Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms
[Display omitted] •VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanism...
Saved in:
Published in | Bioresource technology Vol. 245; no. Pt A; pp. 606 - 614 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanisms.
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg−1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal. |
---|---|
AbstractList | [Display omitted]
•VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanisms.
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg−1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal. Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg⁻¹. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal. Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg-1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg-1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal. Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg . The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal. |
Author | Zheng, Yulin Creamer, Anne Elise Annable, Michael D. Zhang, Xueyang Gao, Bin Li, Yuncong Hu, Xin |
Author_xml | – sequence: 1 givenname: Xueyang surname: Zhang fullname: Zhang, Xueyang organization: School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, PR China – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA – sequence: 3 givenname: Yulin surname: Zheng fullname: Zheng, Yulin organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA – sequence: 4 givenname: Xin surname: Hu fullname: Hu, Xin organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Material Analysis, 20 Hankou Road, Nanjing University, Nanjing 210093, PR China – sequence: 5 givenname: Anne Elise surname: Creamer fullname: Creamer, Anne Elise organization: School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, PR China – sequence: 6 givenname: Michael D. surname: Annable fullname: Annable, Michael D. organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA – sequence: 7 givenname: Yuncong surname: Li fullname: Li, Yuncong organization: Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28910648$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAUhC1URLeFv1D5WA4Jz07i2IgDsAKKVKmHFq6W47xsvUrsYGdX4t_j1bYcetnTu3wzmjdzQc588EjIFYOSARMftmXnQlzQPpYcWFuCKoE3r8iKybYquGrFGVmBElDIhtfn5CKlLQBUrOVvyDmXioGo5Yp0X12wjybSIUS6D6NZ3Ig0xI3xzlIbpjnsfE-vf9-t39OIU9ib8SO9D3FeXPB0xpiFk_EWqcncJuwxeuc3dMrRskea0lvyejBjwndP95L8-v7tYX1T3N79-Ln-clvYBuqlkExZpVRtDXS1aIyoQLCuN6ZuQVqUbGglMGSmE4McbM0lVPk3WbXNwJnA6pJcH33nGP7sMC16csniOBqPYZc0z_83irWyPokyJWqRw4DM6NUTuusm7PUc3WTiX_1cYQbEEbAxpBRx-I8w0Iet9FY_b6UPW2lQOm-VhZ9eCK1bzKHWJRo3npZ_Psoxd7p3GHWyDvMQvYtoF90Hd8riH2Pss9E |
CitedBy_id | crossref_primary_10_1016_j_biortech_2023_130085 crossref_primary_10_1016_j_jclepro_2020_120832 crossref_primary_10_1016_j_buildenv_2024_111716 crossref_primary_10_1016_j_scitotenv_2022_155193 crossref_primary_10_1016_j_jenvman_2021_113468 crossref_primary_10_1016_j_scitotenv_2023_166813 crossref_primary_10_1016_j_ecoleng_2020_105882 crossref_primary_10_1016_j_cej_2018_02_027 crossref_primary_10_1098_rsos_211544 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_2139_ssrn_4045866 crossref_primary_10_3390_su15032527 crossref_primary_10_1016_j_jhazmat_2019_121317 crossref_primary_10_1016_j_jenvman_2023_119205 crossref_primary_10_1007_s13399_023_03864_z crossref_primary_10_1016_j_scitotenv_2019_01_005 crossref_primary_10_1016_j_biteb_2023_101519 crossref_primary_10_1007_s10668_024_04760_w crossref_primary_10_1021_acs_est_9b01159 crossref_primary_10_1016_j_heliyon_2024_e29993 crossref_primary_10_1007_s42773_022_00198_3 crossref_primary_10_1016_j_cej_2022_139436 crossref_primary_10_1007_s13399_022_02439_8 crossref_primary_10_1016_j_seppur_2024_128378 crossref_primary_10_1016_j_ijhydene_2023_04_188 crossref_primary_10_1016_j_cdc_2020_100607 crossref_primary_10_3390_ma16010389 crossref_primary_10_1016_j_colcom_2020_100275 crossref_primary_10_1016_j_jhazmat_2019_121671 crossref_primary_10_3390_buildings15020230 crossref_primary_10_1016_j_jhazmat_2020_123540 crossref_primary_10_1016_j_eti_2021_101616 crossref_primary_10_1016_j_chemosphere_2020_127054 crossref_primary_10_3390_agriculture14081246 crossref_primary_10_1016_j_buildenv_2019_106499 crossref_primary_10_1080_15567036_2019_1666191 crossref_primary_10_1016_j_chemosphere_2020_127057 crossref_primary_10_1007_s12517_018_3790_1 crossref_primary_10_3846_jeelm_2022_17412 crossref_primary_10_1007_s42773_019_00007_4 crossref_primary_10_1016_j_cej_2020_125391 crossref_primary_10_1016_j_chemosphere_2021_131288 crossref_primary_10_1016_j_chemosphere_2018_11_144 crossref_primary_10_1002_eem2_12074 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1016_j_jhazmat_2021_125753 crossref_primary_10_3390_agronomy14050952 crossref_primary_10_1002_agj2_20540 crossref_primary_10_1016_j_jece_2019_103271 crossref_primary_10_1016_j_chemosphere_2019_125344 crossref_primary_10_1016_j_fuel_2022_126801 crossref_primary_10_1016_j_cej_2019_123843 crossref_primary_10_1016_j_jece_2021_105799 crossref_primary_10_1039_D4NJ05408C crossref_primary_10_1016_j_cej_2019_123842 crossref_primary_10_3390_molecules29235677 crossref_primary_10_1016_j_jhazmat_2019_05_098 crossref_primary_10_1016_j_biteb_2025_102062 crossref_primary_10_3390_ijms241310868 crossref_primary_10_1016_j_cscee_2022_100248 crossref_primary_10_1016_j_biortech_2022_127274 crossref_primary_10_1016_j_wasman_2022_06_009 crossref_primary_10_1016_j_envres_2020_109956 crossref_primary_10_1016_j_jece_2023_111046 crossref_primary_10_1007_s11356_022_24628_8 crossref_primary_10_4491_eer_2023_511 crossref_primary_10_1016_j_biteb_2021_100728 crossref_primary_10_1155_2024_1537588 crossref_primary_10_1016_j_kjs_2024_100332 crossref_primary_10_1016_j_psep_2023_10_029 crossref_primary_10_1007_s42729_024_01810_0 crossref_primary_10_1016_j_cclet_2021_05_074 crossref_primary_10_1016_j_chemosphere_2020_128991 crossref_primary_10_1007_s11356_023_29087_3 crossref_primary_10_1007_s11356_019_04190_6 crossref_primary_10_1016_j_cej_2022_138027 crossref_primary_10_1039_D3EN00443K crossref_primary_10_1016_j_cej_2019_123943 crossref_primary_10_1039_D1EN00929J crossref_primary_10_1007_s11869_025_01692_w crossref_primary_10_1080_15421406_2020_1829309 crossref_primary_10_3390_catal11080958 crossref_primary_10_1016_j_scitotenv_2021_150444 crossref_primary_10_1016_j_jece_2023_111263 crossref_primary_10_1016_j_jhazmat_2020_124676 crossref_primary_10_1080_26395940_2019_1607779 crossref_primary_10_1016_j_biortech_2019_122705 crossref_primary_10_1007_s40518_018_0116_6 crossref_primary_10_1007_s42773_022_00156_z crossref_primary_10_1016_j_jclepro_2022_130575 crossref_primary_10_1016_j_conbuildmat_2023_134322 crossref_primary_10_3390_ijerph191912405 crossref_primary_10_1016_j_psep_2023_10_048 crossref_primary_10_1007_s40725_023_00200_6 crossref_primary_10_1016_j_jphotochem_2023_115259 crossref_primary_10_1007_s11356_024_32907_9 crossref_primary_10_1016_j_micromeso_2020_110190 crossref_primary_10_1002_jssc_70074 crossref_primary_10_1016_j_pecs_2023_101098 crossref_primary_10_1016_j_biortech_2019_03_025 crossref_primary_10_1038_s41598_022_08591_5 crossref_primary_10_1016_j_biortech_2019_03_149 crossref_primary_10_1016_j_cej_2018_09_104 crossref_primary_10_1016_j_chemosphere_2019_01_161 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1051_e3sconf_201912503015 crossref_primary_10_1016_j_jes_2022_02_006 crossref_primary_10_5004_dwt_2021_27226 crossref_primary_10_1071_EN22014 crossref_primary_10_3390_jcs8040132 crossref_primary_10_1016_j_psep_2023_11_071 crossref_primary_10_1016_j_jclepro_2019_117940 crossref_primary_10_1016_j_envres_2023_115364 crossref_primary_10_1007_s11356_021_17158_2 crossref_primary_10_1016_j_conbuildmat_2019_06_215 crossref_primary_10_1039_D3DT01930F crossref_primary_10_1016_j_biortech_2021_125453 crossref_primary_10_1016_j_cej_2022_138059 crossref_primary_10_1016_j_wasman_2020_02_022 crossref_primary_10_1016_j_envpol_2022_120721 crossref_primary_10_3390_coatings14030270 crossref_primary_10_1016_j_ijbiomac_2024_138865 crossref_primary_10_1016_j_hazadv_2023_100300 crossref_primary_10_1016_j_scitotenv_2024_173910 crossref_primary_10_1016_j_indcrop_2024_119160 crossref_primary_10_1016_j_wasman_2022_10_037 crossref_primary_10_1007_s13762_019_02219_4 crossref_primary_10_1088_1748_9326_ad1ad2 crossref_primary_10_1016_j_cej_2023_141979 crossref_primary_10_1016_j_jenvman_2019_04_012 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1016_j_fuel_2023_128306 crossref_primary_10_1038_s41598_019_47100_z crossref_primary_10_3390_w17010058 crossref_primary_10_1016_j_scitotenv_2020_136832 crossref_primary_10_1016_j_scitotenv_2022_157316 crossref_primary_10_1007_s42773_022_00171_0 crossref_primary_10_1007_s42823_024_00766_6 crossref_primary_10_1016_j_jwpe_2024_106713 crossref_primary_10_1007_s11356_018_3798_9 crossref_primary_10_1016_j_biortech_2019_122469 crossref_primary_10_17341_gazimmfd_686415 crossref_primary_10_3390_catal8050211 crossref_primary_10_1016_j_chemosphere_2022_136610 crossref_primary_10_1016_j_seppur_2023_125453 crossref_primary_10_1016_j_scitotenv_2021_147121 crossref_primary_10_1016_j_indcrop_2024_119860 crossref_primary_10_3390_su152014723 crossref_primary_10_1016_j_seppur_2019_116213 crossref_primary_10_1007_s13399_023_03744_6 crossref_primary_10_1016_j_biortech_2022_126831 crossref_primary_10_1007_s42823_020_00184_4 crossref_primary_10_1016_j_jwpe_2021_102534 crossref_primary_10_3390_ma14071644 crossref_primary_10_1007_s42773_022_00195_6 crossref_primary_10_1016_j_fuel_2020_118792 crossref_primary_10_1002_jctb_7418 crossref_primary_10_1016_j_jhazmat_2020_124138 crossref_primary_10_1016_j_apsusc_2020_145697 crossref_primary_10_3389_fenvs_2023_1252926 crossref_primary_10_1016_j_scitotenv_2020_141277 crossref_primary_10_1080_09593330_2021_2003438 crossref_primary_10_1016_j_renene_2019_07_167 crossref_primary_10_1039_D0NR00234H crossref_primary_10_1016_j_cej_2019_01_036 crossref_primary_10_1016_j_psep_2024_10_026 crossref_primary_10_1016_j_cej_2018_10_193 crossref_primary_10_1016_j_chemosphere_2021_132113 crossref_primary_10_1016_j_nanoen_2024_109965 crossref_primary_10_1021_acsanm_8b00388 crossref_primary_10_1007_s11356_021_12796_y crossref_primary_10_1016_j_jwpe_2025_107338 crossref_primary_10_1016_j_jece_2024_115198 crossref_primary_10_1016_j_colsurfa_2021_127600 crossref_primary_10_1039_D0RA02225J crossref_primary_10_1186_s12870_024_04789_z crossref_primary_10_1016_j_jclepro_2024_143742 crossref_primary_10_3390_ma16196413 crossref_primary_10_1016_j_applthermaleng_2024_123972 crossref_primary_10_1007_s11696_019_00938_z crossref_primary_10_1016_j_scitotenv_2022_153996 crossref_primary_10_1016_j_jenvman_2018_11_054 crossref_primary_10_1115_1_4055182 crossref_primary_10_1016_j_seppur_2022_121295 crossref_primary_10_1080_03067319_2023_2278084 crossref_primary_10_3390_atmos11111179 crossref_primary_10_3390_agronomy13071725 crossref_primary_10_1016_j_envpol_2023_122451 crossref_primary_10_1016_j_chemosphere_2020_129310 crossref_primary_10_1016_j_ccr_2020_213738 crossref_primary_10_1021_acs_est_4c03365 crossref_primary_10_1039_D4EN00292J crossref_primary_10_1039_C8RA08605B crossref_primary_10_1007_s42773_022_00147_0 crossref_primary_10_2139_ssrn_3975253 crossref_primary_10_3390_agriculture13040805 crossref_primary_10_5004_dwt_2018_21737 crossref_primary_10_1016_j_jhazmat_2020_123995 crossref_primary_10_1016_j_biortech_2019_121584 crossref_primary_10_1016_j_biortech_2021_125881 crossref_primary_10_1016_j_cej_2025_159345 crossref_primary_10_1016_j_jece_2024_112148 crossref_primary_10_1016_j_fuel_2021_122510 crossref_primary_10_1007_s11869_023_01326_z crossref_primary_10_1016_j_scitotenv_2020_142249 crossref_primary_10_1016_j_chemosphere_2019_125664 crossref_primary_10_1016_j_cej_2021_134463 crossref_primary_10_1016_j_chemosphere_2022_134488 crossref_primary_10_3390_app9030515 |
Cites_doi | 10.1080/10643389.2015.1096880 10.1016/j.ces.2016.06.008 10.1021/es3000195 10.1021/es803092k 10.1016/j.cej.2016.07.048 10.1016/j.cej.2014.03.105 10.1016/j.chemosphere.2015.08.042 10.1016/j.jhazmat.2015.08.040 10.1016/j.biortech.2013.11.021 10.1016/j.rser.2014.10.074 10.1016/j.chemosphere.2016.08.133 10.1016/j.biortech.2012.06.031 10.1007/s11244-011-9747-1 10.1016/j.jiec.2016.03.048 10.1016/j.jhazmat.2015.09.002 10.1021/jf102152q 10.1016/j.jhazmat.2012.01.046 10.1016/j.cej.2013.12.062 10.1016/j.chemosphere.2015.09.055 10.1016/j.cej.2013.10.081 10.1016/j.carbon.2004.07.008 10.1016/j.cej.2015.08.037 10.1016/j.cattod.2015.10.040 10.1016/j.micromeso.2011.11.005 10.1061/(ASCE)0733-9372(2004)130:3(258) 10.1016/j.biotechadv.2016.06.007 10.1021/es404667f 10.1016/j.jhazmat.2017.05.013 10.1021/es8002684 10.1016/j.chemosphere.2016.10.083 10.1016/j.biortech.2012.05.042 10.1016/j.chemosphere.2013.10.071 10.1016/j.biotechadv.2010.04.002 10.1021/la990976t 10.1016/j.biortech.2015.08.132 10.1016/j.biortech.2014.01.120 10.1016/j.biortech.2013.08.135 10.1007/s11814-010-0079-9 10.1021/ie00098a017 10.1016/j.biortech.2017.03.009 10.1021/es071361i 10.1016/j.jhazmat.2011.05.069 10.1038/447143a 10.1021/acs.est.5b05004 10.1016/j.jtice.2016.03.021 10.1016/j.jhazmat.2007.09.095 10.1039/C6RA01644H |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.09.025 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 614 |
ExternalDocumentID | 28910648 10_1016_j_biortech_2017_09_025 S0960852417315730 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-819c9994ca0b465a63061bdaa4708ce81f7801e1ab6f8fc428038528375f216e3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 02 04:56:27 EDT 2025 Thu Aug 07 15:09:05 EDT 2025 Wed Feb 19 02:42:25 EST 2025 Thu Apr 24 22:53:01 EDT 2025 Thu Jul 03 08:20:33 EDT 2025 Sat Nov 02 16:01:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Partition Air pollution Volatile organic compound Adsorption Biochar |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-819c9994ca0b465a63061bdaa4708ce81f7801e1ab6f8fc428038528375f216e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28910648 |
PQID | 1964699908 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000591784 proquest_miscellaneous_1964699908 pubmed_primary_28910648 crossref_primary_10_1016_j_biortech_2017_09_025 crossref_citationtrail_10_1016_j_biortech_2017_09_025 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_09_025 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ahmad, Rajapaksha, Lim (b0015) 2014; 99 Wang, Gao, Li (b0195) 2016; 37 Gaunt, Lehmann (b0070) 2008; 42 Cheng, He, Yang (b0040) 2016; 34 Grant, King (b0075) 1990; 29 Creamer, Gao, Zhang (b0050) 2014; 249 Ladavos, Katsoulidis, Iosifidis (b0110) 2012; 151 Ojala, Pitkäaho, Laitinen (b0145) 2011; 54 Yang, Chen, Zeng (b0215) 2010; 28 Zhou, Gao, Zimmerman (b0250) 2014; 152 Zhang, Jiang, Shangguan (b0240) 2016; 264 Chen, Zhou, Zhu (b0030) 2008; 42 Fang, Gao, Zimmerman (b0060) 2016; 6 Wang, Gao, Wang (b0190) 2015; 197 Guo, Huang, Xue (b0080) 2016; 306 Zhang, Gao, Creamer (b0235) 2017; 338 Gangupomu, Sattler, Ramirez (b0065) 2016; 302 Lee, Park, Ryu (b0120) 2013; 148 Yao, Gao, Chen (b0220) 2012; 209 Son, Sivakumar, Rood (b0165) 2016; 301 Abe, Kawashima, Kozawa (b0005) 2000; 16 Cao, Ma, Gao (b0025) 2009; 43 Hariz, del Rio Sanz, Mercier (b0085) 2017; 157 Tefera, Hashisho, Philips (b0180) 2014; 48 Xue, Gao, Wan (b0210) 2016; 63 Kupryianchyk, Hale, Zimmerman (b0105) 2016; 144 Wang, Han, Sun (b0200) 2016; 144 Das, Gaur, Verma (b0055) 2004; 42 Chen, Yang, Zeng (b0035) 2012; 121 Opatokun, Prabhu, Al Shoaibi (b0150) 2017; 168 Ahmad, Lee, Dou (b0010) 2012; 118 Inyang, Gao, Yao (b0090) 2016; 46 Sullivan, Rood, Dombrowski (b0170) 2004; 130 ASTM. 2011. Standard test method for volatile matter in the analysis sample of coal and coke. In: D3175-11. Lehmann (b0125) 2007; 447 Lashaki, Fayaz, Wang (b0115) 2012; 46 Oh, Park, Kim (b0140) 2010; 27 Sun, Gao, Yao (b0175) 2014; 240 Creamer, Gao, Wang (b0045) 2016; 283 Shih, Li (b0160) 2008; 154 Kanjanarong, Giri, Jaisi (b0100) 2017; 234 Zhao, Cao, Mašek (b0245) 2013; 256–257 Uchimiya, Wartelle, Lima (b0185) 2010; 58 Johnsen, Emamipour, Guest (b0095) 2016; 50 Yao, Gao, Fang (b0225) 2014; 242 Qian, Kumar, Zhang (b0155) 2015; 42 Wu, He, Inthapanya (b0205) 2017 Li, Liu, Liu (b0130) 2011; 192 Yu, Sun, Zhou (b0230) 2016; 165 Mohan, Sarswat, Ok (b0135) 2014; 160 Chen (10.1016/j.biortech.2017.09.025_b0030) 2008; 42 Gangupomu (10.1016/j.biortech.2017.09.025_b0065) 2016; 302 Li (10.1016/j.biortech.2017.09.025_b0130) 2011; 192 Ahmad (10.1016/j.biortech.2017.09.025_b0015) 2014; 99 Creamer (10.1016/j.biortech.2017.09.025_b0045) 2016; 283 Hariz (10.1016/j.biortech.2017.09.025_b0085) 2017; 157 Tefera (10.1016/j.biortech.2017.09.025_b0180) 2014; 48 Fang (10.1016/j.biortech.2017.09.025_b0060) 2016; 6 Kupryianchyk (10.1016/j.biortech.2017.09.025_b0105) 2016; 144 Lee (10.1016/j.biortech.2017.09.025_b0120) 2013; 148 Inyang (10.1016/j.biortech.2017.09.025_b0090) 2016; 46 Zhang (10.1016/j.biortech.2017.09.025_b0235) 2017; 338 Das (10.1016/j.biortech.2017.09.025_b0055) 2004; 42 Ladavos (10.1016/j.biortech.2017.09.025_b0110) 2012; 151 Zhou (10.1016/j.biortech.2017.09.025_b0250) 2014; 152 Kanjanarong (10.1016/j.biortech.2017.09.025_b0100) 2017; 234 Zhao (10.1016/j.biortech.2017.09.025_b0245) 2013; 256–257 Zhang (10.1016/j.biortech.2017.09.025_b0240) 2016; 264 Ahmad (10.1016/j.biortech.2017.09.025_b0010) 2012; 118 Gaunt (10.1016/j.biortech.2017.09.025_b0070) 2008; 42 Shih (10.1016/j.biortech.2017.09.025_b0160) 2008; 154 Guo (10.1016/j.biortech.2017.09.025_b0080) 2016; 306 Grant (10.1016/j.biortech.2017.09.025_b0075) 1990; 29 Yao (10.1016/j.biortech.2017.09.025_b0220) 2012; 209 Chen (10.1016/j.biortech.2017.09.025_b0035) 2012; 121 Cao (10.1016/j.biortech.2017.09.025_b0025) 2009; 43 Sun (10.1016/j.biortech.2017.09.025_b0175) 2014; 240 Wu (10.1016/j.biortech.2017.09.025_b0205) 2017 Yu (10.1016/j.biortech.2017.09.025_b0230) 2016; 165 Wang (10.1016/j.biortech.2017.09.025_b0190) 2015; 197 Wang (10.1016/j.biortech.2017.09.025_b0200) 2016; 144 10.1016/j.biortech.2017.09.025_b0020 Creamer (10.1016/j.biortech.2017.09.025_b0050) 2014; 249 Lashaki (10.1016/j.biortech.2017.09.025_b0115) 2012; 46 Ojala (10.1016/j.biortech.2017.09.025_b0145) 2011; 54 Abe (10.1016/j.biortech.2017.09.025_b0005) 2000; 16 Cheng (10.1016/j.biortech.2017.09.025_b0040) 2016; 34 Johnsen (10.1016/j.biortech.2017.09.025_b0095) 2016; 50 Lehmann (10.1016/j.biortech.2017.09.025_b0125) 2007; 447 Mohan (10.1016/j.biortech.2017.09.025_b0135) 2014; 160 Sullivan (10.1016/j.biortech.2017.09.025_b0170) 2004; 130 Wang (10.1016/j.biortech.2017.09.025_b0195) 2016; 37 Opatokun (10.1016/j.biortech.2017.09.025_b0150) 2017; 168 Oh (10.1016/j.biortech.2017.09.025_b0140) 2010; 27 Son (10.1016/j.biortech.2017.09.025_b0165) 2016; 301 Yao (10.1016/j.biortech.2017.09.025_b0225) 2014; 242 Uchimiya (10.1016/j.biortech.2017.09.025_b0185) 2010; 58 Xue (10.1016/j.biortech.2017.09.025_b0210) 2016; 63 Qian (10.1016/j.biortech.2017.09.025_b0155) 2015; 42 Yang (10.1016/j.biortech.2017.09.025_b0215) 2010; 28 |
References_xml | – volume: 302 start-page: 362 year: 2016 end-page: 374 ident: b0065 article-title: Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities publication-title: J. Hazard. Mater. – volume: 151 start-page: 126 year: 2012 end-page: 133 ident: b0110 article-title: The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids publication-title: Micropor. Mesopor. Mater. – volume: 447 start-page: 143 year: 2007 end-page: 144 ident: b0125 article-title: A handful of carbon publication-title: Nature – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: b0015 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 121 start-page: 199 year: 2012 end-page: 204 ident: b0035 article-title: Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times publication-title: Bioresour. Technol. – volume: 154 start-page: 21 year: 2008 end-page: 28 ident: b0160 article-title: Adsorption of selected volatile organic vapors on multiwall carbon nanotubes publication-title: J. Hazard. Mater. – volume: 249 start-page: 174 year: 2014 end-page: 179 ident: b0050 article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood publication-title: Chem. Eng. J. – volume: 46 start-page: 4083 year: 2012 end-page: 4090 ident: b0115 article-title: Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon publication-title: Environ. Sci. Technol. – volume: 58 start-page: 12350 year: 2010 end-page: 12356 ident: b0185 article-title: Sorption of deisopropylatrazine on broiler litter biochars publication-title: J. Agric. Food Chem. – volume: 118 start-page: 536 year: 2012 end-page: 544 ident: b0010 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. – volume: 54 start-page: 1224 year: 2011 end-page: 1256 ident: b0145 article-title: Catalysis in VOC abatement publication-title: Top. Catal. – volume: 234 start-page: 115 year: 2017 end-page: 121 ident: b0100 article-title: Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms publication-title: Bioresour. Technol. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: b0025 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: b0030 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 6 start-page: 24906 year: 2016 end-page: 24911 ident: b0060 article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium publication-title: RSC Adv. – volume: 197 start-page: 356 year: 2015 end-page: 362 ident: b0190 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood publication-title: Bioresour. Technol. – volume: 50 start-page: 1465 year: 2016 end-page: 1472 ident: b0095 article-title: Environmental and economic assessment of electrothermal swing adsorption of air emissions from sheet-foam production compared to conventional abatement techniques publication-title: Environ. Sci. Technol. – volume: 29 start-page: 264 year: 1990 end-page: 271 ident: b0075 article-title: Mechanism of irreversible adsorption of phenolic compounds by activated carbons publication-title: Ind. Eng. Chem. Res. – volume: 42 start-page: 2949 year: 2004 end-page: 2962 ident: b0055 article-title: Removal of volatile organic compound by activated carbon fiber publication-title: Carbon – volume: 264 start-page: 270 year: 2016 end-page: 278 ident: b0240 article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review publication-title: Catal. Today – volume: 48 start-page: 5108 year: 2014 end-page: 5117 ident: b0180 article-title: Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon publication-title: Environ. Sci. Technol. – volume: 152 start-page: 538 year: 2014 end-page: 542 ident: b0250 article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions publication-title: Bioresour. Technol. – start-page: 1 year: 2017 end-page: 18 ident: b0205 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review publication-title: Environ. Sci. Pollut. R – volume: 148 start-page: 196 year: 2013 end-page: 201 ident: b0120 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresour. Technol. – volume: 42 start-page: 1055 year: 2015 end-page: 1064 ident: b0155 article-title: Recent advances in utilization of biochar publication-title: Renew. Sustainable Energy Rev. – volume: 165 start-page: 94 year: 2016 end-page: 99 ident: b0230 article-title: Biosorbents based on agricultural wastes for ionic liquid removal: an approach to agricultural wastes management publication-title: Chemosphere – reference: ASTM. 2011. Standard test method for volatile matter in the analysis sample of coal and coke. In: D3175-11. – volume: 306 start-page: 99 year: 2016 end-page: 106 ident: b0080 article-title: Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone publication-title: Chem. Eng. J. – volume: 27 start-page: 632 year: 2010 end-page: 638 ident: b0140 article-title: Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon publication-title: Korean J. Chem. Eng. – volume: 34 start-page: 1091 year: 2016 end-page: 1102 ident: b0040 article-title: Challenges and solutions for biofiltration of hydrophobic volatile organic compounds publication-title: Biotechnol. Adv. – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: b0235 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. – volume: 242 start-page: 136 year: 2014 end-page: 143 ident: b0225 article-title: Characterization and environmental applications of clay–biochar composites publication-title: Chem. Eng. J. – volume: 240 start-page: 574 year: 2014 end-page: 578 ident: b0175 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. – volume: 63 start-page: 312 year: 2016 end-page: 317 ident: b0210 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: J. Taiwan Inst. Chem. Eng. – volume: 256–257 start-page: 1 year: 2013 end-page: 9 ident: b0245 article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures publication-title: J. Hazard. Mater. – volume: 42 start-page: 4152 year: 2008 end-page: 4158 ident: b0070 article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production publication-title: Environ. Sci. Technol. – volume: 192 start-page: 683 year: 2011 end-page: 690 ident: b0130 article-title: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal publication-title: J. Hazard. Mater. – volume: 283 start-page: 826 year: 2016 end-page: 832 ident: b0045 article-title: Carbon dioxide capture using various metal oxyhydroxide–biochar composites publication-title: Chem. Eng. J. – volume: 301 start-page: 27 year: 2016 end-page: 34 ident: b0165 article-title: Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth publication-title: J. Hazard. Mater. – volume: 144 start-page: 285 year: 2016 end-page: 291 ident: b0200 article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures publication-title: Chemosphere – volume: 16 start-page: 5059 year: 2000 end-page: 5063 ident: b0005 article-title: Amination of activated carbon and adsorption characteristics of its aminated surface publication-title: Langmuir – volume: 144 start-page: 879 year: 2016 end-page: 887 ident: b0105 article-title: Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar publication-title: Chemosphere – volume: 28 start-page: 531 year: 2010 end-page: 540 ident: b0215 article-title: Biomass accumulation and control strategies in gas biofiltration publication-title: Biotechnol. Adv. – volume: 157 start-page: 264 year: 2017 end-page: 271 ident: b0085 article-title: Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: experiments and modeling publication-title: Chem. Eng. Sci. – volume: 209 start-page: 408 year: 2012 end-page: 413 ident: b0220 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard. Mater. – volume: 130 start-page: 258 year: 2004 end-page: 267 ident: b0170 article-title: Capture of organic vapors using adsorption and electrothermal regeneration publication-title: J. Environ. Eng. – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: b0135 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. – volume: 46 start-page: 406 year: 2016 end-page: 433 ident: b0090 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 168 start-page: 326 year: 2017 end-page: 332 ident: b0150 article-title: Food wastes derived adsorbents for carbon dioxide and benzene gas sorption publication-title: Chemosphere – volume: 37 start-page: 361 year: 2016 end-page: 365 ident: b0195 article-title: Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides publication-title: J. Ind. Eng. Chem. – volume: 46 start-page: 406 issue: 4 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0090 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 157 start-page: 264 year: 2017 ident: 10.1016/j.biortech.2017.09.025_b0085 article-title: Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: experiments and modeling publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.06.008 – volume: 46 start-page: 4083 issue: 7 year: 2012 ident: 10.1016/j.biortech.2017.09.025_b0115 article-title: Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es3000195 – volume: 43 start-page: 3285 issue: 9 year: 2009 ident: 10.1016/j.biortech.2017.09.025_b0025 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 306 start-page: 99 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0080 article-title: Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.048 – volume: 249 start-page: 174 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0050 article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.105 – volume: 144 start-page: 285 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0200 article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.08.042 – volume: 301 start-page: 27 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0165 article-title: Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.08.040 – volume: 152 start-page: 538 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0250 article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.021 – volume: 42 start-page: 1055 year: 2015 ident: 10.1016/j.biortech.2017.09.025_b0155 article-title: Recent advances in utilization of biochar publication-title: Renew. Sustainable Energy Rev. doi: 10.1016/j.rser.2014.10.074 – volume: 165 start-page: 94 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0230 article-title: Biosorbents based on agricultural wastes for ionic liquid removal: an approach to agricultural wastes management publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.133 – volume: 121 start-page: 199 year: 2012 ident: 10.1016/j.biortech.2017.09.025_b0035 article-title: Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.031 – volume: 54 start-page: 1224 issue: 16 year: 2011 ident: 10.1016/j.biortech.2017.09.025_b0145 article-title: Catalysis in VOC abatement publication-title: Top. Catal. doi: 10.1007/s11244-011-9747-1 – volume: 37 start-page: 361 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0195 article-title: Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.03.048 – volume: 302 start-page: 362 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0065 article-title: Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.09.002 – volume: 58 start-page: 12350 issue: 23 year: 2010 ident: 10.1016/j.biortech.2017.09.025_b0185 article-title: Sorption of deisopropylatrazine on broiler litter biochars publication-title: J. Agric. Food Chem. doi: 10.1021/jf102152q – volume: 209 start-page: 408 year: 2012 ident: 10.1016/j.biortech.2017.09.025_b0220 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.01.046 – volume: 242 start-page: 136 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0225 article-title: Characterization and environmental applications of clay–biochar composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.062 – volume: 144 start-page: 879 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0105 article-title: Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.055 – volume: 240 start-page: 574 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0175 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.081 – volume: 42 start-page: 2949 issue: 14 year: 2004 ident: 10.1016/j.biortech.2017.09.025_b0055 article-title: Removal of volatile organic compound by activated carbon fiber publication-title: Carbon doi: 10.1016/j.carbon.2004.07.008 – volume: 283 start-page: 826 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0045 article-title: Carbon dioxide capture using various metal oxyhydroxide–biochar composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.037 – start-page: 1 year: 2017 ident: 10.1016/j.biortech.2017.09.025_b0205 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review publication-title: Environ. Sci. Pollut. R – volume: 264 start-page: 270 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0240 article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review publication-title: Catal. Today doi: 10.1016/j.cattod.2015.10.040 – volume: 256–257 start-page: 1 year: 2013 ident: 10.1016/j.biortech.2017.09.025_b0245 article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures publication-title: J. Hazard. Mater. – volume: 151 start-page: 126 year: 2012 ident: 10.1016/j.biortech.2017.09.025_b0110 article-title: The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2011.11.005 – volume: 130 start-page: 258 issue: 3 year: 2004 ident: 10.1016/j.biortech.2017.09.025_b0170 article-title: Capture of organic vapors using adsorption and electrothermal regeneration publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2004)130:3(258) – volume: 34 start-page: 1091 issue: 6 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0040 article-title: Challenges and solutions for biofiltration of hydrophobic volatile organic compounds publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.06.007 – volume: 48 start-page: 5108 issue: 9 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0180 article-title: Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es404667f – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.biortech.2017.09.025_b0235 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 42 start-page: 5137 issue: 14 year: 2008 ident: 10.1016/j.biortech.2017.09.025_b0030 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 168 start-page: 326 year: 2017 ident: 10.1016/j.biortech.2017.09.025_b0150 article-title: Food wastes derived adsorbents for carbon dioxide and benzene gas sorption publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.10.083 – volume: 118 start-page: 536 year: 2012 ident: 10.1016/j.biortech.2017.09.025_b0010 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.042 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0015 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 28 start-page: 531 issue: 4 year: 2010 ident: 10.1016/j.biortech.2017.09.025_b0215 article-title: Biomass accumulation and control strategies in gas biofiltration publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.04.002 – volume: 16 start-page: 5059 issue: 11 year: 2000 ident: 10.1016/j.biortech.2017.09.025_b0005 article-title: Amination of activated carbon and adsorption characteristics of its aminated surface publication-title: Langmuir doi: 10.1021/la990976t – volume: 197 start-page: 356 year: 2015 ident: 10.1016/j.biortech.2017.09.025_b0190 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.132 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.biortech.2017.09.025_b0135 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 148 start-page: 196 year: 2013 ident: 10.1016/j.biortech.2017.09.025_b0120 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.08.135 – ident: 10.1016/j.biortech.2017.09.025_b0020 – volume: 27 start-page: 632 issue: 2 year: 2010 ident: 10.1016/j.biortech.2017.09.025_b0140 article-title: Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-010-0079-9 – volume: 29 start-page: 264 issue: 2 year: 1990 ident: 10.1016/j.biortech.2017.09.025_b0075 article-title: Mechanism of irreversible adsorption of phenolic compounds by activated carbons publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00098a017 – volume: 234 start-page: 115 year: 2017 ident: 10.1016/j.biortech.2017.09.025_b0100 article-title: Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.009 – volume: 42 start-page: 4152 issue: 11 year: 2008 ident: 10.1016/j.biortech.2017.09.025_b0070 article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production publication-title: Environ. Sci. Technol. doi: 10.1021/es071361i – volume: 192 start-page: 683 issue: 2 year: 2011 ident: 10.1016/j.biortech.2017.09.025_b0130 article-title: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.05.069 – volume: 447 start-page: 143 issue: 7141 year: 2007 ident: 10.1016/j.biortech.2017.09.025_b0125 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – volume: 50 start-page: 1465 issue: 3 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0095 article-title: Environmental and economic assessment of electrothermal swing adsorption of air emissions from sheet-foam production compared to conventional abatement techniques publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05004 – volume: 63 start-page: 312 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0210 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.03.021 – volume: 154 start-page: 21 issue: 1–3 year: 2008 ident: 10.1016/j.biortech.2017.09.025_b0160 article-title: Adsorption of selected volatile organic vapors on multiwall carbon nanotubes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.09.095 – volume: 6 start-page: 24906 issue: 30 year: 2016 ident: 10.1016/j.biortech.2017.09.025_b0060 article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium publication-title: RSC Adv. doi: 10.1039/C6RA01644H |
SSID | ssj0003172 |
Score | 2.6254346 |
Snippet | [Display omitted]
•VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC... Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 606 |
SubjectTerms | acetone Adsorption Air pollution Biochar Charcoal cyclohexanes feedstocks heat production organic matter Partition sorbates sorbents surface area technology temperature toluene vapors Volatile organic compound Volatile Organic Compounds |
Title | Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms |
URI | https://dx.doi.org/10.1016/j.biortech.2017.09.025 https://www.ncbi.nlm.nih.gov/pubmed/28910648 https://www.proquest.com/docview/1964699908 https://www.proquest.com/docview/2000591784 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0heqA9IAptWWiRK3FoD2GTXTv29rZdFS1F0AOl4mbZjo2C2M1qd7ny25lxEj4kEIdeIiUZR5bfaGYcz8wD2BfFINAf_cQ7KxMu8WKLfpqYwgaXp84EQ8XJJ6f5-Jz_vhAXKzBqa2EorbKx_bVNj9a6edJtVrM7K8vuGQXfSqAHkv1MoKJSBTuXpOUHtw9pHugf40kCCick_ahK-OrAlpTRGg8lMhn7nRJl9vMO6qUANDqiww1YbyJINqwn-R5W_HQT3g0v500XDb8Ja6OWxg3fPOo4uAX2Z1lRoRXDWJWhZUJcrj2rqZ0co_xyolli3_79GX1ncz-pUBF_sLNqHi0Lmz2UGTCDcpeRqRe_zCaeSojLxWTxAc4Pf_0djZOGZiFxIuXLBGMCh2Eidya1PBcmx11EZgtjuEyV8yoLEt2Yz4zNgwqOE5-Vop4wUoRelvv-R1idVlO_DUxYjrbTGo7I89ATyoecp0b6YuACxmodEO3aatf0ICcqjGvdJptd6RYTTZjodKARkw5078fN6i4cr44YtNDpJ_qk0VW8OvZri7VGsOgExUx9dbPQ1L0sx7VK1csyvdjzJpOKd-BTrSj3c8bdLW7Budr5j9ntwlu6q1NqPsPqcn7jv2BgtLR7UfP34M3w6Hh8egczug7R |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB3RcKA9IKAtDbTgSj20h212E3vt9JZGoFAgPQAVN8v22mgRyUZJ-P_M7EegUhGHXvaw61lZntmZ5_XMG4AvIusH-qMfeWdlxCVebNaLI5PZ4NLYmWCoOPl8nI6u-K9rcb0Gw6YWhtIqa99f-fTSW9d3OvVqdmZ53rkg8K0ERiDZSwQa6itYJ3Yq0YL1wcnpaLxyyBgiy8MEHB-RwJNC4dvvNqek1vJcIpEl5Sl1zf53jHoOg5ax6HgLNmsQyQbVPLdhzU934M3gZl4Tafgd2Bg2ndzwyRPSwbdgf-YF1VoxhKsMnROq5s6zqruTY5RiTp2W2Nc_v4ff2NxPCrTFH-yimJfOhc0eKw2YwXE3ZbNefDObeKoizheTxTu4Oj66HI6iutNC5ETMlxHCAodIkTsTW54Kk-JGIrGZMVzGynmVBImRzCfGpkEFx6mllSJaGClCN0l97z20psXUfwAmLEf3aQ1H5fPQFcqHlMdG-qzvAsK1NohmbbWracipG8adbvLNbnWjE0060XFfo07a0FnJzSoijhcl-o3q9F8mpTFavCj7udG1RmXRIYqZ-uJ-oYnALMW1itXzY7ol7U0iFW_DbmUoqznjBhd34Vzt_cfsDmFjdHl-ps9Oxqf78JqeVBk2H6G1nN_7T4iTlvag_g4eAG6iEYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+for+volatile+organic+compound+%28VOC%29+removal%3A+Sorption+performance+and+governing+mechanisms&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Xueyang&rft.au=Gao%2C+Bin&rft.au=Zheng%2C+Yulin&rft.au=Hu%2C+Xin&rft.date=2017-12-01&rft.issn=0960-8524&rft.volume=245+p.606-614&rft.spage=606&rft.epage=614&rft_id=info:doi/10.1016%2Fj.biortech.2017.09.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |