Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms

[Display omitted] •VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanism...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 245; no. Pt A; pp. 606 - 614
Main Authors Zhang, Xueyang, Gao, Bin, Zheng, Yulin, Hu, Xin, Creamer, Anne Elise, Annable, Michael D., Li, Yuncong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanisms. Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg−1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.
AbstractList [Display omitted] •VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC removal was strongly affected by biochar’s noncarbonized organic matter content.•Physical adsorption and partitioning were the governing mechanisms. Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg−1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58–91.2mgg⁻¹. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg-1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg-1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg . The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.
Author Zheng, Yulin
Creamer, Anne Elise
Annable, Michael D.
Zhang, Xueyang
Gao, Bin
Li, Yuncong
Hu, Xin
Author_xml – sequence: 1
  givenname: Xueyang
  surname: Zhang
  fullname: Zhang, Xueyang
  organization: School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, PR China
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
– sequence: 3
  givenname: Yulin
  surname: Zheng
  fullname: Zheng, Yulin
  organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
– sequence: 4
  givenname: Xin
  surname: Hu
  fullname: Hu, Xin
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Material Analysis, 20 Hankou Road, Nanjing University, Nanjing 210093, PR China
– sequence: 5
  givenname: Anne Elise
  surname: Creamer
  fullname: Creamer, Anne Elise
  organization: School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, PR China
– sequence: 6
  givenname: Michael D.
  surname: Annable
  fullname: Annable, Michael D.
  organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
– sequence: 7
  givenname: Yuncong
  surname: Li
  fullname: Li, Yuncong
  organization: Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28910648$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC1URLeFv1D5WA4Jz07i2IgDsAKKVKmHFq6W47xsvUrsYGdX4t_j1bYcetnTu3wzmjdzQc588EjIFYOSARMftmXnQlzQPpYcWFuCKoE3r8iKybYquGrFGVmBElDIhtfn5CKlLQBUrOVvyDmXioGo5Yp0X12wjybSIUS6D6NZ3Ig0xI3xzlIbpjnsfE-vf9-t39OIU9ib8SO9D3FeXPB0xpiFk_EWqcncJuwxeuc3dMrRskea0lvyejBjwndP95L8-v7tYX1T3N79-Ln-clvYBuqlkExZpVRtDXS1aIyoQLCuN6ZuQVqUbGglMGSmE4McbM0lVPk3WbXNwJnA6pJcH33nGP7sMC16csniOBqPYZc0z_83irWyPokyJWqRw4DM6NUTuusm7PUc3WTiX_1cYQbEEbAxpBRx-I8w0Iet9FY_b6UPW2lQOm-VhZ9eCK1bzKHWJRo3npZ_Psoxd7p3GHWyDvMQvYtoF90Hd8riH2Pss9E
CitedBy_id crossref_primary_10_1016_j_biortech_2023_130085
crossref_primary_10_1016_j_jclepro_2020_120832
crossref_primary_10_1016_j_buildenv_2024_111716
crossref_primary_10_1016_j_scitotenv_2022_155193
crossref_primary_10_1016_j_jenvman_2021_113468
crossref_primary_10_1016_j_scitotenv_2023_166813
crossref_primary_10_1016_j_ecoleng_2020_105882
crossref_primary_10_1016_j_cej_2018_02_027
crossref_primary_10_1098_rsos_211544
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_2139_ssrn_4045866
crossref_primary_10_3390_su15032527
crossref_primary_10_1016_j_jhazmat_2019_121317
crossref_primary_10_1016_j_jenvman_2023_119205
crossref_primary_10_1007_s13399_023_03864_z
crossref_primary_10_1016_j_scitotenv_2019_01_005
crossref_primary_10_1016_j_biteb_2023_101519
crossref_primary_10_1007_s10668_024_04760_w
crossref_primary_10_1021_acs_est_9b01159
crossref_primary_10_1016_j_heliyon_2024_e29993
crossref_primary_10_1007_s42773_022_00198_3
crossref_primary_10_1016_j_cej_2022_139436
crossref_primary_10_1007_s13399_022_02439_8
crossref_primary_10_1016_j_seppur_2024_128378
crossref_primary_10_1016_j_ijhydene_2023_04_188
crossref_primary_10_1016_j_cdc_2020_100607
crossref_primary_10_3390_ma16010389
crossref_primary_10_1016_j_colcom_2020_100275
crossref_primary_10_1016_j_jhazmat_2019_121671
crossref_primary_10_3390_buildings15020230
crossref_primary_10_1016_j_jhazmat_2020_123540
crossref_primary_10_1016_j_eti_2021_101616
crossref_primary_10_1016_j_chemosphere_2020_127054
crossref_primary_10_3390_agriculture14081246
crossref_primary_10_1016_j_buildenv_2019_106499
crossref_primary_10_1080_15567036_2019_1666191
crossref_primary_10_1016_j_chemosphere_2020_127057
crossref_primary_10_1007_s12517_018_3790_1
crossref_primary_10_3846_jeelm_2022_17412
crossref_primary_10_1007_s42773_019_00007_4
crossref_primary_10_1016_j_cej_2020_125391
crossref_primary_10_1016_j_chemosphere_2021_131288
crossref_primary_10_1016_j_chemosphere_2018_11_144
crossref_primary_10_1002_eem2_12074
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1016_j_jhazmat_2021_125753
crossref_primary_10_3390_agronomy14050952
crossref_primary_10_1002_agj2_20540
crossref_primary_10_1016_j_jece_2019_103271
crossref_primary_10_1016_j_chemosphere_2019_125344
crossref_primary_10_1016_j_fuel_2022_126801
crossref_primary_10_1016_j_cej_2019_123843
crossref_primary_10_1016_j_jece_2021_105799
crossref_primary_10_1039_D4NJ05408C
crossref_primary_10_1016_j_cej_2019_123842
crossref_primary_10_3390_molecules29235677
crossref_primary_10_1016_j_jhazmat_2019_05_098
crossref_primary_10_1016_j_biteb_2025_102062
crossref_primary_10_3390_ijms241310868
crossref_primary_10_1016_j_cscee_2022_100248
crossref_primary_10_1016_j_biortech_2022_127274
crossref_primary_10_1016_j_wasman_2022_06_009
crossref_primary_10_1016_j_envres_2020_109956
crossref_primary_10_1016_j_jece_2023_111046
crossref_primary_10_1007_s11356_022_24628_8
crossref_primary_10_4491_eer_2023_511
crossref_primary_10_1016_j_biteb_2021_100728
crossref_primary_10_1155_2024_1537588
crossref_primary_10_1016_j_kjs_2024_100332
crossref_primary_10_1016_j_psep_2023_10_029
crossref_primary_10_1007_s42729_024_01810_0
crossref_primary_10_1016_j_cclet_2021_05_074
crossref_primary_10_1016_j_chemosphere_2020_128991
crossref_primary_10_1007_s11356_023_29087_3
crossref_primary_10_1007_s11356_019_04190_6
crossref_primary_10_1016_j_cej_2022_138027
crossref_primary_10_1039_D3EN00443K
crossref_primary_10_1016_j_cej_2019_123943
crossref_primary_10_1039_D1EN00929J
crossref_primary_10_1007_s11869_025_01692_w
crossref_primary_10_1080_15421406_2020_1829309
crossref_primary_10_3390_catal11080958
crossref_primary_10_1016_j_scitotenv_2021_150444
crossref_primary_10_1016_j_jece_2023_111263
crossref_primary_10_1016_j_jhazmat_2020_124676
crossref_primary_10_1080_26395940_2019_1607779
crossref_primary_10_1016_j_biortech_2019_122705
crossref_primary_10_1007_s40518_018_0116_6
crossref_primary_10_1007_s42773_022_00156_z
crossref_primary_10_1016_j_jclepro_2022_130575
crossref_primary_10_1016_j_conbuildmat_2023_134322
crossref_primary_10_3390_ijerph191912405
crossref_primary_10_1016_j_psep_2023_10_048
crossref_primary_10_1007_s40725_023_00200_6
crossref_primary_10_1016_j_jphotochem_2023_115259
crossref_primary_10_1007_s11356_024_32907_9
crossref_primary_10_1016_j_micromeso_2020_110190
crossref_primary_10_1002_jssc_70074
crossref_primary_10_1016_j_pecs_2023_101098
crossref_primary_10_1016_j_biortech_2019_03_025
crossref_primary_10_1038_s41598_022_08591_5
crossref_primary_10_1016_j_biortech_2019_03_149
crossref_primary_10_1016_j_cej_2018_09_104
crossref_primary_10_1016_j_chemosphere_2019_01_161
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1051_e3sconf_201912503015
crossref_primary_10_1016_j_jes_2022_02_006
crossref_primary_10_5004_dwt_2021_27226
crossref_primary_10_1071_EN22014
crossref_primary_10_3390_jcs8040132
crossref_primary_10_1016_j_psep_2023_11_071
crossref_primary_10_1016_j_jclepro_2019_117940
crossref_primary_10_1016_j_envres_2023_115364
crossref_primary_10_1007_s11356_021_17158_2
crossref_primary_10_1016_j_conbuildmat_2019_06_215
crossref_primary_10_1039_D3DT01930F
crossref_primary_10_1016_j_biortech_2021_125453
crossref_primary_10_1016_j_cej_2022_138059
crossref_primary_10_1016_j_wasman_2020_02_022
crossref_primary_10_1016_j_envpol_2022_120721
crossref_primary_10_3390_coatings14030270
crossref_primary_10_1016_j_ijbiomac_2024_138865
crossref_primary_10_1016_j_hazadv_2023_100300
crossref_primary_10_1016_j_scitotenv_2024_173910
crossref_primary_10_1016_j_indcrop_2024_119160
crossref_primary_10_1016_j_wasman_2022_10_037
crossref_primary_10_1007_s13762_019_02219_4
crossref_primary_10_1088_1748_9326_ad1ad2
crossref_primary_10_1016_j_cej_2023_141979
crossref_primary_10_1016_j_jenvman_2019_04_012
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1016_j_fuel_2023_128306
crossref_primary_10_1038_s41598_019_47100_z
crossref_primary_10_3390_w17010058
crossref_primary_10_1016_j_scitotenv_2020_136832
crossref_primary_10_1016_j_scitotenv_2022_157316
crossref_primary_10_1007_s42773_022_00171_0
crossref_primary_10_1007_s42823_024_00766_6
crossref_primary_10_1016_j_jwpe_2024_106713
crossref_primary_10_1007_s11356_018_3798_9
crossref_primary_10_1016_j_biortech_2019_122469
crossref_primary_10_17341_gazimmfd_686415
crossref_primary_10_3390_catal8050211
crossref_primary_10_1016_j_chemosphere_2022_136610
crossref_primary_10_1016_j_seppur_2023_125453
crossref_primary_10_1016_j_scitotenv_2021_147121
crossref_primary_10_1016_j_indcrop_2024_119860
crossref_primary_10_3390_su152014723
crossref_primary_10_1016_j_seppur_2019_116213
crossref_primary_10_1007_s13399_023_03744_6
crossref_primary_10_1016_j_biortech_2022_126831
crossref_primary_10_1007_s42823_020_00184_4
crossref_primary_10_1016_j_jwpe_2021_102534
crossref_primary_10_3390_ma14071644
crossref_primary_10_1007_s42773_022_00195_6
crossref_primary_10_1016_j_fuel_2020_118792
crossref_primary_10_1002_jctb_7418
crossref_primary_10_1016_j_jhazmat_2020_124138
crossref_primary_10_1016_j_apsusc_2020_145697
crossref_primary_10_3389_fenvs_2023_1252926
crossref_primary_10_1016_j_scitotenv_2020_141277
crossref_primary_10_1080_09593330_2021_2003438
crossref_primary_10_1016_j_renene_2019_07_167
crossref_primary_10_1039_D0NR00234H
crossref_primary_10_1016_j_cej_2019_01_036
crossref_primary_10_1016_j_psep_2024_10_026
crossref_primary_10_1016_j_cej_2018_10_193
crossref_primary_10_1016_j_chemosphere_2021_132113
crossref_primary_10_1016_j_nanoen_2024_109965
crossref_primary_10_1021_acsanm_8b00388
crossref_primary_10_1007_s11356_021_12796_y
crossref_primary_10_1016_j_jwpe_2025_107338
crossref_primary_10_1016_j_jece_2024_115198
crossref_primary_10_1016_j_colsurfa_2021_127600
crossref_primary_10_1039_D0RA02225J
crossref_primary_10_1186_s12870_024_04789_z
crossref_primary_10_1016_j_jclepro_2024_143742
crossref_primary_10_3390_ma16196413
crossref_primary_10_1016_j_applthermaleng_2024_123972
crossref_primary_10_1007_s11696_019_00938_z
crossref_primary_10_1016_j_scitotenv_2022_153996
crossref_primary_10_1016_j_jenvman_2018_11_054
crossref_primary_10_1115_1_4055182
crossref_primary_10_1016_j_seppur_2022_121295
crossref_primary_10_1080_03067319_2023_2278084
crossref_primary_10_3390_atmos11111179
crossref_primary_10_3390_agronomy13071725
crossref_primary_10_1016_j_envpol_2023_122451
crossref_primary_10_1016_j_chemosphere_2020_129310
crossref_primary_10_1016_j_ccr_2020_213738
crossref_primary_10_1021_acs_est_4c03365
crossref_primary_10_1039_D4EN00292J
crossref_primary_10_1039_C8RA08605B
crossref_primary_10_1007_s42773_022_00147_0
crossref_primary_10_2139_ssrn_3975253
crossref_primary_10_3390_agriculture13040805
crossref_primary_10_5004_dwt_2018_21737
crossref_primary_10_1016_j_jhazmat_2020_123995
crossref_primary_10_1016_j_biortech_2019_121584
crossref_primary_10_1016_j_biortech_2021_125881
crossref_primary_10_1016_j_cej_2025_159345
crossref_primary_10_1016_j_jece_2024_112148
crossref_primary_10_1016_j_fuel_2021_122510
crossref_primary_10_1007_s11869_023_01326_z
crossref_primary_10_1016_j_scitotenv_2020_142249
crossref_primary_10_1016_j_chemosphere_2019_125664
crossref_primary_10_1016_j_cej_2021_134463
crossref_primary_10_1016_j_chemosphere_2022_134488
crossref_primary_10_3390_app9030515
Cites_doi 10.1080/10643389.2015.1096880
10.1016/j.ces.2016.06.008
10.1021/es3000195
10.1021/es803092k
10.1016/j.cej.2016.07.048
10.1016/j.cej.2014.03.105
10.1016/j.chemosphere.2015.08.042
10.1016/j.jhazmat.2015.08.040
10.1016/j.biortech.2013.11.021
10.1016/j.rser.2014.10.074
10.1016/j.chemosphere.2016.08.133
10.1016/j.biortech.2012.06.031
10.1007/s11244-011-9747-1
10.1016/j.jiec.2016.03.048
10.1016/j.jhazmat.2015.09.002
10.1021/jf102152q
10.1016/j.jhazmat.2012.01.046
10.1016/j.cej.2013.12.062
10.1016/j.chemosphere.2015.09.055
10.1016/j.cej.2013.10.081
10.1016/j.carbon.2004.07.008
10.1016/j.cej.2015.08.037
10.1016/j.cattod.2015.10.040
10.1016/j.micromeso.2011.11.005
10.1061/(ASCE)0733-9372(2004)130:3(258)
10.1016/j.biotechadv.2016.06.007
10.1021/es404667f
10.1016/j.jhazmat.2017.05.013
10.1021/es8002684
10.1016/j.chemosphere.2016.10.083
10.1016/j.biortech.2012.05.042
10.1016/j.chemosphere.2013.10.071
10.1016/j.biotechadv.2010.04.002
10.1021/la990976t
10.1016/j.biortech.2015.08.132
10.1016/j.biortech.2014.01.120
10.1016/j.biortech.2013.08.135
10.1007/s11814-010-0079-9
10.1021/ie00098a017
10.1016/j.biortech.2017.03.009
10.1021/es071361i
10.1016/j.jhazmat.2011.05.069
10.1038/447143a
10.1021/acs.est.5b05004
10.1016/j.jtice.2016.03.021
10.1016/j.jhazmat.2007.09.095
10.1039/C6RA01644H
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.09.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 614
ExternalDocumentID 28910648
10_1016_j_biortech_2017_09_025
S0960852417315730
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c504t-819c9994ca0b465a63061bdaa4708ce81f7801e1ab6f8fc428038528375f216e3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 02 04:56:27 EDT 2025
Thu Aug 07 15:09:05 EDT 2025
Wed Feb 19 02:42:25 EST 2025
Thu Apr 24 22:53:01 EDT 2025
Thu Jul 03 08:20:33 EDT 2025
Sat Nov 02 16:01:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Partition
Air pollution
Volatile organic compound
Adsorption
Biochar
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-819c9994ca0b465a63061bdaa4708ce81f7801e1ab6f8fc428038528375f216e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28910648
PQID 1964699908
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000591784
proquest_miscellaneous_1964699908
pubmed_primary_28910648
crossref_primary_10_1016_j_biortech_2017_09_025
crossref_citationtrail_10_1016_j_biortech_2017_09_025
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_09_025
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmad, Rajapaksha, Lim (b0015) 2014; 99
Wang, Gao, Li (b0195) 2016; 37
Gaunt, Lehmann (b0070) 2008; 42
Cheng, He, Yang (b0040) 2016; 34
Grant, King (b0075) 1990; 29
Creamer, Gao, Zhang (b0050) 2014; 249
Ladavos, Katsoulidis, Iosifidis (b0110) 2012; 151
Ojala, Pitkäaho, Laitinen (b0145) 2011; 54
Yang, Chen, Zeng (b0215) 2010; 28
Zhou, Gao, Zimmerman (b0250) 2014; 152
Zhang, Jiang, Shangguan (b0240) 2016; 264
Chen, Zhou, Zhu (b0030) 2008; 42
Fang, Gao, Zimmerman (b0060) 2016; 6
Wang, Gao, Wang (b0190) 2015; 197
Guo, Huang, Xue (b0080) 2016; 306
Zhang, Gao, Creamer (b0235) 2017; 338
Gangupomu, Sattler, Ramirez (b0065) 2016; 302
Lee, Park, Ryu (b0120) 2013; 148
Yao, Gao, Chen (b0220) 2012; 209
Son, Sivakumar, Rood (b0165) 2016; 301
Abe, Kawashima, Kozawa (b0005) 2000; 16
Cao, Ma, Gao (b0025) 2009; 43
Hariz, del Rio Sanz, Mercier (b0085) 2017; 157
Tefera, Hashisho, Philips (b0180) 2014; 48
Xue, Gao, Wan (b0210) 2016; 63
Kupryianchyk, Hale, Zimmerman (b0105) 2016; 144
Wang, Han, Sun (b0200) 2016; 144
Das, Gaur, Verma (b0055) 2004; 42
Chen, Yang, Zeng (b0035) 2012; 121
Opatokun, Prabhu, Al Shoaibi (b0150) 2017; 168
Ahmad, Lee, Dou (b0010) 2012; 118
Inyang, Gao, Yao (b0090) 2016; 46
Sullivan, Rood, Dombrowski (b0170) 2004; 130
ASTM. 2011. Standard test method for volatile matter in the analysis sample of coal and coke. In: D3175-11.
Lehmann (b0125) 2007; 447
Lashaki, Fayaz, Wang (b0115) 2012; 46
Oh, Park, Kim (b0140) 2010; 27
Sun, Gao, Yao (b0175) 2014; 240
Creamer, Gao, Wang (b0045) 2016; 283
Shih, Li (b0160) 2008; 154
Kanjanarong, Giri, Jaisi (b0100) 2017; 234
Zhao, Cao, Mašek (b0245) 2013; 256–257
Uchimiya, Wartelle, Lima (b0185) 2010; 58
Johnsen, Emamipour, Guest (b0095) 2016; 50
Yao, Gao, Fang (b0225) 2014; 242
Qian, Kumar, Zhang (b0155) 2015; 42
Wu, He, Inthapanya (b0205) 2017
Li, Liu, Liu (b0130) 2011; 192
Yu, Sun, Zhou (b0230) 2016; 165
Mohan, Sarswat, Ok (b0135) 2014; 160
Chen (10.1016/j.biortech.2017.09.025_b0030) 2008; 42
Gangupomu (10.1016/j.biortech.2017.09.025_b0065) 2016; 302
Li (10.1016/j.biortech.2017.09.025_b0130) 2011; 192
Ahmad (10.1016/j.biortech.2017.09.025_b0015) 2014; 99
Creamer (10.1016/j.biortech.2017.09.025_b0045) 2016; 283
Hariz (10.1016/j.biortech.2017.09.025_b0085) 2017; 157
Tefera (10.1016/j.biortech.2017.09.025_b0180) 2014; 48
Fang (10.1016/j.biortech.2017.09.025_b0060) 2016; 6
Kupryianchyk (10.1016/j.biortech.2017.09.025_b0105) 2016; 144
Lee (10.1016/j.biortech.2017.09.025_b0120) 2013; 148
Inyang (10.1016/j.biortech.2017.09.025_b0090) 2016; 46
Zhang (10.1016/j.biortech.2017.09.025_b0235) 2017; 338
Das (10.1016/j.biortech.2017.09.025_b0055) 2004; 42
Ladavos (10.1016/j.biortech.2017.09.025_b0110) 2012; 151
Zhou (10.1016/j.biortech.2017.09.025_b0250) 2014; 152
Kanjanarong (10.1016/j.biortech.2017.09.025_b0100) 2017; 234
Zhao (10.1016/j.biortech.2017.09.025_b0245) 2013; 256–257
Zhang (10.1016/j.biortech.2017.09.025_b0240) 2016; 264
Ahmad (10.1016/j.biortech.2017.09.025_b0010) 2012; 118
Gaunt (10.1016/j.biortech.2017.09.025_b0070) 2008; 42
Shih (10.1016/j.biortech.2017.09.025_b0160) 2008; 154
Guo (10.1016/j.biortech.2017.09.025_b0080) 2016; 306
Grant (10.1016/j.biortech.2017.09.025_b0075) 1990; 29
Yao (10.1016/j.biortech.2017.09.025_b0220) 2012; 209
Chen (10.1016/j.biortech.2017.09.025_b0035) 2012; 121
Cao (10.1016/j.biortech.2017.09.025_b0025) 2009; 43
Sun (10.1016/j.biortech.2017.09.025_b0175) 2014; 240
Wu (10.1016/j.biortech.2017.09.025_b0205) 2017
Yu (10.1016/j.biortech.2017.09.025_b0230) 2016; 165
Wang (10.1016/j.biortech.2017.09.025_b0190) 2015; 197
Wang (10.1016/j.biortech.2017.09.025_b0200) 2016; 144
10.1016/j.biortech.2017.09.025_b0020
Creamer (10.1016/j.biortech.2017.09.025_b0050) 2014; 249
Lashaki (10.1016/j.biortech.2017.09.025_b0115) 2012; 46
Ojala (10.1016/j.biortech.2017.09.025_b0145) 2011; 54
Abe (10.1016/j.biortech.2017.09.025_b0005) 2000; 16
Cheng (10.1016/j.biortech.2017.09.025_b0040) 2016; 34
Johnsen (10.1016/j.biortech.2017.09.025_b0095) 2016; 50
Lehmann (10.1016/j.biortech.2017.09.025_b0125) 2007; 447
Mohan (10.1016/j.biortech.2017.09.025_b0135) 2014; 160
Sullivan (10.1016/j.biortech.2017.09.025_b0170) 2004; 130
Wang (10.1016/j.biortech.2017.09.025_b0195) 2016; 37
Opatokun (10.1016/j.biortech.2017.09.025_b0150) 2017; 168
Oh (10.1016/j.biortech.2017.09.025_b0140) 2010; 27
Son (10.1016/j.biortech.2017.09.025_b0165) 2016; 301
Yao (10.1016/j.biortech.2017.09.025_b0225) 2014; 242
Uchimiya (10.1016/j.biortech.2017.09.025_b0185) 2010; 58
Xue (10.1016/j.biortech.2017.09.025_b0210) 2016; 63
Qian (10.1016/j.biortech.2017.09.025_b0155) 2015; 42
Yang (10.1016/j.biortech.2017.09.025_b0215) 2010; 28
References_xml – volume: 302
  start-page: 362
  year: 2016
  end-page: 374
  ident: b0065
  article-title: Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities
  publication-title: J. Hazard. Mater.
– volume: 151
  start-page: 126
  year: 2012
  end-page: 133
  ident: b0110
  article-title: The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids
  publication-title: Micropor. Mesopor. Mater.
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: b0125
  article-title: A handful of carbon
  publication-title: Nature
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: b0015
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 121
  start-page: 199
  year: 2012
  end-page: 204
  ident: b0035
  article-title: Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times
  publication-title: Bioresour. Technol.
– volume: 154
  start-page: 21
  year: 2008
  end-page: 28
  ident: b0160
  article-title: Adsorption of selected volatile organic vapors on multiwall carbon nanotubes
  publication-title: J. Hazard. Mater.
– volume: 249
  start-page: 174
  year: 2014
  end-page: 179
  ident: b0050
  article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 4083
  year: 2012
  end-page: 4090
  ident: b0115
  article-title: Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon
  publication-title: Environ. Sci. Technol.
– volume: 58
  start-page: 12350
  year: 2010
  end-page: 12356
  ident: b0185
  article-title: Sorption of deisopropylatrazine on broiler litter biochars
  publication-title: J. Agric. Food Chem.
– volume: 118
  start-page: 536
  year: 2012
  end-page: 544
  ident: b0010
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
– volume: 54
  start-page: 1224
  year: 2011
  end-page: 1256
  ident: b0145
  article-title: Catalysis in VOC abatement
  publication-title: Top. Catal.
– volume: 234
  start-page: 115
  year: 2017
  end-page: 121
  ident: b0100
  article-title: Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: b0025
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: b0030
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 24906
  year: 2016
  end-page: 24911
  ident: b0060
  article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium
  publication-title: RSC Adv.
– volume: 197
  start-page: 356
  year: 2015
  end-page: 362
  ident: b0190
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood
  publication-title: Bioresour. Technol.
– volume: 50
  start-page: 1465
  year: 2016
  end-page: 1472
  ident: b0095
  article-title: Environmental and economic assessment of electrothermal swing adsorption of air emissions from sheet-foam production compared to conventional abatement techniques
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 264
  year: 1990
  end-page: 271
  ident: b0075
  article-title: Mechanism of irreversible adsorption of phenolic compounds by activated carbons
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 2949
  year: 2004
  end-page: 2962
  ident: b0055
  article-title: Removal of volatile organic compound by activated carbon fiber
  publication-title: Carbon
– volume: 264
  start-page: 270
  year: 2016
  end-page: 278
  ident: b0240
  article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review
  publication-title: Catal. Today
– volume: 48
  start-page: 5108
  year: 2014
  end-page: 5117
  ident: b0180
  article-title: Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon
  publication-title: Environ. Sci. Technol.
– volume: 152
  start-page: 538
  year: 2014
  end-page: 542
  ident: b0250
  article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions
  publication-title: Bioresour. Technol.
– start-page: 1
  year: 2017
  end-page: 18
  ident: b0205
  article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review
  publication-title: Environ. Sci. Pollut. R
– volume: 148
  start-page: 196
  year: 2013
  end-page: 201
  ident: b0120
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresour. Technol.
– volume: 42
  start-page: 1055
  year: 2015
  end-page: 1064
  ident: b0155
  article-title: Recent advances in utilization of biochar
  publication-title: Renew. Sustainable Energy Rev.
– volume: 165
  start-page: 94
  year: 2016
  end-page: 99
  ident: b0230
  article-title: Biosorbents based on agricultural wastes for ionic liquid removal: an approach to agricultural wastes management
  publication-title: Chemosphere
– reference: ASTM. 2011. Standard test method for volatile matter in the analysis sample of coal and coke. In: D3175-11.
– volume: 306
  start-page: 99
  year: 2016
  end-page: 106
  ident: b0080
  article-title: Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 632
  year: 2010
  end-page: 638
  ident: b0140
  article-title: Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon
  publication-title: Korean J. Chem. Eng.
– volume: 34
  start-page: 1091
  year: 2016
  end-page: 1102
  ident: b0040
  article-title: Challenges and solutions for biofiltration of hydrophobic volatile organic compounds
  publication-title: Biotechnol. Adv.
– volume: 338
  start-page: 102
  year: 2017
  end-page: 123
  ident: b0235
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard. Mater.
– volume: 242
  start-page: 136
  year: 2014
  end-page: 143
  ident: b0225
  article-title: Characterization and environmental applications of clay–biochar composites
  publication-title: Chem. Eng. J.
– volume: 240
  start-page: 574
  year: 2014
  end-page: 578
  ident: b0175
  article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 312
  year: 2016
  end-page: 317
  ident: b0210
  article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 256–257
  start-page: 1
  year: 2013
  end-page: 9
  ident: b0245
  article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 4152
  year: 2008
  end-page: 4158
  ident: b0070
  article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production
  publication-title: Environ. Sci. Technol.
– volume: 192
  start-page: 683
  year: 2011
  end-page: 690
  ident: b0130
  article-title: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal
  publication-title: J. Hazard. Mater.
– volume: 283
  start-page: 826
  year: 2016
  end-page: 832
  ident: b0045
  article-title: Carbon dioxide capture using various metal oxyhydroxide–biochar composites
  publication-title: Chem. Eng. J.
– volume: 301
  start-page: 27
  year: 2016
  end-page: 34
  ident: b0165
  article-title: Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth
  publication-title: J. Hazard. Mater.
– volume: 144
  start-page: 285
  year: 2016
  end-page: 291
  ident: b0200
  article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures
  publication-title: Chemosphere
– volume: 16
  start-page: 5059
  year: 2000
  end-page: 5063
  ident: b0005
  article-title: Amination of activated carbon and adsorption characteristics of its aminated surface
  publication-title: Langmuir
– volume: 144
  start-page: 879
  year: 2016
  end-page: 887
  ident: b0105
  article-title: Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar
  publication-title: Chemosphere
– volume: 28
  start-page: 531
  year: 2010
  end-page: 540
  ident: b0215
  article-title: Biomass accumulation and control strategies in gas biofiltration
  publication-title: Biotechnol. Adv.
– volume: 157
  start-page: 264
  year: 2017
  end-page: 271
  ident: b0085
  article-title: Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: experiments and modeling
  publication-title: Chem. Eng. Sci.
– volume: 209
  start-page: 408
  year: 2012
  end-page: 413
  ident: b0220
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard. Mater.
– volume: 130
  start-page: 258
  year: 2004
  end-page: 267
  ident: b0170
  article-title: Capture of organic vapors using adsorption and electrothermal regeneration
  publication-title: J. Environ. Eng.
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: b0135
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 406
  year: 2016
  end-page: 433
  ident: b0090
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 168
  start-page: 326
  year: 2017
  end-page: 332
  ident: b0150
  article-title: Food wastes derived adsorbents for carbon dioxide and benzene gas sorption
  publication-title: Chemosphere
– volume: 37
  start-page: 361
  year: 2016
  end-page: 365
  ident: b0195
  article-title: Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides
  publication-title: J. Ind. Eng. Chem.
– volume: 46
  start-page: 406
  issue: 4
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0090
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 157
  start-page: 264
  year: 2017
  ident: 10.1016/j.biortech.2017.09.025_b0085
  article-title: Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: experiments and modeling
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.06.008
– volume: 46
  start-page: 4083
  issue: 7
  year: 2012
  ident: 10.1016/j.biortech.2017.09.025_b0115
  article-title: Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3000195
– volume: 43
  start-page: 3285
  issue: 9
  year: 2009
  ident: 10.1016/j.biortech.2017.09.025_b0025
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 306
  start-page: 99
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0080
  article-title: Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.048
– volume: 249
  start-page: 174
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0050
  article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.105
– volume: 144
  start-page: 285
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0200
  article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.042
– volume: 301
  start-page: 27
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0165
  article-title: Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.08.040
– volume: 152
  start-page: 538
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0250
  article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.021
– volume: 42
  start-page: 1055
  year: 2015
  ident: 10.1016/j.biortech.2017.09.025_b0155
  article-title: Recent advances in utilization of biochar
  publication-title: Renew. Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.10.074
– volume: 165
  start-page: 94
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0230
  article-title: Biosorbents based on agricultural wastes for ionic liquid removal: an approach to agricultural wastes management
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.08.133
– volume: 121
  start-page: 199
  year: 2012
  ident: 10.1016/j.biortech.2017.09.025_b0035
  article-title: Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.031
– volume: 54
  start-page: 1224
  issue: 16
  year: 2011
  ident: 10.1016/j.biortech.2017.09.025_b0145
  article-title: Catalysis in VOC abatement
  publication-title: Top. Catal.
  doi: 10.1007/s11244-011-9747-1
– volume: 37
  start-page: 361
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0195
  article-title: Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.03.048
– volume: 302
  start-page: 362
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0065
  article-title: Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.09.002
– volume: 58
  start-page: 12350
  issue: 23
  year: 2010
  ident: 10.1016/j.biortech.2017.09.025_b0185
  article-title: Sorption of deisopropylatrazine on broiler litter biochars
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf102152q
– volume: 209
  start-page: 408
  year: 2012
  ident: 10.1016/j.biortech.2017.09.025_b0220
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.046
– volume: 242
  start-page: 136
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0225
  article-title: Characterization and environmental applications of clay–biochar composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.062
– volume: 144
  start-page: 879
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0105
  article-title: Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.09.055
– volume: 240
  start-page: 574
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0175
  article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.081
– volume: 42
  start-page: 2949
  issue: 14
  year: 2004
  ident: 10.1016/j.biortech.2017.09.025_b0055
  article-title: Removal of volatile organic compound by activated carbon fiber
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.07.008
– volume: 283
  start-page: 826
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0045
  article-title: Carbon dioxide capture using various metal oxyhydroxide–biochar composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.037
– start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2017.09.025_b0205
  article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review
  publication-title: Environ. Sci. Pollut. R
– volume: 264
  start-page: 270
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0240
  article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.10.040
– volume: 256–257
  start-page: 1
  year: 2013
  ident: 10.1016/j.biortech.2017.09.025_b0245
  article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures
  publication-title: J. Hazard. Mater.
– volume: 151
  start-page: 126
  year: 2012
  ident: 10.1016/j.biortech.2017.09.025_b0110
  article-title: The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2011.11.005
– volume: 130
  start-page: 258
  issue: 3
  year: 2004
  ident: 10.1016/j.biortech.2017.09.025_b0170
  article-title: Capture of organic vapors using adsorption and electrothermal regeneration
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2004)130:3(258)
– volume: 34
  start-page: 1091
  issue: 6
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0040
  article-title: Challenges and solutions for biofiltration of hydrophobic volatile organic compounds
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.06.007
– volume: 48
  start-page: 5108
  issue: 9
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0180
  article-title: Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404667f
– volume: 338
  start-page: 102
  year: 2017
  ident: 10.1016/j.biortech.2017.09.025_b0235
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.05.013
– volume: 42
  start-page: 5137
  issue: 14
  year: 2008
  ident: 10.1016/j.biortech.2017.09.025_b0030
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 168
  start-page: 326
  year: 2017
  ident: 10.1016/j.biortech.2017.09.025_b0150
  article-title: Food wastes derived adsorbents for carbon dioxide and benzene gas sorption
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.083
– volume: 118
  start-page: 536
  year: 2012
  ident: 10.1016/j.biortech.2017.09.025_b0010
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.042
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0015
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 28
  start-page: 531
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2017.09.025_b0215
  article-title: Biomass accumulation and control strategies in gas biofiltration
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.04.002
– volume: 16
  start-page: 5059
  issue: 11
  year: 2000
  ident: 10.1016/j.biortech.2017.09.025_b0005
  article-title: Amination of activated carbon and adsorption characteristics of its aminated surface
  publication-title: Langmuir
  doi: 10.1021/la990976t
– volume: 197
  start-page: 356
  year: 2015
  ident: 10.1016/j.biortech.2017.09.025_b0190
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.132
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.biortech.2017.09.025_b0135
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 148
  start-page: 196
  year: 2013
  ident: 10.1016/j.biortech.2017.09.025_b0120
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.08.135
– ident: 10.1016/j.biortech.2017.09.025_b0020
– volume: 27
  start-page: 632
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2017.09.025_b0140
  article-title: Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-010-0079-9
– volume: 29
  start-page: 264
  issue: 2
  year: 1990
  ident: 10.1016/j.biortech.2017.09.025_b0075
  article-title: Mechanism of irreversible adsorption of phenolic compounds by activated carbons
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00098a017
– volume: 234
  start-page: 115
  year: 2017
  ident: 10.1016/j.biortech.2017.09.025_b0100
  article-title: Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.009
– volume: 42
  start-page: 4152
  issue: 11
  year: 2008
  ident: 10.1016/j.biortech.2017.09.025_b0070
  article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071361i
– volume: 192
  start-page: 683
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2017.09.025_b0130
  article-title: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.05.069
– volume: 447
  start-page: 143
  issue: 7141
  year: 2007
  ident: 10.1016/j.biortech.2017.09.025_b0125
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 50
  start-page: 1465
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0095
  article-title: Environmental and economic assessment of electrothermal swing adsorption of air emissions from sheet-foam production compared to conventional abatement techniques
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05004
– volume: 63
  start-page: 312
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0210
  article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.03.021
– volume: 154
  start-page: 21
  issue: 1–3
  year: 2008
  ident: 10.1016/j.biortech.2017.09.025_b0160
  article-title: Adsorption of selected volatile organic vapors on multiwall carbon nanotubes
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.09.095
– volume: 6
  start-page: 24906
  issue: 30
  year: 2016
  ident: 10.1016/j.biortech.2017.09.025_b0060
  article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01644H
SSID ssj0003172
Score 2.6254346
Snippet [Display omitted] •VOC sorption capacities of biochars were between 5.58 and 91.16mgg−1.•VOC removal was strongly affected by biochar’s surface area.•VOC...
Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 606
SubjectTerms acetone
Adsorption
Air pollution
Biochar
Charcoal
cyclohexanes
feedstocks
heat production
organic matter
Partition
sorbates
sorbents
surface area
technology
temperature
toluene
vapors
Volatile organic compound
Volatile Organic Compounds
Title Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms
URI https://dx.doi.org/10.1016/j.biortech.2017.09.025
https://www.ncbi.nlm.nih.gov/pubmed/28910648
https://www.proquest.com/docview/1964699908
https://www.proquest.com/docview/2000591784
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0heqA9IAptWWiRK3FoD2GTXTv29rZdFS1F0AOl4mbZjo2C2M1qd7ny25lxEj4kEIdeIiUZR5bfaGYcz8wD2BfFINAf_cQ7KxMu8WKLfpqYwgaXp84EQ8XJJ6f5-Jz_vhAXKzBqa2EorbKx_bVNj9a6edJtVrM7K8vuGQXfSqAHkv1MoKJSBTuXpOUHtw9pHugf40kCCick_ahK-OrAlpTRGg8lMhn7nRJl9vMO6qUANDqiww1YbyJINqwn-R5W_HQT3g0v500XDb8Ja6OWxg3fPOo4uAX2Z1lRoRXDWJWhZUJcrj2rqZ0co_xyolli3_79GX1ncz-pUBF_sLNqHi0Lmz2UGTCDcpeRqRe_zCaeSojLxWTxAc4Pf_0djZOGZiFxIuXLBGMCh2Eidya1PBcmx11EZgtjuEyV8yoLEt2Yz4zNgwqOE5-Vop4wUoRelvv-R1idVlO_DUxYjrbTGo7I89ATyoecp0b6YuACxmodEO3aatf0ICcqjGvdJptd6RYTTZjodKARkw5078fN6i4cr44YtNDpJ_qk0VW8OvZri7VGsOgExUx9dbPQ1L0sx7VK1csyvdjzJpOKd-BTrSj3c8bdLW7Budr5j9ntwlu6q1NqPsPqcn7jv2BgtLR7UfP34M3w6Hh8egczug7R
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB3RcKA9IKAtDbTgSj20h212E3vt9JZGoFAgPQAVN8v22mgRyUZJ-P_M7EegUhGHXvaw61lZntmZ5_XMG4AvIusH-qMfeWdlxCVebNaLI5PZ4NLYmWCoOPl8nI6u-K9rcb0Gw6YWhtIqa99f-fTSW9d3OvVqdmZ53rkg8K0ERiDZSwQa6itYJ3Yq0YL1wcnpaLxyyBgiy8MEHB-RwJNC4dvvNqek1vJcIpEl5Sl1zf53jHoOg5ax6HgLNmsQyQbVPLdhzU934M3gZl4Tafgd2Bg2ndzwyRPSwbdgf-YF1VoxhKsMnROq5s6zqruTY5RiTp2W2Nc_v4ff2NxPCrTFH-yimJfOhc0eKw2YwXE3ZbNefDObeKoizheTxTu4Oj66HI6iutNC5ETMlxHCAodIkTsTW54Kk-JGIrGZMVzGynmVBImRzCfGpkEFx6mllSJaGClCN0l97z20psXUfwAmLEf3aQ1H5fPQFcqHlMdG-qzvAsK1NohmbbWracipG8adbvLNbnWjE0060XFfo07a0FnJzSoijhcl-o3q9F8mpTFavCj7udG1RmXRIYqZ-uJ-oYnALMW1itXzY7ol7U0iFW_DbmUoqznjBhd34Vzt_cfsDmFjdHl-ps9Oxqf78JqeVBk2H6G1nN_7T4iTlvag_g4eAG6iEYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+for+volatile+organic+compound+%28VOC%29+removal%3A+Sorption+performance+and+governing+mechanisms&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Xueyang&rft.au=Gao%2C+Bin&rft.au=Zheng%2C+Yulin&rft.au=Hu%2C+Xin&rft.date=2017-12-01&rft.issn=0960-8524&rft.volume=245+p.606-614&rft.spage=606&rft.epage=614&rft_id=info:doi/10.1016%2Fj.biortech.2017.09.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon