Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi

The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step tow...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 15; pp. 7409 - 7418
Main Authors Krizsán, Krisztina, Almási, Éva, Merényi, Zsolt, Sahu, Neha, Virágh, Máté, Kószó, Tamás, Mondo, Stephen, Kiss, Brigitta, Bálint, Balázs, Kües, Ursula, Barry, Kerrie, Cseklye, Judit, Hegedüs, Botond, Henrissat, Bernard, Johnson, Jenifer, Lipzen, Anna, Ohm, Robin A., Nagy, István, Pangilinan, Jasmyn, Yan, Juying, Xiong, Yi, Grigoriev, Igor V., Hibbett, David S., Nagy, László G.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.04.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
AbstractList The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse complex multicellular clades, yet the genetic bases and evolutionary origins of their multicellular development are hardly known. We used readouts of gene expression in six species to find genes with a dynamic expression during the development of fruiting bodies. Comparisons across species and to 200 fungal genomes identified the gene families with a conserved expression dynamics in multicellular fruiting bodies and their ancient evolutionary origins. These data outline the major multicellularity-related and developmental processes of mushrooms, including the role of transcriptional reprogramming, gene coexpression networks, and alternative splicing, and reveal significant convergence with other complex multicellular lineages. The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of > 200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and > 70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. Finally, this study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of > 200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and > 70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple mul-ticellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation , signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms. complex multicellularity | evolution | fungi | comparative genomics | fruiting body development F ungi represent a diverse lineage of complex multicellular organisms with a unique evolutionary history compared with complex multicellular animals, embryophytes, florideophytes, and laminarean brown algae (1-4). Within the fungal kingdom, complex multicellularity is discussed mostly in the context of fruiting bodies, which are found in at least eight independent lin-eages (2), of which the Pezizomycotina (Ascomycota) and the Agaricomycetes (Basidiomycota) contain the vast majority of species. The mushroom-forming fungi (Agaricomycetes) comprise >21,000 species and originated 350 million years ago (5), approximately coinciding with the origin of tetrapods. Fruiting bodies of mushroom-forming fungi have immense importance in agriculture, ecology, and medicine; they represent an important and sustainable food source, with favorable medicinal properties (e.g., antitumor, immunomodulatory) (6). Mushroom-forming fungi share a single origin of fruiting body formation that probably dates to the most recent common ancestor of the Agaricomycetes, Dacrymycetes, and Tremellomycetes (2). Fruiting body development in mushroom-forming fungi has been subject to surprisingly few studies (see, e.g., refs. 7-10), resulting in a paucity of information on the genetic underpinnings of the origins of complex multicellularity in this group (2). During fruiting body development, fungi deploy mechanisms for hypha-to-hypha adhesion, communication (e.g., via Significance Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse complex multicellular clades, yet the genetic bases and evolutionary origins of their multicellular development are hardly known. We used readouts of gene expression in six species to find genes with a dynamic expression during the development of fruit-ing bodies. Comparisons across species and to 200 fungal genomes identified the gene families with a conserved expression dynamics in multicellular fruiting bodies and their ancient evolutionary origins. These data outline the major multicellularity-related and developmental processes of mushrooms, including the role of transcriptional reprogramming , gene coexpression networks, and alternative splicing , and reveal significant convergence with other complex multicellular lineages.
Author Lipzen, Anna
Kües, Ursula
Hegedüs, Botond
Hibbett, David S.
Almási, Éva
Johnson, Jenifer
Yan, Juying
Pangilinan, Jasmyn
Kószó, Tamás
Bálint, Balázs
Nagy, László G.
Sahu, Neha
Xiong, Yi
Barry, Kerrie
Henrissat, Bernard
Virágh, Máté
Kiss, Brigitta
Mondo, Stephen
Nagy, István
Merényi, Zsolt
Cseklye, Judit
Krizsán, Krisztina
Ohm, Robin A.
Grigoriev, Igor V.
Author_xml – sequence: 1
  givenname: Krisztina
  surname: Krizsán
  fullname: Krizsán, Krisztina
– sequence: 2
  givenname: Éva
  surname: Almási
  fullname: Almási, Éva
– sequence: 3
  givenname: Zsolt
  surname: Merényi
  fullname: Merényi, Zsolt
– sequence: 4
  givenname: Neha
  surname: Sahu
  fullname: Sahu, Neha
– sequence: 5
  givenname: Máté
  surname: Virágh
  fullname: Virágh, Máté
– sequence: 6
  givenname: Tamás
  surname: Kószó
  fullname: Kószó, Tamás
– sequence: 7
  givenname: Stephen
  surname: Mondo
  fullname: Mondo, Stephen
– sequence: 8
  givenname: Brigitta
  surname: Kiss
  fullname: Kiss, Brigitta
– sequence: 9
  givenname: Balázs
  surname: Bálint
  fullname: Bálint, Balázs
– sequence: 10
  givenname: Ursula
  surname: Kües
  fullname: Kües, Ursula
– sequence: 11
  givenname: Kerrie
  surname: Barry
  fullname: Barry, Kerrie
– sequence: 12
  givenname: Judit
  surname: Cseklye
  fullname: Cseklye, Judit
– sequence: 13
  givenname: Botond
  surname: Hegedüs
  fullname: Hegedüs, Botond
– sequence: 14
  givenname: Bernard
  surname: Henrissat
  fullname: Henrissat, Bernard
– sequence: 15
  givenname: Jenifer
  surname: Johnson
  fullname: Johnson, Jenifer
– sequence: 16
  givenname: Anna
  surname: Lipzen
  fullname: Lipzen, Anna
– sequence: 17
  givenname: Robin A.
  surname: Ohm
  fullname: Ohm, Robin A.
– sequence: 18
  givenname: István
  surname: Nagy
  fullname: Nagy, István
– sequence: 19
  givenname: Jasmyn
  surname: Pangilinan
  fullname: Pangilinan, Jasmyn
– sequence: 20
  givenname: Juying
  surname: Yan
  fullname: Yan, Juying
– sequence: 21
  givenname: Yi
  surname: Xiong
  fullname: Xiong, Yi
– sequence: 22
  givenname: Igor V.
  surname: Grigoriev
  fullname: Grigoriev, Igor V.
– sequence: 23
  givenname: David S.
  surname: Hibbett
  fullname: Hibbett, David S.
– sequence: 24
  givenname: László G.
  surname: Nagy
  fullname: Nagy, László G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30902897$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-02587458$$DView record in HAL
https://www.osti.gov/servlets/purl/1604677$$D View this record in Osti.gov
BookMark eNp1kktv1DAUhS1URKeFNStQBJuymNaPJHY2SFVFKdJIbMrasp2bGY8SO9jOiP57HKUtMBKra9nfOb6vM3TivAOE3hJ8STBnV6NT8ZIIwgWlhNQv0IrghqzrssEnaIUx5WtR0vIUncW4xxg3lcCv0CnDDaai4Ss03Aflogl2TH6wplCpV7HwXTFMcRe8H4oWDtD7cQCXipDPqo-F8S5COEBbbMFBLDTsrGvz9TD28Ctr-2QN9P3Uq2DTQ2Fd0U1ua1-jl13Ww5vHeI5-3H65v7lbb75__XZzvVmbCpdpLRgrwTCNAXilKTDGhRatUd0ctOq0Io3WXSuYaEpNmG7LqsU8d8EA7xg7R58X33HSA7Qm5x5UL8dgBxUepFdW_vvi7E5u_UHWZU0xF9ngw2LgY7IyGpvA7HLVDkySpMZlzXmGPi3Q7sj77noj5ztMK8HLShxIZi8eMwr-5wQxycHGuUXKgZ-ipKSpK1rXDGf04xG691NwuV-S5ilT2uTxZur93yU-__802gxUC2CCjzFAJ3MVKlk_V2x7SbCcV0jOKyT_rFDWXR3pnqz_r3i3KPYx-fCM05pjwhrBfgNxHdVH
CitedBy_id crossref_primary_10_1371_journal_pone_0239890
crossref_primary_10_1016_j_fgb_2020_103485
crossref_primary_10_1038_s41467_020_18795_w
crossref_primary_10_1128_spectrum_04626_22
crossref_primary_10_1002_ece3_7862
crossref_primary_10_1038_s41598_021_87635_8
crossref_primary_10_1021_acs_jafc_4c02218
crossref_primary_10_3390_foods13010066
crossref_primary_10_1111_brv_12605
crossref_primary_10_1093_jambio_lxaf039
crossref_primary_10_1080_15476286_2019_1697548
crossref_primary_10_1016_j_ijbiomac_2024_130610
crossref_primary_10_1128_AEM_00761_19
crossref_primary_10_1534_genetics_119_302749
crossref_primary_10_1371_journal_pone_0236898
crossref_primary_10_3390_ijms21093139
crossref_primary_10_1073_pnas_2217084120
crossref_primary_10_3389_fnut_2023_1197983
crossref_primary_10_3389_fmicb_2021_682356
crossref_primary_10_1016_j_cub_2025_02_025
crossref_primary_10_1038_s41467_019_12085_w
crossref_primary_10_2139_ssrn_4181212
crossref_primary_10_1007_s00253_020_10642_8
crossref_primary_10_3390_jof8020167
crossref_primary_10_1016_j_crfs_2022_09_002
crossref_primary_10_1038_s43705_021_00037_9
crossref_primary_10_3390_microorganisms9122612
crossref_primary_10_1038_s41467_020_16072_4
crossref_primary_10_1111_1462_2920_15273
crossref_primary_10_3390_jof9121143
crossref_primary_10_1128_spectrum_02032_21
crossref_primary_10_1186_s12864_021_07644_9
crossref_primary_10_1186_s12864_021_07648_5
crossref_primary_10_1016_j_csbj_2021_03_016
crossref_primary_10_1093_gbe_evad136
crossref_primary_10_1016_j_fgb_2020_103506
crossref_primary_10_3390_microorganisms9010149
crossref_primary_10_7554_eLife_71348
crossref_primary_10_1016_j_freeradbiomed_2021_04_013
crossref_primary_10_1016_j_fgb_2024_103913
crossref_primary_10_3389_fmicb_2020_00455
crossref_primary_10_1016_j_scienta_2024_112912
crossref_primary_10_3389_ffunb_2022_837605
crossref_primary_10_3390_ijms21051678
crossref_primary_10_1016_j_fochms_2023_100172
crossref_primary_10_1128_msystems_01208_23
crossref_primary_10_1016_j_micres_2024_127929
crossref_primary_10_1111_nph_18407
crossref_primary_10_3390_ijms25021283
crossref_primary_10_1099_mgen_0_000928
crossref_primary_10_1016_j_fbr_2024_100380
crossref_primary_10_1016_j_fgb_2021_103565
crossref_primary_10_1093_nar_gkz1241
crossref_primary_10_1016_j_fbr_2022_07_001
crossref_primary_10_1128_aem_00940_22
crossref_primary_10_1016_j_fbr_2020_07_002
crossref_primary_10_1080_12298093_2022_2116819
crossref_primary_10_3390_ijms242316828
crossref_primary_10_1016_j_jare_2021_09_008
crossref_primary_10_1186_s40694_020_00092_2
crossref_primary_10_1021_acs_jafc_1c02410
crossref_primary_10_1111_1462_2920_15413
crossref_primary_10_1093_jxb_erz547
crossref_primary_10_1111_nph_17892
crossref_primary_10_1016_j_carbpol_2024_121782
crossref_primary_10_1093_g3journal_jkab448
crossref_primary_10_1128_mmbr_00104_22
crossref_primary_10_1007_s00253_023_12480_w
crossref_primary_10_1016_j_fgb_2023_103793
crossref_primary_10_3390_jof8101073
crossref_primary_10_1007_s00203_022_03088_1
crossref_primary_10_1016_j_scienta_2021_110729
crossref_primary_10_3390_ijms20246317
crossref_primary_10_1126_sciadv_adk6130
crossref_primary_10_3114_sim_2022_104_01
crossref_primary_10_1111_nph_16032
crossref_primary_10_3390_molecules25214920
crossref_primary_10_1186_s12915_022_01346_8
crossref_primary_10_3390_jof9090915
crossref_primary_10_3390_jof8010037
crossref_primary_10_3390_molecules25132984
crossref_primary_10_1016_j_lwt_2024_116234
crossref_primary_10_1038_s41598_019_44133_2
crossref_primary_10_1073_pnas_2010761117
crossref_primary_10_1007_s11274_024_04079_8
crossref_primary_10_1016_j_fgb_2020_103432
crossref_primary_10_1093_molbev_msaa077
crossref_primary_10_1128_MMBR_00019_21
crossref_primary_10_3390_life13030764
crossref_primary_10_1007_s12064_022_00363_z
crossref_primary_10_3390_genes12040504
crossref_primary_10_1038_s43705_022_00139_y
crossref_primary_10_3390_jof7080600
crossref_primary_10_1242_dev_192575
crossref_primary_10_1080_1040841X_2019_1630359
crossref_primary_10_1016_j_fgb_2021_103614
crossref_primary_10_1016_j_funbio_2019_12_008
crossref_primary_10_59717_j_xinn_life_2023_100005
Cites_doi 10.1007/s00253-016-7574-9
10.1038/s41559-017-0347-8
10.1371/journal.pone.0122296
10.1038/nrg.2017.21
10.3390/molecules20058144
10.1016/j.fbr.2015.05.001
10.1016/j.foodchem.2017.04.109
10.1186/1471-2164-15-492
10.1007/s00253-014-5690-y
10.1128/AEM.65.2.389-395.1999
10.1146/annurev.phyto.112408.132637
10.1371/journal.ppat.1002706
10.1093/nar/30.7.1575
10.1128/AEM.05581-11
10.1104/pp.106.076679
10.1039/b702155k
10.1073/pnas.0812043106
10.1016/j.bbamcr.2013.05.026
10.1111/brv.12418
10.1093/gbe/evy246
10.5941/MYCO.2011.39.4.243
10.1073/pnas.1003391107
10.1371/journal.pone.0132628
10.1186/s12864-015-1251-8
10.1126/science.1075762
10.1128/MMBR.64.2.316-353.2000
10.1038/srep33640
10.1111/j.1462-2920.2009.02122.x
10.1271/bbb.80213
10.1111/j.1365-2958.2011.07776.x
10.1016/j.fgb.2014.05.011
10.1128/MMBR.00037-06
10.1038/nrmicro.2016.149
10.1016/j.devcel.2005.05.014
10.1038/s41598-017-00483-3
10.3389/fmicb.2015.01278
10.1111/nph.13423
10.1371/journal.ppat.1002700
10.1016/j.gene.2007.01.030
10.1016/S0960-9822(02)00748-0
10.1186/1471-2105-7-191
10.1098/rstb.2012.0003
10.1128/MMBR.00035-14
10.1017/S0953756298007552
10.1074/jbc.M109.076075
10.1007/BF02464324
10.1371/journal.pone.0089813
10.1007/s00253-011-3295-2
10.1016/j.carres.2017.04.012
10.1146/annurev.earth.031208.100209
10.1016/S0953-7562(09)81121-0
10.1186/1471-2164-11-133
10.1038/s41598-017-15112-2
10.1038/nature09016
10.1099/mic.0.000143
10.5604/17331331.1215609
10.1242/dev.015842
10.1093/molbev/mst241
10.1038/nbt.1643
10.1016/j.tig.2007.08.014
10.1093/nar/gkq256
10.1073/pnas.1308173110
10.1371/journal.pone.0141586
10.1139/b91-149
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 9, 2019
Copyright
2019
Copyright_xml – notice: Copyright National Academy of Sciences Apr 9, 2019
– notice: Copyright
– notice: 2019
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1817822116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7418
ExternalDocumentID PMC6462078
1604677
oai_HAL_hal_02587458v1
30902897
10_1073_pnas_1817822116
26701398
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 758161
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 716132
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
UMC
VOOES
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DWIUU
OIOZB
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c504t-8334ec3b0ee75b2e3378b8dcaf8b8dbafba19bbfd83894b13bd45d07782ce7f33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:32:06 EDT 2025
Mon Jul 10 02:32:51 EDT 2023
Fri May 09 12:24:42 EDT 2025
Fri Jul 11 10:43:21 EDT 2025
Mon Jun 30 08:37:03 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 03:40:01 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Thu May 29 13:25:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords evolution
fungi
complex multicellularity
comparative genomics
fruiting body development
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c504t-8334ec3b0ee75b2e3378b8dcaf8b8dbafba19bbfd83894b13bd45d07782ce7f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231; LP2014/12; GINOP-2.3.2-15-2016-00001; 758161; 716132
USDOE Office of Science (SC)
Hungarian Academy of Sciences
European Research Council (ERC)
Author contributions: K.K., D.S.H., and L.G.N. designed research; K.K., É.A., Z.M., N.S., M.V., B.B., J.C., and I.N. performed research; K.B., J.C., B. Henrissat, J.J., A.L., R.A.O., I.N., J.P., J.Y., Y.X., and I.V.G. contributed new reagents/analytic tools; K.K., É.A., Z.M., N.S., M.V., T.K., S.M., B.K., B.B., U.K., B. Hegedüs, B. Henrissat, and L.G.N. analyzed data; and K.K., M.V., U.K., K.B., I.V.G., D.S.H., and L.G.N. wrote the paper.
Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved February 25, 2019 (received for review October 18, 2018)
ORCID 0000-0002-3434-8588
0000-0001-9180-4079
0000-0003-2293-9329
0000-0002-8999-6785
0000-0002-3136-8903
0000000191804079
0000000234348588
OpenAccessLink https://www.osti.gov/servlets/purl/1604677
PMID 30902897
PQID 2221229649
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6462078
osti_scitechconnect_1604677
hal_primary_oai_HAL_hal_02587458v1
proquest_miscellaneous_2196526630
proquest_journals_2221229649
pubmed_primary_30902897
crossref_citationtrail_10_1073_pnas_1817822116
crossref_primary_10_1073_pnas_1817822116
jstor_primary_26701398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-09
PublicationDateYYYYMMDD 2019-04-09
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Cock JM (e_1_3_4_3_2) 2010; 465
Martin F (e_1_3_4_45_2) 2016; 14
Plaza DF (e_1_3_4_13_2) 2014; 15
Ernst J (e_1_3_4_23_2) 2006; 7
Pelkmans JF (e_1_3_4_59_2) 2017; 7
Nagy LG (e_1_3_4_2_2) 2018; 93
Dharmasiri N (e_1_3_4_56_2) 2005; 9
Ohm RA (e_1_3_4_18_2) 2011; 81
Stergiopoulos I (e_1_3_4_46_2) 2009; 47
Xie B-B (e_1_3_4_25_2) 2015; 16
Enright AJ (e_1_3_4_28_2) 2002; 30
Schubert M (e_1_3_4_67_2) 2012; 8
Konno N (e_1_3_4_16_2) 2011; 91
Rytioja J (e_1_3_4_34_2) 2014; 78
Kosti I (e_1_3_4_61_2) 2010; 11
e_1_3_4_5_2
Knoll AH (e_1_3_4_1_2) 2011; 39
Wang L (e_1_3_4_48_2) 2013; 110
Wu B (e_1_3_4_21_2) 2018; 10
Feldman D (e_1_3_4_47_2) 2017; 7
Buser R (e_1_3_4_14_2) 2010; 285
Suga H (e_1_3_4_64_2) 2014; 31
Sebé-Pedrós A (e_1_3_4_4_2) 2017; 18
Kalaras MD (e_1_3_4_6_2) 2017; 233
Zhao Z (e_1_3_4_62_2) 2014; 9
Ohga S (e_1_3_4_15_2) 2000; 41
Lehti-Shiu MD (e_1_3_4_63_2) 2012; 367
Szeto CY (e_1_3_4_32_2) 2007; 393
Sakamoto Y (e_1_3_4_17_2) 2006; 141
Wang B (e_1_3_4_26_2) 2010; 38
Dranginis AM (e_1_3_4_41_2) 2007; 71
Künzler M (e_1_3_4_66_2) 2015; 20
Gehrmann T (e_1_3_4_24_2) 2016; 6
Kersten P (e_1_3_4_33_2) 2014; 72
Garcia K (e_1_3_4_40_2) 2015; 208
Dickens NJ (e_1_3_4_42_2) 2002; 12
Ohm RA (e_1_3_4_8_2) 2010; 28
Temp U (e_1_3_4_37_2) 1999; 65
Kües U (e_1_3_4_9_2) 2000; 64
Van Peer AF (e_1_3_4_11_2) 2009; 12
Bayry J (e_1_3_4_12_2) 2012; 8
Chae E (e_1_3_4_53_2) 2008; 135
Pöggeler S (e_1_3_4_54_2) 2018
Domazet-Lošo T (e_1_3_4_68_2) 2007; 23
Metzger MB (e_1_3_4_52_2) 2014; 1843
Tovar-Herrera OE (e_1_3_4_35_2) 2015; 10
Liu TB (e_1_3_4_50_2) 2011; 39
Lugones LG (e_1_3_4_43_2) 1999; 103
Fukuda K (e_1_3_4_30_2) 2008; 72
Pelkmans JF (e_1_3_4_57_2) 2016; 100
Sipos G (e_1_3_4_20_2) 2017; 1
Stajich JE (e_1_3_4_7_2) 2010; 107
Zhou Y (e_1_3_4_31_2) 2015; 161
Kües U (e_1_3_4_10_2) 2015; 29
Ji J (e_1_3_4_39_2) 1993; 97
Muraguchi H (e_1_3_4_58_2) 2015; 10
Pellegrin C (e_1_3_4_49_2) 2015; 6
Manning G (e_1_3_4_60_2) 2002; 298
Lu BC (e_1_3_4_55_2) 1991; 69
Corrochano LM (e_1_3_4_19_2) 2007; 6
Gaderer R (e_1_3_4_44_2) 2014; 98
Xu G (e_1_3_4_51_2) 2009; 106
Lenfant N (e_1_3_4_36_2) 2017; 448
Sakamoto Y (e_1_3_4_29_2) 2011; 77
Osińska-Jaroszuk M (e_1_3_4_38_2) 2016; 65
Clémencon H (e_1_3_4_22_2) 2012
Gordon SP (e_1_3_4_27_2) 2015; 10
Shiu SH (e_1_3_4_65_2) 2001; 2001
References_xml – volume: 100
  start-page: 7151
  year: 2016
  ident: e_1_3_4_57_2
  article-title: The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7574-9
– volume: 1
  start-page: 1931
  year: 2017
  ident: e_1_3_4_20_2
  article-title: Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-017-0347-8
– volume: 10
  start-page: e0122296
  year: 2015
  ident: e_1_3_4_35_2
  article-title: A novel expansin protein from the white-rot fungus Schizophyllum commune
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122296
– volume: 18
  start-page: 498
  year: 2017
  ident: e_1_3_4_4_2
  article-title: The origin of Metazoa: A unicellular perspective
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2017.21
– volume: 20
  start-page: 8144
  year: 2015
  ident: e_1_3_4_66_2
  article-title: Hitting the sweet spot-glycans as targets of fungal defense effector proteins
  publication-title: Molecules
  doi: 10.3390/molecules20058144
– volume: 29
  start-page: 63
  year: 2015
  ident: e_1_3_4_10_2
  article-title: How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development
  publication-title: Fungal Biol Rev
  doi: 10.1016/j.fbr.2015.05.001
– volume: 233
  start-page: 429
  year: 2017
  ident: e_1_3_4_6_2
  article-title: Mushrooms: A rich source of the antioxidants ergothioneine and glutathione
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2017.04.109
– volume: 15
  start-page: 492
  year: 2014
  ident: e_1_3_4_13_2
  article-title: Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-492
– volume: 98
  start-page: 4795
  year: 2014
  ident: e_1_3_4_44_2
  article-title: Cerato-platanins: A fungal protein family with intriguing properties and application potential
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-014-5690-y
– volume: 2001
  start-page: re22
  year: 2001
  ident: e_1_3_4_65_2
  article-title: Plant receptor-like kinase gene family: Diversity, function, and signaling
  publication-title: Sci Signaling
– volume: 65
  start-page: 389
  year: 1999
  ident: e_1_3_4_37_2
  article-title: Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.2.389-395.1999
– start-page: 1
  volume-title: Physiology and Genetics
  year: 2018
  ident: e_1_3_4_54_2
– volume: 47
  start-page: 233
  year: 2009
  ident: e_1_3_4_46_2
  article-title: Fungal effector proteins
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.phyto.112408.132637
– volume: 8
  start-page: e1002706
  year: 2012
  ident: e_1_3_4_67_2
  article-title: Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002706
– volume: 30
  start-page: 1575
  year: 2002
  ident: e_1_3_4_28_2
  article-title: An efficient algorithm for large-scale detection of protein families
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.7.1575
– volume: 77
  start-page: 8350
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Endo-β-1,3-Glucanase GLU1, from the fruiting body of Lentinula edodes, belongs to a new glycoside hydrolase family
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.05581-11
– volume: 141
  start-page: 793
  year: 2006
  ident: e_1_3_4_17_2
  article-title: Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.076679
– volume: 6
  start-page: 725
  year: 2007
  ident: e_1_3_4_19_2
  article-title: Fungal photoreceptors: Sensory molecules for fungal development and behaviour
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/b702155k
– volume: 106
  start-page: 835
  year: 2009
  ident: e_1_3_4_51_2
  article-title: Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0812043106
– volume: 1843
  start-page: 47
  year: 2014
  ident: e_1_3_4_52_2
  article-title: RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination
  publication-title: Biochim Biophys Acta-Mol Cel Res
  doi: 10.1016/j.bbamcr.2013.05.026
– volume: 93
  start-page: 1778
  year: 2018
  ident: e_1_3_4_2_2
  article-title: Complex multicellularity in fungi: Evolutionary convergence, single origin, or both?
  publication-title: Biol Rev
  doi: 10.1111/brv.12418
– volume: 10
  start-page: 3250
  year: 2018
  ident: e_1_3_4_21_2
  article-title: Genomics and development of Lentinus tigrinus: A white-rot wood-decaying mushroom with dimorphic fruiting bodies
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evy246
– volume: 39
  start-page: 243
  year: 2011
  ident: e_1_3_4_50_2
  article-title: The ubiquitin-proteasome system and F-box proteins in pathogenic fungi
  publication-title: Mycobiology
  doi: 10.5941/MYCO.2011.39.4.243
– volume: 107
  start-page: 11889
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1003391107
– volume: 10
  start-page: e0132628
  year: 2015
  ident: e_1_3_4_27_2
  article-title: Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132628
– ident: e_1_3_4_5_2
– volume: 16
  start-page: 54
  year: 2015
  ident: e_1_3_4_25_2
  article-title: Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1251-8
– volume: 298
  start-page: 1912
  year: 2002
  ident: e_1_3_4_60_2
  article-title: The protein kinase complement of the human genome
  publication-title: Science
  doi: 10.1126/science.1075762
– volume: 64
  start-page: 316
  year: 2000
  ident: e_1_3_4_9_2
  article-title: Life history and developmental processes in the basidiomycete Coprinus cinereus
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.64.2.316-353.2000
– volume-title: Cytology and Plectology of the Hymenomycetes with 12 Tables
  year: 2012
  ident: e_1_3_4_22_2
– volume: 6
  start-page: 33640
  year: 2016
  ident: e_1_3_4_24_2
  article-title: Schizophyllum commune has an extensive and functional alternative splicing repertoire
  publication-title: Sci Rep
  doi: 10.1038/srep33640
– volume: 12
  start-page: 833
  year: 2009
  ident: e_1_3_4_11_2
  article-title: The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.02122.x
– volume: 72
  start-page: 3107
  year: 2008
  ident: e_1_3_4_30_2
  article-title: Purification and characterization of a novel exo-beta-1,3-1,6-glucanase from the fruiting body of the edible mushroom Enoki (Flammulina velutipes)
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.80213
– volume: 81
  start-page: 1433
  year: 2011
  ident: e_1_3_4_18_2
  article-title: Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07776.x
– volume: 72
  start-page: 124
  year: 2014
  ident: e_1_3_4_33_2
  article-title: Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2014.05.011
– volume: 71
  start-page: 282
  year: 2007
  ident: e_1_3_4_41_2
  article-title: A biochemical guide to yeast adhesins: Glycoproteins for social and antisocial occasions
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00037-06
– volume: 14
  start-page: 760
  year: 2016
  ident: e_1_3_4_45_2
  article-title: Unearthing the roots of ectomycorrhizal symbioses
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.149
– volume: 9
  start-page: 109
  year: 2005
  ident: e_1_3_4_56_2
  article-title: Plant development is regulated by a family of auxin receptor F box proteins
  publication-title: Dev Cel
  doi: 10.1016/j.devcel.2005.05.014
– volume: 7
  start-page: 310
  year: 2017
  ident: e_1_3_4_59_2
  article-title: Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-00483-3
– volume: 6
  start-page: 1278
  year: 2015
  ident: e_1_3_4_49_2
  article-title: Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.01278
– volume: 208
  start-page: 79
  year: 2015
  ident: e_1_3_4_40_2
  article-title: Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses
  publication-title: New Phytol
  doi: 10.1111/nph.13423
– volume: 8
  start-page: e1002700
  year: 2012
  ident: e_1_3_4_12_2
  article-title: Hydrophobins-unique fungal proteins
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002700
– volume: 393
  start-page: 87
  year: 2007
  ident: e_1_3_4_32_2
  article-title: Le.MAPK and its interacting partner, Le.DRMIP, in fruiting body development in Lentinula edodes
  publication-title: Gene
  doi: 10.1016/j.gene.2007.01.030
– volume: 12
  start-page: R197
  year: 2002
  ident: e_1_3_4_42_2
  article-title: Cadherin-like domains in α-dystroglycan, α/ξ-sarcoglycan and yeast and bacterial proteins
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00748-0
– volume: 7
  start-page: 191
  year: 2006
  ident: e_1_3_4_23_2
  article-title: STEM: A tool for the analysis of short time series gene expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-191
– volume: 367
  start-page: 2619
  year: 2012
  ident: e_1_3_4_63_2
  article-title: Diversity, classification and function of the plant protein kinase superfamily
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2012.0003
– volume: 78
  start-page: 614
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Plant-polysaccharide-degrading enzymes from basidiomycetes
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00035-14
– volume: 103
  start-page: 635
  year: 1999
  ident: e_1_3_4_43_2
  article-title: Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus
  publication-title: Mycol Res
  doi: 10.1017/S0953756298007552
– volume: 285
  start-page: 10715
  year: 2010
  ident: e_1_3_4_14_2
  article-title: Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.076075
– volume: 41
  start-page: 149
  year: 2000
  ident: e_1_3_4_15_2
  article-title: Transcriptional regulation of laccase and cellulase in relation to fruit body formation in the mycelium of Lentinula edodes on a sawdust-based substrate
  publication-title: Mycoscience
  doi: 10.1007/BF02464324
– volume: 9
  start-page: e89813
  year: 2014
  ident: e_1_3_4_62_2
  article-title: Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089813
– volume: 91
  start-page: 1365
  year: 2011
  ident: e_1_3_4_16_2
  article-title: An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3295-2
– volume: 448
  start-page: 166
  year: 2017
  ident: e_1_3_4_36_2
  article-title: A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9
  publication-title: Carbohydr Res
  doi: 10.1016/j.carres.2017.04.012
– volume: 39
  start-page: 217
  year: 2011
  ident: e_1_3_4_1_2
  article-title: The multiple origins of complex multicellularity
  publication-title: Earth Planet Sci
  doi: 10.1146/annurev.earth.031208.100209
– volume: 97
  start-page: 283
  year: 1993
  ident: e_1_3_4_39_2
  article-title: Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus
  publication-title: Mycol Res
  doi: 10.1016/S0953-7562(09)81121-0
– volume: 11
  start-page: 133
  year: 2010
  ident: e_1_3_4_61_2
  article-title: Comparative analysis of fungal protein kinases and associated domains
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-133
– volume: 7
  start-page: 14553
  year: 2017
  ident: e_1_3_4_47_2
  article-title: A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15112-2
– volume: 465
  start-page: 617
  year: 2010
  ident: e_1_3_4_3_2
  article-title: The Ectocarpus genome and the independent evolution of multicellularity in brown algae
  publication-title: Nature
  doi: 10.1038/nature09016
– volume: 161
  start-page: 1978
  year: 2015
  ident: e_1_3_4_31_2
  article-title: Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies
  publication-title: Microbiol
  doi: 10.1099/mic.0.000143
– volume: 65
  start-page: 295
  year: 2016
  ident: e_1_3_4_38_2
  article-title: Complex biochemical analysis of fruiting bodies from newly isolated Polish Flammulina velutipes strains
  publication-title: Polish J Microbiol
  doi: 10.5604/17331331.1215609
– volume: 135
  start-page: 1235
  year: 2008
  ident: e_1_3_4_53_2
  article-title: An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development
  publication-title: Development
  doi: 10.1242/dev.015842
– volume: 31
  start-page: 517
  year: 2014
  ident: e_1_3_4_64_2
  article-title: Earliest Holozoan expansion of phosphotyrosine signaling
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst241
– volume: 28
  start-page: 957
  year: 2010
  ident: e_1_3_4_8_2
  article-title: Genome sequence of the model mushroom Schizophyllum commune
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1643
– volume: 23
  start-page: 533
  year: 2007
  ident: e_1_3_4_68_2
  article-title: A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.08.014
– volume: 38
  start-page: 5075
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq256
– volume: 110
  start-page: 11571
  year: 2013
  ident: e_1_3_4_48_2
  article-title: Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1308173110
– volume: 10
  start-page: e0141586
  year: 2015
  ident: e_1_3_4_58_2
  article-title: Strand-specific RNA-seq analyses of fruiting body development in Coprinopsis cinerea
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141586
– volume: 69
  start-page: 1161
  year: 1991
  ident: e_1_3_4_55_2
  article-title: Cell degeneration and gill remodelling during basidiocarp development in the fungus Coprinus cinereus
  publication-title: Can J Bot
  doi: 10.1139/b91-149
SSID ssj0009580
Score 2.5860555
Snippet The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of...
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple mul-ticellular aggregates of...
Complex multicellularity is a major evolutionary innovation in the history of life. Mushroom-forming fungi (Agaricomycetes) represent one of the most diverse...
SourceID pubmedcentral
osti
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7409
SubjectTerms Agaricales - genetics
Agaricales - growth & development
Agaricomycetes
Algae
Animals
BASIC BIOLOGICAL SCIENCES
Biodegradation
Biological evolution
Biological Sciences
Cell walls
comparative genetics
complex multicellularity
Convergence
Databases, Nucleic Acid
evolution
Evolutionary genetics
Fruit bodies
Fruiting Bodies, Fungal - genetics
Fruiting Bodies, Fungal - growth & development
fruiting body development
Functional groups
Fungal Proteins - biosynthesis
Fungal Proteins - genetics
Fungi
Gene Expression Regulation, Fungal - physiology
Gene families
Genes
Genes, Fungal
Genomes
Kinases
Life Sciences
Mushrooms
PNAS Plus
Protein kinase
Proteins
Signal transduction
Thallus
Transcription factors
Transcriptome - physiology
Transduction
Vegetal Biology
Title Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi
URI https://www.jstor.org/stable/26701398
https://www.ncbi.nlm.nih.gov/pubmed/30902897
https://www.proquest.com/docview/2221229649
https://www.proquest.com/docview/2196526630
https://amu.hal.science/hal-02587458
https://www.osti.gov/servlets/purl/1604677
https://pubmed.ncbi.nlm.nih.gov/PMC6462078
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6ceGCGDAIG8ggDkNVShKncXKsEFAhVk1ikyYuUew6a6U2nZa0gv6R_E28Z8dpWjYEXNI2dp3E78t7n5P3g5A3HhcJE_3IlcpP3DAKfDcbJ7kLtoSLIJQ5CzDe-XQUDS_Cz5f9y07nZ8traVmJnlzfGlfyP1KFfSBXjJL9B8k2g8IO-A7yhS1IGLZ_J2M0NPq2x9jiblbNMu2ZMV-WE2TENiRKv_DHXE2YK1mi__TNCojmFeo5DNSfmti265n6bjwM8XE--qciRZ8WXTB-V9M2jT1rzF5pnQxG9qniYBOjUiuOsut2z0abisegWNalfkPvF1bRrKu6jrdG32xumkvta4Df42TVNJ_a9_vFD93-DWa58d75mk2WGuJqkrUfafj67Yy3UZx_OuG2Lg_AvoYmArunjPoG9uNGoSlA2uh3E8xpgdxvqWse1odV9U9jC34zK6AHsRZykZU9YERIquyg27m6g4gjpY73yL0Ali1YUePTpd9KAh2bkKj6zG2qKc7e7Yy9xZL2Juija9xlgTksQPffth7adett8aTzh-RBvcChA4PWA9JRxSNyYCeWntR5zt8-JvNt-FINX7rIqYUvbcGX1vClDXyphi818KU1fOkufOm0oBq-T8jFxw_n74duXf3DlX0vrNyYsVBJJjyleF8EijEei3gssxw_RJaLzE-EyMcxcO5Q-EyMw_7Y4zCDUvGcsUOyXywK9YzQxAMjrjzoFIxDT8qEyRiGkXkW8YQnkUN6drZTWafGxwots1S7aHCWonjSjXgcctL84dpkhbm762sQX9MLs7kPB19S3AfLDSw2Ea98hxxq6TbdLJAccoTiToEOY05nic5vskr9yAOCwx1ybFGQ1mqpTIHw-wE6UyQOedU0g9HAuc8KtVhCH8wjCtSceQ55akDTHJqhp3acwOB8C05bl7DdUkwnOjF9BLoelhzP77qaI3J_c7sfk_3qZqleAKevxEt9o_wCs_T62A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+atlas+of+mushroom+development+reveals+conserved+genes+behind+complex+multicellularity+in+fungi&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Krizs%C3%A1n%2C+Krisztina&rft.au=Alm%C3%A1si%2C+%C3%89va&rft.au=Mer%C3%A9nyi%2C+Zsolt&rft.au=Sahu%2C+Neha&rft.date=2019-04-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=15&rft.spage=7409&rft.epage=7418&rft_id=info:doi/10.1073%2Fpnas.1817822116&rft.externalDocID=26701398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon