Universal phonon mean free path spectra in crystalline semiconductors at high temperature
Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra o...
Saved in:
Published in | Scientific reports Vol. 3; no. 1; p. 2963 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.10.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN and 4H-SiC at temperatures near 80 K, 150 K, 300 K and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep02963 |