3 – year: 2018 ident: 5033_CR5 publication-title: J Vis Exp doi: 10.3791/57883 – volume: 22 start-page: 5521 issue: 11 year: 2021 ident: 5033_CR37 publication-title: Int J Mol Sci doi: 10.3390/ijms22115521 – volume: 28 start-page: 3150 issue: 23 year: 2012 ident: 5033_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 452 start-page: 1 year: 2018 ident: 5033_CR41 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.04.037 – volume: 32 start-page: 362 issue: 3 year: 2016 ident: 5033_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv604 – volume: 32 start-page: 4892 issue: 24 year: 2012 ident: 5033_CR2 publication-title: Mol Cell Biol doi: 10.1128/MCB.01127-12 – ident: 5033_CR32 – volume: 3 start-page: e7 issue: 1 year: 2005 ident: 5033_CR10 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030007 – volume: 444 start-page: 499 issue: 7118 year: 2006 ident: 5033_CR11 publication-title: Nature doi: 10.1038/nature05295 – volume: 30 start-page: 2354 issue: 12 year: 2018 ident: 5033_CR39 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2831682 – volume: 20 start-page: 951 issue: Suppl 9 year: 2019 ident: 5033_CR23 publication-title: BMC Genom doi: 10.1186/s12864-019-6336-3 – volume: 278 start-page: 167 issue: 1 year: 1998 ident: 5033_CR12 publication-title: J Mol Biol doi: 10.1006/jmbi.1998.1700 |
SSID | ssj0017805 |
Score | 2.4764905 |
Snippet | Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the... Abstract Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Algorithms Artificial neural networks Attention mechanism Bidirectional long short-term memory network Binding sites Chromatin Convolutional neural network Datasets Deep learning DNA sequencing Enhancer Enhancers Entanglement Experiments Feature extraction Gene expression Genetic research Genetic transcription Genomes Identification and classification k-mers Long short-term memory Machine learning Mathematical analysis Methods Neural networks Nucleotide sequencing Nucleotides Transcription factors Word embedding |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP7G6ShTBg4Rt-5K09fZcd1lFPagLewtpPt57sKTLtg93_3tn0vSxVdCL12ZS2sxM8hsy8xtCXudYXc3rgvmq1EiqXTJdGM2aUrvCY2OBWAvz5as8OeWfzsTZjVZfmBM20gOPC3dQecO95rVoWoDK4F_wgqYF9_ZWWDPWkcOZNwVT6f4AmfqnEplaHvQF8rQxzFxH_pMFu5odQ5Gt_889-fc8yRsHz_E9cjchRrocv_Q-ueXCA3J77CF5_ZD83ByFNarukn04_Lx8RzGTfUUB19Gp6RWd8qXp0NFNrMz119SlaT3VwdJ4YUCxciSshjXFw83SLlBNrXMXNDWXWFE_JXM9IqfHRz8OT1jqpsCMyPnAGgcbX93ouuCWt9aVlXMQL-SWV4BRhK-FbfLaOyOd9LL1IneVLkrrC2m8tc3iMdkLXXBPCEVZYdtC-AYAWGU1z50VoCjDc3gqM1JMi6tMohrHjhfnKoYctVSjQhQoREWFqKuMvN3NuRiJNv4q_R51tpNEkuz4AExHJdNR_zKdjLxCjSukwQiYZ7PS275XH79_U8sKgMsCRBcZeZOEfAf_YHQqW4CVQOasmeT-TBL81MyHJ8NSaZ_oFYDHChA1L3lGXu6GcSbmvgXXbaMMxJiwt-YZqWYGOfv9-UjYrCNXOESz4Iny6f9Yr2fkTokuhEmQfJ_sDZdb9xwg2dC-iN73C8fBM0I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKi8RKMggJA7IapJ14oQLWkqXgoADUKk3y_Eju1LlLJtdtf33zHidhYDUazxWHjOeGcfffEPIqxSrq3mVMSdyhaTaOVOZVqzOlc0cNhYItTBfv5Unp_zzWXEWf7j1EVY5-MTgqE2n8R_5IYRZAbkHz_m75S-GXaPwdDW20LhJbmUQaRDSVc0-7k4RkK9_KJSpysM-Q7Y2hvh1ZEGZsMtRMAqc_f975n_Rkn-Fn9k-uRvzRjrdKvoeuWH9fXJ720ny6gG5WBz7OSpwxT4cfZm-pYhnbylkd3RofUUH1DRdd3QR6nPdFbVxWk-VNzQcG1CsH_Htek4xxBnaeaqosXZJY4uJlroB0vWQnM6Ofx6dsNhTgeki5WtWW3B_Va2qjBveGJsLa2HXkBouIFMpXFWYOq2c1aUtXdm4IrVCZblxWamdMfXkEdnznbePCUXZwjRZ4WpIw4RRPLWmcJprnsLVMiHZ8HGljoTj2PfiXIaNR1XKrUIkKEQGhcjLhLzZzVlu6TaulX6POttJIlV2uNCtWhlXnhTwRE5xmNqA9YCDBgusG4gPDp5epyIhL1HjEskwPKJtWrXpe_npx3c5FWBUExCdJOR1FHIdvINWsXgBvgTyZ40kD0aSsFr1eHgwLBm9RS__2HZCXuyGcSYi4LztNkEGdprgYdOEiJFBjl5_POIX88AYDntaWI_lk-tv_pTcyXFxIMiRH5C99Wpjn0HKtW6eh3X1GwTnKvg priority: 102 providerName: ProQuest |
Title | iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework |
URI | https://www.proquest.com/docview/2737656424 https://www.proquest.com/docview/2736664250 https://pubmed.ncbi.nlm.nih.gov/PMC9664816 https://doaj.org/article/7fc4fa4859b642219f019b467fd5dc07 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJiRe0PgSGaMyCIkHFEhSJ06QEMpGy6jYhDYq9c1yYjutNCVbk4r1v-fOTQqBaS-JFJ8j2-fz3SV3vyPkjYfZ1Sz2XcMDiaDagSv9XLpJILVvsLCAzYU5PYtOpmwyC2c7pCt31C5gfatrh_WkpsvL9zfX688g8J-swMfRh9pHFDYX49IR3WTogk25B5qJY0WDU_bnrwLi99tsI-674OqEXRLNre_oKSqL5___qf1vJOVfqmm8Tx62NiVNN5vgEdnR5WNyf1Nlcv2E_FqMyjkyd-l-Of6efqQY615QsPxoVxaLdhHVtKnowubumjXVbbeaylJR-0uBYm5JWTRziupP0aqkkiqtr2hbfqKgpgv3ekqm49HP4xO3rbfg5qHHGjfRcDTGiYx9plimdMC1Bo_CU4yDFROaOFSJFxudRzoyUWZCT3PpB8r4UW6USobPyG5Zlfo5oUgbqswPTQImGleSeVqFJmc58-Bp5BC_W1yRt2DkWBPjUlinJI7EhiECGCIsQ8SNQ95t-1xtoDjupD5Cnm0pEUbbPqiWhWilUnAYkZEMumbgh8HhDbszyUB3GBh97nGHvEaOCwTKKDESp5CruhbfLs5FysG0GQLp0CFvWyJTwRxy2SY2wEogtlaP8rBHCZKc95u7jSU6QRBgXnKwuVnAHPJq24w9MTqu1NXK0oAXCqev5xDe25C96fdbysXcoomDvwuyGh3cPbYX5EGAwoEBkOyQ7DbLlX4J5liTDcg9PuNwjcdfB2QvTScXE7gfjc5-nA_sJ46BlcLf53k11A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFjAIxAFFTbLOCwmhpe2yS7c9QCv1Zhw_siuhZLvJqt0_xW9kxkkWAlJvvdpjJfE8Hc_MR8gbD6urWeK7Jg4ENtUOXOFL4aaB0L5BYAFbC3N8Eo3P2Nfz8HyL_OpqYTCtsrOJ1lCrUuI_8j1wszHEHixgnxYXLqJG4e1qB6HRiMWRXl_Cka36ODkA_r4NgtHh6f7YbVEFXBl6rHZTDQYgSUXiM8UypYNYa4ibPcVi8NWhSUKVeonRMtKRiTITejoWfqCMH0mjFDZfApN_iw3Ak2Nl-ujL5tYC8QG6wpwk2qt87A7nYr48dl0ZuFc952cxAv73BP9mZ_7l7kb3yb02TqXDRrAekC1dPCS3G-TK9SNyOT8sZigwS_dgfzr8QDF_PqcQTdIOaot2Wdq0Lunc1gObNdXtsoqKQlF7TUGxXqXI6xlFl6poWVBBldYL2kJa5NR0KWSPydmN7PYTsl2UhX5KKNKGKvNDk0LYFyvBPK1CI5lkHoxGDvG7zeWybXCOOBs_uT3oJBFvGMKBIdwyhF855P1mzaJp73Et9Wfk2YYSW3PbgXKZ81bTeQxvZASDpRlIKzgEkPg0A39k4O2lFzvkNXKcY_ONArN7crGqKj75_o0PYwiXBkA6cMi7lsiU8A1StMUSsBPYr6tHudujBOsg-9OdYPHWOlX8jy455NVmGldixl2hy5WlgZMtWHTPIXFPIHuf358p5jPboRzO0KD_0bPrH_6S3BmfHk_5dHJytEPuBqgomGDJdsl2vVzp5xDu1dkLq2OU_Lhppf4N8Kxovg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iEnhancer-DCLA%3A+using+the+original+sequence+to+identify+enhancers+and+their+strength+based+on+a+deep+learning+framework&rft.jtitle=BMC+bioinformatics&rft.au=Liao%2C+Meng&rft.au=Zhao%2C+Jian-ping&rft.au=Tian%2C+Jing&rft.au=Zheng%2C+Chun-Hou&rft.date=2022-11-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-05033-x&rft.externalDocID=A726634673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |