The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization

[Display omitted] •HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 249; pp. 574 - 581
Main Authors Li, Hui, Wang, Siyuan, Yuan, Xingzhong, Xi, Yanni, Huang, Zhongliang, Tan, Mengjiao, Li, Changzhu
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature on hydrochar combustion was investigated by DTG.•The hydrochars pyrolysis was studied by the KAS and Coats-Redfern methods. In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable.
AbstractList [Display omitted] •HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature on hydrochar combustion was investigated by DTG.•The hydrochars pyrolysis was studied by the KAS and Coats-Redfern methods. In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable.
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R²>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable.
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable.In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable.
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R >0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable.
Author Li, Changzhu
Tan, Mengjiao
Yuan, Xingzhong
Huang, Zhongliang
Li, Hui
Wang, Siyuan
Xi, Yanni
Author_xml – sequence: 1
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  email: lihuiluoyang@163.com
  organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
– sequence: 2
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
– sequence: 3
  givenname: Xingzhong
  surname: Yuan
  fullname: Yuan, Xingzhong
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 4
  givenname: Yanni
  surname: Xi
  fullname: Xi, Yanni
  organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
– sequence: 5
  givenname: Zhongliang
  surname: Huang
  fullname: Huang, Zhongliang
  organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
– sequence: 6
  givenname: Mengjiao
  surname: Tan
  fullname: Tan, Mengjiao
  organization: College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China
– sequence: 7
  givenname: Changzhu
  surname: Li
  fullname: Li, Changzhu
  organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29091840$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFq3DAQhkVJaDZpXyHo2Iu3kizLNvTQEtKkEOhl70Iej7AW29pKciA99TXyenmSarObHnrZk2D0_cPwf5fkbPYzEnLN2Zozrj5v153zISEMa8F4nYdrJtU7suJNXRairdUZWbFWsaKphLwglzFuGWMlr8V7ciFa1vJGshXpNwNStBYhReotTTjtMJi0BKRm7in40Qf6aMYFqZ_p8NQHD4MJ8eXPM90Fn-HkMFJ3_EsDhsmMFEzo_Ox-m-T8_IGcWzNG_Hh8r8jm--3m5r54-Hn34-bbQwEVk6nIlwMvDbdKADcAqgJjTN90TFVooTKCldBI2UHHeqg5LyXUpa1VY21jmvKKfDqszXf9WjAmPbkIOI5mRr9ELXIBlZStKE-ivK3aUoiKi4xeH9Glm7DXu-AmE570W4cZUAcAgo8xoP2HcKb3svRWv8nSe1n7eZaVg1_-C4JLr4WlYNx4Ov71EMdc6aPDoCM4nAF7F7JO3Xt3asVfY3e3aQ
CitedBy_id crossref_primary_10_1016_j_fuproc_2020_106663
crossref_primary_10_3390_en14206551
crossref_primary_10_1016_j_fuel_2024_132256
crossref_primary_10_1002_cben_202200014
crossref_primary_10_1007_s13399_022_02892_5
crossref_primary_10_1016_j_jclepro_2020_124636
crossref_primary_10_1016_j_renene_2024_122027
crossref_primary_10_3390_agronomy15020302
crossref_primary_10_1016_j_jece_2023_109364
crossref_primary_10_1007_s13399_019_00513_2
crossref_primary_10_1016_j_biortech_2018_06_084
crossref_primary_10_1016_j_powtec_2018_08_080
crossref_primary_10_1016_j_enconman_2020_112793
crossref_primary_10_1007_s13399_022_02875_6
crossref_primary_10_3390_catal9070625
crossref_primary_10_1016_j_clet_2022_100467
crossref_primary_10_1007_s13762_025_06394_5
crossref_primary_10_1016_j_fuproc_2020_106337
crossref_primary_10_1016_j_joei_2023_101353
crossref_primary_10_1002_ente_202400367
crossref_primary_10_1007_s41779_024_01063_1
crossref_primary_10_1016_j_colsurfa_2018_08_063
crossref_primary_10_1007_s12613_021_2305_3
crossref_primary_10_1016_j_jece_2021_106938
crossref_primary_10_1299_mej_22_00064
crossref_primary_10_3390_en17112732
crossref_primary_10_1016_j_envres_2022_113532
crossref_primary_10_1016_j_energy_2024_131339
crossref_primary_10_1016_j_biortech_2018_07_059
crossref_primary_10_1016_j_enconman_2022_116201
crossref_primary_10_1007_s13399_023_04953_9
crossref_primary_10_1016_j_biortech_2023_128734
crossref_primary_10_1016_j_envpol_2022_119556
crossref_primary_10_1016_j_scitotenv_2018_07_402
crossref_primary_10_1016_j_biombioe_2021_106206
crossref_primary_10_1080_17597269_2023_2255007
crossref_primary_10_1007_s10450_024_00542_y
crossref_primary_10_1016_j_jaap_2022_105818
crossref_primary_10_1016_j_chemosphere_2021_132787
crossref_primary_10_3390_en11092286
crossref_primary_10_1039_C7GC03676K
crossref_primary_10_1016_j_jclepro_2023_136486
crossref_primary_10_1039_C8GC03957G
crossref_primary_10_3390_en14071805
crossref_primary_10_1007_s42773_021_00119_w
crossref_primary_10_1016_j_jclepro_2020_121101
crossref_primary_10_1016_j_biortech_2018_03_095
crossref_primary_10_1016_j_wasman_2019_09_021
crossref_primary_10_1016_j_biteb_2021_100795
crossref_primary_10_1016_j_jaap_2022_105670
crossref_primary_10_1016_j_applthermaleng_2022_119789
crossref_primary_10_1016_j_energy_2018_07_117
crossref_primary_10_1016_j_crcon_2023_07_001
crossref_primary_10_1038_s41598_024_51786_1
crossref_primary_10_1115_1_4067363
crossref_primary_10_1007_s10311_021_01311_x
crossref_primary_10_1016_j_biortech_2018_05_019
crossref_primary_10_1016_j_renene_2022_03_152
crossref_primary_10_1021_acs_energyfuels_8b02484
crossref_primary_10_1007_s12155_022_10482_6
crossref_primary_10_1007_s42773_024_00364_9
crossref_primary_10_1016_j_wasman_2022_07_029
crossref_primary_10_1016_j_scitotenv_2020_142383
crossref_primary_10_1016_j_cej_2021_129472
crossref_primary_10_1016_j_indcrop_2023_117633
crossref_primary_10_1016_j_biortech_2018_09_030
crossref_primary_10_1016_j_lwt_2021_113034
crossref_primary_10_1007_s12155_023_10599_2
crossref_primary_10_1016_j_jclepro_2020_122525
crossref_primary_10_1016_j_fuel_2022_124341
crossref_primary_10_1016_j_wasman_2020_08_004
crossref_primary_10_1021_acssuschemeng_8b03458
crossref_primary_10_1021_acs_energyfuels_0c01974
crossref_primary_10_1016_j_biortech_2018_07_032
crossref_primary_10_3390_buildings14103313
crossref_primary_10_1016_j_foodchem_2021_129438
crossref_primary_10_1016_j_energy_2019_116306
crossref_primary_10_1016_j_jclepro_2024_142719
crossref_primary_10_1002_apj_2737
crossref_primary_10_3775_jie_103_18
crossref_primary_10_1016_j_fuel_2020_117146
crossref_primary_10_1016_j_energy_2019_02_181
Cites_doi 10.1016/j.biortech.2016.01.068
10.1016/j.biortech.2015.02.045
10.1016/j.biortech.2017.09.072
10.1016/j.biortech.2017.06.085
10.1007/s10973-012-2744-1
10.1016/j.biortech.2011.01.018
10.13031/2013.41368
10.1016/j.apenergy.2016.01.079
10.1002/bbb.198
10.1002/ep.11601
10.1016/j.fuel.2014.07.080
10.1016/j.biortech.2014.11.115
10.1016/j.biortech.2017.07.138
10.1016/j.cej.2015.03.042
10.1016/j.biortech.2016.08.098
10.1016/j.biortech.2009.07.019
10.1016/j.biortech.2009.10.084
10.1016/j.biortech.2015.11.010
10.1016/j.biombioe.2012.12.004
10.1016/j.apenergy.2012.01.002
10.1016/j.apenergy.2013.08.087
10.1016/j.biortech.2014.08.064
10.1016/j.fuel.2016.01.089
10.1016/j.biortech.2015.02.079
10.1021/es9031419
10.1016/j.biortech.2017.07.097
10.1016/j.biortech.2011.10.009
10.1016/j.biortech.2017.08.104
10.1016/j.biortech.2016.03.014
10.15376/biores.11.2.4113-4133
10.1016/j.biortech.2017.03.045
10.1016/j.cej.2015.08.014
10.1016/j.biortech.2015.09.064
10.1016/j.biortech.2016.12.088
10.1016/j.biortech.2017.08.011
10.1016/j.foodchem.2013.06.053
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.10.046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 581
ExternalDocumentID 29091840
10_1016_j_biortech_2017_10_046
S0960852417318758
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-873c13a1f62c1acc65caaad8b065efc5a203c844bcb0dc71134c73f768ff8a83
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 06:13:14 EDT 2025
Fri Jul 11 16:43:15 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 02:06:54 EDT 2025
Fri Feb 23 02:47:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Color measurement
Combustion behavior
Biomass
Kinetics
Hydrochars
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-873c13a1f62c1acc65caaad8b065efc5a203c844bcb0dc71134c73f768ff8a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29091840
PQID 1959322512
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000544923
proquest_miscellaneous_1959322512
pubmed_primary_29091840
crossref_primary_10_1016_j_biortech_2017_10_046
crossref_citationtrail_10_1016_j_biortech_2017_10_046
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_10_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Funke, Ziegler (b0055) 2010; 4
Lam, Sokhansanj, Bi, Lim (b0080) 2012; 55
Acharjee, Coronella, Vasquez (b0005) 2011; 102
Boussarsar, Rogé, Mathlouthi (b0020) 2009; 100
Ceylan, Topcu, Ceylan (b0040) 2014; 171
Gao, Yu, Wu, Yuan, Wang, Chen (b0060) 2016; 11
Minaret, Dutta (b0105) 2016; 200
Biswas, Kumar, Bisht, Singh, Kumar, Bhaskar (b0015) 2017; 242
Cai, Li, Chen, Wang, Zhao, Zhang (b0025) 2016; 220
Cao, Yuan, Li, Li, Xiao, Jiang, Huang, Xiao, Chen, Wang, Zeng (b0030) 2015; 185
Dai, He, Wang, Liu, Ruan, Yu, Zhou, Duan, Fan, Zhao (b0050) 2018; 247
Cao, Yuan, Jiang, Li, Xiao, Huang, Chen, Zeng, Li (b0035) 2016; 175
Yan, Islam, Coronella, Vásquez (b0155) 2012; 31
Jain, Balasubramanian, Srinivasan (b0070) 2016; 283
Wu, Yu, Hao, Wells, Meng, Li, Pu, Liu, Ragauskas (b0150) 2017; 244
Islam, Asif, Hameed (b0065) 2015; 179
Sgarbossa, Costa, Menesatti, Antonucci, Pallottino, Zanetti, Grigolato, Cavalli (b0125) 2014; 137
Liu, Quek, Balasubramanian (b0100) 2014; 113
Reza, Lynam, Uddin, Coronella (b0120) 2013; 49
Li, Liu, Legros, Bi, Lim, Sokhansanj (b0090) 2012; 103
Zhao, Zhang, Chen (b0175) 2015; 273
Chen, Mei, Li, Li, Lu, Ma, Ma (b0045) 2017; 228
Patel, Guo, Izadpanah, Shah, Hellgardt (b0110) 2016; 199
Wang, Lim, Grace, Li, Parise (b0145) 2017; 244
Zhu, Si, Lu, Watson, Zhang, Liu (b0180) 2017; 243
Keiluweit, Nico, Johnson, Kleber (b0075) 2010; 44
Bach, Tran, Skreiberg (b0010) 2017; 185
Volpe, Goldfarb, Fiori (b0140) 2018; 247
Yang, Wang, Zhang, Zhu, Zhou, Wu (b0160) 2016; 205
Zhang, Chen, Wang (b0170) 2013; 141
Yi, Qi, Cheng, Zhang, Xiao, Hu, Liu, Cai, Xu (b0165) 2013; 112
Li, Yuan, Zeng, Huang, Huang, Tong, You, Zhang, Zhou (b0095) 2010; 101
Shen, Igathinathane, Yu, Pothula (b0130) 2015; 185
Li, Liu, Legros, Bi, Lim, Sokhansanj (b0085) 2012; 93
Sheng, Wang, Yang (b0135) 2018; 247
Poucke, Nachenius, Agbo, Hensgen, Buhle, Wachendorf, Ok, Tack, Prins, Ronsse, Meers (b0115) 2016; 217
Lam (10.1016/j.biortech.2017.10.046_b0080) 2012; 55
Patel (10.1016/j.biortech.2017.10.046_b0110) 2016; 199
Li (10.1016/j.biortech.2017.10.046_b0085) 2012; 93
Yang (10.1016/j.biortech.2017.10.046_b0160) 2016; 205
Cao (10.1016/j.biortech.2017.10.046_b0030) 2015; 185
Cao (10.1016/j.biortech.2017.10.046_b0035) 2016; 175
Bach (10.1016/j.biortech.2017.10.046_b0010) 2017; 185
Sheng (10.1016/j.biortech.2017.10.046_b0135) 2018; 247
Wang (10.1016/j.biortech.2017.10.046_b0145) 2017; 244
Poucke (10.1016/j.biortech.2017.10.046_b0115) 2016; 217
Biswas (10.1016/j.biortech.2017.10.046_b0015) 2017; 242
Jain (10.1016/j.biortech.2017.10.046_b0070) 2016; 283
Reza (10.1016/j.biortech.2017.10.046_b0120) 2013; 49
Yi (10.1016/j.biortech.2017.10.046_b0165) 2013; 112
Cai (10.1016/j.biortech.2017.10.046_b0025) 2016; 220
Yan (10.1016/j.biortech.2017.10.046_b0155) 2012; 31
Gao (10.1016/j.biortech.2017.10.046_b0060) 2016; 11
Minaret (10.1016/j.biortech.2017.10.046_b0105) 2016; 200
Zhu (10.1016/j.biortech.2017.10.046_b0180) 2017; 243
Sgarbossa (10.1016/j.biortech.2017.10.046_b0125) 2014; 137
Shen (10.1016/j.biortech.2017.10.046_b0130) 2015; 185
Li (10.1016/j.biortech.2017.10.046_b0090) 2012; 103
Funke (10.1016/j.biortech.2017.10.046_b0055) 2010; 4
Zhao (10.1016/j.biortech.2017.10.046_b0175) 2015; 273
Liu (10.1016/j.biortech.2017.10.046_b0100) 2014; 113
Wu (10.1016/j.biortech.2017.10.046_b0150) 2017; 244
Acharjee (10.1016/j.biortech.2017.10.046_b0005) 2011; 102
Keiluweit (10.1016/j.biortech.2017.10.046_b0075) 2010; 44
Ceylan (10.1016/j.biortech.2017.10.046_b0040) 2014; 171
Dai (10.1016/j.biortech.2017.10.046_b0050) 2018; 247
Li (10.1016/j.biortech.2017.10.046_b0095) 2010; 101
Zhang (10.1016/j.biortech.2017.10.046_b0170) 2013; 141
Boussarsar (10.1016/j.biortech.2017.10.046_b0020) 2009; 100
Chen (10.1016/j.biortech.2017.10.046_b0045) 2017; 228
Islam (10.1016/j.biortech.2017.10.046_b0065) 2015; 179
Volpe (10.1016/j.biortech.2017.10.046_b0140) 2018; 247
References_xml – volume: 103
  start-page: 453
  year: 2012
  end-page: 458
  ident: b0090
  article-title: Torrefaction of sawdust in a fluidized bed reactor
  publication-title: Bioresour. Technol.
– volume: 247
  start-page: 310
  year: 2018
  end-page: 318
  ident: b0140
  article-title: Hydrothermal carbonization of
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 86
  year: 2013
  end-page: 94
  ident: b0120
  article-title: Hydrothermal carbonization: fate of inorganics
  publication-title: Biomass Bioenerg.
– volume: 171
  start-page: 193
  year: 2014
  end-page: 198
  ident: b0040
  article-title: Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis
  publication-title: Bioresour. Technol.
– volume: 93
  start-page: 680
  year: 2012
  end-page: 685
  ident: b0085
  article-title: Pelletization of torrefied sawdust and properties of torrefied pellets
  publication-title: Appl. Energy
– volume: 199
  start-page: 288
  year: 2016
  end-page: 299
  ident: b0110
  article-title: A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing
  publication-title: Bioresour. Technol.
– volume: 247
  start-page: 234
  year: 2018
  end-page: 241
  ident: b0050
  article-title: Hydrothermal pretreatment of bamboo sawdust using microwave irradiation
  publication-title: Bioresour. Technol.
– volume: 112
  start-page: 1475
  year: 2013
  end-page: 1479
  ident: b0165
  article-title: Thermogravimetric analysis of co-combustion of biomass and biochar
  publication-title: J. Therm. Anal. Calorim.
– volume: 55
  start-page: 673
  year: 2012
  end-page: 678
  ident: b0080
  article-title: Colorimetry applied to steam treated biomass and pellets made from western Douglas Fir (
  publication-title: Trans. ASABE
– volume: 179
  start-page: 227
  year: 2015
  end-page: 233
  ident: b0065
  article-title: Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (
  publication-title: Bioresour. Technol.
– volume: 185
  start-page: 254
  year: 2015
  end-page: 262
  ident: b0030
  article-title: Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets
  publication-title: Bioresour. Technol.
– volume: 247
  start-page: 14
  year: 2018
  end-page: 20
  ident: b0135
  article-title: Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds
  publication-title: Bioresour. Technol.
– volume: 243
  start-page: 6
  year: 2017
  end-page: 19
  ident: b0180
  article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk
  publication-title: Bioresour. Technol.
– volume: 242
  start-page: 344
  year: 2017
  end-page: 350
  ident: b0015
  article-title: Effects of temperature and solvent on hydrothermal liquefaction of
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 2860
  year: 2010
  end-page: 2866
  ident: b0095
  article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol
  publication-title: Bioresour. Technol.
– volume: 137
  start-page: 70
  year: 2014
  end-page: 76
  ident: b0125
  article-title: Colorimetric patterns of wood pellets and their relations with quality and energy parameters
  publication-title: Fuel
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: b0075
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 141
  start-page: 3451
  year: 2013
  end-page: 3458
  ident: b0170
  article-title: Impacts of selected dietary polyphenols on caramelization in model systems
  publication-title: Food Chem.
– volume: 175
  start-page: 129
  year: 2016
  end-page: 136
  ident: b0035
  article-title: Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends
  publication-title: Fuel
– volume: 31
  start-page: 200
  year: 2012
  end-page: 204
  ident: b0155
  article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass
  publication-title: Environ. Prog. Sustain. Energy
– volume: 185
  start-page: 1051
  year: 2017
  end-page: 1058
  ident: b0010
  article-title: Comparative study on the thermal degradation of dry- and wet-torrefied woods
  publication-title: Appl. Energy
– volume: 113
  start-page: 1315
  year: 2014
  end-page: 1322
  ident: b0100
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
– volume: 228
  start-page: 62
  year: 2017
  end-page: 68
  ident: b0045
  article-title: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products
  publication-title: Bioresour. Technol.
– volume: 244
  start-page: 78
  year: 2017
  end-page: 83
  ident: b0150
  article-title: Characterization of products from hydrothermal carbonization of pine
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 6537
  year: 2009
  end-page: 6542
  ident: b0020
  article-title: Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 4849
  year: 2011
  end-page: 4854
  ident: b0005
  article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– volume: 217
  start-page: 104
  year: 2016
  end-page: 112
  ident: b0115
  article-title: Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 4113
  year: 2016
  end-page: 4133
  ident: b0060
  article-title: Physicochemical, pyrolytic, and combustion characteristics of hydrochar obtained by hydrothermal carbonization of biomass
  publication-title: Bioresources
– volume: 200
  start-page: 804
  year: 2016
  end-page: 811
  ident: b0105
  article-title: Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel
  publication-title: Bioresour. Technol.
– volume: 244
  start-page: 281
  year: 2017
  end-page: 288
  ident: b0145
  article-title: Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor
  publication-title: Bioresour. Technol.
– volume: 185
  start-page: 89
  year: 2015
  end-page: 98
  ident: b0130
  article-title: Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry
  publication-title: Bioresour. Technol.
– volume: 273
  start-page: 37
  year: 2015
  end-page: 45
  ident: b0175
  article-title: Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process
  publication-title: Chem. Eng. J.
– volume: 220
  start-page: 305
  year: 2016
  end-page: 311
  ident: b0025
  article-title: Hydrothermal carbonization of tobacco stalk for fuel application
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  ident: b0055
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuel. Bioprod. Bior.
– volume: 283
  start-page: 789
  year: 2016
  end-page: 805
  ident: b0070
  article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review
  publication-title: Chem. Eng. J.
– volume: 205
  start-page: 199
  year: 2016
  end-page: 204
  ident: b0160
  article-title: Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo
  publication-title: Bioresour. Technol.
– volume: 205
  start-page: 199
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0160
  article-title: Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.068
– volume: 185
  start-page: 254
  year: 2015
  ident: 10.1016/j.biortech.2017.10.046_b0030
  article-title: Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.045
– volume: 247
  start-page: 310
  year: 2018
  ident: 10.1016/j.biortech.2017.10.046_b0140
  article-title: Hydrothermal carbonization of Opuntia ficus-indica cladodes: role of process parameters on hydrochar properties
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.072
– volume: 243
  start-page: 6
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0180
  article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.085
– volume: 112
  start-page: 1475
  year: 2013
  ident: 10.1016/j.biortech.2017.10.046_b0165
  article-title: Thermogravimetric analysis of co-combustion of biomass and biochar
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-012-2744-1
– volume: 102
  start-page: 4849
  year: 2011
  ident: 10.1016/j.biortech.2017.10.046_b0005
  article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.01.018
– volume: 55
  start-page: 673
  year: 2012
  ident: 10.1016/j.biortech.2017.10.046_b0080
  article-title: Colorimetry applied to steam treated biomass and pellets made from western Douglas Fir (Pseudotsuga menziesii L.)
  publication-title: Trans. ASABE
  doi: 10.13031/2013.41368
– volume: 185
  start-page: 1051
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0010
  article-title: Comparative study on the thermal degradation of dry- and wet-torrefied woods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.079
– volume: 4
  start-page: 160
  year: 2010
  ident: 10.1016/j.biortech.2017.10.046_b0055
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuel. Bioprod. Bior.
  doi: 10.1002/bbb.198
– volume: 31
  start-page: 200
  year: 2012
  ident: 10.1016/j.biortech.2017.10.046_b0155
  article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.11601
– volume: 137
  start-page: 70
  year: 2014
  ident: 10.1016/j.biortech.2017.10.046_b0125
  article-title: Colorimetric patterns of wood pellets and their relations with quality and energy parameters
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.07.080
– volume: 179
  start-page: 227
  year: 2015
  ident: 10.1016/j.biortech.2017.10.046_b0065
  article-title: Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.115
– volume: 244
  start-page: 78
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0150
  article-title: Characterization of products from hydrothermal carbonization of pine
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.138
– volume: 273
  start-page: 37
  year: 2015
  ident: 10.1016/j.biortech.2017.10.046_b0175
  article-title: Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.042
– volume: 220
  start-page: 305
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0025
  article-title: Hydrothermal carbonization of tobacco stalk for fuel application
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.08.098
– volume: 100
  start-page: 6537
  year: 2009
  ident: 10.1016/j.biortech.2017.10.046_b0020
  article-title: Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.07.019
– volume: 101
  start-page: 2860
  year: 2010
  ident: 10.1016/j.biortech.2017.10.046_b0095
  article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.084
– volume: 200
  start-page: 804
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0105
  article-title: Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.010
– volume: 49
  start-page: 86
  year: 2013
  ident: 10.1016/j.biortech.2017.10.046_b0120
  article-title: Hydrothermal carbonization: fate of inorganics
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2012.12.004
– volume: 93
  start-page: 680
  year: 2012
  ident: 10.1016/j.biortech.2017.10.046_b0085
  article-title: Pelletization of torrefied sawdust and properties of torrefied pellets
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.002
– volume: 113
  start-page: 1315
  year: 2014
  ident: 10.1016/j.biortech.2017.10.046_b0100
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.087
– volume: 171
  start-page: 193
  year: 2014
  ident: 10.1016/j.biortech.2017.10.046_b0040
  article-title: Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.064
– volume: 175
  start-page: 129
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0035
  article-title: Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.01.089
– volume: 185
  start-page: 89
  year: 2015
  ident: 10.1016/j.biortech.2017.10.046_b0130
  article-title: Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.079
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.biortech.2017.10.046_b0075
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 244
  start-page: 281
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0145
  article-title: Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.097
– volume: 103
  start-page: 453
  year: 2012
  ident: 10.1016/j.biortech.2017.10.046_b0090
  article-title: Torrefaction of sawdust in a fluidized bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.009
– volume: 247
  start-page: 234
  year: 2018
  ident: 10.1016/j.biortech.2017.10.046_b0050
  article-title: Hydrothermal pretreatment of bamboo sawdust using microwave irradiation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.104
– volume: 217
  start-page: 104
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0115
  article-title: Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.014
– volume: 11
  start-page: 4113
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0060
  article-title: Physicochemical, pyrolytic, and combustion characteristics of hydrochar obtained by hydrothermal carbonization of biomass
  publication-title: Bioresources
  doi: 10.15376/biores.11.2.4113-4133
– volume: 242
  start-page: 344
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0015
  article-title: Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.045
– volume: 283
  start-page: 789
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0070
  article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.014
– volume: 199
  start-page: 288
  year: 2016
  ident: 10.1016/j.biortech.2017.10.046_b0110
  article-title: A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.09.064
– volume: 228
  start-page: 62
  year: 2017
  ident: 10.1016/j.biortech.2017.10.046_b0045
  article-title: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.12.088
– volume: 247
  start-page: 14
  year: 2018
  ident: 10.1016/j.biortech.2017.10.046_b0135
  article-title: Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.011
– volume: 141
  start-page: 3451
  year: 2013
  ident: 10.1016/j.biortech.2017.10.046_b0170
  article-title: Impacts of selected dietary polyphenols on caramelization in model systems
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.06.053
SSID ssj0003172
Score 2.5332088
Snippet [Display omitted] •HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and...
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 574
SubjectTerms Biomass
bulk density
Carbon
color
Color measurement
combustion
Combustion behavior
elemental composition
energy
fiber content
Hot Temperature
Hydrochars
Hydrogen
hydrothermal carbonization
Kinetics
Lignin
particle size
proximate composition
pyrolysis
sawdust
surface area
technology
Temperature
Title The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization
URI https://dx.doi.org/10.1016/j.biortech.2017.10.046
https://www.ncbi.nlm.nih.gov/pubmed/29091840
https://www.proquest.com/docview/1959322512
https://www.proquest.com/docview/2000544923
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeFMelZFY09aJkzhjVYEKCBZAYotsx4YiSKpQBhbE3-Dv8Uu4S5wCEoiBMX5IJ9_57rv4_JmQAwG5f4wVNZGOrcd9a73EsgQ2njZKaMODikvv7DwaXvGT6_B6hgyauzBYVul8f-3TK2_tWrpuNbvj0ah7geBbhBCBYrBLgL14g53HaOWdl88yD4iP1UkCDPZw9JdbwncdNcKK1upQgsUdrPJCIPxzgPoNgFaB6GiZLDkESfu1kCtkxuSrZLF_UzoWDbNK5gfNM27Q84VxcI1kYBbU1XDQwlJkpnK0ylTmGUUO65IiA7ihRU5vnzN8UguS3_fXNzrGH_clMrDSketD-PgA0mhZqqK507lOLo8OLwdDzz204OmwxyegmECzQDIb-ZpJraNQSykzoQCfGKtD6fcCLThXWvUyHTMWcB0HFjIVa4UUwQaZzYvcbBGaKK6YULCpZQSJt68SkwCmE5FFVh0etUjYLG6qHQk5voVxnzbVZndpo5QUlYLtPZzXnc4b1zQcf85IGt2l3wwqhVjx59z9RtkpaAuPUGRuiqfHFKl40AUy__cxfoWDkfiuRTZrS5nK7CeAzyCn3v6HdDtkAb5EXTq-S2Yn5ZPZA2Q0Ue3K9Ntkrn98Ojz_ALrDD_s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4BPUAPVflraQsYiWt214mTOEe0Klpa4MIicbNsx4ZFbbJKl0MvVV-jr9cn6UziUCqBOPQae6SRx575Jh5_A3AoMffPqaIms7mPROx9VHhe4MGzzkjrRNJy6Z2dZ5NL8ekqvVqCcf8Whsoqg-_vfHrrrcOXYVjN4Xw2G14Q-JYpRqAc9yXC3mV4IfD4UhuDwY-_dR4YINurBJwd0fQHz4RvB2ZGJa3trQTPB1TmRUj48Qj1FAJtI9Hxa3gVICQ76rRchyVXbcDLo-sm0Gi4DVgd933ccOQB5eAmlLgvWCjiYLVnRE0VeJWZrkpGJNYNIwpwx-qK3XwvqacWZr-_f_5ic_pz3xAFK5uFMcKPX1EbqxtT9486t2B6_HE6nkSh00Jk05FYoGUSyxPNfRZbrq3NUqu1LqVBgOK8TXU8SqwUwlgzKm3OeSJsnnhMVbyXWibbsFLVlXsLrDDCcGnwVOsMM-_YFK5AUCczT7Q6ItuBtF9cZQMLOTXD-KL6crNb1RtFkVHo-4jkhvdy846H41mJored-mdHKQwWz8oe9MZWaC26Q9GVq---KeLiIR_I46fnxC0QJua7HXjT7ZR7neMCARom1e_-Q7t9WJ1Mz07V6cn55_ewhiOyqyP_ACuL5s7tIkxamL32GPwBzMQRiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+temperature+and+color+value+on+hydrochars%E2%80%99+properties+in+hydrothermal+carbonization&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Hui&rft.au=Wang%2C+Siyuan&rft.au=Yuan%2C+Xingzhong&rft.au=Xi%2C+Yanni&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=249&rft.spage=574&rft.epage=581&rft_id=info:doi/10.1016%2Fj.biortech.2017.10.046&rft.externalDocID=S0960852417318758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon