Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan
The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 10; p. 1649 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs12101649 |
Cover
Abstract | The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry. |
---|---|
AbstractList | The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry. The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R² up to 0.665 and RMSE up to 66.87 m³/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R² up to 0.519 and RMSE up to 80.12 m³/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry. |
Author | Iizuka, Kotaro Ogura, Takuro Kosugi, Yoshiko Yonehara, Taichiro Nakata, Yasutaka Hayakawa, Yuichi S. |
Author_xml | – sequence: 1 givenname: Kotaro surname: Iizuka fullname: Iizuka, Kotaro – sequence: 2 givenname: Yuichi S. orcidid: 0000-0003-2053-8986 surname: Hayakawa fullname: Hayakawa, Yuichi S. – sequence: 3 givenname: Takuro surname: Ogura fullname: Ogura, Takuro – sequence: 4 givenname: Yasutaka surname: Nakata fullname: Nakata, Yasutaka – sequence: 5 givenname: Yoshiko surname: Kosugi fullname: Kosugi, Yoshiko – sequence: 6 givenname: Taichiro surname: Yonehara fullname: Yonehara, Taichiro |
BookMark | eNptUstuFDEQHKEgEUIufIElLghpwK-ZjI_RsoFFG4EUwtXqsXsmXs3ai-2JlBv_wA_wbXwJ3iwIFNEXt0pV1S51P62OfPBYVc8ZfS2Eom9iYpxR1kr1qDrm9IzXkit-9E__pDpNaUNLCcEUlcfVj5XPOEbILngSBnI5T9nVV-hTiOQtZCA5kGXKbgsZyacp5HqNtziRq4xb8iVM8xbJdXJ-JJdgbpxHskaIfg-cT2OILt9s089v3xeQsIhme7cfs7zFOEZETxbBuwFjsYbyE0suQsSUE3GefIAd-GfV4wGmhKe_35Pq-mL5efG-Xn98t1qcr2vTUJlrJblgVFjLpego5ZK3SPFMtnQAsKqgaFF0hsrWmqY3zdAz1ljTMjX0veXipFodfG2Ajd7FEjje6QBO3wMhjhpidmZC3RVDQMv6hqKk3ILhBhrkjMuuh6YpXi8PXrsYvs4ljt66ZHAqETHMSXPVtaqRnRKF-uIBdRPm6EtSzSVtpRBleYVFDywTQ0oRB21cvt9ZjuAmzajeX4D-ewFF8uqB5E-m_5B_AdPItJg |
CitedBy_id | crossref_primary_10_3390_rs12244189 crossref_primary_10_3390_rs13183610 crossref_primary_10_1016_j_ese_2023_100257 crossref_primary_10_1016_j_compag_2022_107069 crossref_primary_10_3390_rs16122250 crossref_primary_10_3390_f12060717 crossref_primary_10_3390_f12040397 crossref_primary_10_3390_rs14225861 crossref_primary_10_3390_rs16173164 crossref_primary_10_3390_f12030327 crossref_primary_10_15287_afr_2024_3664 crossref_primary_10_1016_j_compag_2021_106579 crossref_primary_10_1016_j_dcn_2024_101468 |
Cites_doi | 10.1109/TGRS.2009.2023906 10.1007/s10784-017-9366-9 10.2166/hydro.2010.144 10.1007/978-3-642-02020-9 10.3390/rs11151816 10.3390/f8030068 10.3390/f5071682 10.1016/j.isprsjprs.2012.03.011 10.5558/tfc2017-012 10.1093/treephys/24.11.1203 10.3390/s90301768 10.1117/12.7973877 10.3390/land6040084 10.1080/01431161.2016.1264028 10.1109/IGARSS.2011.6049980 10.3390/rs8060500 10.1016/j.rse.2015.12.012 10.3390/rs4103058 10.3390/rs11010077 10.3390/rs8060501 10.1186/s40623-016-0495-0 10.1016/j.rse.2015.08.029 10.1016/j.isprsjprs.2012.04.001 10.1016/j.isprsjprs.2016.11.012 10.1111/gcb.13388 10.1016/j.isprsjprs.2015.04.007 10.3390/rs70810017 10.3390/f6113882 10.1109/LGRS.2015.2466464 10.3390/rs9080785 10.21817/ijet/2018/v10i3/181003095 10.1023/A:1010933404324 10.3390/f10070537 10.3390/rs71115082 10.3390/f8010029 10.1016/j.rse.2014.11.020 10.1007/BF02447512 10.1016/j.proenv.2011.07.013 10.3390/rs10081183 10.1007/s11284-012-1019-4 10.3390/s130810027 10.3390/f4040984 10.3390/s16060834 10.1109/TGRS.2011.2120616 10.1016/j.isprsjprs.2013.11.004 10.1098/rsfs.2017.0038 10.1016/S0168-1923(99)00112-4 10.1016/j.foreco.2017.10.041 10.3390/rs4113544 10.1109/36.134090 10.1145/130385.130401 10.3390/rs10010013 10.1093/treephys/tps127 10.1890/ES14-00296.1 10.3390/rs6086988 10.1016/j.rse.2011.01.017 10.3390/rs9010018 10.3390/app7070675 10.3390/rs10040627 10.3390/rs70302832 10.1021/acs.jcim.5b00206 10.1016/S0165-0114(99)00014-7 10.1016/j.rse.2010.03.018 10.1080/01431161.2015.1136448 10.1111/2041-210X.12933 10.3390/rs4041004 10.3390/rs10071151 10.4236/ars.2014.34015 10.1109/JSTARS.2010.2086436 10.3390/rs61212815 10.5194/gmd-8-1991-2015 10.3390/rs70201877 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs12101649 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Forestry |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8ad9aed1b50e402dac2ca5e21248ba55 10_3390_rs12101649 |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c504t-9423103dd2438002426e0e7460faad9243ede38c046dc5bc5fb115dc619fbbd23 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:04:50 EDT 2025 Thu Sep 04 15:10:53 EDT 2025 Fri Jul 25 11:59:27 EDT 2025 Tue Jul 01 04:15:06 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-9423103dd2438002426e0e7460faad9243ede38c046dc5bc5fb115dc619fbbd23 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2053-8986 |
OpenAccessLink | https://doaj.org/article/8ad9aed1b50e402dac2ca5e21248ba55 |
PQID | 2406433207 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ad9aed1b50e402dac2ca5e21248ba55 proquest_miscellaneous_2986954893 proquest_journals_2406433207 crossref_citationtrail_10_3390_rs12101649 crossref_primary_10_3390_rs12101649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hayakawa (ref_26) 2016; 68 Srinivasan (ref_25) 2015; 7 Breiman (ref_56) 2001; 45 Chuvieco (ref_66) 2011; 115 Adams (ref_54) 2014; 5 Ota (ref_31) 2015; 6 Kobayashi (ref_23) 2012; 6 Saarinen (ref_84) 2017; 123 ref_57 ref_53 Goodbody (ref_14) 2017; 93 Yamamoto (ref_50) 1918; 16 Sumida (ref_74) 2013; 33 Mounce (ref_65) 2011; 13 ref_18 ref_16 Wu (ref_60) 2015; 12 Dash (ref_11) 2016; 89 Jucker (ref_32) 2017; 23 MacMillan (ref_55) 2000; 113 Suomalainen (ref_85) 2018; 8 Sandberg (ref_9) 2011; 115 Schumacher (ref_51) 1933; 47 Barrett (ref_12) 2016; 174 Marabel (ref_61) 2013; 13 Hosoda (ref_52) 2010; 44 Ploton (ref_27) 2018; 9 Shataeea (ref_73) 2011; 7 ref_67 ref_22 ref_64 Carrer (ref_83) 2018; 407 ref_62 Jelinski (ref_81) 1996; 11 Shao (ref_58) 2012; 70 Nagakura (ref_75) 2004; 23 Cutler (ref_38) 2012; 70 Flynn (ref_28) 2014; 6 (ref_7) 2015; 27 ref_72 Badreldin (ref_17) 2015; 7 Sivasankar (ref_78) 2018; 10 Dobson (ref_19) 1992; 30 ref_36 ref_35 ref_79 Naidoo (ref_10) 2015; 105 ref_34 He (ref_70) 2013; 4 Varghese (ref_77) 2016; 37 ref_30 Liaw (ref_63) 2002; 2 Kobayashi (ref_76) 2012; 4 Iizuka (ref_3) 2015; 7 Fazakas (ref_8) 1999; 98–99 ref_37 Getzin (ref_29) 2014; 6 Karlson (ref_39) 2015; 7 Conrad (ref_48) 2015; 8 Negri (ref_59) 2014; 87 Lucas (ref_21) 2010; 3 ref_82 Lee (ref_45) 1986; 25 Iizuka (ref_15) 2012; 4 ref_47 ref_46 Panagiotidis (ref_33) 2017; 38 Small (ref_43) 2011; 49 ref_44 Holopainen (ref_1) 2014; 5 Lindberg (ref_69) 2012; 4 ref_87 ref_42 ref_86 Kosugi (ref_41) 2013; 28 ref_40 Kissinger (ref_6) 2017; 17 ref_2 ref_49 Alexander (ref_68) 2015; 55 Saarela (ref_13) 2015; 158 Santoro (ref_20) 2009; 47 Wu (ref_80) 2009; 9 ref_5 Abdullahi (ref_71) 2016; 174 ref_4 Iizuka (ref_24) 2014; 3 |
References_xml | – volume: 47 start-page: 4001 year: 2009 ident: ref_20 article-title: Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2023906 – volume: 17 start-page: 589 year: 2017 ident: ref_6 article-title: The Sustainable Development Goals and REDD+: Assessing institutional interactions and the pursuit of synergies publication-title: Int. Environ. Agreem. doi: 10.1007/s10784-017-9366-9 – volume: 13 start-page: 672 year: 2011 ident: ref_65 article-title: Novelty detection for time series data analysis in water distribution systems using support vector machines publication-title: J. Hydroinform. doi: 10.2166/hydro.2010.144 – ident: ref_49 – ident: ref_5 – volume: 89 start-page: 159 year: 2016 ident: ref_11 article-title: Characterising forest structure using combinations of airborne laser scanning data, RapidEye satellite imagery and environmental variables publication-title: For. Int. J. For. Res. – ident: ref_18 doi: 10.1007/978-3-642-02020-9 – ident: ref_72 doi: 10.3390/rs11151816 – ident: ref_46 doi: 10.3390/f8030068 – volume: 5 start-page: 1682 year: 2014 ident: ref_1 article-title: Outlook for the Next Generation’s Precision Forestry in Finland publication-title: Forests doi: 10.3390/f5071682 – volume: 70 start-page: 66 year: 2012 ident: ref_38 article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.011 – volume: 93 start-page: 71 year: 2017 ident: ref_14 article-title: Unmanned aerial systems for precision forest inventory purposes: A review and case study publication-title: For. Chron. doi: 10.5558/tfc2017-012 – volume: 23 start-page: 1203 year: 2004 ident: ref_75 article-title: Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content publication-title: Tree Physiol. doi: 10.1093/treephys/24.11.1203 – volume: 9 start-page: 1768 year: 2009 ident: ref_80 article-title: Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling publication-title: Sensors doi: 10.3390/s90301768 – volume: 25 start-page: 636 year: 1986 ident: ref_45 article-title: Speckle suppression and analysis for synthetic aperture radar images publication-title: Opt. Eng. doi: 10.1117/12.7973877 – ident: ref_2 doi: 10.3390/land6040084 – volume: 38 start-page: 2392 year: 2017 ident: ref_33 article-title: Determining tree height and crown diameter from high-resolution UAV imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1264028 – ident: ref_22 doi: 10.1109/IGARSS.2011.6049980 – ident: ref_30 doi: 10.3390/rs8060500 – volume: 174 start-page: 197 year: 2016 ident: ref_71 article-title: Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.012 – volume: 4 start-page: 3058 year: 2012 ident: ref_76 article-title: Characteristics of Decomposition Powers of L-Band Multi-Polarimetric SAR in Assessing Tree Growth of Industrial Plantation Forests in the Tropics publication-title: Remote Sens. doi: 10.3390/rs4103058 – ident: ref_42 – volume: 16 start-page: 147 year: 1918 ident: ref_50 article-title: Forest inventory of Japanese red pine for stem volume and diameter at breast height (あかまつノ単木幹材積表並胸高形数表) publication-title: Bull. For. Exp. – ident: ref_40 doi: 10.3390/rs11010077 – ident: ref_53 doi: 10.3390/rs8060501 – volume: 68 start-page: 114 year: 2016 ident: ref_26 article-title: Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan) publication-title: Earth Planets Space doi: 10.1186/s40623-016-0495-0 – volume: 174 start-page: 279 year: 2016 ident: ref_12 article-title: A questionnaire-based review of the operational use of remotely sensed data by national forest inventories publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.029 – volume: 6 start-page: 063519 year: 2012 ident: ref_23 article-title: Backscattering Characteristics of L-Band Polarimetric and Optical Satellite Imagery over Planted Acacia Forests in Sumatra, Indonesia publication-title: J. Appl. Remote Sens. – volume: 70 start-page: 78 year: 2012 ident: ref_58 article-title: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.04.001 – volume: 44 start-page: 23 year: 2010 ident: ref_52 article-title: Differences between the present stem volume tables and the values of the volume equations, and their correction publication-title: Jpn. Soc. For. Plan. – volume: 123 start-page: 140 year: 2017 ident: ref_84 article-title: Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.11.012 – volume: 23 start-page: 177 year: 2017 ident: ref_32 article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13388 – volume: 105 start-page: 234 year: 2015 ident: ref_10 article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.007 – volume: 7 start-page: 10017 year: 2015 ident: ref_39 article-title: Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest publication-title: Remote Sens. doi: 10.3390/rs70810017 – volume: 6 start-page: 3882 year: 2015 ident: ref_31 article-title: Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest publication-title: Forests doi: 10.3390/f6113882 – volume: 12 start-page: 2267 year: 2015 ident: ref_60 article-title: A Comparative Study of Predicting DBH and Stem Volume of Individual Trees in a Temperate Forest Using Airborne Waveform LiDAR publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2466464 – ident: ref_35 doi: 10.3390/rs9080785 – volume: 10 start-page: 797 year: 2018 ident: ref_78 article-title: The potential of multi-frequency multipolarized ALOS-2/PALSAR-2 and Sentinel-1 SAR data for aboveground forest biomass estimation publication-title: Int. J. Eng. Technol. doi: 10.21817/ijet/2018/v10i3/181003095 – volume: 45 start-page: 5 year: 2001 ident: ref_56 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_87 – ident: ref_86 doi: 10.3390/f10070537 – volume: 7 start-page: 15082 year: 2015 ident: ref_3 article-title: Estimation of CO2 Sequestration by the Forests in Japan by Discriminating Precise Tree Age Category using Remote Sensing Techniques publication-title: Remote Sens. doi: 10.3390/rs71115082 – ident: ref_4 doi: 10.3390/f8010029 – volume: 158 start-page: 431 year: 2015 ident: ref_13 article-title: Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.020 – volume: 47 start-page: 719 year: 1933 ident: ref_51 article-title: Logarithmic expression of timber-tree volume publication-title: J. Agric. Res. – volume: 11 start-page: 129 year: 1996 ident: ref_81 article-title: The modifiable areal unit problem and implications for landscape ecology publication-title: Landsc. Ecol. doi: 10.1007/BF02447512 – volume: 7 start-page: 68 year: 2011 ident: ref_73 article-title: Plot-level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Comparison of Boosting and Random Forest Tree Regression Algorithms publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2011.07.013 – volume: 27 start-page: 80 year: 2015 ident: ref_7 article-title: Comparison of modern forest inventory method with the common method for management of tropical rainforest in the Peruvian Amazon publication-title: J. Trop. For. Sci. – ident: ref_79 doi: 10.3390/rs10081183 – volume: 28 start-page: 373 year: 2013 ident: ref_41 article-title: Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis publication-title: Ecol. Res. doi: 10.1007/s11284-012-1019-4 – volume: 13 start-page: 10027 year: 2013 ident: ref_61 article-title: Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression publication-title: Sensors doi: 10.3390/s130810027 – volume: 4 start-page: 984 year: 2013 ident: ref_70 article-title: Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest publication-title: Forests doi: 10.3390/f4040984 – ident: ref_47 – ident: ref_82 – ident: ref_37 doi: 10.3390/s16060834 – volume: 49 start-page: 3081 year: 2011 ident: ref_43 article-title: Flattening gamma: Radiometric terrain correction for SAR imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2120616 – volume: 87 start-page: 241 year: 2014 ident: ref_59 article-title: An innovative support vector machine based method for contextual image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.004 – volume: 8 start-page: 20170038 year: 2018 ident: ref_85 article-title: Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests publication-title: Interface Focus doi: 10.1098/rsfs.2017.0038 – volume: 98–99 start-page: 417 year: 1999 ident: ref_8 article-title: Regional forest biomass and wood volume estimation using satellite data and ancillary data publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00112-4 – volume: 407 start-page: 125 year: 2018 ident: ref_83 article-title: Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.10.041 – volume: 4 start-page: 3544 year: 2012 ident: ref_15 article-title: Estimating CO2 Sequestration by Forests in Oita Prefecture, Japan, by Combining LANDSAT ETM+ and ALOS Satellite Remote Sensing Data publication-title: Remote Sens. doi: 10.3390/rs4113544 – volume: 30 start-page: 412 year: 1992 ident: ref_19 article-title: Dependence of Radar Backscatter on Coniferous Forest Biomass publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134090 – ident: ref_67 – ident: ref_57 doi: 10.1145/130385.130401 – ident: ref_34 doi: 10.3390/rs10010013 – volume: 33 start-page: 106 year: 2013 ident: ref_74 article-title: Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand publication-title: Tree Physiol. doi: 10.1093/treephys/tps127 – volume: 5 start-page: 148 year: 2014 ident: ref_54 article-title: Topography alters tree growth–climate relationships in a semi-arid forested catchment publication-title: Ecosphere doi: 10.1890/ES14-00296.1 – volume: 6 start-page: 6988 year: 2014 ident: ref_29 article-title: Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in Forests publication-title: Remote Sens. doi: 10.3390/rs6086988 – volume: 115 start-page: 1369 year: 2011 ident: ref_66 article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.017 – ident: ref_16 doi: 10.3390/rs9010018 – ident: ref_44 doi: 10.3390/app7070675 – ident: ref_62 doi: 10.3390/rs10040627 – volume: 7 start-page: 2832 year: 2015 ident: ref_17 article-title: Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada publication-title: Remote Sens. doi: 10.3390/rs70302832 – volume: 55 start-page: 1316 year: 2015 ident: ref_68 article-title: Beware of R2: Simplee, unambiguous assessment of the prediction accuracy of QSAR and QSPR models publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00206 – volume: 2 start-page: 18 year: 2002 ident: ref_63 article-title: Classification and Regression by randomForest publication-title: R News – volume: 113 start-page: 81 year: 2000 ident: ref_55 article-title: A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(99)00014-7 – volume: 115 start-page: 2874 year: 2011 ident: ref_9 article-title: L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.03.018 – volume: 37 start-page: 694 year: 2016 ident: ref_77 article-title: Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1136448 – volume: 9 start-page: 905 year: 2018 ident: ref_27 article-title: Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12933 – volume: 4 start-page: 1004 year: 2012 ident: ref_69 article-title: Comparison of Methods for Estimation of Stem Volume, Stem Number and Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest publication-title: Remote Sens. doi: 10.3390/rs4041004 – ident: ref_64 – ident: ref_36 doi: 10.3390/rs10071151 – volume: 3 start-page: 219 year: 2014 ident: ref_24 article-title: Simple Relationship Analysis between L-Band Backscattering Intensity and the Stand Characteristics of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) Trees publication-title: Adv. Remote Sens. doi: 10.4236/ars.2014.34015 – volume: 3 start-page: 576 year: 2010 ident: ref_21 article-title: An Evaluation of the ALOS PALSAR L-Band Backscatter―Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2086436 – volume: 6 start-page: 12815 year: 2014 ident: ref_28 article-title: Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle publication-title: Remote Sens. doi: 10.3390/rs61212815 – volume: 8 start-page: 1991 year: 2015 ident: ref_48 article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 7 start-page: 1877 year: 2015 ident: ref_25 article-title: Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter publication-title: Remote Sens. doi: 10.3390/rs70201877 |
SSID | ssj0000331904 |
Score | 2.3229065 |
Snippet | The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1649 |
SubjectTerms | Algorithms artificial intelligence Backscattering Biomass C band Canopies canopy canopy height Computation Coniferous forests conifers data collection Dependent variables Diameters Emission standards Estimates Feasibility studies Forest management Forest resources Forestry forests Ground truth Image segmentation In situ measurement Japan landscapes Learning algorithms Machine learning Model accuracy nondestructive methods Nondestructive testing Objectives orthophotography Parameter estimation Phased arrays Photogrammetry quantitative analysis Radar random forest Regression analysis Remote sensing SAR Satellite imagery Satellite observation Satellites Sensors spatial data stem volume Stems support vector Support vector machines Synthetic aperture radar Three dimensional models TLS topography tree and stand measurements tree height Trees UAS unmanned aerial vehicles watersheds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELaglYALggJi24IGwYVD1CS2d50TapetSkWrilLUW-S_bJG2cdmkh954B16AZ-NJmPF6t0IgromVxJ7fz558w9gbOtrySjRZo0Y8E5UyaHPSIuZx1heFETLSMRwdDw_OxOG5PE8bbl0qq1z6xOioXbC0R75DkYe4tvLRu6tvGXWNotPV1ELjLltHF6xQz9f3Jscnn1a7LDlHFcvFgpeUI77fmXdEmYUgofojEkXC_r_8cQwy-4_Yw5Qdwu5CnI_ZHd9usHvUPpN6sm2w-6ln-cXNE_bzQ2J6wJWF0ED8lTY7RVga5vBe9xr6ABO0YMxJPZzMQp99pAohOO39JXyJXglixQAcxYpKD4lsdQq7synOvb-47H59_zHGQAdUb3hDr5mg7k-pWAfGIdbFAPU9wrwVFp_ZwdcWDjEEt0_Z2f7k8_ggS_0WMitz0WeVoGSPO1cSDX0M3j73IzHMG60dAjXunefKIqR2VhorG4P5pLOIwRpjXMmfsbU2tP45g4Yrk49KLwrlKGUxFqOiRiyjce2Lphmwt8u1r20iI6eeGLMaQQnJqb6V04C9Xo29WlBw_HPUHolwNYJos-OFMJ_WyQprhdPQ3hVG5h6Bs9O2tFp61B2hjJZywLaXClAnW-7qW80bsFer22iFdLSiWx-ucUylhkSdV_HN_z9iiz0oCbHHksltttbPr_0LTGt68zLp7m_O6fnk priority: 102 providerName: ProQuest |
Title | Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan |
URI | https://www.proquest.com/docview/2406433207 https://www.proquest.com/docview/2986954893 https://doaj.org/article/8ad9aed1b50e402dac2ca5e21248ba55 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BOcAFtfyIlBINggsHq2t7nayPaZpQqqaqCEW9WfubVkptFLuH3niHvgDPxpMws3bTIpC4cLK0Hsmr2fn7tONvGHtPV1tOCh95OUwjkUuNPpcZxDzWuDjWIgt0DLPjwcGpODzLzu6N-qKesJYeuFXcrlQ2V87GOuMOsY5VJjEqcxhxhdQqC-ylPOf3wFSIwSmaFhctH2mKuH53VRNVFoKD_LcMFIj6_4jDIblMN9nTriqEUbubLfbAlc_Y425A-fn1c_bjU0frgGqEykP4bzaaIwatVrCvGgVNBRN0VyxAHZwsqyY6onYgmDfuEr6GEAShPQBmoX3SQcesuoDRclGtLprzy_rn95sxZjWg5sJr-swEDX1BnTkwrkITDNCQIyxSgUZ61k0NFyUcYr4tX7DT6eTL-CDqhitEJuOiiXJBlV1qbUKc8yFTO-6GYsC9QpXjqrMulQbxszWZNpnXWDxag4DLa22T9CXbKKvSvWLgU6n5MHEilpbqE20wBSoELgoVHnvfYx9uFV6YjnmcBmAsC0QgdDjF3eH02Lu17LeWb-OvUnt0bmsJ4sgOC2g5RWc5xb8sp8d2bk-96By3LqjAIUo3Puyxt-vX6HJ0j6JKV12hTC4HxJOXp9v_Yx-v2ZOEQHzootxhG83qyr3BSqfRffZQTj_22aPR_uxojs-9yfHJ534w9V8jgwLI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRaJcEBQQoQUGAQcOVv2zTtYHhEqakLRJhdQW9Wb2zylSarexK5Qb78AL8AQ8FE_CzNpOhUDcerVXib0zOzPf7vj7GHtFR1tW8MzLRC_yeCIUrrlYI-Yx2gaB4rGjY5gedkcnfP80Pl1jP9tvYaitso2JLlCbQtMe-Q5lHuLa8nvvLi49Uo2i09VWQqN2iwO7_IqQrXw73kP7vg7D4eC4P_IaVQFPxz6vvIRTSRMZExLZuktR1rc93vUzKQ3CkcgaGwmNwNHoWOk4U1g1GY1II1PKENEBhvxb-CwJSUWI4YfVno4foUP7vGZBpfs7i5IIuhCSJH_kPScP8Ff0dylteI_dbWpR2K2d5z5bs_kmu01inaQAt8k2GoX0s-UD9mPc8EqgHaHIwH246x0hCC4WsCcrCVUBA4wXWAFb-DgvKm9C_UhwVNlz-ORiILj-BJi6_k0LDbXrDHbnM5zp6uy8_PXtex_TKlB345L-ZoArbUatQdAvXBcOkMoSVslQP2YJX3LYx4SfP2QnN2KHR2w9L3L7mEEWCeX3QssDYahAUhpzsETkJHHugyzrsDft3Ke6oT4nBY55ihCI7JRe26nDXq7GXtSEH_8c9Z5MuBpBJN3uQrGYpc2aTwW-hrQmULFvEaYbqUMtY4vFAhdKxnGHbbcOkDaRo0yv_bzDXqxu45qngxyZ2-IKxySiS0R9SfTk_z_xnG2MjqeTdDI-PNhid0LaK3DNmttsvVpc2adYUFXqmfNiYJ9vetn8BkwqNPc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VRSpsEBQQgQIXAQsWVvya2F4gVPKg6UuVSlF3Zp4pUmqX2BXKjn_gB_gOPocv4d6xnQqB2HWbjPKY-zwz1-cw9pKutkwaW8-mSeTFWSox5rhCzKOVCQIZc0fHcHA42DmJd0_56Rr72T0LQ2OVXU50iVqXis7I-1R5iGvLT_q2HYs4Gk3eXnzxSEGKblo7OY3GRfbM8ivCt-rNdIS2fhWGk_GH4Y7XKgx4ivtx7WUxtTeR1iERr7tyZXyTxAPfCqERmkRGmyhVCCK14lJxK7GD0gpRh5VSE-kBpv8bSZRkBPzSyfvV-Y4foXP7ccOIGkWZ319URNaF8CT7owY6qYC_KoErb5M77Hbbl8J240h32ZopNtkGCXeSGtwmu9mqpZ8t77Ef05ZjAm0KpQX3EK93jIC4XMBI1ALqEsaYO7AbNnA0L2tvn2aT4Lg25_DR5UNwswpw4GY5DbQ0rzPYns9wp-uz8-rXt-9DLLFAk45L-poxRt2MxoRgWLqJHCDFJeyYofmZFXwuYBeLf3GfnVyLHR6w9aIszEMGNkqln4QmDlJNzZJUWI8FoiiBex9Y22Ovu73PVUuDTmoc8xzhENkpv7JTj71Yrb1oyD_-ueodmXC1ggi73QvlYpa38Z-n-DeE0YHkvkHIroUKleAGG4c4lYLzHtvqHCBvs0iVX_l8jz1fvY3xT5c6ojDlJa7J0gGR9mXRo_9_xDO2gQGT708P9x6zWyEdG7i5zS22Xi8uzRPsrWr51DkxsE_XHTW_AY4TOTY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Multi-Sensor+Data+to+Estimate+Plot-Level+Stem+Volume+Using+Machine+Learning+Algorithms%E2%80%93Case+Study+of+Evergreen+Conifer+Planted+Forests+in+Japan&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Iizuka%2C+Kotaro&rft.au=Hayakawa%2C+Yuichi+S&rft.au=Ogura%2C+Takuro&rft.au=Nakata%2C+Yasutaka&rft.date=2020-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Frs12101649&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |