Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan

The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 10; p. 1649
Main Authors Iizuka, Kotaro, Hayakawa, Yuichi S., Ogura, Takuro, Nakata, Yasutaka, Kosugi, Yoshiko, Yonehara, Taichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2020
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs12101649

Cover

Abstract The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry.
AbstractList The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry.
The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R² up to 0.665 and RMSE up to 66.87 m³/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R² up to 0.519 and RMSE up to 80.12 m³/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry.
Author Iizuka, Kotaro
Ogura, Takuro
Kosugi, Yoshiko
Yonehara, Taichiro
Nakata, Yasutaka
Hayakawa, Yuichi S.
Author_xml – sequence: 1
  givenname: Kotaro
  surname: Iizuka
  fullname: Iizuka, Kotaro
– sequence: 2
  givenname: Yuichi S.
  orcidid: 0000-0003-2053-8986
  surname: Hayakawa
  fullname: Hayakawa, Yuichi S.
– sequence: 3
  givenname: Takuro
  surname: Ogura
  fullname: Ogura, Takuro
– sequence: 4
  givenname: Yasutaka
  surname: Nakata
  fullname: Nakata, Yasutaka
– sequence: 5
  givenname: Yoshiko
  surname: Kosugi
  fullname: Kosugi, Yoshiko
– sequence: 6
  givenname: Taichiro
  surname: Yonehara
  fullname: Yonehara, Taichiro
BookMark eNptUstuFDEQHKEgEUIufIElLghpwK-ZjI_RsoFFG4EUwtXqsXsmXs3ai-2JlBv_wA_wbXwJ3iwIFNEXt0pV1S51P62OfPBYVc8ZfS2Eom9iYpxR1kr1qDrm9IzXkit-9E__pDpNaUNLCcEUlcfVj5XPOEbILngSBnI5T9nVV-hTiOQtZCA5kGXKbgsZyacp5HqNtziRq4xb8iVM8xbJdXJ-JJdgbpxHskaIfg-cT2OILt9s089v3xeQsIhme7cfs7zFOEZETxbBuwFjsYbyE0suQsSUE3GefIAd-GfV4wGmhKe_35Pq-mL5efG-Xn98t1qcr2vTUJlrJblgVFjLpego5ZK3SPFMtnQAsKqgaFF0hsrWmqY3zdAz1ljTMjX0veXipFodfG2Ajd7FEjje6QBO3wMhjhpidmZC3RVDQMv6hqKk3ILhBhrkjMuuh6YpXi8PXrsYvs4ljt66ZHAqETHMSXPVtaqRnRKF-uIBdRPm6EtSzSVtpRBleYVFDywTQ0oRB21cvt9ZjuAmzajeX4D-ewFF8uqB5E-m_5B_AdPItJg
CitedBy_id crossref_primary_10_3390_rs12244189
crossref_primary_10_3390_rs13183610
crossref_primary_10_1016_j_ese_2023_100257
crossref_primary_10_1016_j_compag_2022_107069
crossref_primary_10_3390_rs16122250
crossref_primary_10_3390_f12060717
crossref_primary_10_3390_f12040397
crossref_primary_10_3390_rs14225861
crossref_primary_10_3390_rs16173164
crossref_primary_10_3390_f12030327
crossref_primary_10_15287_afr_2024_3664
crossref_primary_10_1016_j_compag_2021_106579
crossref_primary_10_1016_j_dcn_2024_101468
Cites_doi 10.1109/TGRS.2009.2023906
10.1007/s10784-017-9366-9
10.2166/hydro.2010.144
10.1007/978-3-642-02020-9
10.3390/rs11151816
10.3390/f8030068
10.3390/f5071682
10.1016/j.isprsjprs.2012.03.011
10.5558/tfc2017-012
10.1093/treephys/24.11.1203
10.3390/s90301768
10.1117/12.7973877
10.3390/land6040084
10.1080/01431161.2016.1264028
10.1109/IGARSS.2011.6049980
10.3390/rs8060500
10.1016/j.rse.2015.12.012
10.3390/rs4103058
10.3390/rs11010077
10.3390/rs8060501
10.1186/s40623-016-0495-0
10.1016/j.rse.2015.08.029
10.1016/j.isprsjprs.2012.04.001
10.1016/j.isprsjprs.2016.11.012
10.1111/gcb.13388
10.1016/j.isprsjprs.2015.04.007
10.3390/rs70810017
10.3390/f6113882
10.1109/LGRS.2015.2466464
10.3390/rs9080785
10.21817/ijet/2018/v10i3/181003095
10.1023/A:1010933404324
10.3390/f10070537
10.3390/rs71115082
10.3390/f8010029
10.1016/j.rse.2014.11.020
10.1007/BF02447512
10.1016/j.proenv.2011.07.013
10.3390/rs10081183
10.1007/s11284-012-1019-4
10.3390/s130810027
10.3390/f4040984
10.3390/s16060834
10.1109/TGRS.2011.2120616
10.1016/j.isprsjprs.2013.11.004
10.1098/rsfs.2017.0038
10.1016/S0168-1923(99)00112-4
10.1016/j.foreco.2017.10.041
10.3390/rs4113544
10.1109/36.134090
10.1145/130385.130401
10.3390/rs10010013
10.1093/treephys/tps127
10.1890/ES14-00296.1
10.3390/rs6086988
10.1016/j.rse.2011.01.017
10.3390/rs9010018
10.3390/app7070675
10.3390/rs10040627
10.3390/rs70302832
10.1021/acs.jcim.5b00206
10.1016/S0165-0114(99)00014-7
10.1016/j.rse.2010.03.018
10.1080/01431161.2015.1136448
10.1111/2041-210X.12933
10.3390/rs4041004
10.3390/rs10071151
10.4236/ars.2014.34015
10.1109/JSTARS.2010.2086436
10.3390/rs61212815
10.5194/gmd-8-1991-2015
10.3390/rs70201877
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12101649
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Forestry
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_8ad9aed1b50e402dac2ca5e21248ba55
10_3390_rs12101649
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c504t-9423103dd2438002426e0e7460faad9243ede38c046dc5bc5fb115dc619fbbd23
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:04:50 EDT 2025
Thu Sep 04 15:10:53 EDT 2025
Fri Jul 25 11:59:27 EDT 2025
Tue Jul 01 04:15:06 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-9423103dd2438002426e0e7460faad9243ede38c046dc5bc5fb115dc619fbbd23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2053-8986
OpenAccessLink https://doaj.org/article/8ad9aed1b50e402dac2ca5e21248ba55
PQID 2406433207
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_8ad9aed1b50e402dac2ca5e21248ba55
proquest_miscellaneous_2986954893
proquest_journals_2406433207
crossref_citationtrail_10_3390_rs12101649
crossref_primary_10_3390_rs12101649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hayakawa (ref_26) 2016; 68
Srinivasan (ref_25) 2015; 7
Breiman (ref_56) 2001; 45
Chuvieco (ref_66) 2011; 115
Adams (ref_54) 2014; 5
Ota (ref_31) 2015; 6
Kobayashi (ref_23) 2012; 6
Saarinen (ref_84) 2017; 123
ref_57
ref_53
Goodbody (ref_14) 2017; 93
Yamamoto (ref_50) 1918; 16
Sumida (ref_74) 2013; 33
Mounce (ref_65) 2011; 13
ref_18
ref_16
Wu (ref_60) 2015; 12
Dash (ref_11) 2016; 89
Jucker (ref_32) 2017; 23
MacMillan (ref_55) 2000; 113
Suomalainen (ref_85) 2018; 8
Sandberg (ref_9) 2011; 115
Schumacher (ref_51) 1933; 47
Barrett (ref_12) 2016; 174
Marabel (ref_61) 2013; 13
Hosoda (ref_52) 2010; 44
Ploton (ref_27) 2018; 9
Shataeea (ref_73) 2011; 7
ref_67
ref_22
ref_64
Carrer (ref_83) 2018; 407
ref_62
Jelinski (ref_81) 1996; 11
Shao (ref_58) 2012; 70
Nagakura (ref_75) 2004; 23
Cutler (ref_38) 2012; 70
Flynn (ref_28) 2014; 6
(ref_7) 2015; 27
ref_72
Badreldin (ref_17) 2015; 7
Sivasankar (ref_78) 2018; 10
Dobson (ref_19) 1992; 30
ref_36
ref_35
ref_79
Naidoo (ref_10) 2015; 105
ref_34
He (ref_70) 2013; 4
Varghese (ref_77) 2016; 37
ref_30
Liaw (ref_63) 2002; 2
Kobayashi (ref_76) 2012; 4
Iizuka (ref_3) 2015; 7
Fazakas (ref_8) 1999; 98–99
ref_37
Getzin (ref_29) 2014; 6
Karlson (ref_39) 2015; 7
Conrad (ref_48) 2015; 8
Negri (ref_59) 2014; 87
Lucas (ref_21) 2010; 3
ref_82
Lee (ref_45) 1986; 25
Iizuka (ref_15) 2012; 4
ref_47
ref_46
Panagiotidis (ref_33) 2017; 38
Small (ref_43) 2011; 49
ref_44
Holopainen (ref_1) 2014; 5
Lindberg (ref_69) 2012; 4
ref_87
ref_42
ref_86
Kosugi (ref_41) 2013; 28
ref_40
Kissinger (ref_6) 2017; 17
ref_2
ref_49
Alexander (ref_68) 2015; 55
Saarela (ref_13) 2015; 158
Santoro (ref_20) 2009; 47
Wu (ref_80) 2009; 9
ref_5
Abdullahi (ref_71) 2016; 174
ref_4
Iizuka (ref_24) 2014; 3
References_xml – volume: 47
  start-page: 4001
  year: 2009
  ident: ref_20
  article-title: Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2023906
– volume: 17
  start-page: 589
  year: 2017
  ident: ref_6
  article-title: The Sustainable Development Goals and REDD+: Assessing institutional interactions and the pursuit of synergies
  publication-title: Int. Environ. Agreem.
  doi: 10.1007/s10784-017-9366-9
– volume: 13
  start-page: 672
  year: 2011
  ident: ref_65
  article-title: Novelty detection for time series data analysis in water distribution systems using support vector machines
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.144
– ident: ref_49
– ident: ref_5
– volume: 89
  start-page: 159
  year: 2016
  ident: ref_11
  article-title: Characterising forest structure using combinations of airborne laser scanning data, RapidEye satellite imagery and environmental variables
  publication-title: For. Int. J. For. Res.
– ident: ref_18
  doi: 10.1007/978-3-642-02020-9
– ident: ref_72
  doi: 10.3390/rs11151816
– ident: ref_46
  doi: 10.3390/f8030068
– volume: 5
  start-page: 1682
  year: 2014
  ident: ref_1
  article-title: Outlook for the Next Generation’s Precision Forestry in Finland
  publication-title: Forests
  doi: 10.3390/f5071682
– volume: 70
  start-page: 66
  year: 2012
  ident: ref_38
  article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.011
– volume: 93
  start-page: 71
  year: 2017
  ident: ref_14
  article-title: Unmanned aerial systems for precision forest inventory purposes: A review and case study
  publication-title: For. Chron.
  doi: 10.5558/tfc2017-012
– volume: 23
  start-page: 1203
  year: 2004
  ident: ref_75
  article-title: Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/24.11.1203
– volume: 9
  start-page: 1768
  year: 2009
  ident: ref_80
  article-title: Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling
  publication-title: Sensors
  doi: 10.3390/s90301768
– volume: 25
  start-page: 636
  year: 1986
  ident: ref_45
  article-title: Speckle suppression and analysis for synthetic aperture radar images
  publication-title: Opt. Eng.
  doi: 10.1117/12.7973877
– ident: ref_2
  doi: 10.3390/land6040084
– volume: 38
  start-page: 2392
  year: 2017
  ident: ref_33
  article-title: Determining tree height and crown diameter from high-resolution UAV imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1264028
– ident: ref_22
  doi: 10.1109/IGARSS.2011.6049980
– ident: ref_30
  doi: 10.3390/rs8060500
– volume: 174
  start-page: 197
  year: 2016
  ident: ref_71
  article-title: Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.012
– volume: 4
  start-page: 3058
  year: 2012
  ident: ref_76
  article-title: Characteristics of Decomposition Powers of L-Band Multi-Polarimetric SAR in Assessing Tree Growth of Industrial Plantation Forests in the Tropics
  publication-title: Remote Sens.
  doi: 10.3390/rs4103058
– ident: ref_42
– volume: 16
  start-page: 147
  year: 1918
  ident: ref_50
  article-title: Forest inventory of Japanese red pine for stem volume and diameter at breast height (あかまつノ単木幹材積表並胸高形数表)
  publication-title: Bull. For. Exp.
– ident: ref_40
  doi: 10.3390/rs11010077
– ident: ref_53
  doi: 10.3390/rs8060501
– volume: 68
  start-page: 114
  year: 2016
  ident: ref_26
  article-title: Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0495-0
– volume: 174
  start-page: 279
  year: 2016
  ident: ref_12
  article-title: A questionnaire-based review of the operational use of remotely sensed data by national forest inventories
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.029
– volume: 6
  start-page: 063519
  year: 2012
  ident: ref_23
  article-title: Backscattering Characteristics of L-Band Polarimetric and Optical Satellite Imagery over Planted Acacia Forests in Sumatra, Indonesia
  publication-title: J. Appl. Remote Sens.
– volume: 70
  start-page: 78
  year: 2012
  ident: ref_58
  article-title: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.04.001
– volume: 44
  start-page: 23
  year: 2010
  ident: ref_52
  article-title: Differences between the present stem volume tables and the values of the volume equations, and their correction
  publication-title: Jpn. Soc. For. Plan.
– volume: 123
  start-page: 140
  year: 2017
  ident: ref_84
  article-title: Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.11.012
– volume: 23
  start-page: 177
  year: 2017
  ident: ref_32
  article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13388
– volume: 105
  start-page: 234
  year: 2015
  ident: ref_10
  article-title: Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.007
– volume: 7
  start-page: 10017
  year: 2015
  ident: ref_39
  article-title: Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest
  publication-title: Remote Sens.
  doi: 10.3390/rs70810017
– volume: 6
  start-page: 3882
  year: 2015
  ident: ref_31
  article-title: Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest
  publication-title: Forests
  doi: 10.3390/f6113882
– volume: 12
  start-page: 2267
  year: 2015
  ident: ref_60
  article-title: A Comparative Study of Predicting DBH and Stem Volume of Individual Trees in a Temperate Forest Using Airborne Waveform LiDAR
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2466464
– ident: ref_35
  doi: 10.3390/rs9080785
– volume: 10
  start-page: 797
  year: 2018
  ident: ref_78
  article-title: The potential of multi-frequency multipolarized ALOS-2/PALSAR-2 and Sentinel-1 SAR data for aboveground forest biomass estimation
  publication-title: Int. J. Eng. Technol.
  doi: 10.21817/ijet/2018/v10i3/181003095
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_56
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_87
– ident: ref_86
  doi: 10.3390/f10070537
– volume: 7
  start-page: 15082
  year: 2015
  ident: ref_3
  article-title: Estimation of CO2 Sequestration by the Forests in Japan by Discriminating Precise Tree Age Category using Remote Sensing Techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs71115082
– ident: ref_4
  doi: 10.3390/f8010029
– volume: 158
  start-page: 431
  year: 2015
  ident: ref_13
  article-title: Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.020
– volume: 47
  start-page: 719
  year: 1933
  ident: ref_51
  article-title: Logarithmic expression of timber-tree volume
  publication-title: J. Agric. Res.
– volume: 11
  start-page: 129
  year: 1996
  ident: ref_81
  article-title: The modifiable areal unit problem and implications for landscape ecology
  publication-title: Landsc. Ecol.
  doi: 10.1007/BF02447512
– volume: 7
  start-page: 68
  year: 2011
  ident: ref_73
  article-title: Plot-level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Comparison of Boosting and Random Forest Tree Regression Algorithms
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2011.07.013
– volume: 27
  start-page: 80
  year: 2015
  ident: ref_7
  article-title: Comparison of modern forest inventory method with the common method for management of tropical rainforest in the Peruvian Amazon
  publication-title: J. Trop. For. Sci.
– ident: ref_79
  doi: 10.3390/rs10081183
– volume: 28
  start-page: 373
  year: 2013
  ident: ref_41
  article-title: Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-012-1019-4
– volume: 13
  start-page: 10027
  year: 2013
  ident: ref_61
  article-title: Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression
  publication-title: Sensors
  doi: 10.3390/s130810027
– volume: 4
  start-page: 984
  year: 2013
  ident: ref_70
  article-title: Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest
  publication-title: Forests
  doi: 10.3390/f4040984
– ident: ref_47
– ident: ref_82
– ident: ref_37
  doi: 10.3390/s16060834
– volume: 49
  start-page: 3081
  year: 2011
  ident: ref_43
  article-title: Flattening gamma: Radiometric terrain correction for SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2120616
– volume: 87
  start-page: 241
  year: 2014
  ident: ref_59
  article-title: An innovative support vector machine based method for contextual image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.004
– volume: 8
  start-page: 20170038
  year: 2018
  ident: ref_85
  article-title: Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2017.0038
– volume: 98–99
  start-page: 417
  year: 1999
  ident: ref_8
  article-title: Regional forest biomass and wood volume estimation using satellite data and ancillary data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00112-4
– volume: 407
  start-page: 125
  year: 2018
  ident: ref_83
  article-title: Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.10.041
– volume: 4
  start-page: 3544
  year: 2012
  ident: ref_15
  article-title: Estimating CO2 Sequestration by Forests in Oita Prefecture, Japan, by Combining LANDSAT ETM+ and ALOS Satellite Remote Sensing Data
  publication-title: Remote Sens.
  doi: 10.3390/rs4113544
– volume: 30
  start-page: 412
  year: 1992
  ident: ref_19
  article-title: Dependence of Radar Backscatter on Coniferous Forest Biomass
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134090
– ident: ref_67
– ident: ref_57
  doi: 10.1145/130385.130401
– ident: ref_34
  doi: 10.3390/rs10010013
– volume: 33
  start-page: 106
  year: 2013
  ident: ref_74
  article-title: Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tps127
– volume: 5
  start-page: 148
  year: 2014
  ident: ref_54
  article-title: Topography alters tree growth–climate relationships in a semi-arid forested catchment
  publication-title: Ecosphere
  doi: 10.1890/ES14-00296.1
– volume: 6
  start-page: 6988
  year: 2014
  ident: ref_29
  article-title: Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in Forests
  publication-title: Remote Sens.
  doi: 10.3390/rs6086988
– volume: 115
  start-page: 1369
  year: 2011
  ident: ref_66
  article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.017
– ident: ref_16
  doi: 10.3390/rs9010018
– ident: ref_44
  doi: 10.3390/app7070675
– ident: ref_62
  doi: 10.3390/rs10040627
– volume: 7
  start-page: 2832
  year: 2015
  ident: ref_17
  article-title: Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada
  publication-title: Remote Sens.
  doi: 10.3390/rs70302832
– volume: 55
  start-page: 1316
  year: 2015
  ident: ref_68
  article-title: Beware of R2: Simplee, unambiguous assessment of the prediction accuracy of QSAR and QSPR models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00206
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_63
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 113
  start-page: 81
  year: 2000
  ident: ref_55
  article-title: A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(99)00014-7
– volume: 115
  start-page: 2874
  year: 2011
  ident: ref_9
  article-title: L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.018
– volume: 37
  start-page: 694
  year: 2016
  ident: ref_77
  article-title: Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1136448
– volume: 9
  start-page: 905
  year: 2018
  ident: ref_27
  article-title: Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12933
– volume: 4
  start-page: 1004
  year: 2012
  ident: ref_69
  article-title: Comparison of Methods for Estimation of Stem Volume, Stem Number and Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest
  publication-title: Remote Sens.
  doi: 10.3390/rs4041004
– ident: ref_64
– ident: ref_36
  doi: 10.3390/rs10071151
– volume: 3
  start-page: 219
  year: 2014
  ident: ref_24
  article-title: Simple Relationship Analysis between L-Band Backscattering Intensity and the Stand Characteristics of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) Trees
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2014.34015
– volume: 3
  start-page: 576
  year: 2010
  ident: ref_21
  article-title: An Evaluation of the ALOS PALSAR L-Band Backscatter―Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2086436
– volume: 6
  start-page: 12815
  year: 2014
  ident: ref_28
  article-title: Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle
  publication-title: Remote Sens.
  doi: 10.3390/rs61212815
– volume: 8
  start-page: 1991
  year: 2015
  ident: ref_48
  article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 7
  start-page: 1877
  year: 2015
  ident: ref_25
  article-title: Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter
  publication-title: Remote Sens.
  doi: 10.3390/rs70201877
SSID ssj0000331904
Score 2.3229065
Snippet The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1649
SubjectTerms Algorithms
artificial intelligence
Backscattering
Biomass
C band
Canopies
canopy
canopy height
Computation
Coniferous forests
conifers
data collection
Dependent variables
Diameters
Emission standards
Estimates
Feasibility studies
Forest management
Forest resources
Forestry
forests
Ground truth
Image segmentation
In situ measurement
Japan
landscapes
Learning algorithms
Machine learning
Model accuracy
nondestructive methods
Nondestructive testing
Objectives
orthophotography
Parameter estimation
Phased arrays
Photogrammetry
quantitative analysis
Radar
random forest
Regression analysis
Remote sensing
SAR
Satellite imagery
Satellite observation
Satellites
Sensors
spatial data
stem volume
Stems
support vector
Support vector machines
Synthetic aperture radar
Three dimensional models
TLS
topography
tree and stand measurements
tree height
Trees
UAS
unmanned aerial vehicles
watersheds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELaglYALggJi24IGwYVD1CS2d50TapetSkWrilLUW-S_bJG2cdmkh954B16AZ-NJmPF6t0IgromVxJ7fz558w9gbOtrySjRZo0Y8E5UyaHPSIuZx1heFETLSMRwdDw_OxOG5PE8bbl0qq1z6xOioXbC0R75DkYe4tvLRu6tvGXWNotPV1ELjLltHF6xQz9f3Jscnn1a7LDlHFcvFgpeUI77fmXdEmYUgofojEkXC_r_8cQwy-4_Yw5Qdwu5CnI_ZHd9usHvUPpN6sm2w-6ln-cXNE_bzQ2J6wJWF0ED8lTY7RVga5vBe9xr6ABO0YMxJPZzMQp99pAohOO39JXyJXglixQAcxYpKD4lsdQq7synOvb-47H59_zHGQAdUb3hDr5mg7k-pWAfGIdbFAPU9wrwVFp_ZwdcWDjEEt0_Z2f7k8_ggS_0WMitz0WeVoGSPO1cSDX0M3j73IzHMG60dAjXunefKIqR2VhorG4P5pLOIwRpjXMmfsbU2tP45g4Yrk49KLwrlKGUxFqOiRiyjce2Lphmwt8u1r20iI6eeGLMaQQnJqb6V04C9Xo29WlBw_HPUHolwNYJos-OFMJ_WyQprhdPQ3hVG5h6Bs9O2tFp61B2hjJZywLaXClAnW-7qW80bsFer22iFdLSiWx-ucUylhkSdV_HN_z9iiz0oCbHHksltttbPr_0LTGt68zLp7m_O6fnk
  priority: 102
  providerName: ProQuest
Title Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan
URI https://www.proquest.com/docview/2406433207
https://www.proquest.com/docview/2986954893
https://doaj.org/article/8ad9aed1b50e402dac2ca5e21248ba55
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BOcAFtfyIlBINggsHq2t7nayPaZpQqqaqCEW9WfubVkptFLuH3niHvgDPxpMws3bTIpC4cLK0Hsmr2fn7tONvGHtPV1tOCh95OUwjkUuNPpcZxDzWuDjWIgt0DLPjwcGpODzLzu6N-qKesJYeuFXcrlQ2V87GOuMOsY5VJjEqcxhxhdQqC-ylPOf3wFSIwSmaFhctH2mKuH53VRNVFoKD_LcMFIj6_4jDIblMN9nTriqEUbubLfbAlc_Y425A-fn1c_bjU0frgGqEykP4bzaaIwatVrCvGgVNBRN0VyxAHZwsqyY6onYgmDfuEr6GEAShPQBmoX3SQcesuoDRclGtLprzy_rn95sxZjWg5sJr-swEDX1BnTkwrkITDNCQIyxSgUZ61k0NFyUcYr4tX7DT6eTL-CDqhitEJuOiiXJBlV1qbUKc8yFTO-6GYsC9QpXjqrMulQbxszWZNpnXWDxag4DLa22T9CXbKKvSvWLgU6n5MHEilpbqE20wBSoELgoVHnvfYx9uFV6YjnmcBmAsC0QgdDjF3eH02Lu17LeWb-OvUnt0bmsJ4sgOC2g5RWc5xb8sp8d2bk-96By3LqjAIUo3Puyxt-vX6HJ0j6JKV12hTC4HxJOXp9v_Yx-v2ZOEQHzootxhG83qyr3BSqfRffZQTj_22aPR_uxojs-9yfHJ534w9V8jgwLI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRaJcEBQQoQUGAQcOVv2zTtYHhEqakLRJhdQW9Wb2zylSarexK5Qb78AL8AQ8FE_CzNpOhUDcerVXib0zOzPf7vj7GHtFR1tW8MzLRC_yeCIUrrlYI-Yx2gaB4rGjY5gedkcnfP80Pl1jP9tvYaitso2JLlCbQtMe-Q5lHuLa8nvvLi49Uo2i09VWQqN2iwO7_IqQrXw73kP7vg7D4eC4P_IaVQFPxz6vvIRTSRMZExLZuktR1rc93vUzKQ3CkcgaGwmNwNHoWOk4U1g1GY1II1PKENEBhvxb-CwJSUWI4YfVno4foUP7vGZBpfs7i5IIuhCSJH_kPScP8Ff0dylteI_dbWpR2K2d5z5bs_kmu01inaQAt8k2GoX0s-UD9mPc8EqgHaHIwH246x0hCC4WsCcrCVUBA4wXWAFb-DgvKm9C_UhwVNlz-ORiILj-BJi6_k0LDbXrDHbnM5zp6uy8_PXtex_TKlB345L-ZoArbUatQdAvXBcOkMoSVslQP2YJX3LYx4SfP2QnN2KHR2w9L3L7mEEWCeX3QssDYahAUhpzsETkJHHugyzrsDft3Ke6oT4nBY55ihCI7JRe26nDXq7GXtSEH_8c9Z5MuBpBJN3uQrGYpc2aTwW-hrQmULFvEaYbqUMtY4vFAhdKxnGHbbcOkDaRo0yv_bzDXqxu45qngxyZ2-IKxySiS0R9SfTk_z_xnG2MjqeTdDI-PNhid0LaK3DNmttsvVpc2adYUFXqmfNiYJ9vetn8BkwqNPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VRSpsEBQQgQIXAQsWVvya2F4gVPKg6UuVSlF3Zp4pUmqX2BXKjn_gB_gOPocv4d6xnQqB2HWbjPKY-zwz1-cw9pKutkwaW8-mSeTFWSox5rhCzKOVCQIZc0fHcHA42DmJd0_56Rr72T0LQ2OVXU50iVqXis7I-1R5iGvLT_q2HYs4Gk3eXnzxSEGKblo7OY3GRfbM8ivCt-rNdIS2fhWGk_GH4Y7XKgx4ivtx7WUxtTeR1iERr7tyZXyTxAPfCqERmkRGmyhVCCK14lJxK7GD0gpRh5VSE-kBpv8bSZRkBPzSyfvV-Y4foXP7ccOIGkWZ319URNaF8CT7owY6qYC_KoErb5M77Hbbl8J240h32ZopNtkGCXeSGtwmu9mqpZ8t77Ef05ZjAm0KpQX3EK93jIC4XMBI1ALqEsaYO7AbNnA0L2tvn2aT4Lg25_DR5UNwswpw4GY5DbQ0rzPYns9wp-uz8-rXt-9DLLFAk45L-poxRt2MxoRgWLqJHCDFJeyYofmZFXwuYBeLf3GfnVyLHR6w9aIszEMGNkqln4QmDlJNzZJUWI8FoiiBex9Y22Ovu73PVUuDTmoc8xzhENkpv7JTj71Yrb1oyD_-ueodmXC1ggi73QvlYpa38Z-n-DeE0YHkvkHIroUKleAGG4c4lYLzHtvqHCBvs0iVX_l8jz1fvY3xT5c6ojDlJa7J0gGR9mXRo_9_xDO2gQGT708P9x6zWyEdG7i5zS22Xi8uzRPsrWr51DkxsE_XHTW_AY4TOTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Multi-Sensor+Data+to+Estimate+Plot-Level+Stem+Volume+Using+Machine+Learning+Algorithms%E2%80%93Case+Study+of+Evergreen+Conifer+Planted+Forests+in+Japan&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Iizuka%2C+Kotaro&rft.au=Hayakawa%2C+Yuichi+S&rft.au=Ogura%2C+Takuro&rft.au=Nakata%2C+Yasutaka&rft.date=2020-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Frs12101649&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon