Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways

•Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized. Rece...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 248; no. Pt A; pp. 68 - 78
Main Authors Zhou, Miaomiao, Yan, Binghua, Wong, Jonathan W.C., Zhang, Yang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2017.06.121

Cover

Loading…
Abstract •Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized. Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.
AbstractList Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.
Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.
•Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized. Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.
Author Zhang, Yang
Wong, Jonathan W.C.
Yan, Binghua
Zhou, Miaomiao
Author_xml – sequence: 1
  givenname: Miaomiao
  surname: Zhou
  fullname: Zhou, Miaomiao
  organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
– sequence: 2
  givenname: Binghua
  surname: Yan
  fullname: Yan, Binghua
  email: yanbh@qibebt.ac.cn
  organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
– sequence: 3
  givenname: Jonathan W.C.
  surname: Wong
  fullname: Wong, Jonathan W.C.
  organization: Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, PR China
– sequence: 4
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28693950$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu3CAURVGVqpmk_YWIZTd2AdvYVF00itK0UqRu2jXC8MgwsmEKOKP5hvx0mUzSRTezAolzr8Q9F-jMBw8IXVFSU0L5p009uhAz6HXNCO1rwmvK6Bu0okPfVEz0_AytiOCkGjrWnqOLlDaEkIb27B06ZwMXjejICj3d-rXyGgx-DJPKbgJsVc57rLQzCW9jMIvOLnhsY5ix8gpiGJ3GFuIMPqvnt2CxDcHgnUoZPuNrPDvvqgiPDnblRS_J-QdcwENreABfCmbIagxTuW1VXu_UPr1Hb62aEnx4OS_R72-3v26-V_c_737cXN9XuiNtrno2MNBCcW6ZYco2qjdaa2s5qI52ShjoWk0bMvSMqaZlzWBGO3bcWNFYIZpL9PHYW373Z4GU5eyShmlSHsKSJCtDtaxtSX8SpYL2ZWQmeEGvXtBlnMHIbXSzinv5unUB-BHQMaQUwf5DKJEHqXIjX6XKg1RJuCxSS_DLf0HtjsPnqNx0Ov71GIeyaTESZdIODs5dBJ2lCe5UxV8zqcUl
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_149111
crossref_primary_10_3390_fermentation10040201
crossref_primary_10_1016_j_biortech_2021_125296
crossref_primary_10_1093_femsle_fnaf001
crossref_primary_10_1016_j_biortech_2020_123947
crossref_primary_10_1038_s41598_023_48097_2
crossref_primary_10_3390_en11061551
crossref_primary_10_1016_j_eti_2023_103215
crossref_primary_10_1016_j_renene_2019_07_127
crossref_primary_10_3390_pr8121538
crossref_primary_10_1016_j_jenvman_2021_113469
crossref_primary_10_1016_j_biortech_2020_122861
crossref_primary_10_1080_09593330_2021_1942560
crossref_primary_10_1016_j_jbiotec_2023_08_003
crossref_primary_10_1016_j_scitotenv_2022_158112
crossref_primary_10_1016_j_jenvman_2021_114312
crossref_primary_10_1016_j_resconrec_2021_105832
crossref_primary_10_1016_j_biortech_2019_122041
crossref_primary_10_1016_j_ymben_2022_02_001
crossref_primary_10_1016_j_ijhydene_2019_08_230
crossref_primary_10_1016_j_biombioe_2019_105455
crossref_primary_10_1007_s10311_024_01742_2
crossref_primary_10_1016_j_ifset_2020_102545
crossref_primary_10_1016_j_dwt_2024_100191
crossref_primary_10_1016_j_eti_2023_103443
crossref_primary_10_1016_j_jece_2021_106062
crossref_primary_10_1016_j_jes_2019_05_018
crossref_primary_10_1016_j_biortech_2022_127620
crossref_primary_10_1007_s00253_022_12132_5
crossref_primary_10_1016_j_biombioe_2021_106165
crossref_primary_10_1016_j_jenvman_2022_116901
crossref_primary_10_2139_ssrn_4172708
crossref_primary_10_1016_j_biortech_2021_125393
crossref_primary_10_1016_j_eng_2021_03_025
crossref_primary_10_1002_cben_202400004
crossref_primary_10_1016_j_biortech_2020_123804
crossref_primary_10_1016_j_biortech_2022_127655
crossref_primary_10_1016_j_biortech_2022_127773
crossref_primary_10_1016_j_biortech_2018_04_095
crossref_primary_10_1016_j_jece_2024_114776
crossref_primary_10_3390_w14020195
crossref_primary_10_3390_fermentation9110975
crossref_primary_10_1007_s12649_021_01480_4
crossref_primary_10_1016_j_scitotenv_2022_159463
crossref_primary_10_1016_j_psep_2024_10_120
crossref_primary_10_1016_j_scitotenv_2019_134226
crossref_primary_10_1016_j_jenvman_2025_124399
crossref_primary_10_1016_j_rser_2023_113181
crossref_primary_10_1016_j_fuel_2020_119378
crossref_primary_10_3390_microorganisms8040581
crossref_primary_10_1016_j_cej_2023_141550
crossref_primary_10_1016_j_jenvman_2023_119101
crossref_primary_10_3390_en16083378
crossref_primary_10_1016_j_biortech_2021_126253
crossref_primary_10_1016_j_biortech_2021_125044
crossref_primary_10_1080_09593330_2021_2017489
crossref_primary_10_1080_17597269_2024_2384274
crossref_primary_10_1016_j_renene_2020_12_062
crossref_primary_10_1016_j_bej_2020_107502
crossref_primary_10_1007_s11356_019_06531_x
crossref_primary_10_1021_acscatal_1c02558
crossref_primary_10_1016_j_cej_2021_129809
crossref_primary_10_3390_w14121935
crossref_primary_10_2139_ssrn_4053372
crossref_primary_10_1007_s11270_020_04720_w
crossref_primary_10_1021_acsestengg_2c00219
crossref_primary_10_1021_acsestengg_4c00830
crossref_primary_10_4014_jmb_2008_08057
crossref_primary_10_1016_j_biortech_2019_122486
crossref_primary_10_1002_wer_1219
crossref_primary_10_1016_j_jenvman_2023_119379
crossref_primary_10_1016_j_biortech_2023_130286
crossref_primary_10_1016_j_biortech_2020_122933
crossref_primary_10_1016_j_biortech_2021_125498
crossref_primary_10_1016_j_jenvman_2024_122828
crossref_primary_10_1002_wer_1575
crossref_primary_10_1177_0734242X18819954
crossref_primary_10_3390_fermentation7040303
crossref_primary_10_1016_j_algal_2025_103947
crossref_primary_10_1016_j_envint_2020_105855
crossref_primary_10_3390_en14112993
crossref_primary_10_1016_j_biortech_2018_11_104
crossref_primary_10_3390_fermentation6030092
crossref_primary_10_1080_21655979_2023_2180583
crossref_primary_10_1016_j_chemosphere_2023_138976
crossref_primary_10_1016_j_jclepro_2019_119912
crossref_primary_10_2139_ssrn_4019241
crossref_primary_10_1016_j_biortech_2024_131421
crossref_primary_10_1016_j_envres_2020_109273
crossref_primary_10_1016_j_envres_2023_116943
crossref_primary_10_1016_j_watres_2023_120015
crossref_primary_10_1016_j_cej_2024_156073
crossref_primary_10_1016_j_envres_2025_120763
crossref_primary_10_1016_j_jwpe_2023_104227
crossref_primary_10_1016_j_jwpe_2024_105615
crossref_primary_10_3390_fermentation8040180
crossref_primary_10_1016_j_biortech_2020_122800
crossref_primary_10_1016_j_biortech_2020_122921
crossref_primary_10_1016_j_jenvman_2023_118033
crossref_primary_10_1016_j_biortech_2021_125149
crossref_primary_10_1016_j_eti_2021_101862
crossref_primary_10_1016_j_lwt_2024_117272
crossref_primary_10_1080_21655979_2019_1673937
crossref_primary_10_1016_j_biortech_2018_02_033
crossref_primary_10_1016_j_jclepro_2024_141171
crossref_primary_10_1016_j_jenvman_2022_114765
crossref_primary_10_1016_j_biortech_2022_127939
crossref_primary_10_1016_j_jenvman_2021_113137
crossref_primary_10_1016_j_jclepro_2021_129282
crossref_primary_10_1680_jenes_18_00004
crossref_primary_10_1007_s12649_020_01093_3
crossref_primary_10_1016_j_cej_2023_148041
crossref_primary_10_1016_j_scitotenv_2022_158327
crossref_primary_10_1007_s10163_021_01287_4
crossref_primary_10_1186_s40643_021_00420_3
crossref_primary_10_1016_j_scitotenv_2021_152500
crossref_primary_10_1007_s11356_019_05394_6
crossref_primary_10_1007_s12649_022_02008_0
crossref_primary_10_1016_j_biortech_2019_03_015
crossref_primary_10_1016_j_biortech_2021_125234
crossref_primary_10_4491_eer_2021_333
crossref_primary_10_1016_j_heliyon_2024_e25787
crossref_primary_10_1093_femsyr_foab047
crossref_primary_10_1016_j_fuproc_2022_107185
crossref_primary_10_3390_catal11080964
crossref_primary_10_3390_pr9020223
crossref_primary_10_1016_j_apenergy_2018_10_011
crossref_primary_10_1016_j_biortech_2018_03_083
crossref_primary_10_1080_23311916_2024_2335846
crossref_primary_10_1016_j_cej_2021_131908
crossref_primary_10_1016_j_biortech_2021_125481
crossref_primary_10_1016_j_bios_2019_111922
crossref_primary_10_1016_j_biortech_2021_126211
crossref_primary_10_1016_j_rser_2021_111167
crossref_primary_10_1016_j_biortech_2021_125246
crossref_primary_10_1186_s13068_023_02349_5
crossref_primary_10_1186_s13068_021_01939_5
crossref_primary_10_3390_su13179606
crossref_primary_10_1002_apj_2899
crossref_primary_10_1007_s13399_021_02056_x
crossref_primary_10_1016_j_envpol_2020_115936
crossref_primary_10_1016_j_biortech_2024_130644
crossref_primary_10_1016_j_scitotenv_2024_176979
crossref_primary_10_2139_ssrn_4127756
crossref_primary_10_1016_j_biortech_2024_131739
crossref_primary_10_1016_j_bej_2024_109403
crossref_primary_10_1016_j_jclepro_2018_09_213
crossref_primary_10_2139_ssrn_4179198
crossref_primary_10_1016_j_biortech_2021_126426
crossref_primary_10_1016_j_biortech_2021_125569
crossref_primary_10_2139_ssrn_4180191
crossref_primary_10_1016_j_cej_2025_160027
crossref_primary_10_1016_j_jiec_2019_09_009
crossref_primary_10_1016_j_biortech_2024_131984
crossref_primary_10_1016_j_biortech_2021_126310
crossref_primary_10_1016_j_jclepro_2024_143781
crossref_primary_10_1080_21655979_2019_1703544
crossref_primary_10_1016_j_wasman_2021_04_023
crossref_primary_10_1016_j_biteb_2020_100406
crossref_primary_10_1016_j_jece_2023_110955
crossref_primary_10_31025_2611_4135_2021_15096
crossref_primary_10_1007_s10661_023_12009_8
crossref_primary_10_1016_j_biteb_2020_100524
crossref_primary_10_1016_j_jclepro_2019_04_223
crossref_primary_10_1016_j_cej_2021_129068
crossref_primary_10_1016_j_biortech_2024_130782
crossref_primary_10_1002_bbb_2318
crossref_primary_10_1016_j_biortech_2023_129158
crossref_primary_10_1016_j_biortech_2023_129032
crossref_primary_10_1016_j_biortech_2021_125793
crossref_primary_10_3390_bioengineering7010003
crossref_primary_10_1016_j_biombioe_2019_04_019
crossref_primary_10_1016_j_wasman_2022_02_008
crossref_primary_10_1016_j_scitotenv_2020_139337
crossref_primary_10_1016_j_jenvman_2018_07_079
crossref_primary_10_3390_fermentation7030159
crossref_primary_10_1016_j_biteb_2023_101333
crossref_primary_10_1016_j_ymben_2021_11_014
crossref_primary_10_3390_life14030312
crossref_primary_10_1016_j_cej_2023_145998
crossref_primary_10_1007_s13399_020_00801_2
crossref_primary_10_1016_j_cej_2020_124577
crossref_primary_10_1016_j_biortech_2021_126648
crossref_primary_10_1016_j_jece_2022_107599
crossref_primary_10_1016_j_envpol_2022_119859
crossref_primary_10_1016_j_jhydrol_2022_128712
crossref_primary_10_1016_j_biteb_2022_101031
crossref_primary_10_1016_j_biortech_2024_130602
crossref_primary_10_1016_j_jece_2024_114316
crossref_primary_10_1016_j_seta_2022_102764
crossref_primary_10_3390_w13243497
crossref_primary_10_1007_s13399_024_06419_y
crossref_primary_10_1016_j_biortech_2020_124045
crossref_primary_10_1016_j_energy_2021_122465
crossref_primary_10_1007_s10163_022_01425_6
crossref_primary_10_1016_j_fuel_2020_119510
crossref_primary_10_1016_j_jhazmat_2019_121363
crossref_primary_10_1016_j_ijhydene_2019_07_236
crossref_primary_10_1111_ijfs_13726
crossref_primary_10_1016_j_watres_2023_120891
crossref_primary_10_1016_j_jenvman_2023_118434
crossref_primary_10_3390_environments11060123
crossref_primary_10_1016_j_resconrec_2024_107789
crossref_primary_10_1073_pnas_1911107116
crossref_primary_10_3390_microorganisms8030353
crossref_primary_10_1016_j_watres_2022_119240
crossref_primary_10_1016_j_jece_2021_105055
crossref_primary_10_2478_amns_2024_2790
crossref_primary_10_1177_0734242X221103940
crossref_primary_10_1016_j_cej_2020_125560
crossref_primary_10_3390_en13215638
crossref_primary_10_2139_ssrn_4126124
crossref_primary_10_1080_21622515_2022_2139641
crossref_primary_10_1016_j_jece_2024_112035
crossref_primary_10_1016_j_jwpe_2020_101582
crossref_primary_10_1016_j_lwt_2024_115828
crossref_primary_10_2139_ssrn_4159242
crossref_primary_10_3390_molecules28093883
crossref_primary_10_1016_j_biortech_2020_123175
crossref_primary_10_1007_s12649_021_01421_1
crossref_primary_10_1016_j_fuel_2022_123449
crossref_primary_10_1016_j_fuel_2024_131664
crossref_primary_10_1016_j_wasman_2023_05_016
crossref_primary_10_1007_s11270_021_05387_7
crossref_primary_10_3389_fceng_2025_1532958
crossref_primary_10_1016_j_jece_2024_114563
crossref_primary_10_1002_wer_1527
crossref_primary_10_1016_j_biortech_2022_128097
crossref_primary_10_1016_j_jes_2023_07_040
crossref_primary_10_1016_j_jwpe_2024_105793
crossref_primary_10_1016_j_tibtech_2021_04_001
crossref_primary_10_1016_j_cej_2022_140080
crossref_primary_10_2166_wst_2021_148
crossref_primary_10_3390_pr9030417
crossref_primary_10_1016_j_jclepro_2024_141542
crossref_primary_10_1007_s43153_021_00130_5
crossref_primary_10_1016_j_biortech_2021_125514
crossref_primary_10_1016_j_biombioe_2020_105874
crossref_primary_10_1016_j_watres_2022_119228
crossref_primary_10_1016_j_jclepro_2022_132241
crossref_primary_10_1016_j_watres_2025_123144
crossref_primary_10_1080_01496395_2019_1600553
crossref_primary_10_1155_2024_8841207
crossref_primary_10_1016_j_biortech_2022_128042
crossref_primary_10_3390_app15031008
crossref_primary_10_1016_j_biteb_2023_101501
crossref_primary_10_1007_s11157_023_09648_1
crossref_primary_10_1016_j_jbiosc_2019_05_011
crossref_primary_10_2139_ssrn_4045295
crossref_primary_10_1016_j_biortech_2023_129776
crossref_primary_10_1016_j_scitotenv_2021_148947
crossref_primary_10_1007_s12649_020_01328_3
crossref_primary_10_1016_j_biortech_2018_07_042
crossref_primary_10_1016_j_bej_2023_109073
crossref_primary_10_1080_09593330_2020_1753818
crossref_primary_10_1016_j_biortech_2019_121889
crossref_primary_10_3390_biomass4010007
crossref_primary_10_1016_j_wasman_2024_12_029
crossref_primary_10_1016_j_cej_2024_155583
crossref_primary_10_1007_s00449_021_02675_8
crossref_primary_10_1016_j_biortech_2020_124234
crossref_primary_10_1016_j_chemosphere_2022_134500
crossref_primary_10_1016_j_biortech_2020_124233
crossref_primary_10_1080_10643389_2019_1634456
crossref_primary_10_3390_pr11020338
crossref_primary_10_1016_j_procbio_2020_10_011
crossref_primary_10_1007_s10967_023_08856_x
crossref_primary_10_1016_j_scitotenv_2020_137401
crossref_primary_10_1007_s12649_023_02118_3
crossref_primary_10_1021_acsestwater_2c00459
crossref_primary_10_1016_j_biteb_2022_101203
crossref_primary_10_1016_j_jhazmat_2020_123543
crossref_primary_10_1002_btpr_2696
crossref_primary_10_1007_s12155_022_10541_y
crossref_primary_10_1016_j_scitotenv_2020_141920
crossref_primary_10_1007_s11356_020_11548_8
crossref_primary_10_3390_fermentation9070636
crossref_primary_10_1016_j_bioelechem_2019_107333
crossref_primary_10_1016_j_biortech_2020_123497
crossref_primary_10_1016_j_scitotenv_2023_162674
crossref_primary_10_1016_j_jenvman_2023_117966
crossref_primary_10_1016_j_biortech_2025_132253
crossref_primary_10_1016_j_jhydrol_2022_128309
crossref_primary_10_1007_s11356_023_31025_2
crossref_primary_10_1515_gps_2021_0064
crossref_primary_10_1021_acs_energyfuels_8b04215
crossref_primary_10_1016_j_envres_2021_112288
crossref_primary_10_1016_j_ijbiomac_2021_02_092
crossref_primary_10_1016_j_biortech_2019_121427
crossref_primary_10_1007_s12649_019_00854_z
crossref_primary_10_1016_j_biortech_2020_124456
crossref_primary_10_1016_j_chemosphere_2022_133512
crossref_primary_10_1016_j_wasman_2022_07_019
crossref_primary_10_1016_j_chemosphere_2023_140215
crossref_primary_10_1016_j_scitotenv_2020_136695
crossref_primary_10_1007_s12155_019_10055_0
crossref_primary_10_1016_j_biteb_2025_102062
crossref_primary_10_1016_j_watres_2022_118440
crossref_primary_10_1007_s11270_024_07484_9
crossref_primary_10_1007_s12649_025_02887_z
crossref_primary_10_1007_s12649_018_0323_9
crossref_primary_10_1016_j_biortech_2019_121957
crossref_primary_10_1016_j_fuel_2021_121276
crossref_primary_10_1016_j_biortech_2020_124323
crossref_primary_10_1016_j_jece_2023_111838
crossref_primary_10_1016_j_scitotenv_2020_144265
crossref_primary_10_3389_fbioe_2025_1529032
crossref_primary_10_1016_j_biortech_2019_02_025
crossref_primary_10_1016_j_jes_2023_10_035
crossref_primary_10_1016_j_ese_2022_100235
crossref_primary_10_1016_j_jenvman_2021_113827
crossref_primary_10_3390_fermentation10030162
crossref_primary_10_3389_fmicb_2020_556140
crossref_primary_10_1016_j_biortech_2022_128354
crossref_primary_10_1007_s12649_021_01618_4
crossref_primary_10_1016_j_watres_2021_117004
crossref_primary_10_1039_D4GC05125D
crossref_primary_10_1016_j_rser_2021_110971
crossref_primary_10_1007_s10532_019_09890_x
crossref_primary_10_1007_s13399_024_06437_w
crossref_primary_10_1016_j_rser_2022_112577
crossref_primary_10_1016_j_biombioe_2020_105694
crossref_primary_10_1007_s12649_021_01540_9
crossref_primary_10_1186_s40643_025_00839_y
crossref_primary_10_2166_wpt_2020_006
crossref_primary_10_1016_j_eti_2021_102162
crossref_primary_10_1016_j_isci_2020_101221
crossref_primary_10_1016_j_jes_2023_04_031
crossref_primary_10_3390_biom12091284
crossref_primary_10_1038_s41598_020_67356_0
crossref_primary_10_1016_j_wasman_2018_05_027
crossref_primary_10_1007_s00217_023_04313_x
crossref_primary_10_1016_j_biteb_2022_101123
crossref_primary_10_25054_22161325_2783
crossref_primary_10_3389_fenrg_2021_627093
crossref_primary_10_1016_j_watres_2024_122048
crossref_primary_10_3390_chemengineering8050084
crossref_primary_10_1021_acs_est_4c01227
crossref_primary_10_1016_j_wasman_2020_04_052
crossref_primary_10_1016_j_watres_2019_115371
crossref_primary_10_1016_j_bej_2023_109029
crossref_primary_10_1016_j_eti_2022_102587
crossref_primary_10_1016_j_jece_2023_110724
crossref_primary_10_1186_s13068_020_01694_z
crossref_primary_10_1016_j_scitotenv_2022_157920
crossref_primary_10_1016_j_chemosphere_2021_132299
crossref_primary_10_1016_j_rineng_2024_102292
crossref_primary_10_3390_fermentation9020138
crossref_primary_10_1016_j_chemosphere_2024_142984
crossref_primary_10_1016_j_procbio_2023_06_019
crossref_primary_10_1016_j_ijhydene_2024_09_363
crossref_primary_10_1016_j_biortech_2020_124528
crossref_primary_10_1016_j_jbiosc_2021_02_009
crossref_primary_10_1016_j_biteb_2024_101835
crossref_primary_10_3390_pr8081005
crossref_primary_10_1021_acs_est_3c06478
crossref_primary_10_1016_j_renene_2020_01_138
crossref_primary_10_1016_j_scitotenv_2019_133741
crossref_primary_10_1016_j_indcrop_2019_111586
crossref_primary_10_1590_s1413_4152202020190174
crossref_primary_10_1016_j_fbp_2024_12_013
crossref_primary_10_3390_molecules24234404
crossref_primary_10_1002_jctb_6529
crossref_primary_10_1007_s12649_022_01968_7
crossref_primary_10_1016_j_biortech_2019_121350
crossref_primary_10_1016_j_wasman_2019_02_011
crossref_primary_10_1016_j_biortech_2018_09_057
crossref_primary_10_1016_j_biortech_2022_128200
crossref_primary_10_3390_en15196917
crossref_primary_10_1016_j_renene_2024_120882
crossref_primary_10_1016_j_biortech_2020_124518
crossref_primary_10_1016_j_biortech_2022_127358
crossref_primary_10_1016_j_biortech_2020_124637
crossref_primary_10_1016_j_biortech_2020_123787
crossref_primary_10_1016_j_cej_2024_157018
crossref_primary_10_1016_j_wasman_2024_02_026
crossref_primary_10_2139_ssrn_4142234
crossref_primary_10_3390_polym13030321
crossref_primary_10_1021_acsestengg_4c00220
crossref_primary_10_1016_j_scitotenv_2021_152499
crossref_primary_10_1016_j_scitotenv_2021_152498
crossref_primary_10_1016_j_watres_2024_122970
crossref_primary_10_1016_j_wri_2021_100140
crossref_primary_10_1016_j_biortech_2019_122218
crossref_primary_10_1007_s12155_020_10093_z
crossref_primary_10_1016_j_scitotenv_2020_142390
crossref_primary_10_1016_j_biortech_2022_128340
crossref_primary_10_1016_j_wasman_2019_05_009
crossref_primary_10_1016_j_chemosphere_2020_125832
crossref_primary_10_1021_acsestengg_0c00081
crossref_primary_10_1007_s12010_021_03729_z
crossref_primary_10_1016_j_biortech_2018_09_035
crossref_primary_10_1016_j_energy_2024_132055
crossref_primary_10_1016_j_cej_2019_122229
crossref_primary_10_1016_j_biortech_2024_131080
crossref_primary_10_1080_21655979_2021_1996044
crossref_primary_10_1016_j_jclepro_2018_08_198
crossref_primary_10_1007_s11356_024_33952_0
crossref_primary_10_3390_su14105894
crossref_primary_10_1016_j_rser_2021_111519
crossref_primary_10_1016_j_cej_2023_148352
crossref_primary_10_1016_j_rser_2020_110370
crossref_primary_10_1016_j_wasman_2019_05_010
crossref_primary_10_1590_s1517_707620210002_1269
crossref_primary_10_1016_j_biortech_2019_122478
crossref_primary_10_3390_fermentation10040179
crossref_primary_10_1038_s41598_019_54914_4
crossref_primary_10_3390_fermentation11040160
crossref_primary_10_3390_fermentation9070586
crossref_primary_10_1016_j_fuel_2022_123812
crossref_primary_10_1016_j_jenvman_2020_110305
crossref_primary_10_1039_D0RA04400H
crossref_primary_10_1016_j_jece_2021_105956
crossref_primary_10_1016_j_watres_2024_122426
crossref_primary_10_1016_j_biortech_2019_122520
crossref_primary_10_1016_j_biortech_2022_127790
crossref_primary_10_1016_j_biortech_2019_122400
crossref_primary_10_3390_fermentation8070325
crossref_primary_10_1016_j_biortech_2022_127672
crossref_primary_10_1016_j_biortech_2020_122778
crossref_primary_10_1016_j_biortech_2023_128920
crossref_primary_10_1016_j_scitotenv_2018_12_124
crossref_primary_10_1016_j_biortech_2022_128518
crossref_primary_10_1007_s42768_019_00013_z
crossref_primary_10_1007_s13399_021_01574_y
crossref_primary_10_3389_fbioe_2023_1330293
crossref_primary_10_3390_en16145462
crossref_primary_10_1021_acsestengg_4c00384
crossref_primary_10_4491_eer_2019_409
crossref_primary_10_1186_s13568_022_01486_8
crossref_primary_10_1016_j_ijhydene_2023_10_092
crossref_primary_10_1016_j_jclepro_2020_124727
crossref_primary_10_3390_en15207522
crossref_primary_10_1016_j_biortech_2022_127420
crossref_primary_10_1093_femsre_fuad062
crossref_primary_10_1016_j_jenvman_2024_123983
crossref_primary_10_1016_j_cej_2022_139871
crossref_primary_10_1016_j_biotno_2023_11_006
crossref_primary_10_1016_j_indcrop_2024_120354
crossref_primary_10_1016_j_jwpe_2021_102046
crossref_primary_10_1016_j_watres_2022_118719
crossref_primary_10_1007_s42768_024_00213_2
crossref_primary_10_1016_j_cclet_2022_108058
crossref_primary_10_1016_j_jclepro_2019_119067
crossref_primary_10_1186_s42834_019_0037_0
crossref_primary_10_1016_j_biortech_2018_09_087
crossref_primary_10_1016_j_biortech_2024_131034
crossref_primary_10_1007_s12649_018_0294_x
crossref_primary_10_1016_j_biortech_2021_126282
crossref_primary_10_1016_j_ijhydene_2018_10_066
crossref_primary_10_1016_j_biortech_2021_125196
crossref_primary_10_1016_j_biortech_2019_122428
crossref_primary_10_1016_j_wasman_2024_02_010
crossref_primary_10_1016_j_biortech_2020_123604
crossref_primary_10_1016_j_biortech_2022_128428
crossref_primary_10_1016_j_marpolbul_2022_113549
crossref_primary_10_1016_j_bej_2022_108725
crossref_primary_10_1016_j_biortech_2020_123851
crossref_primary_10_1016_j_biortech_2020_122881
crossref_primary_10_1021_acssuschemeng_2c04080
crossref_primary_10_1166_jbmb_2023_2329
crossref_primary_10_1016_j_watres_2024_121110
crossref_primary_10_1186_s13568_022_01363_4
crossref_primary_10_3390_fermentation9060518
crossref_primary_10_1016_j_egypro_2018_10_008
crossref_primary_10_1016_j_envres_2024_120645
crossref_primary_10_1016_j_biortech_2022_127683
crossref_primary_10_1016_j_biortech_2020_122865
crossref_primary_10_1016_j_indcrop_2025_120554
crossref_primary_10_1016_j_biortech_2023_128712
crossref_primary_10_1016_j_chemosphere_2019_124573
crossref_primary_10_1016_j_bej_2022_108710
crossref_primary_10_3390_separations9010011
crossref_primary_10_1016_j_jece_2021_106963
crossref_primary_10_3389_fchem_2018_00284
Cites_doi 10.1016/j.ijhydene.2013.07.122
10.1016/j.ijhydene.2003.09.001
10.1016/j.rser.2014.05.038
10.1016/j.biortech.2013.06.025
10.1080/09593332608618563
10.1007/s00449-014-1308-0
10.1016/j.tifs.2012.11.007
10.1016/j.procbio.2006.11.007
10.1023/A:1014562504882
10.1128/aem.48.6.1088-1095.1984
10.1021/ie201300d
10.5539/jsd.v8n3p43
10.1002/bit.10628
10.1021/es052252b
10.1111/j.1462-2920.2006.00989.x
10.1016/j.cej.2010.12.074
10.1016/j.procbio.2005.06.015
10.1007/s00253-010-3066-5
10.2166/wst.2005.0511
10.1016/j.biortech.2006.02.039
10.1016/j.ijhydene.2006.02.012
10.1016/j.biortech.2007.06.028
10.1016/j.ijhydene.2008.04.040
10.1016/j.biortech.2010.10.141
10.1021/bp980026i
10.1016/j.ijhydene.2003.09.011
10.1007/s10295-014-1423-6
10.1002/bit.21412
10.1016/j.biortech.2011.01.082
10.1016/j.ijhydene.2010.03.008
10.1002/jctb.1261
10.1016/j.biortech.2011.11.026
10.1111/j.1574-6941.2001.tb00893.x
10.1016/j.biortech.2008.11.051
10.1016/j.jiec.2014.08.010
10.1016/j.ijhydene.2015.02.016
10.1016/j.proenv.2012.10.012
10.1016/j.seppur.2016.11.032
10.3390/en8010399
10.1016/j.biortech.2013.06.015
10.1002/bit.22935
10.1016/j.jhazmat.2003.11.014
10.1016/j.biortech.2013.06.099
10.1016/j.ymben.2004.02.006
10.1016/j.ijhydene.2011.04.161
10.1080/10643389.2016.1145959
10.1021/es052119j
10.1016/j.biortech.2011.11.060
10.1016/j.biortech.2015.04.001
10.1016/0043-1354(94)90116-3
10.1016/j.wasman.2016.08.006
10.1039/C4CC10121A
10.1007/s12010-009-8533-z
10.1186/1868-7083-4-4
10.1002/bit.21373
10.1016/j.watres.2013.10.072
10.1016/j.biortech.2014.03.089
10.17221/106/2009-CJFS
10.1080/09593330309385659
10.1205/fbp.04163
10.1016/j.biortech.2016.11.096
10.1016/S0960-8524(01)00110-9
10.1016/j.memsci.2006.11.026
10.1016/j.watres.2007.05.037
10.1016/0043-1354(82)90084-7
10.1016/S0960-8524(99)00105-4
10.1021/es702610v
10.1111/j.1758-2229.2010.00147.x
10.1016/j.biortech.2012.10.121
10.1016/j.biortech.2014.03.088
10.1016/j.wasman.2014.07.009
10.1021/es9005948
10.1007/BF02932080
10.1016/j.biortech.2009.02.066
10.1016/j.biortech.2014.03.085
10.1016/j.biortech.2014.02.014
10.1002/bit.260380603
10.1021/es8037142
10.1016/j.watres.2012.10.035
10.1016/j.ijhydene.2004.02.018
10.1016/j.cej.2013.09.002
10.1007/s10531-004-0377-9
10.1016/j.biortech.2015.11.072
10.1016/j.apenergy.2012.06.056
10.1016/j.watres.2010.07.019
10.1128/mBio.00889-14
10.1016/j.ijhydene.2013.01.120
10.1016/j.jtice.2011.05.006
10.1128/JB.182.3.620-626.2000
10.1016/j.watres.2011.11.047
10.1016/j.bej.2008.02.004
10.1016/j.biortech.2011.03.030
10.1111/j.1574-6941.1999.tb00634.x
10.1016/j.wasman.2010.01.033
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.06.121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 78
ExternalDocumentID 28693950
10_1016_j_biortech_2017_06_121
S0960852417310258
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c504t-7282ec9a66f2d2af3a7dcccff6ea515a9de54c1308722a34238dbfb56df93f993
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 08:58:27 EDT 2025
Tue Aug 05 10:31:01 EDT 2025
Wed Feb 19 02:43:56 EST 2025
Thu Apr 24 23:05:45 EDT 2025
Tue Jul 01 02:06:50 EDT 2025
Fri Feb 23 02:19:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Food waste
Volatile fatty acids (VFAs)
Anaerobic fermentation
Metabolic pathway
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-7282ec9a66f2d2af3a7dcccff6ea515a9de54c1308722a34238dbfb56df93f993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 28693950
PQID 1917960296
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000424407
proquest_miscellaneous_1917960296
pubmed_primary_28693950
crossref_primary_10_1016_j_biortech_2017_06_121
crossref_citationtrail_10_1016_j_biortech_2017_06_121
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_06_121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
2018-Jan
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Berni Canani, Di Costanzo, Leone (b0010) 2012; 4
Redwood, Orozco, Majewski, Macaskie (b0325) 2012; 107
Jiang, Zhang, Li, Wang, Gong, Li (b0175) 2013; 143
Hsu, Yang (b0165) 1991; 38
Lim, Ahn, Kim, Chang (b0240) 2006; 11
Shin, Han, Lim, Lee, Hwang (b0355) 2010; 44
Chen, Luo, Yan, Feng (b0055) 2013; 102
Zoetemeyer, Matthijsen, Cohen, Boelhouwer (b0480) 1982; 16
Kim, Han, Shin (b0210) 2004; 29
Neyens, Baeyens, Dewil, De heyder (b0285) 2004; 106
Oleskowicz-Popiel, Kadar, Heiske, Klein-Marcuschamer, Simmons, Blanch, Schmidt (b0295) 2012; 104
Yuan, Chen, Zhang, Jiang, Zhou, Gu (b0435) 2006; 40
Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0475) 2009; 100
Fang, Liu (b0100) 2002; 82
Stowers, Cox, Rodriguez (b0365) 2014; 41
Choudhari, Cerrone, Woods, Joyce, Flaherty, Connor, Babu (b0060) 2015; 23
Liu, Wang, Liu, Fu, Chen, Yu (b0250) 2012; 46
Conrad, Klose (b0065) 1999; 30
Guo, Trably, Latrille, Carrère, Steyer (b0135) 2010; 35
Marin, Kennedy, Eskicioglu (b0265) 2010; 30
Phelps, Zeikus (b0305) 1984; 48
Müller, Worm, Schink, Stams, Plugge (b0280) 2010; 2
Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0470) 2008; 33
Lim, Kim, Jeong, Choi, Ahn, Chang (b0245) 2008; 99
den Boer, Lukaszewska, Kluczkiewicz, Lewandowska, King, Reijonen, Kuhmonen, Suhonen, Jaaskelainen, Heitto, Laatikainen, Hakalehto (b0075) 2016; 58
Kim, Kim, Jung, Kim, Shin (b0195) 2011; 102
Ganigue, Puig, Batlle-Vilanova, Balaguer, Colprim (b0130) 2015; 51
Posada, Cardona (b0315) 2012; 51
Shin, Youn (b0350) 2005; 16
He, Sun, Zou, Yuan, Zhu, Li, Pang (b0155) 2012; 16
Fei, Fu, Shang, Brigham, Chang (b0115) 2015; 38
Jin, Yang (b0180) 1998; 14
Zhang, Su, Baeyens, Tan (b0450) 2014; 38
Zhang, Liu, Chen, Pan (b9015) 2017; 224
Arslan, Steinbusch, Diels, Hamelers, Strik, Buisman, De Wever (b9005) 2016; 46
Wang, Cheng, Sun, Jin (b0405) 2006; 41
Calt (b0025) 2015; 8
Demler, Weuster-Botz (b0070) 2011; 108
Pind, Angelidaki, Ahring (b0310) 2003; 82
Charles, Walker, Cord-Ruwisch (b0035) 2009; 100
Kotsyurbenko, Glagolev, Nozhevnikova, Conrad (b0215) 2001; 38
Kim, Gomec, Ahn, Speece (b0205) 2003; 24
Lee, Salerno, Rittmann (b0220) 2008; 42
Chen, Li, Zheng, Wang (b0050) 2013; 47
Siriwongrungson, Zeng, Angelidaki (b0360) 2007; 41
Castillo Martinez, Balciunas, Salgado, Domínguez González, Converti, Oliveira (b0040) 2013; 30
Arslan, Zhang, Steinbusch, Diels, Hamelers, Buisman, De Wever (b0005) 2017; 175
Fei, Chang, Shang, Choi, Kim, Kang (b0110) 2011; 102
Stams, de Bok, Plugge, van Eekert, Dolfing, Schraa (b9010) 2006; 8
Fdez.-Güelfo, Álvarez-Gallego, Sales, Romero (b0105) 2011; 168
Valdez-Vazquez, Ríos-Leal, Carmona-Martínez, Muñoz-Páez, Poggi-Varaldo (b0385) 2006; 40
Dinsdale, Premier, Hawkes, Hawkes (b0080) 2000; 72
Huang, Xu, Zhang, Xue, Chen (b0170) 2007; 288
Bengtsson, Hallquist, Werker, Welander (b0015) 2008; 40
Saady (b0335) 2013; 38
Lee, Chua, Yeoh, Ngoh (b0225) 2014; 235
Yu, Bule, Ma, Zhao, Frear, Chen (b0430) 2014; 162
Han, Fang, Liu, Tang (b0145) 2016; 202
Chen, Meng, Nie, Zhang (b0045) 2013; 128
Drake, Küsel, Matthies (b0090) 2006
Liang, McDonald, Coats (b0235) 2014; 34
Vital, Howe, Tiedje (b0390) 2014; 5
Zhang, Zhang, Zhang, Shi, Cai (b0440) 2005; 26
Wee, Kim, Ryu (b0410) 2006; 44
Vadali, Bennett, San (b0380) 2004; 6
Yan, Selvam, Wong (b0415) 2014; 168
Zhang, Noike (b0465) 1994; 28
Ezeji, Qureshi, Blaschek (b0095) 2007; 97
Shen, Yuan, Pang, Chen, Zhu, Zou, Liu, Ma, Yu, Li (b0340) 2013; 144
Wang, Yin, Shen, Li (b0400) 2014; 161
Bensaid, Ruggeri, Saracco (b0020) 2015; 8
Zhang, Chen (b0445) 2009; 43
Nie, Liu, Du, Chen (b0290) 2007; 42
Zhang, Lee, Jahng (b0455) 2011; 102
Patakova, Lipovaky, Cizkova, Fortova, Rychtera, Melzoch (b0300) 2009; 27
Shin (b0345) 2004; 29
Kim, Han, Kim, Shin (b0190) 2006; 31
Qureshi, Maddox (b0320) 2005; 83
Han, Wang, Ye, Huang, Tang, Li, Ren (b0150) 2015; 40
Zhang, Elmashad, Hartman, Wang, Liu, Choate, Gamble (b0460) 2007; 98
Martínez-Campos, de la Torre (b0270) 2002; 24
Jones, Massanet-Nicolau, Guwy, Premier, Dinsdale, Reilly (b0185) 2015; 189
Riondet, Cachon, Waché, Alcaraz, Diviès (b0330) 2000; 182
Drake (b0085) 1994
Feng, Chen, Zheng (b0120) 2009; 43
Kim, Choi, Kim, Kim, Chung (b0200) 2005; 52
Han (b0140) 2004; 29
Liu, Bischoff, Leathers, Qureshi, Rich, Hughes (b0260) 2013; 143
Yan, Selvam, Xu, Wong (b0420) 2014; 159
Wang, Li, Ren (b0395) 2013; 38
Chaganti, Kim, Lalman (b0030) 2011; 36
Feng, Zhang, Quan, Chen (b0125) 2014; 52
Yen, Li, Ma (b0425) 2011; 42
Temudo, Kleerebezem, van Loosdrecht (b0375) 2007; 98
Liu, Wang, Wang, Chen (b0255) 2011; 89
Min, Khan, Kwon, Jung, Yun, Kiso (b0275) 2005; 80
Li, Chen, Li (b0230) 2010; 160
Liang (10.1016/j.biortech.2017.06.121_b0235) 2014; 34
Calt (10.1016/j.biortech.2017.06.121_b0025) 2015; 8
Zoetemeyer (10.1016/j.biortech.2017.06.121_b0480) 1982; 16
den Boer (10.1016/j.biortech.2017.06.121_b0075) 2016; 58
Kotsyurbenko (10.1016/j.biortech.2017.06.121_b0215) 2001; 38
Saady (10.1016/j.biortech.2017.06.121_b0335) 2013; 38
Zhang (10.1016/j.biortech.2017.06.121_b0440) 2005; 26
Chaganti (10.1016/j.biortech.2017.06.121_b0030) 2011; 36
Demler (10.1016/j.biortech.2017.06.121_b0070) 2011; 108
Ezeji (10.1016/j.biortech.2017.06.121_b0095) 2007; 97
Stams (10.1016/j.biortech.2017.06.121_b9010) 2006; 8
Vadali (10.1016/j.biortech.2017.06.121_b0380) 2004; 6
Castillo Martinez (10.1016/j.biortech.2017.06.121_b0040) 2013; 30
Phelps (10.1016/j.biortech.2017.06.121_b0305) 1984; 48
Zhang (10.1016/j.biortech.2017.06.121_b0460) 2007; 98
Feng (10.1016/j.biortech.2017.06.121_b0120) 2009; 43
Fei (10.1016/j.biortech.2017.06.121_b0115) 2015; 38
Jones (10.1016/j.biortech.2017.06.121_b0185) 2015; 189
Yan (10.1016/j.biortech.2017.06.121_b0415) 2014; 168
Wee (10.1016/j.biortech.2017.06.121_b0410) 2006; 44
Redwood (10.1016/j.biortech.2017.06.121_b0325) 2012; 107
Jin (10.1016/j.biortech.2017.06.121_b0180) 1998; 14
Zhang (10.1016/j.biortech.2017.06.121_b9015) 2017; 224
Li (10.1016/j.biortech.2017.06.121_b0230) 2010; 160
Stowers (10.1016/j.biortech.2017.06.121_b0365) 2014; 41
Feng (10.1016/j.biortech.2017.06.121_b0125) 2014; 52
Ganigue (10.1016/j.biortech.2017.06.121_b0130) 2015; 51
Conrad (10.1016/j.biortech.2017.06.121_b0065) 1999; 30
Fdez.-Güelfo (10.1016/j.biortech.2017.06.121_b0105) 2011; 168
Martínez-Campos (10.1016/j.biortech.2017.06.121_b0270) 2002; 24
Zhang (10.1016/j.biortech.2017.06.121_b0450) 2014; 38
Berni Canani (10.1016/j.biortech.2017.06.121_b0010) 2012; 4
Liu (10.1016/j.biortech.2017.06.121_b0250) 2012; 46
Shen (10.1016/j.biortech.2017.06.121_b0340) 2013; 144
Pind (10.1016/j.biortech.2017.06.121_b0310) 2003; 82
Lim (10.1016/j.biortech.2017.06.121_b0240) 2006; 11
Jiang (10.1016/j.biortech.2017.06.121_b0175) 2013; 143
Marin (10.1016/j.biortech.2017.06.121_b0265) 2010; 30
Dinsdale (10.1016/j.biortech.2017.06.121_b0080) 2000; 72
Drake (10.1016/j.biortech.2017.06.121_b0090) 2006
Arslan (10.1016/j.biortech.2017.06.121_b9005) 2016; 46
Lee (10.1016/j.biortech.2017.06.121_b0220) 2008; 42
Lee (10.1016/j.biortech.2017.06.121_b0225) 2014; 235
Patakova (10.1016/j.biortech.2017.06.121_b0300) 2009; 27
Riondet (10.1016/j.biortech.2017.06.121_b0330) 2000; 182
Qureshi (10.1016/j.biortech.2017.06.121_b0320) 2005; 83
Liu (10.1016/j.biortech.2017.06.121_b0255) 2011; 89
Zhang (10.1016/j.biortech.2017.06.121_b0445) 2009; 43
Zhu (10.1016/j.biortech.2017.06.121_b0470) 2008; 33
Yen (10.1016/j.biortech.2017.06.121_b0425) 2011; 42
Chen (10.1016/j.biortech.2017.06.121_b0050) 2013; 47
He (10.1016/j.biortech.2017.06.121_b0155) 2012; 16
Han (10.1016/j.biortech.2017.06.121_b0140) 2004; 29
Posada (10.1016/j.biortech.2017.06.121_b0315) 2012; 51
Kim (10.1016/j.biortech.2017.06.121_b0190) 2006; 31
Chen (10.1016/j.biortech.2017.06.121_b0045) 2013; 128
Temudo (10.1016/j.biortech.2017.06.121_b0375) 2007; 98
Han (10.1016/j.biortech.2017.06.121_b0150) 2015; 40
Kim (10.1016/j.biortech.2017.06.121_b0205) 2003; 24
Liu (10.1016/j.biortech.2017.06.121_b0260) 2013; 143
Valdez-Vazquez (10.1016/j.biortech.2017.06.121_b0385) 2006; 40
Shin (10.1016/j.biortech.2017.06.121_b0345) 2004; 29
Wang (10.1016/j.biortech.2017.06.121_b0405) 2006; 41
Choudhari (10.1016/j.biortech.2017.06.121_b0060) 2015; 23
Zhang (10.1016/j.biortech.2017.06.121_b0455) 2011; 102
Huang (10.1016/j.biortech.2017.06.121_b0170) 2007; 288
Zhang (10.1016/j.biortech.2017.06.121_b0465) 1994; 28
Yan (10.1016/j.biortech.2017.06.121_b0420) 2014; 159
Hsu (10.1016/j.biortech.2017.06.121_b0165) 1991; 38
Kim (10.1016/j.biortech.2017.06.121_b0195) 2011; 102
Siriwongrungson (10.1016/j.biortech.2017.06.121_b0360) 2007; 41
Kim (10.1016/j.biortech.2017.06.121_b0200) 2005; 52
Yuan (10.1016/j.biortech.2017.06.121_b0435) 2006; 40
Guo (10.1016/j.biortech.2017.06.121_b0135) 2010; 35
Kim (10.1016/j.biortech.2017.06.121_b0210) 2004; 29
Wang (10.1016/j.biortech.2017.06.121_b0395) 2013; 38
Oleskowicz-Popiel (10.1016/j.biortech.2017.06.121_b0295) 2012; 104
Shin (10.1016/j.biortech.2017.06.121_b0355) 2010; 44
Fei (10.1016/j.biortech.2017.06.121_b0110) 2011; 102
Neyens (10.1016/j.biortech.2017.06.121_b0285) 2004; 106
Chen (10.1016/j.biortech.2017.06.121_b0055) 2013; 102
Lim (10.1016/j.biortech.2017.06.121_b0245) 2008; 99
Shin (10.1016/j.biortech.2017.06.121_b0350) 2005; 16
Min (10.1016/j.biortech.2017.06.121_b0275) 2005; 80
Zhu (10.1016/j.biortech.2017.06.121_b0475) 2009; 100
Vital (10.1016/j.biortech.2017.06.121_b0390) 2014; 5
Bengtsson (10.1016/j.biortech.2017.06.121_b0015) 2008; 40
Nie (10.1016/j.biortech.2017.06.121_b0290) 2007; 42
Yu (10.1016/j.biortech.2017.06.121_b0430) 2014; 162
Bensaid (10.1016/j.biortech.2017.06.121_b0020) 2015; 8
Charles (10.1016/j.biortech.2017.06.121_b0035) 2009; 100
Arslan (10.1016/j.biortech.2017.06.121_b0005) 2017; 175
Müller (10.1016/j.biortech.2017.06.121_b0280) 2010; 2
Han (10.1016/j.biortech.2017.06.121_b0145) 2016; 202
Drake (10.1016/j.biortech.2017.06.121_b0085) 1994
Fang (10.1016/j.biortech.2017.06.121_b0100) 2002; 82
Wang (10.1016/j.biortech.2017.06.121_b0400) 2014; 161
References_xml – volume: 43
  start-page: 4373
  year: 2009
  end-page: 4380
  ident: b0120
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
– volume: 288
  start-page: 1
  year: 2007
  end-page: 12
  ident: b0170
  article-title: Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments
  publication-title: J. Membrane Sci.
– volume: 46
  start-page: 592
  year: 2016
  end-page: 634
  ident: b9005
  article-title: Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 24
  start-page: 1183
  year: 2003
  end-page: 1190
  ident: b0205
  article-title: Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion
  publication-title: Environ. Technol.
– volume: 8
  year: 2015
  ident: b0025
  article-title: Products produced from organic waste using managed ecosystem fermentation
  publication-title: J. Sustainable Dev.
– volume: 82
  start-page: 791
  year: 2003
  end-page: 801
  ident: b0310
  article-title: Dynamics of the anaerobic process: effects of volatile fatty acids
  publication-title: Biotechnol. Bioeng.
– volume: 5
  start-page: e00889
  year: 2014
  ident: b0390
  article-title: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data
  publication-title: mBio
– volume: 224
  start-page: 349
  year: 2017
  end-page: 357
  ident: b9015
  article-title: Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration
  publication-title: Bioresour. Technol.
– volume: 30
  start-page: 47
  year: 1999
  end-page: 56
  ident: b0065
  article-title: How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil?
  publication-title: FEMS Microbiol. Ecol.
– volume: 44
  start-page: 4838
  year: 2010
  end-page: 4849
  ident: b0355
  article-title: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater
  publication-title: Water Res.
– volume: 40
  start-page: 2025
  year: 2006
  end-page: 2029
  ident: b0435
  article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 2158
  year: 2006
  end-page: 2169
  ident: b0190
  article-title: Effect of gas sparging on continuous fermentative hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 538
  year: 2006
  end-page: 543
  ident: b0240
  article-title: Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes
  publication-title: Biotechnol. Bioprocess. Eng.
– volume: 29
  start-page: 569
  year: 2004
  end-page: 577
  ident: b0140
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 4474
  year: 2015
  end-page: 4480
  ident: b0150
  article-title: Fermentative hydrogen production using wheat flour hydrolysate by mixed culture
  publication-title: Int. J. Hydrogen Energy
– volume: 143
  start-page: 525
  year: 2013
  end-page: 530
  ident: b0175
  article-title: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate
  publication-title: Bioresour. Technol.
– volume: 14
  start-page: 457
  year: 1998
  end-page: 465
  ident: b0180
  article-title: Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici
  publication-title: Biotechnol. Progr.
– volume: 98
  start-page: 929
  year: 2007
  end-page: 935
  ident: b0460
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 371
  year: 2006
  end-page: 382
  ident: b9010
  article-title: Exocellular electron transfer in anaerobic microbial communities
  publication-title: Environ. Microbiol.
– volume: 38
  start-page: 153
  year: 2001
  end-page: 159
  ident: b0215
  article-title: Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature
  publication-title: FEMS Microbiol. Ecol.
– volume: 38
  start-page: 4361
  year: 2013
  end-page: 4367
  ident: b0395
  article-title: Biohydrogen from molasses with ethanol-type fermentation: effect of hydraulic retention time
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 571
  year: 1991
  end-page: 578
  ident: b0165
  article-title: Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH
  publication-title: Biotechnol. Bioeng.
– volume: 182
  start-page: 620
  year: 2000
  end-page: 626
  ident: b0330
  article-title: Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli
  publication-title: J. Bacteriol.
– volume: 40
  start-page: 3409
  year: 2006
  end-page: 3415
  ident: b0385
  article-title: Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 1197
  year: 2013
  end-page: 1204
  ident: b0055
  article-title: Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells
  publication-title: Appl. Energy
– volume: 41
  start-page: 152
  year: 2006
  end-page: 158
  ident: b0405
  article-title: Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer
  publication-title: Process. Biochem.
– volume: 100
  start-page: 5097
  year: 2009
  end-page: 5102
  ident: b0475
  article-title: Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 799
  year: 2012
  end-page: 807
  ident: b0250
  article-title: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH
  publication-title: Water Res.
– start-page: 354
  year: 2006
  end-page: 420
  ident: b0090
  article-title: Acetogenic prokaryotes
  publication-title: The Prokaryotes
– volume: 42
  start-page: 2401
  year: 2008
  end-page: 2407
  ident: b0220
  article-title: Thermodynamic evaluation on H2 production in glucose fermentation
  publication-title: Environ. Sci. Technol.
– volume: 98
  start-page: 69
  year: 2007
  end-page: 79
  ident: b0375
  article-title: Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study
  publication-title: Biotechnol. Bioeng.
– volume: 30
  start-page: 70
  year: 2013
  end-page: 83
  ident: b0040
  article-title: Lactic acid properties, applications and production: a review
  publication-title: Trends Food Sci. Technol.
– volume: 104
  start-page: 440
  year: 2012
  end-page: 446
  ident: b0295
  article-title: Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming–evaluation of a concept for a farm-scale biorefinery
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 27
  year: 1994
  end-page: 36
  ident: b0465
  article-title: Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes
  publication-title: Water Res.
– volume: 48
  start-page: 1088
  year: 1984
  end-page: 1095
  ident: b0305
  article-title: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake
  publication-title: Appl. Environ. Microbiol.
– volume: 83
  start-page: 43
  year: 2005
  end-page: 52
  ident: b0320
  article-title: Reduction in butanol inhibition by perstraction
  publication-title: Food Bioprod. Process.
– volume: 143
  start-page: 322
  year: 2013
  end-page: 329
  ident: b0260
  article-title: Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213
  publication-title: Bioresour. Technol.
– volume: 36
  start-page: 14141
  year: 2011
  end-page: 14152
  ident: b0030
  article-title: Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 202
  start-page: 107
  year: 2016
  end-page: 112
  ident: b0145
  article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste
  publication-title: Bioresour. Technol.
– volume: 175
  start-page: 27
  year: 2017
  end-page: 35
  ident: b0005
  article-title: In-situ carboxylate recovery and simultaneous pH control with tailor-configured bipolar membrane electrodialysis during continuous mixed culture fermentation
  publication-title: Sep. Purif. Technol.
– volume: 168
  start-page: 64
  year: 2014
  end-page: 71
  ident: b0415
  article-title: Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 399
  year: 2015
  end-page: 429
  ident: b0020
  article-title: Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives
  publication-title: Energies
– volume: 41
  start-page: 4204
  year: 2007
  end-page: 4210
  ident: b0360
  article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis
  publication-title: Water Res.
– volume: 58
  start-page: 62
  year: 2016
  end-page: 69
  ident: b0075
  article-title: Volatile fatty acids as an added value from biowaste
  publication-title: Waste Manage.
– volume: 23
  start-page: 163
  year: 2015
  end-page: 170
  ident: b0060
  article-title: Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes
  publication-title: J. Ind. Eng. Chem.
– volume: 161
  start-page: 395
  year: 2014
  end-page: 401
  ident: b0400
  article-title: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 5048
  year: 2011
  end-page: 5059
  ident: b0455
  article-title: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 2695
  year: 2011
  end-page: 2701
  ident: b0110
  article-title: The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 489
  year: 2010
  end-page: 499
  ident: b0280
  article-title: Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms
  publication-title: Environ. Microbiol. Rep.
– volume: 82
  start-page: 87
  year: 2002
  end-page: 93
  ident: b0100
  article-title: Effect of pH on hydrogen production from glucose by a mixed culture
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 2354
  year: 2012
  end-page: 2361
  ident: b0315
  article-title: Propionic acid production from raw glycerol using commercial and engineered strains
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 599
  year: 2007
  end-page: 605
  ident: b0290
  article-title: Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process
  publication-title: Process. Biochem.
– volume: 29
  start-page: 1355
  year: 2004
  end-page: 1363
  ident: b0345
  article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 691
  year: 2015
  end-page: 700
  ident: b0115
  article-title: Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment
  publication-title: Bioprocess. Biosyst. Eng.
– volume: 38
  start-page: 13172
  year: 2013
  end-page: 13191
  ident: b0335
  article-title: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge
  publication-title: Int. J. Hydrogen Energy
– volume: 16
  start-page: 33
  year: 2005
  end-page: 44
  ident: b0350
  article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis
  publication-title: Biodegradation
– volume: 102
  start-page: 8646
  year: 2011
  end-page: 8652
  ident: b0195
  article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste
  publication-title: Bioresour. Technol.
– volume: 29
  start-page: 1607
  year: 2004
  end-page: 1616
  ident: b0210
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: Int. J. Hydrogen Energy
– volume: 160
  start-page: 643
  year: 2010
  end-page: 654
  ident: b0230
  article-title: Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system
  publication-title: Appl. Biochem. Biotechnol.
– volume: 235
  start-page: 83
  year: 2014
  end-page: 99
  ident: b0225
  article-title: A review of the production and applications of waste-derived volatile fatty acids
  publication-title: Chem. Eng. J.
– volume: 144
  start-page: 80
  year: 2013
  end-page: 85
  ident: b0340
  article-title: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase
  publication-title: Bioresour. Technol.
– volume: 26
  start-page: 329
  year: 2005
  end-page: 339
  ident: b0440
  article-title: The influence of pH hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion
  publication-title: Environ. Technol.
– volume: 44
  start-page: 163
  year: 2006
  end-page: 172
  ident: b0410
  article-title: Biotechnological production of lactic acid and its recent applications
  publication-title: Food Technol. Biotechnol.
– volume: 89
  start-page: 1333
  year: 2011
  end-page: 1340
  ident: b0255
  article-title: Chemical inhibitors of methanogenesis and putative applications
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 40
  start-page: 492
  year: 2008
  end-page: 499
  ident: b0015
  article-title: Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production
  publication-title: Biochem. Eng. J.
– volume: 6
  start-page: 294
  year: 2004
  end-page: 299
  ident: b0380
  article-title: Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli
  publication-title: Metab. Eng.
– volume: 106
  start-page: 83
  year: 2004
  end-page: 92
  ident: b0285
  article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering
  publication-title: J. Hazard. Mater.
– volume: 38
  start-page: 383
  year: 2014
  end-page: 392
  ident: b0450
  article-title: Reviewing the anaerobic digestion of food waste for biogas production
  publication-title: Renewable Sustainable Energy Rev.
– volume: 107
  start-page: 166
  year: 2012
  end-page: 174
  ident: b0325
  article-title: Electro-extractive fermentation for efficient biohydrogen production
  publication-title: Bioresour. Technol.
– volume: 72
  start-page: 159
  year: 2000
  end-page: 168
  ident: b0080
  article-title: Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters
  publication-title: Bioresour. Technol.
– volume: 97
  start-page: 1460
  year: 2007
  end-page: 1469
  ident: b0095
  article-title: Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation
  publication-title: Biotechnol. Bioeng.
– volume: 34
  start-page: 2022
  year: 2014
  end-page: 2027
  ident: b0235
  article-title: Lactic acid production with undefined mixed culture fermentation of potato peel waste
  publication-title: Waste Manage.
– volume: 33
  start-page: 3651
  year: 2008
  end-page: 3659
  ident: b0470
  article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  start-page: 427
  year: 2002
  end-page: 431
  ident: b0270
  article-title: Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose
  publication-title: Biotechnol. Lett.
– volume: 189
  start-page: 279
  year: 2015
  end-page: 284
  ident: b0185
  article-title: Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis
  publication-title: Bioresour. Technol.
– volume: 16
  start-page: 633
  year: 1982
  end-page: 639
  ident: b0480
  article-title: Product inhibition in the acid forming stage of the anaerobic digestion process
  publication-title: Water Res.
– volume: 52
  start-page: 242
  year: 2014
  end-page: 250
  ident: b0125
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
– volume: 80
  start-page: 909
  year: 2005
  end-page: 915
  ident: b0275
  article-title: Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 30
  start-page: 1772
  year: 2010
  end-page: 1779
  ident: b0265
  article-title: Effect of microwave irradiation on anaerobic degradability of model kitchen waste
  publication-title: Waste Manage.
– volume: 27
  start-page: 276
  year: 2009
  end-page: 283
  ident: b0300
  article-title: Exploitation of food feedstock and waste for production of biobutanol
  publication-title: Czech. J. Food Sci.
– volume: 162
  start-page: 243
  year: 2014
  end-page: 249
  ident: b0430
  article-title: Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 533
  year: 2013
  end-page: 538
  ident: b0045
  article-title: Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes
  publication-title: Bioresour. Technol.
– volume: 16
  start-page: 85
  year: 2012
  end-page: 94
  ident: b0155
  article-title: Influence of temperature on hydrolysis acidification of food waste
  publication-title: Procedia Environ. Sci.
– volume: 4
  start-page: 4
  year: 2012
  ident: b0010
  article-title: The epigenetic effects of butyrate: potential therapeutic implications for clinical practice
  publication-title: Clin. Epigenetics
– volume: 159
  start-page: 249
  year: 2014
  end-page: 257
  ident: b0420
  article-title: A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 7866
  year: 2008
  end-page: 7874
  ident: b0245
  article-title: Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 6164
  year: 2009
  end-page: 6170
  ident: b0445
  article-title: Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 3235
  year: 2015
  end-page: 3238
  ident: b0130
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun. (Camb)
– volume: 108
  start-page: 470
  year: 2011
  end-page: 474
  ident: b0070
  article-title: Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii
  publication-title: Biotechnol. Bioeng.
– volume: 35
  start-page: 10660
  year: 2010
  end-page: 10673
  ident: b0135
  article-title: Hydrogen production from agricultural waste by dark fermentation: a review
  publication-title: Int. J. Hydrogen Energy
– volume: 52
  start-page: 153
  year: 2005
  end-page: 160
  ident: b0200
  article-title: Effect of pretreatment on acid fermentation of organic solid waste
  publication-title: Water Sci. Technol.
– volume: 100
  start-page: 2329
  year: 2009
  end-page: 2335
  ident: b0035
  article-title: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste
  publication-title: Bioresour. Technol.
– volume: 41
  start-page: 837
  year: 2014
  end-page: 852
  ident: b0365
  article-title: Development of an industrializable fermentation process for propionic acid production
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 42
  start-page: 902
  year: 2011
  end-page: 907
  ident: b0425
  article-title: The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 47
  start-page: 615
  year: 2013
  end-page: 622
  ident: b0050
  article-title: Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici
  publication-title: Water Res.
– start-page: 3
  year: 1994
  end-page: 60
  ident: b0085
  article-title: Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives
  publication-title: Acetogenesis
– volume: 168
  start-page: 249
  year: 2011
  end-page: 254
  ident: b0105
  article-title: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW)
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 13172
  issue: 30
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0335
  article-title: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.07.122
– volume: 29
  start-page: 569
  issue: 6
  year: 2004
  ident: 10.1016/j.biortech.2017.06.121_b0140
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.09.001
– volume: 44
  start-page: 163
  issue: 2
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0410
  article-title: Biotechnological production of lactic acid and its recent applications
  publication-title: Food Technol. Biotechnol.
– volume: 38
  start-page: 383
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0450
  article-title: Reviewing the anaerobic digestion of food waste for biogas production
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.05.038
– volume: 143
  start-page: 525
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0175
  article-title: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.025
– volume: 26
  start-page: 329
  issue: 3
  year: 2005
  ident: 10.1016/j.biortech.2017.06.121_b0440
  article-title: The influence of pH hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion
  publication-title: Environ. Technol.
  doi: 10.1080/09593332608618563
– volume: 38
  start-page: 691
  issue: 4
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0115
  article-title: Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment
  publication-title: Bioprocess. Biosyst. Eng.
  doi: 10.1007/s00449-014-1308-0
– volume: 30
  start-page: 70
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0040
  article-title: Lactic acid properties, applications and production: a review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2012.11.007
– volume: 42
  start-page: 599
  issue: 4
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0290
  article-title: Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2006.11.007
– start-page: 354
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0090
  article-title: Acetogenic prokaryotes
– volume: 24
  start-page: 427
  issue: 6
  year: 2002
  ident: 10.1016/j.biortech.2017.06.121_b0270
  article-title: Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1014562504882
– volume: 48
  start-page: 1088
  issue: 6
  year: 1984
  ident: 10.1016/j.biortech.2017.06.121_b0305
  article-title: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.48.6.1088-1095.1984
– volume: 51
  start-page: 2354
  issue: 5
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0315
  article-title: Propionic acid production from raw glycerol using commercial and engineered strains
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201300d
– volume: 8
  issue: 3
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0025
  article-title: Products produced from organic waste using managed ecosystem fermentation
  publication-title: J. Sustainable Dev.
  doi: 10.5539/jsd.v8n3p43
– volume: 82
  start-page: 791
  issue: 7
  year: 2003
  ident: 10.1016/j.biortech.2017.06.121_b0310
  article-title: Dynamics of the anaerobic process: effects of volatile fatty acids
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10628
– volume: 40
  start-page: 2025
  issue: 6
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0435
  article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052252b
– volume: 8
  start-page: 371
  issue: 3
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b9010
  article-title: Exocellular electron transfer in anaerobic microbial communities
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.00989.x
– volume: 168
  start-page: 249
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0105
  article-title: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.12.074
– volume: 41
  start-page: 152
  issue: 1
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0405
  article-title: Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2005.06.015
– volume: 89
  start-page: 1333
  issue: 5
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0255
  article-title: Chemical inhibitors of methanogenesis and putative applications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-3066-5
– volume: 52
  start-page: 153
  issue: 1–2
  year: 2005
  ident: 10.1016/j.biortech.2017.06.121_b0200
  article-title: Effect of pretreatment on acid fermentation of organic solid waste
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2005.0511
– volume: 98
  start-page: 929
  issue: 4
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0460
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.02.039
– volume: 31
  start-page: 2158
  issue: 15
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0190
  article-title: Effect of gas sparging on continuous fermentative hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.012
– volume: 99
  start-page: 7866
  issue: 16
  year: 2008
  ident: 10.1016/j.biortech.2017.06.121_b0245
  article-title: Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.06.028
– volume: 33
  start-page: 3651
  issue: 14
  year: 2008
  ident: 10.1016/j.biortech.2017.06.121_b0470
  article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.040
– volume: 102
  start-page: 2695
  issue: 3
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0110
  article-title: The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.141
– volume: 14
  start-page: 457
  issue: 3
  year: 1998
  ident: 10.1016/j.biortech.2017.06.121_b0180
  article-title: Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici
  publication-title: Biotechnol. Progr.
  doi: 10.1021/bp980026i
– volume: 29
  start-page: 1355
  issue: 13
  year: 2004
  ident: 10.1016/j.biortech.2017.06.121_b0345
  article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.09.011
– volume: 41
  start-page: 837
  issue: 5
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0365
  article-title: Development of an industrializable fermentation process for propionic acid production
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-014-1423-6
– volume: 98
  start-page: 69
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0375
  article-title: Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21412
– volume: 102
  start-page: 5048
  issue: 8
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0455
  article-title: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.01.082
– volume: 35
  start-page: 10660
  issue: 19
  year: 2010
  ident: 10.1016/j.biortech.2017.06.121_b0135
  article-title: Hydrogen production from agricultural waste by dark fermentation: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.008
– volume: 80
  start-page: 909
  issue: 8
  year: 2005
  ident: 10.1016/j.biortech.2017.06.121_b0275
  article-title: Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1261
– volume: 107
  start-page: 166
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0325
  article-title: Electro-extractive fermentation for efficient biohydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.026
– volume: 38
  start-page: 153
  issue: 2–3
  year: 2001
  ident: 10.1016/j.biortech.2017.06.121_b0215
  article-title: Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2001.tb00893.x
– volume: 100
  start-page: 2329
  issue: 8
  year: 2009
  ident: 10.1016/j.biortech.2017.06.121_b0035
  article-title: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.051
– volume: 23
  start-page: 163
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0060
  article-title: Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.08.010
– volume: 40
  start-page: 4474
  issue: 13
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0150
  article-title: Fermentative hydrogen production using wheat flour hydrolysate by mixed culture
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.02.016
– volume: 16
  start-page: 85
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0155
  article-title: Influence of temperature on hydrolysis acidification of food waste
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2012.10.012
– volume: 175
  start-page: 27
  year: 2017
  ident: 10.1016/j.biortech.2017.06.121_b0005
  article-title: In-situ carboxylate recovery and simultaneous pH control with tailor-configured bipolar membrane electrodialysis during continuous mixed culture fermentation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.11.032
– volume: 8
  start-page: 399
  issue: 1
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0020
  article-title: Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives
  publication-title: Energies
  doi: 10.3390/en8010399
– volume: 143
  start-page: 322
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0260
  article-title: Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.015
– volume: 108
  start-page: 470
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0070
  article-title: Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22935
– volume: 106
  start-page: 83
  issue: 2–3
  year: 2004
  ident: 10.1016/j.biortech.2017.06.121_b0285
  article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2003.11.014
– volume: 144
  start-page: 80
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0340
  article-title: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.099
– volume: 6
  start-page: 294
  issue: 4
  year: 2004
  ident: 10.1016/j.biortech.2017.06.121_b0380
  article-title: Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2004.02.006
– volume: 36
  start-page: 14141
  issue: 21
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0030
  article-title: Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.161
– volume: 46
  start-page: 592
  issue: 6
  year: 2016
  ident: 10.1016/j.biortech.2017.06.121_b9005
  article-title: Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2016.1145959
– volume: 40
  start-page: 3409
  issue: 10
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0385
  article-title: Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052119j
– volume: 104
  start-page: 440
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0295
  article-title: Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming–evaluation of a concept for a farm-scale biorefinery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.060
– volume: 189
  start-page: 279
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0185
  article-title: Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.04.001
– volume: 28
  start-page: 27
  issue: 1
  year: 1994
  ident: 10.1016/j.biortech.2017.06.121_b0465
  article-title: Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90116-3
– volume: 58
  start-page: 62
  year: 2016
  ident: 10.1016/j.biortech.2017.06.121_b0075
  article-title: Volatile fatty acids as an added value from biowaste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.08.006
– volume: 51
  start-page: 3235
  issue: 15
  year: 2015
  ident: 10.1016/j.biortech.2017.06.121_b0130
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C4CC10121A
– volume: 160
  start-page: 643
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2017.06.121_b0230
  article-title: Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8533-z
– volume: 4
  start-page: 4
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0010
  article-title: The epigenetic effects of butyrate: potential therapeutic implications for clinical practice
  publication-title: Clin. Epigenetics
  doi: 10.1186/1868-7083-4-4
– volume: 97
  start-page: 1460
  issue: 6
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0095
  article-title: Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21373
– volume: 52
  start-page: 242
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0125
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.10.072
– volume: 162
  start-page: 243
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0430
  article-title: Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.089
– volume: 27
  start-page: 276
  issue: 4
  year: 2009
  ident: 10.1016/j.biortech.2017.06.121_b0300
  article-title: Exploitation of food feedstock and waste for production of biobutanol
  publication-title: Czech. J. Food Sci.
  doi: 10.17221/106/2009-CJFS
– volume: 24
  start-page: 1183
  issue: 9
  year: 2003
  ident: 10.1016/j.biortech.2017.06.121_b0205
  article-title: Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion
  publication-title: Environ. Technol.
  doi: 10.1080/09593330309385659
– volume: 83
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.biortech.2017.06.121_b0320
  article-title: Reduction in butanol inhibition by perstraction
  publication-title: Food Bioprod. Process.
  doi: 10.1205/fbp.04163
– volume: 224
  start-page: 349
  year: 2017
  ident: 10.1016/j.biortech.2017.06.121_b9015
  article-title: Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.096
– volume: 82
  start-page: 87
  issue: 1
  year: 2002
  ident: 10.1016/j.biortech.2017.06.121_b0100
  article-title: Effect of pH on hydrogen production from glucose by a mixed culture
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00110-9
– volume: 288
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0170
  article-title: Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments
  publication-title: J. Membrane Sci.
  doi: 10.1016/j.memsci.2006.11.026
– volume: 41
  start-page: 4204
  issue: 18
  year: 2007
  ident: 10.1016/j.biortech.2017.06.121_b0360
  article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.05.037
– volume: 16
  start-page: 633
  issue: 5
  year: 1982
  ident: 10.1016/j.biortech.2017.06.121_b0480
  article-title: Product inhibition in the acid forming stage of the anaerobic digestion process
  publication-title: Water Res.
  doi: 10.1016/0043-1354(82)90084-7
– volume: 72
  start-page: 159
  issue: 2
  year: 2000
  ident: 10.1016/j.biortech.2017.06.121_b0080
  article-title: Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(99)00105-4
– volume: 42
  start-page: 2401
  issue: 7
  year: 2008
  ident: 10.1016/j.biortech.2017.06.121_b0220
  article-title: Thermodynamic evaluation on H2 production in glucose fermentation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702610v
– volume: 2
  start-page: 489
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2017.06.121_b0280
  article-title: Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2010.00147.x
– volume: 128
  start-page: 533
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0045
  article-title: Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.121
– volume: 161
  start-page: 395
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0400
  article-title: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.088
– volume: 34
  start-page: 2022
  issue: 11
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0235
  article-title: Lactic acid production with undefined mixed culture fermentation of potato peel waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.07.009
– volume: 43
  start-page: 6164
  issue: 16
  year: 2009
  ident: 10.1016/j.biortech.2017.06.121_b0445
  article-title: Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9005948
– volume: 11
  start-page: 538
  issue: 6
  year: 2006
  ident: 10.1016/j.biortech.2017.06.121_b0240
  article-title: Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes
  publication-title: Biotechnol. Bioprocess. Eng.
  doi: 10.1007/BF02932080
– volume: 100
  start-page: 5097
  issue: 21
  year: 2009
  ident: 10.1016/j.biortech.2017.06.121_b0475
  article-title: Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.02.066
– volume: 168
  start-page: 64
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0415
  article-title: Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.085
– volume: 159
  start-page: 249
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0420
  article-title: A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.014
– start-page: 3
  year: 1994
  ident: 10.1016/j.biortech.2017.06.121_b0085
  article-title: Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives
– volume: 38
  start-page: 571
  issue: 6
  year: 1991
  ident: 10.1016/j.biortech.2017.06.121_b0165
  article-title: Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260380603
– volume: 43
  start-page: 4373
  issue: 12
  year: 2009
  ident: 10.1016/j.biortech.2017.06.121_b0120
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8037142
– volume: 47
  start-page: 615
  issue: 2
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0050
  article-title: Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.10.035
– volume: 29
  start-page: 1607
  issue: 15
  year: 2004
  ident: 10.1016/j.biortech.2017.06.121_b0210
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.02.018
– volume: 235
  start-page: 83
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0225
  article-title: A review of the production and applications of waste-derived volatile fatty acids
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.002
– volume: 16
  start-page: 33
  issue: 1
  year: 2005
  ident: 10.1016/j.biortech.2017.06.121_b0350
  article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis
  publication-title: Biodegradation
  doi: 10.1007/s10531-004-0377-9
– volume: 202
  start-page: 107
  year: 2016
  ident: 10.1016/j.biortech.2017.06.121_b0145
  article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.072
– volume: 102
  start-page: 1197
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0055
  article-title: Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.06.056
– volume: 44
  start-page: 4838
  issue: 17
  year: 2010
  ident: 10.1016/j.biortech.2017.06.121_b0355
  article-title: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.07.019
– volume: 5
  start-page: e00889
  year: 2014
  ident: 10.1016/j.biortech.2017.06.121_b0390
  article-title: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data
  publication-title: mBio
  doi: 10.1128/mBio.00889-14
– volume: 38
  start-page: 4361
  issue: 11
  year: 2013
  ident: 10.1016/j.biortech.2017.06.121_b0395
  article-title: Biohydrogen from molasses with ethanol-type fermentation: effect of hydraulic retention time
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.120
– volume: 42
  start-page: 902
  issue: 6
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0425
  article-title: The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2011.05.006
– volume: 182
  start-page: 620
  issue: 3
  year: 2000
  ident: 10.1016/j.biortech.2017.06.121_b0330
  article-title: Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.3.620-626.2000
– volume: 46
  start-page: 799
  issue: 3
  year: 2012
  ident: 10.1016/j.biortech.2017.06.121_b0250
  article-title: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.047
– volume: 40
  start-page: 492
  issue: 3
  year: 2008
  ident: 10.1016/j.biortech.2017.06.121_b0015
  article-title: Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2008.02.004
– volume: 102
  start-page: 8646
  issue: 18
  year: 2011
  ident: 10.1016/j.biortech.2017.06.121_b0195
  article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.030
– volume: 30
  start-page: 47
  issue: 1
  year: 1999
  ident: 10.1016/j.biortech.2017.06.121_b0065
  article-title: How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil?
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1999.tb00634.x
– volume: 30
  start-page: 1772
  issue: 10
  year: 2010
  ident: 10.1016/j.biortech.2017.06.121_b0265
  article-title: Effect of microwave irradiation on anaerobic degradability of model kitchen waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2010.01.033
SSID ssj0003172
Score 2.6718593
SecondaryResourceType review_article
Snippet •Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic...
Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Acids
anaerobic digestion
Anaerobic fermentation
Anaerobiosis
biochemical pathways
biodegradability
Bioreactors
chemical industry
energy recovery
Fatty Acids, Volatile
Fermentation
Food
Food waste
Metabolic Networks and Pathways
Metabolic pathway
nutrient availability
volatile fatty acids
Volatile fatty acids (VFAs)
waste disposal
water content
Title Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways
URI https://dx.doi.org/10.1016/j.biortech.2017.06.121
https://www.ncbi.nlm.nih.gov/pubmed/28693950
https://www.proquest.com/docview/1917960296
https://www.proquest.com/docview/2000424407
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqAcEH3BAq2M1Ku7iRPnwW21arWA6AUq9WaNX-1W22TVTVX1wh_gTzOTRymHVQ_c8hhHVubLzDie-Yaxo6jInQoyFblJjUitsqIISSysDJBAkfjU0n_I72fZ7Dz9eqEuNth0qIWhtMre9nc2vbXW_ZVx_zbHy_l8_IOC70KhB8oxRJGKCn6JvQ4xffzrb5oH-sd2JwGFBUk_qRK-PjZzymhtNyXinHg8Yxmvc1DrAtDWEZ2-Ya_7CJJPuklusw1f7bBXk8vbnkXD77CX06GNG955wji4y36fVFftnj9Hs4RKWXgeoGkeONi5W_Flx_-KuuJUd8KhAk9ETZYHtOB9mVLF68BDXTt-D4iRz3zCiaBEdFUweMdSMv0lR0F6ao0QxQfc-AbxtsAjaoJ8Dw-rPXZ-evJzOhN9PwZhVZQ2IsflmbclZFmQTkJIIHfW2hAyDxgWQem8Sm1MHINSAlELFs4EozIXyiRgILTPNqu68u8YxyvSGAeQlxiwmQQs9clCQcRHloIZMTUoQduerJx6Ziz0kJV2rQflaVKejjKNyhux8eO4ZUfX8eyIctCx_gd4Gn3Ks2M_DaDQqFXaaoHK13crTatgRJwss_UyVCRFZYZRPmJvO0Q9zhnfRZmUKnr_H7P7wLbwrOj-F31km83tnT_ACKoxh-0ncsheTL58m539AV_xH1o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMGzdK3tqwK5eYtnyY7cgaJGubS5rgd4ESpbaFJkdNC6K_ob96ZF-BN0h6GE3QxIFQaRJSiI_AnwbZ2mhvIyD1MQmiK2yQeajMLDSY4RZ5GLL95Cn82R2Hv-8UBc7MO1zYTisstP9rU5vtHXXMup2c7RaLEa_2PnOFFmglFwUqbInsMvoVPEAdidHx7P5RiGTiWweE2h8wAQPEoWvv5sFB7U27xJhylCeoQy32ahtPmhjiw5fwPPOiRSTdp0vYceV-_BscnnTAWm4fdib9pXcqOcB6OAr-HNQXjXP_oI0E_Fl6YTHur4XaBfFWqxaCFhil-DUE4ElOsZqssKTEu8ylUpReeGrqhB3SGLyQ0wEY5QEbSIM9ViOp78UNJBnrUhKaYLfriaRW9IX10G-w_v1azg_PDibzoKuJENg1Tiug5ROaM7mmCReFhJ9hGlhrfU-cUieEeaFU7ENGWZQSmR0waww3qik8HnkyRd6A4OyKt07ENQijSkQ05x8NhOh5VJZNJBEJInRDEH1TNC2wyvnshlL3QemXeueeZqZp8eJJuYNYbShW7WIHY9S5D2P9T-yp8msPEr7tRcKTVzl1xYsXXW71nwQJomTebJ9DOdJcabhOB3C21aiNmumvcijXI3f_8fqvsDe7Oz0RJ8czY8_wFPqydrro48wqG9u3SdyqGrzufth_gIa8SIL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+volatile+fatty+acids+production+from+anaerobic+fermentation+of+food+waste%3A+A+mini-review+focusing+on+acidogenic+metabolic+pathways&rft.jtitle=Bioresource+technology&rft.au=Zhou%2C+Miaomiao&rft.au=Yan%2C+Binghua&rft.au=Wong%2C+Jonathan+W.C.&rft.au=Zhang%2C+Yang&rft.date=2018-01-01&rft.issn=0960-8524&rft.volume=248+p.68-78&rft.spage=68&rft.epage=78&rft_id=info:doi/10.1016%2Fj.biortech.2017.06.121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon