iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework

Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart i...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. 1; pp. 1 - 16
Main Authors Liao, Meng, Zhao, Jian-ping, Tian, Jing, Zheng, Chun-Hou
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 14.11.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.
AbstractList Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.
Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers. Keywords: Enhancer, Word embedding, k-mers, Convolutional neural network, Bidirectional long short-term memory network, Attention mechanism
Abstract Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.
Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the gene. It is not necessarily close to the gene to be acted on, because the entanglement structure of chromatin allows the positions far apart in the sequence to have the opportunity to contact each other. Therefore, identifying enhancers and their strength is a complex and challenging task. In this article, a new prediction method based on deep learning is proposed to identify enhancers and enhancer strength, called iEnhancer-DCLA. Firstly, we use word2vec to convert k-mers into number vectors to construct an input matrix. Secondly, we use convolutional neural network and bidirectional long short-term memory network to extract sequence features, and finally use the attention mechanism to extract relatively important features. In the task of predicting enhancers and their strengths, this method has improved to a certain extent in most evaluation indexes. In summary, we believe that this method provides new ideas in the analysis of enhancers.
ArticleNumber 480
Audience Academic
Author Liao, Meng
Zhao, Jian-ping
Tian, Jing
Zheng, Chun-Hou
Author_xml – sequence: 1
  givenname: Meng
  surname: Liao
  fullname: Liao, Meng
– sequence: 2
  givenname: Jian-ping
  surname: Zhao
  fullname: Zhao, Jian-ping
– sequence: 3
  givenname: Jing
  surname: Tian
  fullname: Tian, Jing
– sequence: 4
  givenname: Chun-Hou
  surname: Zheng
  fullname: Zheng, Chun-Hou
BookMark eNp9kl2P1CAYhRuzJu6O_gGvSLzRi65AW2i9MJmMq04yiYkf14TCS4exAyNQd_ffy3wYnY0xXJS8fc6hPZyr4sJ5B0XxnOBrQlr2OhLaNl2JKS1xg6uqvHtUXJKak5IS3Fz8tX9SXMW4wZjwFjeXxa29cWvpFITy3WI1f4OmaN2A0hqQD3awTo4owo8JMoKSR1aDS9bcIzjJIpJO73kbUEwB3JDWqJcRNPIOSaQBdmgEGdze1wS5hVsfvj8tHhs5Rnh2es6Kb-9vvi4-lqtPH5aL-apUDa5T2UHLWdvJltS67jVQDlBhhnXNu65qTNvoDrcGFANmWG8aDFwSqg1hymjdVbNiefTVXm7ELtitDPfCSysOAx8GIUOyagTBjaqNrHOOPaspJZ3BpOtrxo1utMI8e709eu2mfgta5SSCHM9Mz984uxaD_yk6xuqWsGzw8mQQfI40JrG1UcE4Sgd-ioLyimWU5hucFS8eoBs_hXwbB4qzJmP1H2qQ-QesMz6fq_amYs4pY1X--ipT1_-g8tKwtSoXydg8PxO8OhNkJsFdGuQUo1h--XzOtkdWBR9jACOUTTJZv4_AjoJgsW-oODZU5IaKQ0PFXZbSB9LfUf5H9AtSsOq5
CitedBy_id crossref_primary_10_3390_ani13182935
crossref_primary_10_1002_pmic_202200409
crossref_primary_10_3390_molecules29153512
crossref_primary_10_1016_j_compbiomed_2025_109821
crossref_primary_10_1016_j_isci_2024_110030
crossref_primary_10_3390_ijms252312942
crossref_primary_10_1016_j_compbiomed_2023_107848
crossref_primary_10_1016_j_gene_2024_148598
crossref_primary_10_1093_bib_bbae030
Cites_doi 10.1038/ng.1006
10.1093/bioinformatics/btx257
10.1016/j.cell.2015.03.010
10.1093/bioinformatics/bty937
10.1002/bies.201600106
10.1038/nature07730
10.3389/fgene.2021.665498
10.1016/j.cell.2008.04.043
10.1359/jbmr.1999.14.2.24
10.1038/srep38741
10.1093/bioinformatics/btaa914
10.1038/s41467-018-03766-z
10.1261/rna.069112.118
10.1093/bioinformatics/bty458
10.1038/ng.3167
10.1093/nar/gkx920
10.1109/TMM.2015.2477044
10.1038/nmeth721
10.1109/TCBB.2017.2666141
10.1021/acs.jcim.0c00409
10.1007/s11604-018-0726-3
10.1109/TNNLS.2016.2541681
10.1093/bib/bbz133
10.1186/gb-2011-12-11-r113
10.1101/gr.133546.111
10.1038/nature14906
10.1093/bioinformatics/btx228
10.1093/bioinformatics/btaa211
10.1186/s13073-014-0085-3
10.3791/57883
10.3390/ijms22115521
10.1093/bioinformatics/bts565
10.1016/j.jtbi.2018.04.037
10.1093/bioinformatics/btv604
10.1128/MCB.01127-12
10.1371/journal.pbio.0030007
10.1038/nature05295
10.1109/TKDE.2018.2831682
10.1186/s12864-019-6336-3
10.1006/jmbi.1998.1700
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-022-05033-x
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 16
ExternalDocumentID oai_doaj_org_article_7fc4fa4859b642219f019b467fd5dc07
PMC9664816
A726634673
10_1186_s12859_022_05033_x
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: IMIS202105; IMIS202105; IMIS202105
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c504t-9e87689a814d4bde27ee3060d479935f85d908fec6e6f6bf50e7a12df16cfdd93
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:20:07 EDT 2025
Thu Aug 21 18:39:44 EDT 2025
Mon Jul 21 10:26:36 EDT 2025
Fri Jul 25 10:45:56 EDT 2025
Tue Jun 17 21:41:57 EDT 2025
Tue Jun 10 20:22:47 EDT 2025
Fri Jun 27 04:38:51 EDT 2025
Tue Jul 01 03:38:36 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-9e87689a814d4bde27ee3060d479935f85d908fec6e6f6bf50e7a12df16cfdd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-05033-x
PQID 2737656424
PQPubID 44065
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7fc4fa4859b642219f019b467fd5dc07
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9664816
proquest_miscellaneous_2736664250
proquest_journals_2737656424
gale_infotracmisc_A726634673
gale_infotracacademiconefile_A726634673
gale_incontextgauss_ISR_A726634673
crossref_citationtrail_10_1186_s12859_022_05033_x
crossref_primary_10_1186_s12859_022_05033_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-14
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References G Zhang (5033_CR7) 2018; 46
OI Kulaeva (5033_CR2) 2012; 32
F Lai (5033_CR17) 2015; 525
H Lin (5033_CR40) 2019; 16
X Chen (5033_CR14) 2008; 133
H Sasaki-Iwaoka (5033_CR4) 1999; 14
K Niu (5033_CR25) 2021; 12
L Cai (5033_CR24) 2021; 37
B Liu (5033_CR22) 2018; 34
Q Zou (5033_CR30) 2019; 25
J Li (5033_CR35) 2017; 28
A Woolfe (5033_CR10) 2005; 3
S Pott (5033_CR6) 2015; 47
MN Hamid (5033_CR29) 2019; 35
5033_CR26
L Fu (5033_CR27) 2012; 28
K Yasaka (5033_CR33) 2018; 36
QH Nguyen (5033_CR23) 2019; 20
RY Birnbaum (5033_CR3) 2012; 22
JB Carleton (5033_CR5) 2018
M Boyd (5033_CR9) 2018; 9
C Jia (5033_CR21) 2016; 6
A Mayer (5033_CR19) 2015; 161
X He (5033_CR39) 2018; 30
MO Dorschner (5033_CR13) 2004; 1
M Habibi (5033_CR28) 2017; 33
MF Melgar (5033_CR18) 2011; 12
CC Li (5033_CR34) 2020; 21
MF Sabooh (5033_CR41) 2018; 452
Y Yang (5033_CR42) 2017; 33
LA Pennacchio (5033_CR11) 2006; 444
5033_CR32
WW Wasserman (5033_CR12) 1998; 278
R Cai (5033_CR36) 2020; 36
R Jing (5033_CR43) 2020; 60
5033_CR31
B Liu (5033_CR20) 2016; 32
HM Herz (5033_CR8) 2016; 38
A Visel (5033_CR15) 2009; 457
D May (5033_CR16) 2011; 44
K Cho (5033_CR38) 2015; 17
O Corradin (5033_CR1) 2014; 6
L Deng (5033_CR37) 2021; 22
References_xml – volume: 44
  start-page: 89
  issue: 1
  year: 2011
  ident: 5033_CR16
  publication-title: Nat Genet
  doi: 10.1038/ng.1006
– volume: 33
  start-page: i252
  issue: 14
  year: 2017
  ident: 5033_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx257
– volume: 161
  start-page: 541
  issue: 3
  year: 2015
  ident: 5033_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.010
– volume: 35
  start-page: 2009
  issue: 12
  year: 2019
  ident: 5033_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty937
– volume: 38
  start-page: 1003
  issue: 10
  year: 2016
  ident: 5033_CR8
  publication-title: BioEssays
  doi: 10.1002/bies.201600106
– volume: 457
  start-page: 854
  issue: 7231
  year: 2009
  ident: 5033_CR15
  publication-title: Nature
  doi: 10.1038/nature07730
– volume: 12
  start-page: 665498
  year: 2021
  ident: 5033_CR25
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.665498
– volume: 133
  start-page: 1106
  issue: 6
  year: 2008
  ident: 5033_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.043
– volume: 14
  start-page: 248
  issue: 2
  year: 1999
  ident: 5033_CR4
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.1999.14.2.24
– volume: 6
  start-page: 38741
  year: 2016
  ident: 5033_CR21
  publication-title: Sci Rep
  doi: 10.1038/srep38741
– volume: 37
  start-page: 1060
  issue: 8
  year: 2021
  ident: 5033_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa914
– ident: 5033_CR31
– volume: 9
  start-page: 1661
  issue: 1
  year: 2018
  ident: 5033_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03766-z
– volume: 25
  start-page: 205
  issue: 2
  year: 2019
  ident: 5033_CR30
  publication-title: RNA
  doi: 10.1261/rna.069112.118
– volume: 34
  start-page: 3835
  issue: 22
  year: 2018
  ident: 5033_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty458
– ident: 5033_CR26
– volume: 47
  start-page: 8
  issue: 1
  year: 2015
  ident: 5033_CR6
  publication-title: Nat Genet
  doi: 10.1038/ng.3167
– volume: 46
  start-page: D78
  issue: D1
  year: 2018
  ident: 5033_CR7
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx920
– volume: 17
  start-page: 1875
  issue: 11
  year: 2015
  ident: 5033_CR38
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2015.2477044
– volume: 1
  start-page: 219
  issue: 3
  year: 2004
  ident: 5033_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth721
– volume: 16
  start-page: 1316
  issue: 4
  year: 2019
  ident: 5033_CR40
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2666141
– volume: 60
  start-page: 3755
  issue: 8
  year: 2020
  ident: 5033_CR43
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00409
– volume: 36
  start-page: 257
  issue: 4
  year: 2018
  ident: 5033_CR33
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-018-0726-3
– volume: 28
  start-page: 1425
  issue: 6
  year: 2017
  ident: 5033_CR35
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2541681
– volume: 21
  start-page: 2133
  issue: 6
  year: 2020
  ident: 5033_CR34
  publication-title: Br Bioinform
  doi: 10.1093/bib/bbz133
– volume: 12
  start-page: R113
  issue: 11
  year: 2011
  ident: 5033_CR18
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-11-r113
– volume: 22
  start-page: 1059
  issue: 6
  year: 2012
  ident: 5033_CR3
  publication-title: Genome Res
  doi: 10.1101/gr.133546.111
– volume: 525
  start-page: 399
  issue: 7569
  year: 2015
  ident: 5033_CR17
  publication-title: Nature
  doi: 10.1038/nature14906
– volume: 33
  start-page: i37
  issue: 14
  year: 2017
  ident: 5033_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx228
– volume: 36
  start-page: 4458
  issue: 16
  year: 2020
  ident: 5033_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa211
– volume: 6
  start-page: 85
  issue: 10
  year: 2014
  ident: 5033_CR1
  publication-title: Genome Med
  doi: 10.1186/s13073-014-0085-3
– year: 2018
  ident: 5033_CR5
  publication-title: J Vis Exp
  doi: 10.3791/57883
– volume: 22
  start-page: 5521
  issue: 11
  year: 2021
  ident: 5033_CR37
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22115521
– volume: 28
  start-page: 3150
  issue: 23
  year: 2012
  ident: 5033_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts565
– volume: 452
  start-page: 1
  year: 2018
  ident: 5033_CR41
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.04.037
– volume: 32
  start-page: 362
  issue: 3
  year: 2016
  ident: 5033_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv604
– volume: 32
  start-page: 4892
  issue: 24
  year: 2012
  ident: 5033_CR2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01127-12
– ident: 5033_CR32
– volume: 3
  start-page: e7
  issue: 1
  year: 2005
  ident: 5033_CR10
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030007
– volume: 444
  start-page: 499
  issue: 7118
  year: 2006
  ident: 5033_CR11
  publication-title: Nature
  doi: 10.1038/nature05295
– volume: 30
  start-page: 2354
  issue: 12
  year: 2018
  ident: 5033_CR39
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2831682
– volume: 20
  start-page: 951
  issue: Suppl 9
  year: 2019
  ident: 5033_CR23
  publication-title: BMC Genom
  doi: 10.1186/s12864-019-6336-3
– volume: 278
  start-page: 167
  issue: 1
  year: 1998
  ident: 5033_CR12
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1998.1700
SSID ssj0017805
Score 2.4764905
Snippet Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream of the...
Abstract Enhancers are small regions of DNA that bind to proteins, which enhance the transcription of genes. The enhancer may be located upstream or downstream...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Attention mechanism
Bidirectional long short-term memory network
Binding sites
Chromatin
Convolutional neural network
Datasets
Deep learning
DNA sequencing
Enhancer
Enhancers
Entanglement
Experiments
Feature extraction
Gene expression
Genetic research
Genetic transcription
Genomes
Identification and classification
k-mers
Long short-term memory
Machine learning
Mathematical analysis
Methods
Neural networks
Nucleotide sequencing
Nucleotides
Transcription factors
Word embedding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP7G6ShTBg4Rt-5K09fZcd1lFPagLewtpPt57sKTLtg93_3tn0vSxVdCL12ZS2sxM8hsy8xtCXudYXc3rgvmq1EiqXTJdGM2aUrvCY2OBWAvz5as8OeWfzsTZjVZfmBM20gOPC3dQecO95rVoWoDK4F_wgqYF9_ZWWDPWkcOZNwVT6f4AmfqnEplaHvQF8rQxzFxH_pMFu5odQ5Gt_889-fc8yRsHz_E9cjchRrocv_Q-ueXCA3J77CF5_ZD83ByFNarukn04_Lx8RzGTfUUB19Gp6RWd8qXp0NFNrMz119SlaT3VwdJ4YUCxciSshjXFw83SLlBNrXMXNDWXWFE_JXM9IqfHRz8OT1jqpsCMyPnAGgcbX93ouuCWt9aVlXMQL-SWV4BRhK-FbfLaOyOd9LL1IneVLkrrC2m8tc3iMdkLXXBPCEVZYdtC-AYAWGU1z50VoCjDc3gqM1JMi6tMohrHjhfnKoYctVSjQhQoREWFqKuMvN3NuRiJNv4q_R51tpNEkuz4AExHJdNR_zKdjLxCjSukwQiYZ7PS275XH79_U8sKgMsCRBcZeZOEfAf_YHQqW4CVQOasmeT-TBL81MyHJ8NSaZ_oFYDHChA1L3lGXu6GcSbmvgXXbaMMxJiwt-YZqWYGOfv9-UjYrCNXOESz4Iny6f9Yr2fkTokuhEmQfJ_sDZdb9xwg2dC-iN73C8fBM0I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKi8RKMggJA7IapJ14oQLWkqXgoADUKk3y_Eju1LlLJtdtf33zHidhYDUazxWHjOeGcfffEPIqxSrq3mVMSdyhaTaOVOZVqzOlc0cNhYItTBfv5Unp_zzWXEWf7j1EVY5-MTgqE2n8R_5IYRZAbkHz_m75S-GXaPwdDW20LhJbmUQaRDSVc0-7k4RkK9_KJSpysM-Q7Y2hvh1ZEGZsMtRMAqc_f975n_Rkn-Fn9k-uRvzRjrdKvoeuWH9fXJ720ny6gG5WBz7OSpwxT4cfZm-pYhnbylkd3RofUUH1DRdd3QR6nPdFbVxWk-VNzQcG1CsH_Htek4xxBnaeaqosXZJY4uJlroB0vWQnM6Ofx6dsNhTgeki5WtWW3B_Va2qjBveGJsLa2HXkBouIFMpXFWYOq2c1aUtXdm4IrVCZblxWamdMfXkEdnznbePCUXZwjRZ4WpIw4RRPLWmcJprnsLVMiHZ8HGljoTj2PfiXIaNR1XKrUIkKEQGhcjLhLzZzVlu6TaulX6POttJIlV2uNCtWhlXnhTwRE5xmNqA9YCDBgusG4gPDp5epyIhL1HjEskwPKJtWrXpe_npx3c5FWBUExCdJOR1FHIdvINWsXgBvgTyZ40kD0aSsFr1eHgwLBm9RS__2HZCXuyGcSYi4LztNkEGdprgYdOEiJFBjl5_POIX88AYDntaWI_lk-tv_pTcyXFxIMiRH5C99Wpjn0HKtW6eh3X1GwTnKvg
  priority: 102
  providerName: ProQuest
Title iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework
URI https://www.proquest.com/docview/2737656424
https://www.proquest.com/docview/2736664250
https://pubmed.ncbi.nlm.nih.gov/PMC9664816
https://doaj.org/article/7fc4fa4859b642219f019b467fd5dc07
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJiRe0PgSGaMyCIkHFEhSJ06QEMpGy6jYhDYq9c1yYjutNCVbk4r1v-fOTQqBaS-JFJ8j2-fz3SV3vyPkjYfZ1Sz2XcMDiaDagSv9XLpJILVvsLCAzYU5PYtOpmwyC2c7pCt31C5gfatrh_WkpsvL9zfX688g8J-swMfRh9pHFDYX49IR3WTogk25B5qJY0WDU_bnrwLi99tsI-674OqEXRLNre_oKSqL5___qf1vJOVfqmm8Tx62NiVNN5vgEdnR5WNyf1Nlcv2E_FqMyjkyd-l-Of6efqQY615QsPxoVxaLdhHVtKnowubumjXVbbeaylJR-0uBYm5JWTRziupP0aqkkiqtr2hbfqKgpgv3ekqm49HP4xO3rbfg5qHHGjfRcDTGiYx9plimdMC1Bo_CU4yDFROaOFSJFxudRzoyUWZCT3PpB8r4UW6USobPyG5Zlfo5oUgbqswPTQImGleSeVqFJmc58-Bp5BC_W1yRt2DkWBPjUlinJI7EhiECGCIsQ8SNQ95t-1xtoDjupD5Cnm0pEUbbPqiWhWilUnAYkZEMumbgh8HhDbszyUB3GBh97nGHvEaOCwTKKDESp5CruhbfLs5FysG0GQLp0CFvWyJTwRxy2SY2wEogtlaP8rBHCZKc95u7jSU6QRBgXnKwuVnAHPJq24w9MTqu1NXK0oAXCqev5xDe25C96fdbysXcoomDvwuyGh3cPbYX5EGAwoEBkOyQ7DbLlX4J5liTDcg9PuNwjcdfB2QvTScXE7gfjc5-nA_sJ46BlcLf53k11A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFjAIxAFFTbLOCwmhpe2yS7c9QCv1Zhw_siuhZLvJqt0_xW9kxkkWAlJvvdpjJfE8Hc_MR8gbD6urWeK7Jg4ENtUOXOFL4aaB0L5BYAFbC3N8Eo3P2Nfz8HyL_OpqYTCtsrOJ1lCrUuI_8j1wszHEHixgnxYXLqJG4e1qB6HRiMWRXl_Cka36ODkA_r4NgtHh6f7YbVEFXBl6rHZTDQYgSUXiM8UypYNYa4ibPcVi8NWhSUKVeonRMtKRiTITejoWfqCMH0mjFDZfApN_iw3Ak2Nl-ujL5tYC8QG6wpwk2qt87A7nYr48dl0ZuFc952cxAv73BP9mZ_7l7kb3yb02TqXDRrAekC1dPCS3G-TK9SNyOT8sZigwS_dgfzr8QDF_PqcQTdIOaot2Wdq0Lunc1gObNdXtsoqKQlF7TUGxXqXI6xlFl6poWVBBldYL2kJa5NR0KWSPydmN7PYTsl2UhX5KKNKGKvNDk0LYFyvBPK1CI5lkHoxGDvG7zeWybXCOOBs_uT3oJBFvGMKBIdwyhF855P1mzaJp73Et9Wfk2YYSW3PbgXKZ81bTeQxvZASDpRlIKzgEkPg0A39k4O2lFzvkNXKcY_ONArN7crGqKj75_o0PYwiXBkA6cMi7lsiU8A1StMUSsBPYr6tHudujBOsg-9OdYPHWOlX8jy455NVmGldixl2hy5WlgZMtWHTPIXFPIHuf358p5jPboRzO0KD_0bPrH_6S3BmfHk_5dHJytEPuBqgomGDJdsl2vVzp5xDu1dkLq2OU_Lhppf4N8Kxovg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iEnhancer-DCLA%3A+using+the+original+sequence+to+identify+enhancers+and+their+strength+based+on+a+deep+learning+framework&rft.jtitle=BMC+bioinformatics&rft.au=Liao%2C+Meng&rft.au=Zhao%2C+Jian-ping&rft.au=Tian%2C+Jing&rft.au=Zheng%2C+Chun-Hou&rft.date=2022-11-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-05033-x&rft.externalDocID=A726634673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon