The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization
[Display omitted] •HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature...
Saved in:
Published in | Bioresource technology Vol. 249; pp. 574 - 581 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature on hydrochar combustion was investigated by DTG.•The hydrochars pyrolysis was studied by the KAS and Coats-Redfern methods.
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable. |
---|---|
AbstractList | [Display omitted]
•HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and bluer after HTC process.•The ash, carbon, hydrogen and lignin showed a good correlation with color coordinates.•The influence of temperature on hydrochar combustion was investigated by DTG.•The hydrochars pyrolysis was studied by the KAS and Coats-Redfern methods.
In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable. In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200–260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R²>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger–Akahira–Sunose (KAS) and Coats–Redfern calculations, the HTC process can also make the pyrolysis more stable. In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable.In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable. In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R >0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable. |
Author | Li, Changzhu Tan, Mengjiao Yuan, Xingzhong Huang, Zhongliang Li, Hui Wang, Siyuan Xi, Yanni |
Author_xml | – sequence: 1 givenname: Hui surname: Li fullname: Li, Hui email: lihuiluoyang@163.com organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China – sequence: 2 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China – sequence: 3 givenname: Xingzhong surname: Yuan fullname: Yuan, Xingzhong organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 4 givenname: Yanni surname: Xi fullname: Xi, Yanni organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China – sequence: 5 givenname: Zhongliang surname: Huang fullname: Huang, Zhongliang organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China – sequence: 6 givenname: Mengjiao surname: Tan fullname: Tan, Mengjiao organization: College of Resource and Environment, Hunan Agricultural University, Changsha 410128, PR China – sequence: 7 givenname: Changzhu surname: Li fullname: Li, Changzhu organization: Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29091840$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFq3DAQhkVJaDZpXyHo2Iu3kizLNvTQEtKkEOhl70Iej7AW29pKciA99TXyenmSarObHnrZk2D0_cPwf5fkbPYzEnLN2Zozrj5v153zISEMa8F4nYdrJtU7suJNXRairdUZWbFWsaKphLwglzFuGWMlr8V7ciFa1vJGshXpNwNStBYhReotTTjtMJi0BKRm7in40Qf6aMYFqZ_p8NQHD4MJ8eXPM90Fn-HkMFJ3_EsDhsmMFEzo_Ox-m-T8_IGcWzNG_Hh8r8jm--3m5r54-Hn34-bbQwEVk6nIlwMvDbdKADcAqgJjTN90TFVooTKCldBI2UHHeqg5LyXUpa1VY21jmvKKfDqszXf9WjAmPbkIOI5mRr9ELXIBlZStKE-ivK3aUoiKi4xeH9Glm7DXu-AmE570W4cZUAcAgo8xoP2HcKb3svRWv8nSe1n7eZaVg1_-C4JLr4WlYNx4Ov71EMdc6aPDoCM4nAF7F7JO3Xt3asVfY3e3aQ |
CitedBy_id | crossref_primary_10_1016_j_fuproc_2020_106663 crossref_primary_10_3390_en14206551 crossref_primary_10_1016_j_fuel_2024_132256 crossref_primary_10_1002_cben_202200014 crossref_primary_10_1007_s13399_022_02892_5 crossref_primary_10_1016_j_jclepro_2020_124636 crossref_primary_10_1016_j_renene_2024_122027 crossref_primary_10_3390_agronomy15020302 crossref_primary_10_1016_j_jece_2023_109364 crossref_primary_10_1007_s13399_019_00513_2 crossref_primary_10_1016_j_biortech_2018_06_084 crossref_primary_10_1016_j_powtec_2018_08_080 crossref_primary_10_1016_j_enconman_2020_112793 crossref_primary_10_1007_s13399_022_02875_6 crossref_primary_10_3390_catal9070625 crossref_primary_10_1016_j_clet_2022_100467 crossref_primary_10_1007_s13762_025_06394_5 crossref_primary_10_1016_j_fuproc_2020_106337 crossref_primary_10_1016_j_joei_2023_101353 crossref_primary_10_1002_ente_202400367 crossref_primary_10_1007_s41779_024_01063_1 crossref_primary_10_1016_j_colsurfa_2018_08_063 crossref_primary_10_1007_s12613_021_2305_3 crossref_primary_10_1016_j_jece_2021_106938 crossref_primary_10_1299_mej_22_00064 crossref_primary_10_3390_en17112732 crossref_primary_10_1016_j_envres_2022_113532 crossref_primary_10_1016_j_energy_2024_131339 crossref_primary_10_1016_j_biortech_2018_07_059 crossref_primary_10_1016_j_enconman_2022_116201 crossref_primary_10_1007_s13399_023_04953_9 crossref_primary_10_1016_j_biortech_2023_128734 crossref_primary_10_1016_j_envpol_2022_119556 crossref_primary_10_1016_j_scitotenv_2018_07_402 crossref_primary_10_1016_j_biombioe_2021_106206 crossref_primary_10_1080_17597269_2023_2255007 crossref_primary_10_1007_s10450_024_00542_y crossref_primary_10_1016_j_jaap_2022_105818 crossref_primary_10_1016_j_chemosphere_2021_132787 crossref_primary_10_3390_en11092286 crossref_primary_10_1039_C7GC03676K crossref_primary_10_1016_j_jclepro_2023_136486 crossref_primary_10_1039_C8GC03957G crossref_primary_10_3390_en14071805 crossref_primary_10_1007_s42773_021_00119_w crossref_primary_10_1016_j_jclepro_2020_121101 crossref_primary_10_1016_j_biortech_2018_03_095 crossref_primary_10_1016_j_wasman_2019_09_021 crossref_primary_10_1016_j_biteb_2021_100795 crossref_primary_10_1016_j_jaap_2022_105670 crossref_primary_10_1016_j_applthermaleng_2022_119789 crossref_primary_10_1016_j_energy_2018_07_117 crossref_primary_10_1016_j_crcon_2023_07_001 crossref_primary_10_1038_s41598_024_51786_1 crossref_primary_10_1115_1_4067363 crossref_primary_10_1007_s10311_021_01311_x crossref_primary_10_1016_j_biortech_2018_05_019 crossref_primary_10_1016_j_renene_2022_03_152 crossref_primary_10_1021_acs_energyfuels_8b02484 crossref_primary_10_1007_s12155_022_10482_6 crossref_primary_10_1007_s42773_024_00364_9 crossref_primary_10_1016_j_wasman_2022_07_029 crossref_primary_10_1016_j_scitotenv_2020_142383 crossref_primary_10_1016_j_cej_2021_129472 crossref_primary_10_1016_j_indcrop_2023_117633 crossref_primary_10_1016_j_biortech_2018_09_030 crossref_primary_10_1016_j_lwt_2021_113034 crossref_primary_10_1007_s12155_023_10599_2 crossref_primary_10_1016_j_jclepro_2020_122525 crossref_primary_10_1016_j_fuel_2022_124341 crossref_primary_10_1016_j_wasman_2020_08_004 crossref_primary_10_1021_acssuschemeng_8b03458 crossref_primary_10_1021_acs_energyfuels_0c01974 crossref_primary_10_1016_j_biortech_2018_07_032 crossref_primary_10_3390_buildings14103313 crossref_primary_10_1016_j_foodchem_2021_129438 crossref_primary_10_1016_j_energy_2019_116306 crossref_primary_10_1016_j_jclepro_2024_142719 crossref_primary_10_1002_apj_2737 crossref_primary_10_3775_jie_103_18 crossref_primary_10_1016_j_fuel_2020_117146 crossref_primary_10_1016_j_energy_2019_02_181 |
Cites_doi | 10.1016/j.biortech.2016.01.068 10.1016/j.biortech.2015.02.045 10.1016/j.biortech.2017.09.072 10.1016/j.biortech.2017.06.085 10.1007/s10973-012-2744-1 10.1016/j.biortech.2011.01.018 10.13031/2013.41368 10.1016/j.apenergy.2016.01.079 10.1002/bbb.198 10.1002/ep.11601 10.1016/j.fuel.2014.07.080 10.1016/j.biortech.2014.11.115 10.1016/j.biortech.2017.07.138 10.1016/j.cej.2015.03.042 10.1016/j.biortech.2016.08.098 10.1016/j.biortech.2009.07.019 10.1016/j.biortech.2009.10.084 10.1016/j.biortech.2015.11.010 10.1016/j.biombioe.2012.12.004 10.1016/j.apenergy.2012.01.002 10.1016/j.apenergy.2013.08.087 10.1016/j.biortech.2014.08.064 10.1016/j.fuel.2016.01.089 10.1016/j.biortech.2015.02.079 10.1021/es9031419 10.1016/j.biortech.2017.07.097 10.1016/j.biortech.2011.10.009 10.1016/j.biortech.2017.08.104 10.1016/j.biortech.2016.03.014 10.15376/biores.11.2.4113-4133 10.1016/j.biortech.2017.03.045 10.1016/j.cej.2015.08.014 10.1016/j.biortech.2015.09.064 10.1016/j.biortech.2016.12.088 10.1016/j.biortech.2017.08.011 10.1016/j.foodchem.2013.06.053 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.10.046 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 581 |
ExternalDocumentID | 29091840 10_1016_j_biortech_2017_10_046 S0960852417318758 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-873c13a1f62c1acc65caaad8b065efc5a203c844bcb0dc71134c73f768ff8a83 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 06:13:14 EDT 2025 Fri Jul 11 16:43:15 EDT 2025 Wed Feb 19 02:42:28 EST 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 02:06:54 EDT 2025 Fri Feb 23 02:47:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Color measurement Combustion behavior Biomass Kinetics Hydrochars |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-873c13a1f62c1acc65caaad8b065efc5a203c844bcb0dc71134c73f768ff8a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29091840 |
PQID | 1959322512 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000544923 proquest_miscellaneous_1959322512 pubmed_primary_29091840 crossref_primary_10_1016_j_biortech_2017_10_046 crossref_citationtrail_10_1016_j_biortech_2017_10_046 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_10_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Funke, Ziegler (b0055) 2010; 4 Lam, Sokhansanj, Bi, Lim (b0080) 2012; 55 Acharjee, Coronella, Vasquez (b0005) 2011; 102 Boussarsar, Rogé, Mathlouthi (b0020) 2009; 100 Ceylan, Topcu, Ceylan (b0040) 2014; 171 Gao, Yu, Wu, Yuan, Wang, Chen (b0060) 2016; 11 Minaret, Dutta (b0105) 2016; 200 Biswas, Kumar, Bisht, Singh, Kumar, Bhaskar (b0015) 2017; 242 Cai, Li, Chen, Wang, Zhao, Zhang (b0025) 2016; 220 Cao, Yuan, Li, Li, Xiao, Jiang, Huang, Xiao, Chen, Wang, Zeng (b0030) 2015; 185 Dai, He, Wang, Liu, Ruan, Yu, Zhou, Duan, Fan, Zhao (b0050) 2018; 247 Cao, Yuan, Jiang, Li, Xiao, Huang, Chen, Zeng, Li (b0035) 2016; 175 Yan, Islam, Coronella, Vásquez (b0155) 2012; 31 Jain, Balasubramanian, Srinivasan (b0070) 2016; 283 Wu, Yu, Hao, Wells, Meng, Li, Pu, Liu, Ragauskas (b0150) 2017; 244 Islam, Asif, Hameed (b0065) 2015; 179 Sgarbossa, Costa, Menesatti, Antonucci, Pallottino, Zanetti, Grigolato, Cavalli (b0125) 2014; 137 Liu, Quek, Balasubramanian (b0100) 2014; 113 Reza, Lynam, Uddin, Coronella (b0120) 2013; 49 Li, Liu, Legros, Bi, Lim, Sokhansanj (b0090) 2012; 103 Zhao, Zhang, Chen (b0175) 2015; 273 Chen, Mei, Li, Li, Lu, Ma, Ma (b0045) 2017; 228 Patel, Guo, Izadpanah, Shah, Hellgardt (b0110) 2016; 199 Wang, Lim, Grace, Li, Parise (b0145) 2017; 244 Zhu, Si, Lu, Watson, Zhang, Liu (b0180) 2017; 243 Keiluweit, Nico, Johnson, Kleber (b0075) 2010; 44 Bach, Tran, Skreiberg (b0010) 2017; 185 Volpe, Goldfarb, Fiori (b0140) 2018; 247 Yang, Wang, Zhang, Zhu, Zhou, Wu (b0160) 2016; 205 Zhang, Chen, Wang (b0170) 2013; 141 Yi, Qi, Cheng, Zhang, Xiao, Hu, Liu, Cai, Xu (b0165) 2013; 112 Li, Yuan, Zeng, Huang, Huang, Tong, You, Zhang, Zhou (b0095) 2010; 101 Shen, Igathinathane, Yu, Pothula (b0130) 2015; 185 Li, Liu, Legros, Bi, Lim, Sokhansanj (b0085) 2012; 93 Sheng, Wang, Yang (b0135) 2018; 247 Poucke, Nachenius, Agbo, Hensgen, Buhle, Wachendorf, Ok, Tack, Prins, Ronsse, Meers (b0115) 2016; 217 Lam (10.1016/j.biortech.2017.10.046_b0080) 2012; 55 Patel (10.1016/j.biortech.2017.10.046_b0110) 2016; 199 Li (10.1016/j.biortech.2017.10.046_b0085) 2012; 93 Yang (10.1016/j.biortech.2017.10.046_b0160) 2016; 205 Cao (10.1016/j.biortech.2017.10.046_b0030) 2015; 185 Cao (10.1016/j.biortech.2017.10.046_b0035) 2016; 175 Bach (10.1016/j.biortech.2017.10.046_b0010) 2017; 185 Sheng (10.1016/j.biortech.2017.10.046_b0135) 2018; 247 Wang (10.1016/j.biortech.2017.10.046_b0145) 2017; 244 Poucke (10.1016/j.biortech.2017.10.046_b0115) 2016; 217 Biswas (10.1016/j.biortech.2017.10.046_b0015) 2017; 242 Jain (10.1016/j.biortech.2017.10.046_b0070) 2016; 283 Reza (10.1016/j.biortech.2017.10.046_b0120) 2013; 49 Yi (10.1016/j.biortech.2017.10.046_b0165) 2013; 112 Cai (10.1016/j.biortech.2017.10.046_b0025) 2016; 220 Yan (10.1016/j.biortech.2017.10.046_b0155) 2012; 31 Gao (10.1016/j.biortech.2017.10.046_b0060) 2016; 11 Minaret (10.1016/j.biortech.2017.10.046_b0105) 2016; 200 Zhu (10.1016/j.biortech.2017.10.046_b0180) 2017; 243 Sgarbossa (10.1016/j.biortech.2017.10.046_b0125) 2014; 137 Shen (10.1016/j.biortech.2017.10.046_b0130) 2015; 185 Li (10.1016/j.biortech.2017.10.046_b0090) 2012; 103 Funke (10.1016/j.biortech.2017.10.046_b0055) 2010; 4 Zhao (10.1016/j.biortech.2017.10.046_b0175) 2015; 273 Liu (10.1016/j.biortech.2017.10.046_b0100) 2014; 113 Wu (10.1016/j.biortech.2017.10.046_b0150) 2017; 244 Acharjee (10.1016/j.biortech.2017.10.046_b0005) 2011; 102 Keiluweit (10.1016/j.biortech.2017.10.046_b0075) 2010; 44 Ceylan (10.1016/j.biortech.2017.10.046_b0040) 2014; 171 Dai (10.1016/j.biortech.2017.10.046_b0050) 2018; 247 Li (10.1016/j.biortech.2017.10.046_b0095) 2010; 101 Zhang (10.1016/j.biortech.2017.10.046_b0170) 2013; 141 Boussarsar (10.1016/j.biortech.2017.10.046_b0020) 2009; 100 Chen (10.1016/j.biortech.2017.10.046_b0045) 2017; 228 Islam (10.1016/j.biortech.2017.10.046_b0065) 2015; 179 Volpe (10.1016/j.biortech.2017.10.046_b0140) 2018; 247 |
References_xml | – volume: 103 start-page: 453 year: 2012 end-page: 458 ident: b0090 article-title: Torrefaction of sawdust in a fluidized bed reactor publication-title: Bioresour. Technol. – volume: 247 start-page: 310 year: 2018 end-page: 318 ident: b0140 article-title: Hydrothermal carbonization of publication-title: Bioresour. Technol. – volume: 49 start-page: 86 year: 2013 end-page: 94 ident: b0120 article-title: Hydrothermal carbonization: fate of inorganics publication-title: Biomass Bioenerg. – volume: 171 start-page: 193 year: 2014 end-page: 198 ident: b0040 article-title: Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis publication-title: Bioresour. Technol. – volume: 93 start-page: 680 year: 2012 end-page: 685 ident: b0085 article-title: Pelletization of torrefied sawdust and properties of torrefied pellets publication-title: Appl. Energy – volume: 199 start-page: 288 year: 2016 end-page: 299 ident: b0110 article-title: A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing publication-title: Bioresour. Technol. – volume: 247 start-page: 234 year: 2018 end-page: 241 ident: b0050 article-title: Hydrothermal pretreatment of bamboo sawdust using microwave irradiation publication-title: Bioresour. Technol. – volume: 112 start-page: 1475 year: 2013 end-page: 1479 ident: b0165 article-title: Thermogravimetric analysis of co-combustion of biomass and biochar publication-title: J. Therm. Anal. Calorim. – volume: 55 start-page: 673 year: 2012 end-page: 678 ident: b0080 article-title: Colorimetry applied to steam treated biomass and pellets made from western Douglas Fir ( publication-title: Trans. ASABE – volume: 179 start-page: 227 year: 2015 end-page: 233 ident: b0065 article-title: Pyrolysis kinetics of raw and hydrothermally carbonized Karanj ( publication-title: Bioresour. Technol. – volume: 185 start-page: 254 year: 2015 end-page: 262 ident: b0030 article-title: Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets publication-title: Bioresour. Technol. – volume: 247 start-page: 14 year: 2018 end-page: 20 ident: b0135 article-title: Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds publication-title: Bioresour. Technol. – volume: 243 start-page: 6 year: 2017 end-page: 19 ident: b0180 article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk publication-title: Bioresour. Technol. – volume: 242 start-page: 344 year: 2017 end-page: 350 ident: b0015 article-title: Effects of temperature and solvent on hydrothermal liquefaction of publication-title: Bioresour. Technol. – volume: 101 start-page: 2860 year: 2010 end-page: 2866 ident: b0095 article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol publication-title: Bioresour. Technol. – volume: 137 start-page: 70 year: 2014 end-page: 76 ident: b0125 article-title: Colorimetric patterns of wood pellets and their relations with quality and energy parameters publication-title: Fuel – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: b0075 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 141 start-page: 3451 year: 2013 end-page: 3458 ident: b0170 article-title: Impacts of selected dietary polyphenols on caramelization in model systems publication-title: Food Chem. – volume: 175 start-page: 129 year: 2016 end-page: 136 ident: b0035 article-title: Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends publication-title: Fuel – volume: 31 start-page: 200 year: 2012 end-page: 204 ident: b0155 article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass publication-title: Environ. Prog. Sustain. Energy – volume: 185 start-page: 1051 year: 2017 end-page: 1058 ident: b0010 article-title: Comparative study on the thermal degradation of dry- and wet-torrefied woods publication-title: Appl. Energy – volume: 113 start-page: 1315 year: 2014 end-page: 1322 ident: b0100 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy – volume: 228 start-page: 62 year: 2017 end-page: 68 ident: b0045 article-title: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products publication-title: Bioresour. Technol. – volume: 244 start-page: 78 year: 2017 end-page: 83 ident: b0150 article-title: Characterization of products from hydrothermal carbonization of pine publication-title: Bioresour. Technol. – volume: 100 start-page: 6537 year: 2009 end-page: 6542 ident: b0020 article-title: Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose publication-title: Bioresour. Technol. – volume: 102 start-page: 4849 year: 2011 end-page: 4854 ident: b0005 article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 217 start-page: 104 year: 2016 end-page: 112 ident: b0115 article-title: Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass publication-title: Bioresour. Technol. – volume: 11 start-page: 4113 year: 2016 end-page: 4133 ident: b0060 article-title: Physicochemical, pyrolytic, and combustion characteristics of hydrochar obtained by hydrothermal carbonization of biomass publication-title: Bioresources – volume: 200 start-page: 804 year: 2016 end-page: 811 ident: b0105 article-title: Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel publication-title: Bioresour. Technol. – volume: 244 start-page: 281 year: 2017 end-page: 288 ident: b0145 article-title: Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor publication-title: Bioresour. Technol. – volume: 185 start-page: 89 year: 2015 end-page: 98 ident: b0130 article-title: Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry publication-title: Bioresour. Technol. – volume: 273 start-page: 37 year: 2015 end-page: 45 ident: b0175 article-title: Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process publication-title: Chem. Eng. J. – volume: 220 start-page: 305 year: 2016 end-page: 311 ident: b0025 article-title: Hydrothermal carbonization of tobacco stalk for fuel application publication-title: Bioresour. Technol. – volume: 4 start-page: 160 year: 2010 end-page: 177 ident: b0055 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuel. Bioprod. Bior. – volume: 283 start-page: 789 year: 2016 end-page: 805 ident: b0070 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Chem. Eng. J. – volume: 205 start-page: 199 year: 2016 end-page: 204 ident: b0160 article-title: Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo publication-title: Bioresour. Technol. – volume: 205 start-page: 199 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0160 article-title: Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.068 – volume: 185 start-page: 254 year: 2015 ident: 10.1016/j.biortech.2017.10.046_b0030 article-title: Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.045 – volume: 247 start-page: 310 year: 2018 ident: 10.1016/j.biortech.2017.10.046_b0140 article-title: Hydrothermal carbonization of Opuntia ficus-indica cladodes: role of process parameters on hydrochar properties publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.072 – volume: 243 start-page: 6 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0180 article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.085 – volume: 112 start-page: 1475 year: 2013 ident: 10.1016/j.biortech.2017.10.046_b0165 article-title: Thermogravimetric analysis of co-combustion of biomass and biochar publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2744-1 – volume: 102 start-page: 4849 year: 2011 ident: 10.1016/j.biortech.2017.10.046_b0005 article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.018 – volume: 55 start-page: 673 year: 2012 ident: 10.1016/j.biortech.2017.10.046_b0080 article-title: Colorimetry applied to steam treated biomass and pellets made from western Douglas Fir (Pseudotsuga menziesii L.) publication-title: Trans. ASABE doi: 10.13031/2013.41368 – volume: 185 start-page: 1051 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0010 article-title: Comparative study on the thermal degradation of dry- and wet-torrefied woods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.079 – volume: 4 start-page: 160 year: 2010 ident: 10.1016/j.biortech.2017.10.046_b0055 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuel. Bioprod. Bior. doi: 10.1002/bbb.198 – volume: 31 start-page: 200 year: 2012 ident: 10.1016/j.biortech.2017.10.046_b0155 article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11601 – volume: 137 start-page: 70 year: 2014 ident: 10.1016/j.biortech.2017.10.046_b0125 article-title: Colorimetric patterns of wood pellets and their relations with quality and energy parameters publication-title: Fuel doi: 10.1016/j.fuel.2014.07.080 – volume: 179 start-page: 227 year: 2015 ident: 10.1016/j.biortech.2017.10.046_b0065 article-title: Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.115 – volume: 244 start-page: 78 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0150 article-title: Characterization of products from hydrothermal carbonization of pine publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.138 – volume: 273 start-page: 37 year: 2015 ident: 10.1016/j.biortech.2017.10.046_b0175 article-title: Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.042 – volume: 220 start-page: 305 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0025 article-title: Hydrothermal carbonization of tobacco stalk for fuel application publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.098 – volume: 100 start-page: 6537 year: 2009 ident: 10.1016/j.biortech.2017.10.046_b0020 article-title: Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.07.019 – volume: 101 start-page: 2860 year: 2010 ident: 10.1016/j.biortech.2017.10.046_b0095 article-title: The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.084 – volume: 200 start-page: 804 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0105 article-title: Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.010 – volume: 49 start-page: 86 year: 2013 ident: 10.1016/j.biortech.2017.10.046_b0120 article-title: Hydrothermal carbonization: fate of inorganics publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2012.12.004 – volume: 93 start-page: 680 year: 2012 ident: 10.1016/j.biortech.2017.10.046_b0085 article-title: Pelletization of torrefied sawdust and properties of torrefied pellets publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.002 – volume: 113 start-page: 1315 year: 2014 ident: 10.1016/j.biortech.2017.10.046_b0100 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.087 – volume: 171 start-page: 193 year: 2014 ident: 10.1016/j.biortech.2017.10.046_b0040 article-title: Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.064 – volume: 175 start-page: 129 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0035 article-title: Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends publication-title: Fuel doi: 10.1016/j.fuel.2016.01.089 – volume: 185 start-page: 89 year: 2015 ident: 10.1016/j.biortech.2017.10.046_b0130 article-title: Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.079 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.biortech.2017.10.046_b0075 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 244 start-page: 281 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0145 article-title: Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.097 – volume: 103 start-page: 453 year: 2012 ident: 10.1016/j.biortech.2017.10.046_b0090 article-title: Torrefaction of sawdust in a fluidized bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.009 – volume: 247 start-page: 234 year: 2018 ident: 10.1016/j.biortech.2017.10.046_b0050 article-title: Hydrothermal pretreatment of bamboo sawdust using microwave irradiation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.104 – volume: 217 start-page: 104 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0115 article-title: Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.014 – volume: 11 start-page: 4113 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0060 article-title: Physicochemical, pyrolytic, and combustion characteristics of hydrochar obtained by hydrothermal carbonization of biomass publication-title: Bioresources doi: 10.15376/biores.11.2.4113-4133 – volume: 242 start-page: 344 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0015 article-title: Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.045 – volume: 283 start-page: 789 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0070 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.014 – volume: 199 start-page: 288 year: 2016 ident: 10.1016/j.biortech.2017.10.046_b0110 article-title: A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.09.064 – volume: 228 start-page: 62 year: 2017 ident: 10.1016/j.biortech.2017.10.046_b0045 article-title: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.088 – volume: 247 start-page: 14 year: 2018 ident: 10.1016/j.biortech.2017.10.046_b0135 article-title: Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.011 – volume: 141 start-page: 3451 year: 2013 ident: 10.1016/j.biortech.2017.10.046_b0170 article-title: Impacts of selected dietary polyphenols on caramelization in model systems publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.06.053 |
SSID | ssj0003172 |
Score | 2.5332088 |
Snippet | [Display omitted]
•HTC increased the stability and safety level of the sawdust’s combustion and pyrolysis.•The color of hydrochars turned blacker, greener, and... In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 574 |
SubjectTerms | Biomass bulk density Carbon color Color measurement combustion Combustion behavior elemental composition energy fiber content Hot Temperature Hydrochars Hydrogen hydrothermal carbonization Kinetics Lignin particle size proximate composition pyrolysis sawdust surface area technology Temperature |
Title | The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization |
URI | https://dx.doi.org/10.1016/j.biortech.2017.10.046 https://www.ncbi.nlm.nih.gov/pubmed/29091840 https://www.proquest.com/docview/1959322512 https://www.proquest.com/docview/2000544923 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeFMelZFY09aJkzhjVYEKCBZAYotsx4YiSKpQBhbE3-Dv8Uu4S5wCEoiBMX5IJ9_57rv4_JmQAwG5f4wVNZGOrcd9a73EsgQ2njZKaMODikvv7DwaXvGT6_B6hgyauzBYVul8f-3TK2_tWrpuNbvj0ah7geBbhBCBYrBLgL14g53HaOWdl88yD4iP1UkCDPZw9JdbwncdNcKK1upQgsUdrPJCIPxzgPoNgFaB6GiZLDkESfu1kCtkxuSrZLF_UzoWDbNK5gfNM27Q84VxcI1kYBbU1XDQwlJkpnK0ylTmGUUO65IiA7ihRU5vnzN8UguS3_fXNzrGH_clMrDSketD-PgA0mhZqqK507lOLo8OLwdDzz204OmwxyegmECzQDIb-ZpJraNQSykzoQCfGKtD6fcCLThXWvUyHTMWcB0HFjIVa4UUwQaZzYvcbBGaKK6YULCpZQSJt68SkwCmE5FFVh0etUjYLG6qHQk5voVxnzbVZndpo5QUlYLtPZzXnc4b1zQcf85IGt2l3wwqhVjx59z9RtkpaAuPUGRuiqfHFKl40AUy__cxfoWDkfiuRTZrS5nK7CeAzyCn3v6HdDtkAb5EXTq-S2Yn5ZPZA2Q0Ue3K9Ntkrn98Ojz_ALrDD_s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4BPUAPVflraQsYiWt214mTOEe0Klpa4MIicbNsx4ZFbbJKl0MvVV-jr9cn6UziUCqBOPQae6SRx575Jh5_A3AoMffPqaIms7mPROx9VHhe4MGzzkjrRNJy6Z2dZ5NL8ekqvVqCcf8Whsoqg-_vfHrrrcOXYVjN4Xw2G14Q-JYpRqAc9yXC3mV4IfD4UhuDwY-_dR4YINurBJwd0fQHz4RvB2ZGJa3trQTPB1TmRUj48Qj1FAJtI9Hxa3gVICQ76rRchyVXbcDLo-sm0Gi4DVgd933ccOQB5eAmlLgvWCjiYLVnRE0VeJWZrkpGJNYNIwpwx-qK3XwvqacWZr-_f_5ic_pz3xAFK5uFMcKPX1EbqxtT9486t2B6_HE6nkSh00Jk05FYoGUSyxPNfRZbrq3NUqu1LqVBgOK8TXU8SqwUwlgzKm3OeSJsnnhMVbyXWibbsFLVlXsLrDDCcGnwVOsMM-_YFK5AUCczT7Q6ItuBtF9cZQMLOTXD-KL6crNb1RtFkVHo-4jkhvdy846H41mJored-mdHKQwWz8oe9MZWaC26Q9GVq---KeLiIR_I46fnxC0QJua7HXjT7ZR7neMCARom1e_-Q7t9WJ1Mz07V6cn55_ewhiOyqyP_ACuL5s7tIkxamL32GPwBzMQRiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+temperature+and+color+value+on+hydrochars%E2%80%99+properties+in+hydrothermal+carbonization&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Hui&rft.au=Wang%2C+Siyuan&rft.au=Yuan%2C+Xingzhong&rft.au=Xi%2C+Yanni&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=249&rft.spage=574&rft.epage=581&rft_id=info:doi/10.1016%2Fj.biortech.2017.10.046&rft.externalDocID=S0960852417318758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |