Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step tow...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 15; pp. 7409 - 7418 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.04.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. |
---|---|
AbstractList | The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse complex multicellular clades, yet the genetic bases and evolutionary origins of their multicellular development are hardly known. We used readouts of gene expression in six species to find genes with a dynamic expression during the development of fruiting bodies. Comparisons across species and to 200 fungal genomes identified the gene families with a conserved expression dynamics in multicellular fruiting bodies and their ancient evolutionary origins. These data outline the major multicellularity-related and developmental processes of mushrooms, including the role of transcriptional reprogramming, gene coexpression networks, and alternative splicing, and reveal significant convergence with other complex multicellular lineages. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of > 200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and > 70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. Finally, this study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of > 200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and > 70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple mul-ticellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation , signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. complex multicellularity | evolution | fungi | comparative genomics | fruiting body development F ungi represent a diverse lineage of complex multicellular organisms with a unique evolutionary history compared with complex multicellular animals, embryophytes, florideophytes, and laminarean brown algae (1-4). Within the fungal kingdom, complex multicellularity is discussed mostly in the context of fruiting bodies, which are found in at least eight independent lin-eages (2), of which the Pezizomycotina (Ascomycota) and the Agaricomycetes (Basidiomycota) contain the vast majority of species. The mushroom-forming fungi (Agaricomycetes) comprise >21,000 species and originated 350 million years ago (5), approximately coinciding with the origin of tetrapods. Fruiting bodies of mushroom-forming fungi have immense importance in agriculture, ecology, and medicine; they represent an important and sustainable food source, with favorable medicinal properties (e.g., antitumor, immunomodulatory) (6). Mushroom-forming fungi share a single origin of fruiting body formation that probably dates to the most recent common ancestor of the Agaricomycetes, Dacrymycetes, and Tremellomycetes (2). Fruiting body development in mushroom-forming fungi has been subject to surprisingly few studies (see, e.g., refs. 7-10), resulting in a paucity of information on the genetic underpinnings of the origins of complex multicellularity in this group (2). During fruiting body development, fungi deploy mechanisms for hypha-to-hypha adhesion, communication (e.g., via Significance Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse complex multicellular clades, yet the genetic bases and evolutionary origins of their multicellular development are hardly known. We used readouts of gene expression in six species to find genes with a dynamic expression during the development of fruit-ing bodies. Comparisons across species and to 200 fungal genomes identified the gene families with a conserved expression dynamics in multicellular fruiting bodies and their ancient evolutionary origins. These data outline the major multicellularity-related and developmental processes of mushrooms, including the role of transcriptional reprogramming , gene coexpression networks, and alternative splicing , and reveal significant convergence with other complex multicellular lineages. |
Author | Lipzen, Anna Kües, Ursula Hegedüs, Botond Hibbett, David S. Almási, Éva Johnson, Jenifer Yan, Juying Pangilinan, Jasmyn Kószó, Tamás Bálint, Balázs Nagy, László G. Sahu, Neha Xiong, Yi Barry, Kerrie Henrissat, Bernard Virágh, Máté Kiss, Brigitta Mondo, Stephen Nagy, István Merényi, Zsolt Cseklye, Judit Krizsán, Krisztina Ohm, Robin A. Grigoriev, Igor V. |
Author_xml | – sequence: 1 givenname: Krisztina surname: Krizsán fullname: Krizsán, Krisztina – sequence: 2 givenname: Éva surname: Almási fullname: Almási, Éva – sequence: 3 givenname: Zsolt surname: Merényi fullname: Merényi, Zsolt – sequence: 4 givenname: Neha surname: Sahu fullname: Sahu, Neha – sequence: 5 givenname: Máté surname: Virágh fullname: Virágh, Máté – sequence: 6 givenname: Tamás surname: Kószó fullname: Kószó, Tamás – sequence: 7 givenname: Stephen surname: Mondo fullname: Mondo, Stephen – sequence: 8 givenname: Brigitta surname: Kiss fullname: Kiss, Brigitta – sequence: 9 givenname: Balázs surname: Bálint fullname: Bálint, Balázs – sequence: 10 givenname: Ursula surname: Kües fullname: Kües, Ursula – sequence: 11 givenname: Kerrie surname: Barry fullname: Barry, Kerrie – sequence: 12 givenname: Judit surname: Cseklye fullname: Cseklye, Judit – sequence: 13 givenname: Botond surname: Hegedüs fullname: Hegedüs, Botond – sequence: 14 givenname: Bernard surname: Henrissat fullname: Henrissat, Bernard – sequence: 15 givenname: Jenifer surname: Johnson fullname: Johnson, Jenifer – sequence: 16 givenname: Anna surname: Lipzen fullname: Lipzen, Anna – sequence: 17 givenname: Robin A. surname: Ohm fullname: Ohm, Robin A. – sequence: 18 givenname: István surname: Nagy fullname: Nagy, István – sequence: 19 givenname: Jasmyn surname: Pangilinan fullname: Pangilinan, Jasmyn – sequence: 20 givenname: Juying surname: Yan fullname: Yan, Juying – sequence: 21 givenname: Yi surname: Xiong fullname: Xiong, Yi – sequence: 22 givenname: Igor V. surname: Grigoriev fullname: Grigoriev, Igor V. – sequence: 23 givenname: David S. surname: Hibbett fullname: Hibbett, David S. – sequence: 24 givenname: László G. surname: Nagy fullname: Nagy, László G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30902897$$D View this record in MEDLINE/PubMed https://amu.hal.science/hal-02587458$$DView record in HAL https://www.osti.gov/servlets/purl/1604677$$D View this record in Osti.gov |
BookMark | eNp1kktv1DAUhS1URKeFNStQBJuymNaPJHY2SFVFKdJIbMrasp2bGY8SO9jOiP57HKUtMBKra9nfOb6vM3TivAOE3hJ8STBnV6NT8ZIIwgWlhNQv0IrghqzrssEnaIUx5WtR0vIUncW4xxg3lcCv0CnDDaai4Ss03Aflogl2TH6wplCpV7HwXTFMcRe8H4oWDtD7cQCXipDPqo-F8S5COEBbbMFBLDTsrGvz9TD28Ctr-2QN9P3Uq2DTQ2Fd0U1ua1-jl13Ww5vHeI5-3H65v7lbb75__XZzvVmbCpdpLRgrwTCNAXilKTDGhRatUd0ctOq0Io3WXSuYaEpNmG7LqsU8d8EA7xg7R58X33HSA7Qm5x5UL8dgBxUepFdW_vvi7E5u_UHWZU0xF9ngw2LgY7IyGpvA7HLVDkySpMZlzXmGPi3Q7sj77noj5ztMK8HLShxIZi8eMwr-5wQxycHGuUXKgZ-ipKSpK1rXDGf04xG691NwuV-S5ilT2uTxZur93yU-__802gxUC2CCjzFAJ3MVKlk_V2x7SbCcV0jOKyT_rFDWXR3pnqz_r3i3KPYx-fCM05pjwhrBfgNxHdVH |
CitedBy_id | crossref_primary_10_1371_journal_pone_0239890 crossref_primary_10_1016_j_fgb_2020_103485 crossref_primary_10_1038_s41467_020_18795_w crossref_primary_10_1128_spectrum_04626_22 crossref_primary_10_1002_ece3_7862 crossref_primary_10_1038_s41598_021_87635_8 crossref_primary_10_1021_acs_jafc_4c02218 crossref_primary_10_3390_foods13010066 crossref_primary_10_1111_brv_12605 crossref_primary_10_1093_jambio_lxaf039 crossref_primary_10_1080_15476286_2019_1697548 crossref_primary_10_1016_j_ijbiomac_2024_130610 crossref_primary_10_1128_AEM_00761_19 crossref_primary_10_1534_genetics_119_302749 crossref_primary_10_1371_journal_pone_0236898 crossref_primary_10_3390_ijms21093139 crossref_primary_10_1073_pnas_2217084120 crossref_primary_10_3389_fnut_2023_1197983 crossref_primary_10_3389_fmicb_2021_682356 crossref_primary_10_1016_j_cub_2025_02_025 crossref_primary_10_1038_s41467_019_12085_w crossref_primary_10_2139_ssrn_4181212 crossref_primary_10_1007_s00253_020_10642_8 crossref_primary_10_3390_jof8020167 crossref_primary_10_1016_j_crfs_2022_09_002 crossref_primary_10_1038_s43705_021_00037_9 crossref_primary_10_3390_microorganisms9122612 crossref_primary_10_1038_s41467_020_16072_4 crossref_primary_10_1111_1462_2920_15273 crossref_primary_10_3390_jof9121143 crossref_primary_10_1128_spectrum_02032_21 crossref_primary_10_1186_s12864_021_07644_9 crossref_primary_10_1186_s12864_021_07648_5 crossref_primary_10_1016_j_csbj_2021_03_016 crossref_primary_10_1093_gbe_evad136 crossref_primary_10_1016_j_fgb_2020_103506 crossref_primary_10_3390_microorganisms9010149 crossref_primary_10_7554_eLife_71348 crossref_primary_10_1016_j_freeradbiomed_2021_04_013 crossref_primary_10_1016_j_fgb_2024_103913 crossref_primary_10_3389_fmicb_2020_00455 crossref_primary_10_1016_j_scienta_2024_112912 crossref_primary_10_3389_ffunb_2022_837605 crossref_primary_10_3390_ijms21051678 crossref_primary_10_1016_j_fochms_2023_100172 crossref_primary_10_1128_msystems_01208_23 crossref_primary_10_1016_j_micres_2024_127929 crossref_primary_10_1111_nph_18407 crossref_primary_10_3390_ijms25021283 crossref_primary_10_1099_mgen_0_000928 crossref_primary_10_1016_j_fbr_2024_100380 crossref_primary_10_1016_j_fgb_2021_103565 crossref_primary_10_1093_nar_gkz1241 crossref_primary_10_1016_j_fbr_2022_07_001 crossref_primary_10_1128_aem_00940_22 crossref_primary_10_1016_j_fbr_2020_07_002 crossref_primary_10_1080_12298093_2022_2116819 crossref_primary_10_3390_ijms242316828 crossref_primary_10_1016_j_jare_2021_09_008 crossref_primary_10_1186_s40694_020_00092_2 crossref_primary_10_1021_acs_jafc_1c02410 crossref_primary_10_1111_1462_2920_15413 crossref_primary_10_1093_jxb_erz547 crossref_primary_10_1111_nph_17892 crossref_primary_10_1016_j_carbpol_2024_121782 crossref_primary_10_1093_g3journal_jkab448 crossref_primary_10_1128_mmbr_00104_22 crossref_primary_10_1007_s00253_023_12480_w crossref_primary_10_1016_j_fgb_2023_103793 crossref_primary_10_3390_jof8101073 crossref_primary_10_1007_s00203_022_03088_1 crossref_primary_10_1016_j_scienta_2021_110729 crossref_primary_10_3390_ijms20246317 crossref_primary_10_1126_sciadv_adk6130 crossref_primary_10_3114_sim_2022_104_01 crossref_primary_10_1111_nph_16032 crossref_primary_10_3390_molecules25214920 crossref_primary_10_1186_s12915_022_01346_8 crossref_primary_10_3390_jof9090915 crossref_primary_10_3390_jof8010037 crossref_primary_10_3390_molecules25132984 crossref_primary_10_1016_j_lwt_2024_116234 crossref_primary_10_1038_s41598_019_44133_2 crossref_primary_10_1073_pnas_2010761117 crossref_primary_10_1007_s11274_024_04079_8 crossref_primary_10_1016_j_fgb_2020_103432 crossref_primary_10_1093_molbev_msaa077 crossref_primary_10_1128_MMBR_00019_21 crossref_primary_10_3390_life13030764 crossref_primary_10_1007_s12064_022_00363_z crossref_primary_10_3390_genes12040504 crossref_primary_10_1038_s43705_022_00139_y crossref_primary_10_3390_jof7080600 crossref_primary_10_1242_dev_192575 crossref_primary_10_1080_1040841X_2019_1630359 crossref_primary_10_1016_j_fgb_2021_103614 crossref_primary_10_1016_j_funbio_2019_12_008 crossref_primary_10_59717_j_xinn_life_2023_100005 |
Cites_doi | 10.1007/s00253-016-7574-9 10.1038/s41559-017-0347-8 10.1371/journal.pone.0122296 10.1038/nrg.2017.21 10.3390/molecules20058144 10.1016/j.fbr.2015.05.001 10.1016/j.foodchem.2017.04.109 10.1186/1471-2164-15-492 10.1007/s00253-014-5690-y 10.1128/AEM.65.2.389-395.1999 10.1146/annurev.phyto.112408.132637 10.1371/journal.ppat.1002706 10.1093/nar/30.7.1575 10.1128/AEM.05581-11 10.1104/pp.106.076679 10.1039/b702155k 10.1073/pnas.0812043106 10.1016/j.bbamcr.2013.05.026 10.1111/brv.12418 10.1093/gbe/evy246 10.5941/MYCO.2011.39.4.243 10.1073/pnas.1003391107 10.1371/journal.pone.0132628 10.1186/s12864-015-1251-8 10.1126/science.1075762 10.1128/MMBR.64.2.316-353.2000 10.1038/srep33640 10.1111/j.1462-2920.2009.02122.x 10.1271/bbb.80213 10.1111/j.1365-2958.2011.07776.x 10.1016/j.fgb.2014.05.011 10.1128/MMBR.00037-06 10.1038/nrmicro.2016.149 10.1016/j.devcel.2005.05.014 10.1038/s41598-017-00483-3 10.3389/fmicb.2015.01278 10.1111/nph.13423 10.1371/journal.ppat.1002700 10.1016/j.gene.2007.01.030 10.1016/S0960-9822(02)00748-0 10.1186/1471-2105-7-191 10.1098/rstb.2012.0003 10.1128/MMBR.00035-14 10.1017/S0953756298007552 10.1074/jbc.M109.076075 10.1007/BF02464324 10.1371/journal.pone.0089813 10.1007/s00253-011-3295-2 10.1016/j.carres.2017.04.012 10.1146/annurev.earth.031208.100209 10.1016/S0953-7562(09)81121-0 10.1186/1471-2164-11-133 10.1038/s41598-017-15112-2 10.1038/nature09016 10.1099/mic.0.000143 10.5604/17331331.1215609 10.1242/dev.015842 10.1093/molbev/mst241 10.1038/nbt.1643 10.1016/j.tig.2007.08.014 10.1093/nar/gkq256 10.1073/pnas.1308173110 10.1371/journal.pone.0141586 10.1139/b91-149 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 9, 2019 Copyright 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 9, 2019 – notice: Copyright – notice: 2019 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1817822116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7418 |
ExternalDocumentID | PMC6462078 1604677 oai_HAL_hal_02587458v1 30902897 10_1073_pnas_1817822116 26701398 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 758161 – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 716132 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC UMC VOOES 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DWIUU OIOZB OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c504t-8334ec3b0ee75b2e3378b8dcaf8b8dbafba19bbfd83894b13bd45d07782ce7f33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:32:06 EDT 2025 Mon Jul 10 02:32:51 EDT 2023 Fri May 09 12:24:42 EDT 2025 Fri Jul 11 10:43:21 EDT 2025 Mon Jun 30 08:37:03 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 03:40:01 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Thu May 29 13:25:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | evolution fungi complex multicellularity comparative genomics fruiting body development |
Language | English |
License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c504t-8334ec3b0ee75b2e3378b8dcaf8b8dbafba19bbfd83894b13bd45d07782ce7f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; LP2014/12; GINOP-2.3.2-15-2016-00001; 758161; 716132 USDOE Office of Science (SC) Hungarian Academy of Sciences European Research Council (ERC) Author contributions: K.K., D.S.H., and L.G.N. designed research; K.K., É.A., Z.M., N.S., M.V., B.B., J.C., and I.N. performed research; K.B., J.C., B. Henrissat, J.J., A.L., R.A.O., I.N., J.P., J.Y., Y.X., and I.V.G. contributed new reagents/analytic tools; K.K., É.A., Z.M., N.S., M.V., T.K., S.M., B.K., B.B., U.K., B. Hegedüs, B. Henrissat, and L.G.N. analyzed data; and K.K., M.V., U.K., K.B., I.V.G., D.S.H., and L.G.N. wrote the paper. Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved February 25, 2019 (received for review October 18, 2018) |
ORCID | 0000-0002-3434-8588 0000-0001-9180-4079 0000-0003-2293-9329 0000-0002-8999-6785 0000-0002-3136-8903 0000000191804079 0000000234348588 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1604677 |
PMID | 30902897 |
PQID | 2221229649 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6462078 osti_scitechconnect_1604677 hal_primary_oai_HAL_hal_02587458v1 proquest_miscellaneous_2196526630 proquest_journals_2221229649 pubmed_primary_30902897 crossref_citationtrail_10_1073_pnas_1817822116 crossref_primary_10_1073_pnas_1817822116 jstor_primary_26701398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-09 |
PublicationDateYYYYMMDD | 2019-04-09 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Cock JM (e_1_3_4_3_2) 2010; 465 Martin F (e_1_3_4_45_2) 2016; 14 Plaza DF (e_1_3_4_13_2) 2014; 15 Ernst J (e_1_3_4_23_2) 2006; 7 Pelkmans JF (e_1_3_4_59_2) 2017; 7 Nagy LG (e_1_3_4_2_2) 2018; 93 Dharmasiri N (e_1_3_4_56_2) 2005; 9 Ohm RA (e_1_3_4_18_2) 2011; 81 Stergiopoulos I (e_1_3_4_46_2) 2009; 47 Xie B-B (e_1_3_4_25_2) 2015; 16 Enright AJ (e_1_3_4_28_2) 2002; 30 Schubert M (e_1_3_4_67_2) 2012; 8 Konno N (e_1_3_4_16_2) 2011; 91 Rytioja J (e_1_3_4_34_2) 2014; 78 Kosti I (e_1_3_4_61_2) 2010; 11 e_1_3_4_5_2 Knoll AH (e_1_3_4_1_2) 2011; 39 Wang L (e_1_3_4_48_2) 2013; 110 Wu B (e_1_3_4_21_2) 2018; 10 Feldman D (e_1_3_4_47_2) 2017; 7 Buser R (e_1_3_4_14_2) 2010; 285 Suga H (e_1_3_4_64_2) 2014; 31 Sebé-Pedrós A (e_1_3_4_4_2) 2017; 18 Kalaras MD (e_1_3_4_6_2) 2017; 233 Zhao Z (e_1_3_4_62_2) 2014; 9 Ohga S (e_1_3_4_15_2) 2000; 41 Lehti-Shiu MD (e_1_3_4_63_2) 2012; 367 Szeto CY (e_1_3_4_32_2) 2007; 393 Sakamoto Y (e_1_3_4_17_2) 2006; 141 Wang B (e_1_3_4_26_2) 2010; 38 Dranginis AM (e_1_3_4_41_2) 2007; 71 Künzler M (e_1_3_4_66_2) 2015; 20 Gehrmann T (e_1_3_4_24_2) 2016; 6 Kersten P (e_1_3_4_33_2) 2014; 72 Garcia K (e_1_3_4_40_2) 2015; 208 Dickens NJ (e_1_3_4_42_2) 2002; 12 Ohm RA (e_1_3_4_8_2) 2010; 28 Temp U (e_1_3_4_37_2) 1999; 65 Kües U (e_1_3_4_9_2) 2000; 64 Van Peer AF (e_1_3_4_11_2) 2009; 12 Bayry J (e_1_3_4_12_2) 2012; 8 Chae E (e_1_3_4_53_2) 2008; 135 Pöggeler S (e_1_3_4_54_2) 2018 Domazet-Lošo T (e_1_3_4_68_2) 2007; 23 Metzger MB (e_1_3_4_52_2) 2014; 1843 Tovar-Herrera OE (e_1_3_4_35_2) 2015; 10 Liu TB (e_1_3_4_50_2) 2011; 39 Lugones LG (e_1_3_4_43_2) 1999; 103 Fukuda K (e_1_3_4_30_2) 2008; 72 Pelkmans JF (e_1_3_4_57_2) 2016; 100 Sipos G (e_1_3_4_20_2) 2017; 1 Stajich JE (e_1_3_4_7_2) 2010; 107 Zhou Y (e_1_3_4_31_2) 2015; 161 Kües U (e_1_3_4_10_2) 2015; 29 Ji J (e_1_3_4_39_2) 1993; 97 Muraguchi H (e_1_3_4_58_2) 2015; 10 Pellegrin C (e_1_3_4_49_2) 2015; 6 Manning G (e_1_3_4_60_2) 2002; 298 Lu BC (e_1_3_4_55_2) 1991; 69 Corrochano LM (e_1_3_4_19_2) 2007; 6 Gaderer R (e_1_3_4_44_2) 2014; 98 Xu G (e_1_3_4_51_2) 2009; 106 Lenfant N (e_1_3_4_36_2) 2017; 448 Sakamoto Y (e_1_3_4_29_2) 2011; 77 Osińska-Jaroszuk M (e_1_3_4_38_2) 2016; 65 Clémencon H (e_1_3_4_22_2) 2012 Gordon SP (e_1_3_4_27_2) 2015; 10 Shiu SH (e_1_3_4_65_2) 2001; 2001 |
References_xml | – volume: 100 start-page: 7151 year: 2016 ident: e_1_3_4_57_2 article-title: The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7574-9 – volume: 1 start-page: 1931 year: 2017 ident: e_1_3_4_20_2 article-title: Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria publication-title: Nat Ecol Evol doi: 10.1038/s41559-017-0347-8 – volume: 10 start-page: e0122296 year: 2015 ident: e_1_3_4_35_2 article-title: A novel expansin protein from the white-rot fungus Schizophyllum commune publication-title: PLoS One doi: 10.1371/journal.pone.0122296 – volume: 18 start-page: 498 year: 2017 ident: e_1_3_4_4_2 article-title: The origin of Metazoa: A unicellular perspective publication-title: Nat Rev Genet doi: 10.1038/nrg.2017.21 – volume: 20 start-page: 8144 year: 2015 ident: e_1_3_4_66_2 article-title: Hitting the sweet spot-glycans as targets of fungal defense effector proteins publication-title: Molecules doi: 10.3390/molecules20058144 – volume: 29 start-page: 63 year: 2015 ident: e_1_3_4_10_2 article-title: How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development publication-title: Fungal Biol Rev doi: 10.1016/j.fbr.2015.05.001 – volume: 233 start-page: 429 year: 2017 ident: e_1_3_4_6_2 article-title: Mushrooms: A rich source of the antioxidants ergothioneine and glutathione publication-title: Food Chem doi: 10.1016/j.foodchem.2017.04.109 – volume: 15 start-page: 492 year: 2014 ident: e_1_3_4_13_2 article-title: Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development publication-title: BMC Genomics doi: 10.1186/1471-2164-15-492 – volume: 98 start-page: 4795 year: 2014 ident: e_1_3_4_44_2 article-title: Cerato-platanins: A fungal protein family with intriguing properties and application potential publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-014-5690-y – volume: 2001 start-page: re22 year: 2001 ident: e_1_3_4_65_2 article-title: Plant receptor-like kinase gene family: Diversity, function, and signaling publication-title: Sci Signaling – volume: 65 start-page: 389 year: 1999 ident: e_1_3_4_37_2 article-title: Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.2.389-395.1999 – start-page: 1 volume-title: Physiology and Genetics year: 2018 ident: e_1_3_4_54_2 – volume: 47 start-page: 233 year: 2009 ident: e_1_3_4_46_2 article-title: Fungal effector proteins publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.phyto.112408.132637 – volume: 8 start-page: e1002706 year: 2012 ident: e_1_3_4_67_2 article-title: Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002706 – volume: 30 start-page: 1575 year: 2002 ident: e_1_3_4_28_2 article-title: An efficient algorithm for large-scale detection of protein families publication-title: Nucleic Acids Res doi: 10.1093/nar/30.7.1575 – volume: 77 start-page: 8350 year: 2011 ident: e_1_3_4_29_2 article-title: Endo-β-1,3-Glucanase GLU1, from the fruiting body of Lentinula edodes, belongs to a new glycoside hydrolase family publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05581-11 – volume: 141 start-page: 793 year: 2006 ident: e_1_3_4_17_2 article-title: Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence publication-title: Plant Physiol doi: 10.1104/pp.106.076679 – volume: 6 start-page: 725 year: 2007 ident: e_1_3_4_19_2 article-title: Fungal photoreceptors: Sensory molecules for fungal development and behaviour publication-title: Photochem Photobiol Sci doi: 10.1039/b702155k – volume: 106 start-page: 835 year: 2009 ident: e_1_3_4_51_2 article-title: Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0812043106 – volume: 1843 start-page: 47 year: 2014 ident: e_1_3_4_52_2 article-title: RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination publication-title: Biochim Biophys Acta-Mol Cel Res doi: 10.1016/j.bbamcr.2013.05.026 – volume: 93 start-page: 1778 year: 2018 ident: e_1_3_4_2_2 article-title: Complex multicellularity in fungi: Evolutionary convergence, single origin, or both? publication-title: Biol Rev doi: 10.1111/brv.12418 – volume: 10 start-page: 3250 year: 2018 ident: e_1_3_4_21_2 article-title: Genomics and development of Lentinus tigrinus: A white-rot wood-decaying mushroom with dimorphic fruiting bodies publication-title: Genome Biol Evol doi: 10.1093/gbe/evy246 – volume: 39 start-page: 243 year: 2011 ident: e_1_3_4_50_2 article-title: The ubiquitin-proteasome system and F-box proteins in pathogenic fungi publication-title: Mycobiology doi: 10.5941/MYCO.2011.39.4.243 – volume: 107 start-page: 11889 year: 2010 ident: e_1_3_4_7_2 article-title: Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003391107 – volume: 10 start-page: e0132628 year: 2015 ident: e_1_3_4_27_2 article-title: Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0132628 – ident: e_1_3_4_5_2 – volume: 16 start-page: 54 year: 2015 ident: e_1_3_4_25_2 article-title: Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum publication-title: BMC Genomics doi: 10.1186/s12864-015-1251-8 – volume: 298 start-page: 1912 year: 2002 ident: e_1_3_4_60_2 article-title: The protein kinase complement of the human genome publication-title: Science doi: 10.1126/science.1075762 – volume: 64 start-page: 316 year: 2000 ident: e_1_3_4_9_2 article-title: Life history and developmental processes in the basidiomycete Coprinus cinereus publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.64.2.316-353.2000 – volume-title: Cytology and Plectology of the Hymenomycetes with 12 Tables year: 2012 ident: e_1_3_4_22_2 – volume: 6 start-page: 33640 year: 2016 ident: e_1_3_4_24_2 article-title: Schizophyllum commune has an extensive and functional alternative splicing repertoire publication-title: Sci Rep doi: 10.1038/srep33640 – volume: 12 start-page: 833 year: 2009 ident: e_1_3_4_11_2 article-title: The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.02122.x – volume: 72 start-page: 3107 year: 2008 ident: e_1_3_4_30_2 article-title: Purification and characterization of a novel exo-beta-1,3-1,6-glucanase from the fruiting body of the edible mushroom Enoki (Flammulina velutipes) publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.80213 – volume: 81 start-page: 1433 year: 2011 ident: e_1_3_4_18_2 article-title: Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07776.x – volume: 72 start-page: 124 year: 2014 ident: e_1_3_4_33_2 article-title: Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2014.05.011 – volume: 71 start-page: 282 year: 2007 ident: e_1_3_4_41_2 article-title: A biochemical guide to yeast adhesins: Glycoproteins for social and antisocial occasions publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00037-06 – volume: 14 start-page: 760 year: 2016 ident: e_1_3_4_45_2 article-title: Unearthing the roots of ectomycorrhizal symbioses publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.149 – volume: 9 start-page: 109 year: 2005 ident: e_1_3_4_56_2 article-title: Plant development is regulated by a family of auxin receptor F box proteins publication-title: Dev Cel doi: 10.1016/j.devcel.2005.05.014 – volume: 7 start-page: 310 year: 2017 ident: e_1_3_4_59_2 article-title: Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth publication-title: Sci Rep doi: 10.1038/s41598-017-00483-3 – volume: 6 start-page: 1278 year: 2015 ident: e_1_3_4_49_2 article-title: Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins publication-title: Front Microbiol doi: 10.3389/fmicb.2015.01278 – volume: 208 start-page: 79 year: 2015 ident: e_1_3_4_40_2 article-title: Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses publication-title: New Phytol doi: 10.1111/nph.13423 – volume: 8 start-page: e1002700 year: 2012 ident: e_1_3_4_12_2 article-title: Hydrophobins-unique fungal proteins publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002700 – volume: 393 start-page: 87 year: 2007 ident: e_1_3_4_32_2 article-title: Le.MAPK and its interacting partner, Le.DRMIP, in fruiting body development in Lentinula edodes publication-title: Gene doi: 10.1016/j.gene.2007.01.030 – volume: 12 start-page: R197 year: 2002 ident: e_1_3_4_42_2 article-title: Cadherin-like domains in α-dystroglycan, α/ξ-sarcoglycan and yeast and bacterial proteins publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00748-0 – volume: 7 start-page: 191 year: 2006 ident: e_1_3_4_23_2 article-title: STEM: A tool for the analysis of short time series gene expression data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-191 – volume: 367 start-page: 2619 year: 2012 ident: e_1_3_4_63_2 article-title: Diversity, classification and function of the plant protein kinase superfamily publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2012.0003 – volume: 78 start-page: 614 year: 2014 ident: e_1_3_4_34_2 article-title: Plant-polysaccharide-degrading enzymes from basidiomycetes publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00035-14 – volume: 103 start-page: 635 year: 1999 ident: e_1_3_4_43_2 article-title: Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus publication-title: Mycol Res doi: 10.1017/S0953756298007552 – volume: 285 start-page: 10715 year: 2010 ident: e_1_3_4_14_2 article-title: Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea publication-title: J Biol Chem doi: 10.1074/jbc.M109.076075 – volume: 41 start-page: 149 year: 2000 ident: e_1_3_4_15_2 article-title: Transcriptional regulation of laccase and cellulase in relation to fruit body formation in the mycelium of Lentinula edodes on a sawdust-based substrate publication-title: Mycoscience doi: 10.1007/BF02464324 – volume: 9 start-page: e89813 year: 2014 ident: e_1_3_4_62_2 article-title: Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases publication-title: PLoS One doi: 10.1371/journal.pone.0089813 – volume: 91 start-page: 1365 year: 2011 ident: e_1_3_4_16_2 article-title: An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3295-2 – volume: 448 start-page: 166 year: 2017 ident: e_1_3_4_36_2 article-title: A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9 publication-title: Carbohydr Res doi: 10.1016/j.carres.2017.04.012 – volume: 39 start-page: 217 year: 2011 ident: e_1_3_4_1_2 article-title: The multiple origins of complex multicellularity publication-title: Earth Planet Sci doi: 10.1146/annurev.earth.031208.100209 – volume: 97 start-page: 283 year: 1993 ident: e_1_3_4_39_2 article-title: Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus publication-title: Mycol Res doi: 10.1016/S0953-7562(09)81121-0 – volume: 11 start-page: 133 year: 2010 ident: e_1_3_4_61_2 article-title: Comparative analysis of fungal protein kinases and associated domains publication-title: BMC Genomics doi: 10.1186/1471-2164-11-133 – volume: 7 start-page: 14553 year: 2017 ident: e_1_3_4_47_2 article-title: A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus publication-title: Sci Rep doi: 10.1038/s41598-017-15112-2 – volume: 465 start-page: 617 year: 2010 ident: e_1_3_4_3_2 article-title: The Ectocarpus genome and the independent evolution of multicellularity in brown algae publication-title: Nature doi: 10.1038/nature09016 – volume: 161 start-page: 1978 year: 2015 ident: e_1_3_4_31_2 article-title: Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies publication-title: Microbiol doi: 10.1099/mic.0.000143 – volume: 65 start-page: 295 year: 2016 ident: e_1_3_4_38_2 article-title: Complex biochemical analysis of fruiting bodies from newly isolated Polish Flammulina velutipes strains publication-title: Polish J Microbiol doi: 10.5604/17331331.1215609 – volume: 135 start-page: 1235 year: 2008 ident: e_1_3_4_53_2 article-title: An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development publication-title: Development doi: 10.1242/dev.015842 – volume: 31 start-page: 517 year: 2014 ident: e_1_3_4_64_2 article-title: Earliest Holozoan expansion of phosphotyrosine signaling publication-title: Mol Biol Evol doi: 10.1093/molbev/mst241 – volume: 28 start-page: 957 year: 2010 ident: e_1_3_4_8_2 article-title: Genome sequence of the model mushroom Schizophyllum commune publication-title: Nat Biotechnol doi: 10.1038/nbt.1643 – volume: 23 start-page: 533 year: 2007 ident: e_1_3_4_68_2 article-title: A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages publication-title: Trends Genet doi: 10.1016/j.tig.2007.08.014 – volume: 38 start-page: 5075 year: 2010 ident: e_1_3_4_26_2 article-title: Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq256 – volume: 110 start-page: 11571 year: 2013 ident: e_1_3_4_48_2 article-title: Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1308173110 – volume: 10 start-page: e0141586 year: 2015 ident: e_1_3_4_58_2 article-title: Strand-specific RNA-seq analyses of fruiting body development in Coprinopsis cinerea publication-title: PLoS One doi: 10.1371/journal.pone.0141586 – volume: 69 start-page: 1161 year: 1991 ident: e_1_3_4_55_2 article-title: Cell degeneration and gill remodelling during basidiocarp development in the fungus Coprinus cinereus publication-title: Can J Bot doi: 10.1139/b91-149 |
SSID | ssj0009580 |
Score | 2.5860555 |
Snippet | The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of... The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple mul-ticellular aggregates of... Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse... |
SourceID | pubmedcentral osti hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7409 |
SubjectTerms | Agaricales - genetics Agaricales - growth & development Agaricomycetes Algae Animals BASIC BIOLOGICAL SCIENCES Biodegradation Biological evolution Biological Sciences Cell walls comparative genetics complex multicellularity Convergence Databases, Nucleic Acid evolution Evolutionary genetics Fruit bodies Fruiting Bodies, Fungal - genetics Fruiting Bodies, Fungal - growth & development fruiting body development Functional groups Fungal Proteins - biosynthesis Fungal Proteins - genetics Fungi Gene Expression Regulation, Fungal - physiology Gene families Genes Genes, Fungal Genomes Kinases Life Sciences Mushrooms PNAS Plus Protein kinase Proteins Signal transduction Thallus Transcription factors Transcriptome - physiology Transduction Vegetal Biology |
Title | Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi |
URI | https://www.jstor.org/stable/26701398 https://www.ncbi.nlm.nih.gov/pubmed/30902897 https://www.proquest.com/docview/2221229649 https://www.proquest.com/docview/2196526630 https://amu.hal.science/hal-02587458 https://www.osti.gov/servlets/purl/1604677 https://pubmed.ncbi.nlm.nih.gov/PMC6462078 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6ceGCGDAIG8ggDkNVShKncXKsEFAhVk1ikyYuUew6a6U2nZa0gv6R_E28Z8dpWjYEXNI2dp3E78t7n5P3g5A3HhcJE_3IlcpP3DAKfDcbJ7kLtoSLIJQ5CzDe-XQUDS_Cz5f9y07nZ8traVmJnlzfGlfyP1KFfSBXjJL9B8k2g8IO-A7yhS1IGLZ_J2M0NPq2x9jiblbNMu2ZMV-WE2TENiRKv_DHXE2YK1mi__TNCojmFeo5DNSfmti265n6bjwM8XE--qciRZ8WXTB-V9M2jT1rzF5pnQxG9qniYBOjUiuOsut2z0abisegWNalfkPvF1bRrKu6jrdG32xumkvta4Df42TVNJ_a9_vFD93-DWa58d75mk2WGuJqkrUfafj67Yy3UZx_OuG2Lg_AvoYmArunjPoG9uNGoSlA2uh3E8xpgdxvqWse1odV9U9jC34zK6AHsRZykZU9YERIquyg27m6g4gjpY73yL0Ali1YUePTpd9KAh2bkKj6zG2qKc7e7Yy9xZL2Juija9xlgTksQPffth7adett8aTzh-RBvcChA4PWA9JRxSNyYCeWntR5zt8-JvNt-FINX7rIqYUvbcGX1vClDXyphi818KU1fOkufOm0oBq-T8jFxw_n74duXf3DlX0vrNyYsVBJJjyleF8EijEei3gssxw_RJaLzE-EyMcxcO5Q-EyMw_7Y4zCDUvGcsUOyXywK9YzQxAMjrjzoFIxDT8qEyRiGkXkW8YQnkUN6drZTWafGxwots1S7aHCWonjSjXgcctL84dpkhbm762sQX9MLs7kPB19S3AfLDSw2Ea98hxxq6TbdLJAccoTiToEOY05nic5vskr9yAOCwx1ybFGQ1mqpTIHw-wE6UyQOedU0g9HAuc8KtVhCH8wjCtSceQ55akDTHJqhp3acwOB8C05bl7DdUkwnOjF9BLoelhzP77qaI3J_c7sfk_3qZqleAKevxEt9o_wCs_T62A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+atlas+of+mushroom+development+reveals+conserved+genes+behind+complex+multicellularity+in+fungi&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Krizs%C3%A1n%2C+Krisztina&rft.au=Alm%C3%A1si%2C+%C3%89va&rft.au=Mer%C3%A9nyi%2C+Zsolt&rft.au=Sahu%2C+Neha&rft.date=2019-04-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=15&rft.spage=7409&rft.epage=7418&rft_id=info:doi/10.1073%2Fpnas.1817822116&rft.externalDocID=26701398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |