Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways
•Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized. Rece...
Saved in:
Published in | Bioresource technology Vol. 248; no. Pt A; pp. 68 - 78 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2017.06.121 |
Cover
Loading…
Abstract | •Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized.
Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. |
---|---|
AbstractList | Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW.Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. •Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic metabolic pathway were discussed.•The strategies for enhancing VFAs recovery during acidogenic fermentation of food waste were summarized. Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. |
Author | Zhang, Yang Wong, Jonathan W.C. Yan, Binghua Zhou, Miaomiao |
Author_xml | – sequence: 1 givenname: Miaomiao surname: Zhou fullname: Zhou, Miaomiao organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China – sequence: 2 givenname: Binghua surname: Yan fullname: Yan, Binghua email: yanbh@qibebt.ac.cn organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China – sequence: 3 givenname: Jonathan W.C. surname: Wong fullname: Wong, Jonathan W.C. organization: Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, PR China – sequence: 4 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28693950$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu3CAURVGVqpmk_YWIZTd2AdvYVF00itK0UqRu2jXC8MgwsmEKOKP5hvx0mUzSRTezAolzr8Q9F-jMBw8IXVFSU0L5p009uhAz6HXNCO1rwmvK6Bu0okPfVEz0_AytiOCkGjrWnqOLlDaEkIb27B06ZwMXjejICj3d-rXyGgx-DJPKbgJsVc57rLQzCW9jMIvOLnhsY5ix8gpiGJ3GFuIMPqvnt2CxDcHgnUoZPuNrPDvvqgiPDnblRS_J-QdcwENreABfCmbIagxTuW1VXu_UPr1Hb62aEnx4OS_R72-3v26-V_c_737cXN9XuiNtrno2MNBCcW6ZYco2qjdaa2s5qI52ShjoWk0bMvSMqaZlzWBGO3bcWNFYIZpL9PHYW373Z4GU5eyShmlSHsKSJCtDtaxtSX8SpYL2ZWQmeEGvXtBlnMHIbXSzinv5unUB-BHQMaQUwf5DKJEHqXIjX6XKg1RJuCxSS_DLf0HtjsPnqNx0Ov71GIeyaTESZdIODs5dBJ2lCe5UxV8zqcUl |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_149111 crossref_primary_10_3390_fermentation10040201 crossref_primary_10_1016_j_biortech_2021_125296 crossref_primary_10_1093_femsle_fnaf001 crossref_primary_10_1016_j_biortech_2020_123947 crossref_primary_10_1038_s41598_023_48097_2 crossref_primary_10_3390_en11061551 crossref_primary_10_1016_j_eti_2023_103215 crossref_primary_10_1016_j_renene_2019_07_127 crossref_primary_10_3390_pr8121538 crossref_primary_10_1016_j_jenvman_2021_113469 crossref_primary_10_1016_j_biortech_2020_122861 crossref_primary_10_1080_09593330_2021_1942560 crossref_primary_10_1016_j_jbiotec_2023_08_003 crossref_primary_10_1016_j_scitotenv_2022_158112 crossref_primary_10_1016_j_jenvman_2021_114312 crossref_primary_10_1016_j_resconrec_2021_105832 crossref_primary_10_1016_j_biortech_2019_122041 crossref_primary_10_1016_j_ymben_2022_02_001 crossref_primary_10_1016_j_ijhydene_2019_08_230 crossref_primary_10_1016_j_biombioe_2019_105455 crossref_primary_10_1007_s10311_024_01742_2 crossref_primary_10_1016_j_ifset_2020_102545 crossref_primary_10_1016_j_dwt_2024_100191 crossref_primary_10_1016_j_eti_2023_103443 crossref_primary_10_1016_j_jece_2021_106062 crossref_primary_10_1016_j_jes_2019_05_018 crossref_primary_10_1016_j_biortech_2022_127620 crossref_primary_10_1007_s00253_022_12132_5 crossref_primary_10_1016_j_biombioe_2021_106165 crossref_primary_10_1016_j_jenvman_2022_116901 crossref_primary_10_2139_ssrn_4172708 crossref_primary_10_1016_j_biortech_2021_125393 crossref_primary_10_1016_j_eng_2021_03_025 crossref_primary_10_1002_cben_202400004 crossref_primary_10_1016_j_biortech_2020_123804 crossref_primary_10_1016_j_biortech_2022_127655 crossref_primary_10_1016_j_biortech_2022_127773 crossref_primary_10_1016_j_biortech_2018_04_095 crossref_primary_10_1016_j_jece_2024_114776 crossref_primary_10_3390_w14020195 crossref_primary_10_3390_fermentation9110975 crossref_primary_10_1007_s12649_021_01480_4 crossref_primary_10_1016_j_scitotenv_2022_159463 crossref_primary_10_1016_j_psep_2024_10_120 crossref_primary_10_1016_j_scitotenv_2019_134226 crossref_primary_10_1016_j_jenvman_2025_124399 crossref_primary_10_1016_j_rser_2023_113181 crossref_primary_10_1016_j_fuel_2020_119378 crossref_primary_10_3390_microorganisms8040581 crossref_primary_10_1016_j_cej_2023_141550 crossref_primary_10_1016_j_jenvman_2023_119101 crossref_primary_10_3390_en16083378 crossref_primary_10_1016_j_biortech_2021_126253 crossref_primary_10_1016_j_biortech_2021_125044 crossref_primary_10_1080_09593330_2021_2017489 crossref_primary_10_1080_17597269_2024_2384274 crossref_primary_10_1016_j_renene_2020_12_062 crossref_primary_10_1016_j_bej_2020_107502 crossref_primary_10_1007_s11356_019_06531_x crossref_primary_10_1021_acscatal_1c02558 crossref_primary_10_1016_j_cej_2021_129809 crossref_primary_10_3390_w14121935 crossref_primary_10_2139_ssrn_4053372 crossref_primary_10_1007_s11270_020_04720_w crossref_primary_10_1021_acsestengg_2c00219 crossref_primary_10_1021_acsestengg_4c00830 crossref_primary_10_4014_jmb_2008_08057 crossref_primary_10_1016_j_biortech_2019_122486 crossref_primary_10_1002_wer_1219 crossref_primary_10_1016_j_jenvman_2023_119379 crossref_primary_10_1016_j_biortech_2023_130286 crossref_primary_10_1016_j_biortech_2020_122933 crossref_primary_10_1016_j_biortech_2021_125498 crossref_primary_10_1016_j_jenvman_2024_122828 crossref_primary_10_1002_wer_1575 crossref_primary_10_1177_0734242X18819954 crossref_primary_10_3390_fermentation7040303 crossref_primary_10_1016_j_algal_2025_103947 crossref_primary_10_1016_j_envint_2020_105855 crossref_primary_10_3390_en14112993 crossref_primary_10_1016_j_biortech_2018_11_104 crossref_primary_10_3390_fermentation6030092 crossref_primary_10_1080_21655979_2023_2180583 crossref_primary_10_1016_j_chemosphere_2023_138976 crossref_primary_10_1016_j_jclepro_2019_119912 crossref_primary_10_2139_ssrn_4019241 crossref_primary_10_1016_j_biortech_2024_131421 crossref_primary_10_1016_j_envres_2020_109273 crossref_primary_10_1016_j_envres_2023_116943 crossref_primary_10_1016_j_watres_2023_120015 crossref_primary_10_1016_j_cej_2024_156073 crossref_primary_10_1016_j_envres_2025_120763 crossref_primary_10_1016_j_jwpe_2023_104227 crossref_primary_10_1016_j_jwpe_2024_105615 crossref_primary_10_3390_fermentation8040180 crossref_primary_10_1016_j_biortech_2020_122800 crossref_primary_10_1016_j_biortech_2020_122921 crossref_primary_10_1016_j_jenvman_2023_118033 crossref_primary_10_1016_j_biortech_2021_125149 crossref_primary_10_1016_j_eti_2021_101862 crossref_primary_10_1016_j_lwt_2024_117272 crossref_primary_10_1080_21655979_2019_1673937 crossref_primary_10_1016_j_biortech_2018_02_033 crossref_primary_10_1016_j_jclepro_2024_141171 crossref_primary_10_1016_j_jenvman_2022_114765 crossref_primary_10_1016_j_biortech_2022_127939 crossref_primary_10_1016_j_jenvman_2021_113137 crossref_primary_10_1016_j_jclepro_2021_129282 crossref_primary_10_1680_jenes_18_00004 crossref_primary_10_1007_s12649_020_01093_3 crossref_primary_10_1016_j_cej_2023_148041 crossref_primary_10_1016_j_scitotenv_2022_158327 crossref_primary_10_1007_s10163_021_01287_4 crossref_primary_10_1186_s40643_021_00420_3 crossref_primary_10_1016_j_scitotenv_2021_152500 crossref_primary_10_1007_s11356_019_05394_6 crossref_primary_10_1007_s12649_022_02008_0 crossref_primary_10_1016_j_biortech_2019_03_015 crossref_primary_10_1016_j_biortech_2021_125234 crossref_primary_10_4491_eer_2021_333 crossref_primary_10_1016_j_heliyon_2024_e25787 crossref_primary_10_1093_femsyr_foab047 crossref_primary_10_1016_j_fuproc_2022_107185 crossref_primary_10_3390_catal11080964 crossref_primary_10_3390_pr9020223 crossref_primary_10_1016_j_apenergy_2018_10_011 crossref_primary_10_1016_j_biortech_2018_03_083 crossref_primary_10_1080_23311916_2024_2335846 crossref_primary_10_1016_j_cej_2021_131908 crossref_primary_10_1016_j_biortech_2021_125481 crossref_primary_10_1016_j_bios_2019_111922 crossref_primary_10_1016_j_biortech_2021_126211 crossref_primary_10_1016_j_rser_2021_111167 crossref_primary_10_1016_j_biortech_2021_125246 crossref_primary_10_1186_s13068_023_02349_5 crossref_primary_10_1186_s13068_021_01939_5 crossref_primary_10_3390_su13179606 crossref_primary_10_1002_apj_2899 crossref_primary_10_1007_s13399_021_02056_x crossref_primary_10_1016_j_envpol_2020_115936 crossref_primary_10_1016_j_biortech_2024_130644 crossref_primary_10_1016_j_scitotenv_2024_176979 crossref_primary_10_2139_ssrn_4127756 crossref_primary_10_1016_j_biortech_2024_131739 crossref_primary_10_1016_j_bej_2024_109403 crossref_primary_10_1016_j_jclepro_2018_09_213 crossref_primary_10_2139_ssrn_4179198 crossref_primary_10_1016_j_biortech_2021_126426 crossref_primary_10_1016_j_biortech_2021_125569 crossref_primary_10_2139_ssrn_4180191 crossref_primary_10_1016_j_cej_2025_160027 crossref_primary_10_1016_j_jiec_2019_09_009 crossref_primary_10_1016_j_biortech_2024_131984 crossref_primary_10_1016_j_biortech_2021_126310 crossref_primary_10_1016_j_jclepro_2024_143781 crossref_primary_10_1080_21655979_2019_1703544 crossref_primary_10_1016_j_wasman_2021_04_023 crossref_primary_10_1016_j_biteb_2020_100406 crossref_primary_10_1016_j_jece_2023_110955 crossref_primary_10_31025_2611_4135_2021_15096 crossref_primary_10_1007_s10661_023_12009_8 crossref_primary_10_1016_j_biteb_2020_100524 crossref_primary_10_1016_j_jclepro_2019_04_223 crossref_primary_10_1016_j_cej_2021_129068 crossref_primary_10_1016_j_biortech_2024_130782 crossref_primary_10_1002_bbb_2318 crossref_primary_10_1016_j_biortech_2023_129158 crossref_primary_10_1016_j_biortech_2023_129032 crossref_primary_10_1016_j_biortech_2021_125793 crossref_primary_10_3390_bioengineering7010003 crossref_primary_10_1016_j_biombioe_2019_04_019 crossref_primary_10_1016_j_wasman_2022_02_008 crossref_primary_10_1016_j_scitotenv_2020_139337 crossref_primary_10_1016_j_jenvman_2018_07_079 crossref_primary_10_3390_fermentation7030159 crossref_primary_10_1016_j_biteb_2023_101333 crossref_primary_10_1016_j_ymben_2021_11_014 crossref_primary_10_3390_life14030312 crossref_primary_10_1016_j_cej_2023_145998 crossref_primary_10_1007_s13399_020_00801_2 crossref_primary_10_1016_j_cej_2020_124577 crossref_primary_10_1016_j_biortech_2021_126648 crossref_primary_10_1016_j_jece_2022_107599 crossref_primary_10_1016_j_envpol_2022_119859 crossref_primary_10_1016_j_jhydrol_2022_128712 crossref_primary_10_1016_j_biteb_2022_101031 crossref_primary_10_1016_j_biortech_2024_130602 crossref_primary_10_1016_j_jece_2024_114316 crossref_primary_10_1016_j_seta_2022_102764 crossref_primary_10_3390_w13243497 crossref_primary_10_1007_s13399_024_06419_y crossref_primary_10_1016_j_biortech_2020_124045 crossref_primary_10_1016_j_energy_2021_122465 crossref_primary_10_1007_s10163_022_01425_6 crossref_primary_10_1016_j_fuel_2020_119510 crossref_primary_10_1016_j_jhazmat_2019_121363 crossref_primary_10_1016_j_ijhydene_2019_07_236 crossref_primary_10_1111_ijfs_13726 crossref_primary_10_1016_j_watres_2023_120891 crossref_primary_10_1016_j_jenvman_2023_118434 crossref_primary_10_3390_environments11060123 crossref_primary_10_1016_j_resconrec_2024_107789 crossref_primary_10_1073_pnas_1911107116 crossref_primary_10_3390_microorganisms8030353 crossref_primary_10_1016_j_watres_2022_119240 crossref_primary_10_1016_j_jece_2021_105055 crossref_primary_10_2478_amns_2024_2790 crossref_primary_10_1177_0734242X221103940 crossref_primary_10_1016_j_cej_2020_125560 crossref_primary_10_3390_en13215638 crossref_primary_10_2139_ssrn_4126124 crossref_primary_10_1080_21622515_2022_2139641 crossref_primary_10_1016_j_jece_2024_112035 crossref_primary_10_1016_j_jwpe_2020_101582 crossref_primary_10_1016_j_lwt_2024_115828 crossref_primary_10_2139_ssrn_4159242 crossref_primary_10_3390_molecules28093883 crossref_primary_10_1016_j_biortech_2020_123175 crossref_primary_10_1007_s12649_021_01421_1 crossref_primary_10_1016_j_fuel_2022_123449 crossref_primary_10_1016_j_fuel_2024_131664 crossref_primary_10_1016_j_wasman_2023_05_016 crossref_primary_10_1007_s11270_021_05387_7 crossref_primary_10_3389_fceng_2025_1532958 crossref_primary_10_1016_j_jece_2024_114563 crossref_primary_10_1002_wer_1527 crossref_primary_10_1016_j_biortech_2022_128097 crossref_primary_10_1016_j_jes_2023_07_040 crossref_primary_10_1016_j_jwpe_2024_105793 crossref_primary_10_1016_j_tibtech_2021_04_001 crossref_primary_10_1016_j_cej_2022_140080 crossref_primary_10_2166_wst_2021_148 crossref_primary_10_3390_pr9030417 crossref_primary_10_1016_j_jclepro_2024_141542 crossref_primary_10_1007_s43153_021_00130_5 crossref_primary_10_1016_j_biortech_2021_125514 crossref_primary_10_1016_j_biombioe_2020_105874 crossref_primary_10_1016_j_watres_2022_119228 crossref_primary_10_1016_j_jclepro_2022_132241 crossref_primary_10_1016_j_watres_2025_123144 crossref_primary_10_1080_01496395_2019_1600553 crossref_primary_10_1155_2024_8841207 crossref_primary_10_1016_j_biortech_2022_128042 crossref_primary_10_3390_app15031008 crossref_primary_10_1016_j_biteb_2023_101501 crossref_primary_10_1007_s11157_023_09648_1 crossref_primary_10_1016_j_jbiosc_2019_05_011 crossref_primary_10_2139_ssrn_4045295 crossref_primary_10_1016_j_biortech_2023_129776 crossref_primary_10_1016_j_scitotenv_2021_148947 crossref_primary_10_1007_s12649_020_01328_3 crossref_primary_10_1016_j_biortech_2018_07_042 crossref_primary_10_1016_j_bej_2023_109073 crossref_primary_10_1080_09593330_2020_1753818 crossref_primary_10_1016_j_biortech_2019_121889 crossref_primary_10_3390_biomass4010007 crossref_primary_10_1016_j_wasman_2024_12_029 crossref_primary_10_1016_j_cej_2024_155583 crossref_primary_10_1007_s00449_021_02675_8 crossref_primary_10_1016_j_biortech_2020_124234 crossref_primary_10_1016_j_chemosphere_2022_134500 crossref_primary_10_1016_j_biortech_2020_124233 crossref_primary_10_1080_10643389_2019_1634456 crossref_primary_10_3390_pr11020338 crossref_primary_10_1016_j_procbio_2020_10_011 crossref_primary_10_1007_s10967_023_08856_x crossref_primary_10_1016_j_scitotenv_2020_137401 crossref_primary_10_1007_s12649_023_02118_3 crossref_primary_10_1021_acsestwater_2c00459 crossref_primary_10_1016_j_biteb_2022_101203 crossref_primary_10_1016_j_jhazmat_2020_123543 crossref_primary_10_1002_btpr_2696 crossref_primary_10_1007_s12155_022_10541_y crossref_primary_10_1016_j_scitotenv_2020_141920 crossref_primary_10_1007_s11356_020_11548_8 crossref_primary_10_3390_fermentation9070636 crossref_primary_10_1016_j_bioelechem_2019_107333 crossref_primary_10_1016_j_biortech_2020_123497 crossref_primary_10_1016_j_scitotenv_2023_162674 crossref_primary_10_1016_j_jenvman_2023_117966 crossref_primary_10_1016_j_biortech_2025_132253 crossref_primary_10_1016_j_jhydrol_2022_128309 crossref_primary_10_1007_s11356_023_31025_2 crossref_primary_10_1515_gps_2021_0064 crossref_primary_10_1021_acs_energyfuels_8b04215 crossref_primary_10_1016_j_envres_2021_112288 crossref_primary_10_1016_j_ijbiomac_2021_02_092 crossref_primary_10_1016_j_biortech_2019_121427 crossref_primary_10_1007_s12649_019_00854_z crossref_primary_10_1016_j_biortech_2020_124456 crossref_primary_10_1016_j_chemosphere_2022_133512 crossref_primary_10_1016_j_wasman_2022_07_019 crossref_primary_10_1016_j_chemosphere_2023_140215 crossref_primary_10_1016_j_scitotenv_2020_136695 crossref_primary_10_1007_s12155_019_10055_0 crossref_primary_10_1016_j_biteb_2025_102062 crossref_primary_10_1016_j_watres_2022_118440 crossref_primary_10_1007_s11270_024_07484_9 crossref_primary_10_1007_s12649_025_02887_z crossref_primary_10_1007_s12649_018_0323_9 crossref_primary_10_1016_j_biortech_2019_121957 crossref_primary_10_1016_j_fuel_2021_121276 crossref_primary_10_1016_j_biortech_2020_124323 crossref_primary_10_1016_j_jece_2023_111838 crossref_primary_10_1016_j_scitotenv_2020_144265 crossref_primary_10_3389_fbioe_2025_1529032 crossref_primary_10_1016_j_biortech_2019_02_025 crossref_primary_10_1016_j_jes_2023_10_035 crossref_primary_10_1016_j_ese_2022_100235 crossref_primary_10_1016_j_jenvman_2021_113827 crossref_primary_10_3390_fermentation10030162 crossref_primary_10_3389_fmicb_2020_556140 crossref_primary_10_1016_j_biortech_2022_128354 crossref_primary_10_1007_s12649_021_01618_4 crossref_primary_10_1016_j_watres_2021_117004 crossref_primary_10_1039_D4GC05125D crossref_primary_10_1016_j_rser_2021_110971 crossref_primary_10_1007_s10532_019_09890_x crossref_primary_10_1007_s13399_024_06437_w crossref_primary_10_1016_j_rser_2022_112577 crossref_primary_10_1016_j_biombioe_2020_105694 crossref_primary_10_1007_s12649_021_01540_9 crossref_primary_10_1186_s40643_025_00839_y crossref_primary_10_2166_wpt_2020_006 crossref_primary_10_1016_j_eti_2021_102162 crossref_primary_10_1016_j_isci_2020_101221 crossref_primary_10_1016_j_jes_2023_04_031 crossref_primary_10_3390_biom12091284 crossref_primary_10_1038_s41598_020_67356_0 crossref_primary_10_1016_j_wasman_2018_05_027 crossref_primary_10_1007_s00217_023_04313_x crossref_primary_10_1016_j_biteb_2022_101123 crossref_primary_10_25054_22161325_2783 crossref_primary_10_3389_fenrg_2021_627093 crossref_primary_10_1016_j_watres_2024_122048 crossref_primary_10_3390_chemengineering8050084 crossref_primary_10_1021_acs_est_4c01227 crossref_primary_10_1016_j_wasman_2020_04_052 crossref_primary_10_1016_j_watres_2019_115371 crossref_primary_10_1016_j_bej_2023_109029 crossref_primary_10_1016_j_eti_2022_102587 crossref_primary_10_1016_j_jece_2023_110724 crossref_primary_10_1186_s13068_020_01694_z crossref_primary_10_1016_j_scitotenv_2022_157920 crossref_primary_10_1016_j_chemosphere_2021_132299 crossref_primary_10_1016_j_rineng_2024_102292 crossref_primary_10_3390_fermentation9020138 crossref_primary_10_1016_j_chemosphere_2024_142984 crossref_primary_10_1016_j_procbio_2023_06_019 crossref_primary_10_1016_j_ijhydene_2024_09_363 crossref_primary_10_1016_j_biortech_2020_124528 crossref_primary_10_1016_j_jbiosc_2021_02_009 crossref_primary_10_1016_j_biteb_2024_101835 crossref_primary_10_3390_pr8081005 crossref_primary_10_1021_acs_est_3c06478 crossref_primary_10_1016_j_renene_2020_01_138 crossref_primary_10_1016_j_scitotenv_2019_133741 crossref_primary_10_1016_j_indcrop_2019_111586 crossref_primary_10_1590_s1413_4152202020190174 crossref_primary_10_1016_j_fbp_2024_12_013 crossref_primary_10_3390_molecules24234404 crossref_primary_10_1002_jctb_6529 crossref_primary_10_1007_s12649_022_01968_7 crossref_primary_10_1016_j_biortech_2019_121350 crossref_primary_10_1016_j_wasman_2019_02_011 crossref_primary_10_1016_j_biortech_2018_09_057 crossref_primary_10_1016_j_biortech_2022_128200 crossref_primary_10_3390_en15196917 crossref_primary_10_1016_j_renene_2024_120882 crossref_primary_10_1016_j_biortech_2020_124518 crossref_primary_10_1016_j_biortech_2022_127358 crossref_primary_10_1016_j_biortech_2020_124637 crossref_primary_10_1016_j_biortech_2020_123787 crossref_primary_10_1016_j_cej_2024_157018 crossref_primary_10_1016_j_wasman_2024_02_026 crossref_primary_10_2139_ssrn_4142234 crossref_primary_10_3390_polym13030321 crossref_primary_10_1021_acsestengg_4c00220 crossref_primary_10_1016_j_scitotenv_2021_152499 crossref_primary_10_1016_j_scitotenv_2021_152498 crossref_primary_10_1016_j_watres_2024_122970 crossref_primary_10_1016_j_wri_2021_100140 crossref_primary_10_1016_j_biortech_2019_122218 crossref_primary_10_1007_s12155_020_10093_z crossref_primary_10_1016_j_scitotenv_2020_142390 crossref_primary_10_1016_j_biortech_2022_128340 crossref_primary_10_1016_j_wasman_2019_05_009 crossref_primary_10_1016_j_chemosphere_2020_125832 crossref_primary_10_1021_acsestengg_0c00081 crossref_primary_10_1007_s12010_021_03729_z crossref_primary_10_1016_j_biortech_2018_09_035 crossref_primary_10_1016_j_energy_2024_132055 crossref_primary_10_1016_j_cej_2019_122229 crossref_primary_10_1016_j_biortech_2024_131080 crossref_primary_10_1080_21655979_2021_1996044 crossref_primary_10_1016_j_jclepro_2018_08_198 crossref_primary_10_1007_s11356_024_33952_0 crossref_primary_10_3390_su14105894 crossref_primary_10_1016_j_rser_2021_111519 crossref_primary_10_1016_j_cej_2023_148352 crossref_primary_10_1016_j_rser_2020_110370 crossref_primary_10_1016_j_wasman_2019_05_010 crossref_primary_10_1590_s1517_707620210002_1269 crossref_primary_10_1016_j_biortech_2019_122478 crossref_primary_10_3390_fermentation10040179 crossref_primary_10_1038_s41598_019_54914_4 crossref_primary_10_3390_fermentation11040160 crossref_primary_10_3390_fermentation9070586 crossref_primary_10_1016_j_fuel_2022_123812 crossref_primary_10_1016_j_jenvman_2020_110305 crossref_primary_10_1039_D0RA04400H crossref_primary_10_1016_j_jece_2021_105956 crossref_primary_10_1016_j_watres_2024_122426 crossref_primary_10_1016_j_biortech_2019_122520 crossref_primary_10_1016_j_biortech_2022_127790 crossref_primary_10_1016_j_biortech_2019_122400 crossref_primary_10_3390_fermentation8070325 crossref_primary_10_1016_j_biortech_2022_127672 crossref_primary_10_1016_j_biortech_2020_122778 crossref_primary_10_1016_j_biortech_2023_128920 crossref_primary_10_1016_j_scitotenv_2018_12_124 crossref_primary_10_1016_j_biortech_2022_128518 crossref_primary_10_1007_s42768_019_00013_z crossref_primary_10_1007_s13399_021_01574_y crossref_primary_10_3389_fbioe_2023_1330293 crossref_primary_10_3390_en16145462 crossref_primary_10_1021_acsestengg_4c00384 crossref_primary_10_4491_eer_2019_409 crossref_primary_10_1186_s13568_022_01486_8 crossref_primary_10_1016_j_ijhydene_2023_10_092 crossref_primary_10_1016_j_jclepro_2020_124727 crossref_primary_10_3390_en15207522 crossref_primary_10_1016_j_biortech_2022_127420 crossref_primary_10_1093_femsre_fuad062 crossref_primary_10_1016_j_jenvman_2024_123983 crossref_primary_10_1016_j_cej_2022_139871 crossref_primary_10_1016_j_biotno_2023_11_006 crossref_primary_10_1016_j_indcrop_2024_120354 crossref_primary_10_1016_j_jwpe_2021_102046 crossref_primary_10_1016_j_watres_2022_118719 crossref_primary_10_1007_s42768_024_00213_2 crossref_primary_10_1016_j_cclet_2022_108058 crossref_primary_10_1016_j_jclepro_2019_119067 crossref_primary_10_1186_s42834_019_0037_0 crossref_primary_10_1016_j_biortech_2018_09_087 crossref_primary_10_1016_j_biortech_2024_131034 crossref_primary_10_1007_s12649_018_0294_x crossref_primary_10_1016_j_biortech_2021_126282 crossref_primary_10_1016_j_ijhydene_2018_10_066 crossref_primary_10_1016_j_biortech_2021_125196 crossref_primary_10_1016_j_biortech_2019_122428 crossref_primary_10_1016_j_wasman_2024_02_010 crossref_primary_10_1016_j_biortech_2020_123604 crossref_primary_10_1016_j_biortech_2022_128428 crossref_primary_10_1016_j_marpolbul_2022_113549 crossref_primary_10_1016_j_bej_2022_108725 crossref_primary_10_1016_j_biortech_2020_123851 crossref_primary_10_1016_j_biortech_2020_122881 crossref_primary_10_1021_acssuschemeng_2c04080 crossref_primary_10_1166_jbmb_2023_2329 crossref_primary_10_1016_j_watres_2024_121110 crossref_primary_10_1186_s13568_022_01363_4 crossref_primary_10_3390_fermentation9060518 crossref_primary_10_1016_j_egypro_2018_10_008 crossref_primary_10_1016_j_envres_2024_120645 crossref_primary_10_1016_j_biortech_2022_127683 crossref_primary_10_1016_j_biortech_2020_122865 crossref_primary_10_1016_j_indcrop_2025_120554 crossref_primary_10_1016_j_biortech_2023_128712 crossref_primary_10_1016_j_chemosphere_2019_124573 crossref_primary_10_1016_j_bej_2022_108710 crossref_primary_10_3390_separations9010011 crossref_primary_10_1016_j_jece_2021_106963 crossref_primary_10_3389_fchem_2018_00284 |
Cites_doi | 10.1016/j.ijhydene.2013.07.122 10.1016/j.ijhydene.2003.09.001 10.1016/j.rser.2014.05.038 10.1016/j.biortech.2013.06.025 10.1080/09593332608618563 10.1007/s00449-014-1308-0 10.1016/j.tifs.2012.11.007 10.1016/j.procbio.2006.11.007 10.1023/A:1014562504882 10.1128/aem.48.6.1088-1095.1984 10.1021/ie201300d 10.5539/jsd.v8n3p43 10.1002/bit.10628 10.1021/es052252b 10.1111/j.1462-2920.2006.00989.x 10.1016/j.cej.2010.12.074 10.1016/j.procbio.2005.06.015 10.1007/s00253-010-3066-5 10.2166/wst.2005.0511 10.1016/j.biortech.2006.02.039 10.1016/j.ijhydene.2006.02.012 10.1016/j.biortech.2007.06.028 10.1016/j.ijhydene.2008.04.040 10.1016/j.biortech.2010.10.141 10.1021/bp980026i 10.1016/j.ijhydene.2003.09.011 10.1007/s10295-014-1423-6 10.1002/bit.21412 10.1016/j.biortech.2011.01.082 10.1016/j.ijhydene.2010.03.008 10.1002/jctb.1261 10.1016/j.biortech.2011.11.026 10.1111/j.1574-6941.2001.tb00893.x 10.1016/j.biortech.2008.11.051 10.1016/j.jiec.2014.08.010 10.1016/j.ijhydene.2015.02.016 10.1016/j.proenv.2012.10.012 10.1016/j.seppur.2016.11.032 10.3390/en8010399 10.1016/j.biortech.2013.06.015 10.1002/bit.22935 10.1016/j.jhazmat.2003.11.014 10.1016/j.biortech.2013.06.099 10.1016/j.ymben.2004.02.006 10.1016/j.ijhydene.2011.04.161 10.1080/10643389.2016.1145959 10.1021/es052119j 10.1016/j.biortech.2011.11.060 10.1016/j.biortech.2015.04.001 10.1016/0043-1354(94)90116-3 10.1016/j.wasman.2016.08.006 10.1039/C4CC10121A 10.1007/s12010-009-8533-z 10.1186/1868-7083-4-4 10.1002/bit.21373 10.1016/j.watres.2013.10.072 10.1016/j.biortech.2014.03.089 10.17221/106/2009-CJFS 10.1080/09593330309385659 10.1205/fbp.04163 10.1016/j.biortech.2016.11.096 10.1016/S0960-8524(01)00110-9 10.1016/j.memsci.2006.11.026 10.1016/j.watres.2007.05.037 10.1016/0043-1354(82)90084-7 10.1016/S0960-8524(99)00105-4 10.1021/es702610v 10.1111/j.1758-2229.2010.00147.x 10.1016/j.biortech.2012.10.121 10.1016/j.biortech.2014.03.088 10.1016/j.wasman.2014.07.009 10.1021/es9005948 10.1007/BF02932080 10.1016/j.biortech.2009.02.066 10.1016/j.biortech.2014.03.085 10.1016/j.biortech.2014.02.014 10.1002/bit.260380603 10.1021/es8037142 10.1016/j.watres.2012.10.035 10.1016/j.ijhydene.2004.02.018 10.1016/j.cej.2013.09.002 10.1007/s10531-004-0377-9 10.1016/j.biortech.2015.11.072 10.1016/j.apenergy.2012.06.056 10.1016/j.watres.2010.07.019 10.1128/mBio.00889-14 10.1016/j.ijhydene.2013.01.120 10.1016/j.jtice.2011.05.006 10.1128/JB.182.3.620-626.2000 10.1016/j.watres.2011.11.047 10.1016/j.bej.2008.02.004 10.1016/j.biortech.2011.03.030 10.1111/j.1574-6941.1999.tb00634.x 10.1016/j.wasman.2010.01.033 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.06.121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 78 |
ExternalDocumentID | 28693950 10_1016_j_biortech_2017_06_121 S0960852417310258 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-7282ec9a66f2d2af3a7dcccff6ea515a9de54c1308722a34238dbfb56df93f993 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 08:58:27 EDT 2025 Tue Aug 05 10:31:01 EDT 2025 Wed Feb 19 02:43:56 EST 2025 Thu Apr 24 23:05:45 EDT 2025 Tue Jul 01 02:06:50 EDT 2025 Fri Feb 23 02:19:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Food waste Volatile fatty acids (VFAs) Anaerobic fermentation Metabolic pathway |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-7282ec9a66f2d2af3a7dcccff6ea515a9de54c1308722a34238dbfb56df93f993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 28693950 |
PQID | 1917960296 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000424407 proquest_miscellaneous_1917960296 pubmed_primary_28693950 crossref_primary_10_1016_j_biortech_2017_06_121 crossref_citationtrail_10_1016_j_biortech_2017_06_121 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_06_121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 2018-Jan 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Berni Canani, Di Costanzo, Leone (b0010) 2012; 4 Redwood, Orozco, Majewski, Macaskie (b0325) 2012; 107 Jiang, Zhang, Li, Wang, Gong, Li (b0175) 2013; 143 Hsu, Yang (b0165) 1991; 38 Lim, Ahn, Kim, Chang (b0240) 2006; 11 Shin, Han, Lim, Lee, Hwang (b0355) 2010; 44 Chen, Luo, Yan, Feng (b0055) 2013; 102 Zoetemeyer, Matthijsen, Cohen, Boelhouwer (b0480) 1982; 16 Kim, Han, Shin (b0210) 2004; 29 Neyens, Baeyens, Dewil, De heyder (b0285) 2004; 106 Oleskowicz-Popiel, Kadar, Heiske, Klein-Marcuschamer, Simmons, Blanch, Schmidt (b0295) 2012; 104 Yuan, Chen, Zhang, Jiang, Zhou, Gu (b0435) 2006; 40 Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0475) 2009; 100 Fang, Liu (b0100) 2002; 82 Stowers, Cox, Rodriguez (b0365) 2014; 41 Choudhari, Cerrone, Woods, Joyce, Flaherty, Connor, Babu (b0060) 2015; 23 Liu, Wang, Liu, Fu, Chen, Yu (b0250) 2012; 46 Conrad, Klose (b0065) 1999; 30 Guo, Trably, Latrille, Carrère, Steyer (b0135) 2010; 35 Marin, Kennedy, Eskicioglu (b0265) 2010; 30 Phelps, Zeikus (b0305) 1984; 48 Müller, Worm, Schink, Stams, Plugge (b0280) 2010; 2 Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0470) 2008; 33 Lim, Kim, Jeong, Choi, Ahn, Chang (b0245) 2008; 99 den Boer, Lukaszewska, Kluczkiewicz, Lewandowska, King, Reijonen, Kuhmonen, Suhonen, Jaaskelainen, Heitto, Laatikainen, Hakalehto (b0075) 2016; 58 Kim, Kim, Jung, Kim, Shin (b0195) 2011; 102 Ganigue, Puig, Batlle-Vilanova, Balaguer, Colprim (b0130) 2015; 51 Posada, Cardona (b0315) 2012; 51 Shin, Youn (b0350) 2005; 16 He, Sun, Zou, Yuan, Zhu, Li, Pang (b0155) 2012; 16 Fei, Fu, Shang, Brigham, Chang (b0115) 2015; 38 Jin, Yang (b0180) 1998; 14 Zhang, Su, Baeyens, Tan (b0450) 2014; 38 Zhang, Liu, Chen, Pan (b9015) 2017; 224 Arslan, Steinbusch, Diels, Hamelers, Strik, Buisman, De Wever (b9005) 2016; 46 Wang, Cheng, Sun, Jin (b0405) 2006; 41 Calt (b0025) 2015; 8 Demler, Weuster-Botz (b0070) 2011; 108 Pind, Angelidaki, Ahring (b0310) 2003; 82 Charles, Walker, Cord-Ruwisch (b0035) 2009; 100 Kotsyurbenko, Glagolev, Nozhevnikova, Conrad (b0215) 2001; 38 Kim, Gomec, Ahn, Speece (b0205) 2003; 24 Lee, Salerno, Rittmann (b0220) 2008; 42 Chen, Li, Zheng, Wang (b0050) 2013; 47 Siriwongrungson, Zeng, Angelidaki (b0360) 2007; 41 Castillo Martinez, Balciunas, Salgado, Domínguez González, Converti, Oliveira (b0040) 2013; 30 Arslan, Zhang, Steinbusch, Diels, Hamelers, Buisman, De Wever (b0005) 2017; 175 Fei, Chang, Shang, Choi, Kim, Kang (b0110) 2011; 102 Stams, de Bok, Plugge, van Eekert, Dolfing, Schraa (b9010) 2006; 8 Fdez.-Güelfo, Álvarez-Gallego, Sales, Romero (b0105) 2011; 168 Valdez-Vazquez, Ríos-Leal, Carmona-Martínez, Muñoz-Páez, Poggi-Varaldo (b0385) 2006; 40 Dinsdale, Premier, Hawkes, Hawkes (b0080) 2000; 72 Huang, Xu, Zhang, Xue, Chen (b0170) 2007; 288 Bengtsson, Hallquist, Werker, Welander (b0015) 2008; 40 Saady (b0335) 2013; 38 Lee, Chua, Yeoh, Ngoh (b0225) 2014; 235 Yu, Bule, Ma, Zhao, Frear, Chen (b0430) 2014; 162 Han, Fang, Liu, Tang (b0145) 2016; 202 Chen, Meng, Nie, Zhang (b0045) 2013; 128 Drake, Küsel, Matthies (b0090) 2006 Liang, McDonald, Coats (b0235) 2014; 34 Vital, Howe, Tiedje (b0390) 2014; 5 Zhang, Zhang, Zhang, Shi, Cai (b0440) 2005; 26 Wee, Kim, Ryu (b0410) 2006; 44 Vadali, Bennett, San (b0380) 2004; 6 Yan, Selvam, Wong (b0415) 2014; 168 Zhang, Noike (b0465) 1994; 28 Ezeji, Qureshi, Blaschek (b0095) 2007; 97 Shen, Yuan, Pang, Chen, Zhu, Zou, Liu, Ma, Yu, Li (b0340) 2013; 144 Wang, Yin, Shen, Li (b0400) 2014; 161 Bensaid, Ruggeri, Saracco (b0020) 2015; 8 Zhang, Chen (b0445) 2009; 43 Nie, Liu, Du, Chen (b0290) 2007; 42 Zhang, Lee, Jahng (b0455) 2011; 102 Patakova, Lipovaky, Cizkova, Fortova, Rychtera, Melzoch (b0300) 2009; 27 Shin (b0345) 2004; 29 Kim, Han, Kim, Shin (b0190) 2006; 31 Qureshi, Maddox (b0320) 2005; 83 Han, Wang, Ye, Huang, Tang, Li, Ren (b0150) 2015; 40 Zhang, Elmashad, Hartman, Wang, Liu, Choate, Gamble (b0460) 2007; 98 Martínez-Campos, de la Torre (b0270) 2002; 24 Jones, Massanet-Nicolau, Guwy, Premier, Dinsdale, Reilly (b0185) 2015; 189 Riondet, Cachon, Waché, Alcaraz, Diviès (b0330) 2000; 182 Drake (b0085) 1994 Feng, Chen, Zheng (b0120) 2009; 43 Kim, Choi, Kim, Kim, Chung (b0200) 2005; 52 Han (b0140) 2004; 29 Liu, Bischoff, Leathers, Qureshi, Rich, Hughes (b0260) 2013; 143 Yan, Selvam, Xu, Wong (b0420) 2014; 159 Wang, Li, Ren (b0395) 2013; 38 Chaganti, Kim, Lalman (b0030) 2011; 36 Feng, Zhang, Quan, Chen (b0125) 2014; 52 Yen, Li, Ma (b0425) 2011; 42 Temudo, Kleerebezem, van Loosdrecht (b0375) 2007; 98 Liu, Wang, Wang, Chen (b0255) 2011; 89 Min, Khan, Kwon, Jung, Yun, Kiso (b0275) 2005; 80 Li, Chen, Li (b0230) 2010; 160 Liang (10.1016/j.biortech.2017.06.121_b0235) 2014; 34 Calt (10.1016/j.biortech.2017.06.121_b0025) 2015; 8 Zoetemeyer (10.1016/j.biortech.2017.06.121_b0480) 1982; 16 den Boer (10.1016/j.biortech.2017.06.121_b0075) 2016; 58 Kotsyurbenko (10.1016/j.biortech.2017.06.121_b0215) 2001; 38 Saady (10.1016/j.biortech.2017.06.121_b0335) 2013; 38 Zhang (10.1016/j.biortech.2017.06.121_b0440) 2005; 26 Chaganti (10.1016/j.biortech.2017.06.121_b0030) 2011; 36 Demler (10.1016/j.biortech.2017.06.121_b0070) 2011; 108 Ezeji (10.1016/j.biortech.2017.06.121_b0095) 2007; 97 Stams (10.1016/j.biortech.2017.06.121_b9010) 2006; 8 Vadali (10.1016/j.biortech.2017.06.121_b0380) 2004; 6 Castillo Martinez (10.1016/j.biortech.2017.06.121_b0040) 2013; 30 Phelps (10.1016/j.biortech.2017.06.121_b0305) 1984; 48 Zhang (10.1016/j.biortech.2017.06.121_b0460) 2007; 98 Feng (10.1016/j.biortech.2017.06.121_b0120) 2009; 43 Fei (10.1016/j.biortech.2017.06.121_b0115) 2015; 38 Jones (10.1016/j.biortech.2017.06.121_b0185) 2015; 189 Yan (10.1016/j.biortech.2017.06.121_b0415) 2014; 168 Wee (10.1016/j.biortech.2017.06.121_b0410) 2006; 44 Redwood (10.1016/j.biortech.2017.06.121_b0325) 2012; 107 Jin (10.1016/j.biortech.2017.06.121_b0180) 1998; 14 Zhang (10.1016/j.biortech.2017.06.121_b9015) 2017; 224 Li (10.1016/j.biortech.2017.06.121_b0230) 2010; 160 Stowers (10.1016/j.biortech.2017.06.121_b0365) 2014; 41 Feng (10.1016/j.biortech.2017.06.121_b0125) 2014; 52 Ganigue (10.1016/j.biortech.2017.06.121_b0130) 2015; 51 Conrad (10.1016/j.biortech.2017.06.121_b0065) 1999; 30 Fdez.-Güelfo (10.1016/j.biortech.2017.06.121_b0105) 2011; 168 Martínez-Campos (10.1016/j.biortech.2017.06.121_b0270) 2002; 24 Zhang (10.1016/j.biortech.2017.06.121_b0450) 2014; 38 Berni Canani (10.1016/j.biortech.2017.06.121_b0010) 2012; 4 Liu (10.1016/j.biortech.2017.06.121_b0250) 2012; 46 Shen (10.1016/j.biortech.2017.06.121_b0340) 2013; 144 Pind (10.1016/j.biortech.2017.06.121_b0310) 2003; 82 Lim (10.1016/j.biortech.2017.06.121_b0240) 2006; 11 Jiang (10.1016/j.biortech.2017.06.121_b0175) 2013; 143 Marin (10.1016/j.biortech.2017.06.121_b0265) 2010; 30 Dinsdale (10.1016/j.biortech.2017.06.121_b0080) 2000; 72 Drake (10.1016/j.biortech.2017.06.121_b0090) 2006 Arslan (10.1016/j.biortech.2017.06.121_b9005) 2016; 46 Lee (10.1016/j.biortech.2017.06.121_b0220) 2008; 42 Lee (10.1016/j.biortech.2017.06.121_b0225) 2014; 235 Patakova (10.1016/j.biortech.2017.06.121_b0300) 2009; 27 Riondet (10.1016/j.biortech.2017.06.121_b0330) 2000; 182 Qureshi (10.1016/j.biortech.2017.06.121_b0320) 2005; 83 Liu (10.1016/j.biortech.2017.06.121_b0255) 2011; 89 Zhang (10.1016/j.biortech.2017.06.121_b0445) 2009; 43 Zhu (10.1016/j.biortech.2017.06.121_b0470) 2008; 33 Yen (10.1016/j.biortech.2017.06.121_b0425) 2011; 42 Chen (10.1016/j.biortech.2017.06.121_b0050) 2013; 47 He (10.1016/j.biortech.2017.06.121_b0155) 2012; 16 Han (10.1016/j.biortech.2017.06.121_b0140) 2004; 29 Posada (10.1016/j.biortech.2017.06.121_b0315) 2012; 51 Kim (10.1016/j.biortech.2017.06.121_b0190) 2006; 31 Chen (10.1016/j.biortech.2017.06.121_b0045) 2013; 128 Temudo (10.1016/j.biortech.2017.06.121_b0375) 2007; 98 Han (10.1016/j.biortech.2017.06.121_b0150) 2015; 40 Kim (10.1016/j.biortech.2017.06.121_b0205) 2003; 24 Liu (10.1016/j.biortech.2017.06.121_b0260) 2013; 143 Valdez-Vazquez (10.1016/j.biortech.2017.06.121_b0385) 2006; 40 Shin (10.1016/j.biortech.2017.06.121_b0345) 2004; 29 Wang (10.1016/j.biortech.2017.06.121_b0405) 2006; 41 Choudhari (10.1016/j.biortech.2017.06.121_b0060) 2015; 23 Zhang (10.1016/j.biortech.2017.06.121_b0455) 2011; 102 Huang (10.1016/j.biortech.2017.06.121_b0170) 2007; 288 Zhang (10.1016/j.biortech.2017.06.121_b0465) 1994; 28 Yan (10.1016/j.biortech.2017.06.121_b0420) 2014; 159 Hsu (10.1016/j.biortech.2017.06.121_b0165) 1991; 38 Kim (10.1016/j.biortech.2017.06.121_b0195) 2011; 102 Siriwongrungson (10.1016/j.biortech.2017.06.121_b0360) 2007; 41 Kim (10.1016/j.biortech.2017.06.121_b0200) 2005; 52 Yuan (10.1016/j.biortech.2017.06.121_b0435) 2006; 40 Guo (10.1016/j.biortech.2017.06.121_b0135) 2010; 35 Kim (10.1016/j.biortech.2017.06.121_b0210) 2004; 29 Wang (10.1016/j.biortech.2017.06.121_b0395) 2013; 38 Oleskowicz-Popiel (10.1016/j.biortech.2017.06.121_b0295) 2012; 104 Shin (10.1016/j.biortech.2017.06.121_b0355) 2010; 44 Fei (10.1016/j.biortech.2017.06.121_b0110) 2011; 102 Neyens (10.1016/j.biortech.2017.06.121_b0285) 2004; 106 Chen (10.1016/j.biortech.2017.06.121_b0055) 2013; 102 Lim (10.1016/j.biortech.2017.06.121_b0245) 2008; 99 Shin (10.1016/j.biortech.2017.06.121_b0350) 2005; 16 Min (10.1016/j.biortech.2017.06.121_b0275) 2005; 80 Zhu (10.1016/j.biortech.2017.06.121_b0475) 2009; 100 Vital (10.1016/j.biortech.2017.06.121_b0390) 2014; 5 Bengtsson (10.1016/j.biortech.2017.06.121_b0015) 2008; 40 Nie (10.1016/j.biortech.2017.06.121_b0290) 2007; 42 Yu (10.1016/j.biortech.2017.06.121_b0430) 2014; 162 Bensaid (10.1016/j.biortech.2017.06.121_b0020) 2015; 8 Charles (10.1016/j.biortech.2017.06.121_b0035) 2009; 100 Arslan (10.1016/j.biortech.2017.06.121_b0005) 2017; 175 Müller (10.1016/j.biortech.2017.06.121_b0280) 2010; 2 Han (10.1016/j.biortech.2017.06.121_b0145) 2016; 202 Drake (10.1016/j.biortech.2017.06.121_b0085) 1994 Fang (10.1016/j.biortech.2017.06.121_b0100) 2002; 82 Wang (10.1016/j.biortech.2017.06.121_b0400) 2014; 161 |
References_xml | – volume: 43 start-page: 4373 year: 2009 end-page: 4380 ident: b0120 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. – volume: 288 start-page: 1 year: 2007 end-page: 12 ident: b0170 article-title: Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments publication-title: J. Membrane Sci. – volume: 46 start-page: 592 year: 2016 end-page: 634 ident: b9005 article-title: Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations publication-title: Crit. Rev. Env. Sci. Tec. – volume: 24 start-page: 1183 year: 2003 end-page: 1190 ident: b0205 article-title: Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion publication-title: Environ. Technol. – volume: 8 year: 2015 ident: b0025 article-title: Products produced from organic waste using managed ecosystem fermentation publication-title: J. Sustainable Dev. – volume: 82 start-page: 791 year: 2003 end-page: 801 ident: b0310 article-title: Dynamics of the anaerobic process: effects of volatile fatty acids publication-title: Biotechnol. Bioeng. – volume: 5 start-page: e00889 year: 2014 ident: b0390 article-title: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data publication-title: mBio – volume: 224 start-page: 349 year: 2017 end-page: 357 ident: b9015 article-title: Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration publication-title: Bioresour. Technol. – volume: 30 start-page: 47 year: 1999 end-page: 56 ident: b0065 article-title: How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil? publication-title: FEMS Microbiol. Ecol. – volume: 44 start-page: 4838 year: 2010 end-page: 4849 ident: b0355 article-title: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater publication-title: Water Res. – volume: 40 start-page: 2025 year: 2006 end-page: 2029 ident: b0435 article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions publication-title: Environ. Sci. Technol. – volume: 31 start-page: 2158 year: 2006 end-page: 2169 ident: b0190 article-title: Effect of gas sparging on continuous fermentative hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 538 year: 2006 end-page: 543 ident: b0240 article-title: Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes publication-title: Biotechnol. Bioprocess. Eng. – volume: 29 start-page: 569 year: 2004 end-page: 577 ident: b0140 article-title: Biohydrogen production by anaerobic fermentation of food waste publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 4474 year: 2015 end-page: 4480 ident: b0150 article-title: Fermentative hydrogen production using wheat flour hydrolysate by mixed culture publication-title: Int. J. Hydrogen Energy – volume: 143 start-page: 525 year: 2013 end-page: 530 ident: b0175 article-title: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate publication-title: Bioresour. Technol. – volume: 14 start-page: 457 year: 1998 end-page: 465 ident: b0180 article-title: Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici publication-title: Biotechnol. Progr. – volume: 98 start-page: 929 year: 2007 end-page: 935 ident: b0460 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour. Technol. – volume: 8 start-page: 371 year: 2006 end-page: 382 ident: b9010 article-title: Exocellular electron transfer in anaerobic microbial communities publication-title: Environ. Microbiol. – volume: 38 start-page: 153 year: 2001 end-page: 159 ident: b0215 article-title: Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature publication-title: FEMS Microbiol. Ecol. – volume: 38 start-page: 4361 year: 2013 end-page: 4367 ident: b0395 article-title: Biohydrogen from molasses with ethanol-type fermentation: effect of hydraulic retention time publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 571 year: 1991 end-page: 578 ident: b0165 article-title: Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH publication-title: Biotechnol. Bioeng. – volume: 182 start-page: 620 year: 2000 end-page: 626 ident: b0330 article-title: Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli publication-title: J. Bacteriol. – volume: 40 start-page: 3409 year: 2006 end-page: 3415 ident: b0385 article-title: Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace publication-title: Environ. Sci. Technol. – volume: 102 start-page: 1197 year: 2013 end-page: 1204 ident: b0055 article-title: Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells publication-title: Appl. Energy – volume: 41 start-page: 152 year: 2006 end-page: 158 ident: b0405 article-title: Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer publication-title: Process. Biochem. – volume: 100 start-page: 5097 year: 2009 end-page: 5102 ident: b0475 article-title: Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes publication-title: Bioresour. Technol. – volume: 46 start-page: 799 year: 2012 end-page: 807 ident: b0250 article-title: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH publication-title: Water Res. – start-page: 354 year: 2006 end-page: 420 ident: b0090 article-title: Acetogenic prokaryotes publication-title: The Prokaryotes – volume: 42 start-page: 2401 year: 2008 end-page: 2407 ident: b0220 article-title: Thermodynamic evaluation on H2 production in glucose fermentation publication-title: Environ. Sci. Technol. – volume: 98 start-page: 69 year: 2007 end-page: 79 ident: b0375 article-title: Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study publication-title: Biotechnol. Bioeng. – volume: 30 start-page: 70 year: 2013 end-page: 83 ident: b0040 article-title: Lactic acid properties, applications and production: a review publication-title: Trends Food Sci. Technol. – volume: 104 start-page: 440 year: 2012 end-page: 446 ident: b0295 article-title: Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming–evaluation of a concept for a farm-scale biorefinery publication-title: Bioresour. Technol. – volume: 28 start-page: 27 year: 1994 end-page: 36 ident: b0465 article-title: Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes publication-title: Water Res. – volume: 48 start-page: 1088 year: 1984 end-page: 1095 ident: b0305 article-title: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake publication-title: Appl. Environ. Microbiol. – volume: 83 start-page: 43 year: 2005 end-page: 52 ident: b0320 article-title: Reduction in butanol inhibition by perstraction publication-title: Food Bioprod. Process. – volume: 143 start-page: 322 year: 2013 end-page: 329 ident: b0260 article-title: Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213 publication-title: Bioresour. Technol. – volume: 36 start-page: 14141 year: 2011 end-page: 14152 ident: b0030 article-title: Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production publication-title: Int. J. Hydrogen Energy – volume: 202 start-page: 107 year: 2016 end-page: 112 ident: b0145 article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste publication-title: Bioresour. Technol. – volume: 175 start-page: 27 year: 2017 end-page: 35 ident: b0005 article-title: In-situ carboxylate recovery and simultaneous pH control with tailor-configured bipolar membrane electrodialysis during continuous mixed culture fermentation publication-title: Sep. Purif. Technol. – volume: 168 start-page: 64 year: 2014 end-page: 71 ident: b0415 article-title: Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors publication-title: Bioresour. Technol. – volume: 8 start-page: 399 year: 2015 end-page: 429 ident: b0020 article-title: Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives publication-title: Energies – volume: 41 start-page: 4204 year: 2007 end-page: 4210 ident: b0360 article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis publication-title: Water Res. – volume: 58 start-page: 62 year: 2016 end-page: 69 ident: b0075 article-title: Volatile fatty acids as an added value from biowaste publication-title: Waste Manage. – volume: 23 start-page: 163 year: 2015 end-page: 170 ident: b0060 article-title: Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes publication-title: J. Ind. Eng. Chem. – volume: 161 start-page: 395 year: 2014 end-page: 401 ident: b0400 article-title: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH publication-title: Bioresour. Technol. – volume: 102 start-page: 5048 year: 2011 end-page: 5059 ident: b0455 article-title: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements publication-title: Bioresour. Technol. – volume: 102 start-page: 2695 year: 2011 end-page: 2701 ident: b0110 article-title: The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production publication-title: Bioresour. Technol. – volume: 2 start-page: 489 year: 2010 end-page: 499 ident: b0280 article-title: Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms publication-title: Environ. Microbiol. Rep. – volume: 82 start-page: 87 year: 2002 end-page: 93 ident: b0100 article-title: Effect of pH on hydrogen production from glucose by a mixed culture publication-title: Bioresour. Technol. – volume: 51 start-page: 2354 year: 2012 end-page: 2361 ident: b0315 article-title: Propionic acid production from raw glycerol using commercial and engineered strains publication-title: Ind. Eng. Chem. Res. – volume: 42 start-page: 599 year: 2007 end-page: 605 ident: b0290 article-title: Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process publication-title: Process. Biochem. – volume: 29 start-page: 1355 year: 2004 end-page: 1363 ident: b0345 article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 691 year: 2015 end-page: 700 ident: b0115 article-title: Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment publication-title: Bioprocess. Biosyst. Eng. – volume: 38 start-page: 13172 year: 2013 end-page: 13191 ident: b0335 article-title: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge publication-title: Int. J. Hydrogen Energy – volume: 16 start-page: 33 year: 2005 end-page: 44 ident: b0350 article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis publication-title: Biodegradation – volume: 102 start-page: 8646 year: 2011 end-page: 8652 ident: b0195 article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste publication-title: Bioresour. Technol. – volume: 29 start-page: 1607 year: 2004 end-page: 1616 ident: b0210 article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge publication-title: Int. J. Hydrogen Energy – volume: 160 start-page: 643 year: 2010 end-page: 654 ident: b0230 article-title: Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system publication-title: Appl. Biochem. Biotechnol. – volume: 235 start-page: 83 year: 2014 end-page: 99 ident: b0225 article-title: A review of the production and applications of waste-derived volatile fatty acids publication-title: Chem. Eng. J. – volume: 144 start-page: 80 year: 2013 end-page: 85 ident: b0340 article-title: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase publication-title: Bioresour. Technol. – volume: 26 start-page: 329 year: 2005 end-page: 339 ident: b0440 article-title: The influence of pH hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion publication-title: Environ. Technol. – volume: 44 start-page: 163 year: 2006 end-page: 172 ident: b0410 article-title: Biotechnological production of lactic acid and its recent applications publication-title: Food Technol. Biotechnol. – volume: 89 start-page: 1333 year: 2011 end-page: 1340 ident: b0255 article-title: Chemical inhibitors of methanogenesis and putative applications publication-title: Appl. Microbiol. Biotechnol. – volume: 40 start-page: 492 year: 2008 end-page: 499 ident: b0015 article-title: Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production publication-title: Biochem. Eng. J. – volume: 6 start-page: 294 year: 2004 end-page: 299 ident: b0380 article-title: Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli publication-title: Metab. Eng. – volume: 106 start-page: 83 year: 2004 end-page: 92 ident: b0285 article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering publication-title: J. Hazard. Mater. – volume: 38 start-page: 383 year: 2014 end-page: 392 ident: b0450 article-title: Reviewing the anaerobic digestion of food waste for biogas production publication-title: Renewable Sustainable Energy Rev. – volume: 107 start-page: 166 year: 2012 end-page: 174 ident: b0325 article-title: Electro-extractive fermentation for efficient biohydrogen production publication-title: Bioresour. Technol. – volume: 72 start-page: 159 year: 2000 end-page: 168 ident: b0080 article-title: Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters publication-title: Bioresour. Technol. – volume: 97 start-page: 1460 year: 2007 end-page: 1469 ident: b0095 article-title: Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation publication-title: Biotechnol. Bioeng. – volume: 34 start-page: 2022 year: 2014 end-page: 2027 ident: b0235 article-title: Lactic acid production with undefined mixed culture fermentation of potato peel waste publication-title: Waste Manage. – volume: 33 start-page: 3651 year: 2008 end-page: 3659 ident: b0470 article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges publication-title: Int. J. Hydrogen Energy – volume: 24 start-page: 427 year: 2002 end-page: 431 ident: b0270 article-title: Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose publication-title: Biotechnol. Lett. – volume: 189 start-page: 279 year: 2015 end-page: 284 ident: b0185 article-title: Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis publication-title: Bioresour. Technol. – volume: 16 start-page: 633 year: 1982 end-page: 639 ident: b0480 article-title: Product inhibition in the acid forming stage of the anaerobic digestion process publication-title: Water Res. – volume: 52 start-page: 242 year: 2014 end-page: 250 ident: b0125 article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron publication-title: Water Res. – volume: 80 start-page: 909 year: 2005 end-page: 915 ident: b0275 article-title: Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids publication-title: J. Chem. Technol. Biotechnol. – volume: 30 start-page: 1772 year: 2010 end-page: 1779 ident: b0265 article-title: Effect of microwave irradiation on anaerobic degradability of model kitchen waste publication-title: Waste Manage. – volume: 27 start-page: 276 year: 2009 end-page: 283 ident: b0300 article-title: Exploitation of food feedstock and waste for production of biobutanol publication-title: Czech. J. Food Sci. – volume: 162 start-page: 243 year: 2014 end-page: 249 ident: b0430 article-title: Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment publication-title: Bioresour. Technol. – volume: 128 start-page: 533 year: 2013 end-page: 538 ident: b0045 article-title: Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes publication-title: Bioresour. Technol. – volume: 16 start-page: 85 year: 2012 end-page: 94 ident: b0155 article-title: Influence of temperature on hydrolysis acidification of food waste publication-title: Procedia Environ. Sci. – volume: 4 start-page: 4 year: 2012 ident: b0010 article-title: The epigenetic effects of butyrate: potential therapeutic implications for clinical practice publication-title: Clin. Epigenetics – volume: 159 start-page: 249 year: 2014 end-page: 257 ident: b0420 article-title: A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis publication-title: Bioresour. Technol. – volume: 99 start-page: 7866 year: 2008 end-page: 7874 ident: b0245 article-title: Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor publication-title: Bioresour. Technol. – volume: 43 start-page: 6164 year: 2009 end-page: 6170 ident: b0445 article-title: Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal publication-title: Environ. Sci. Technol. – volume: 51 start-page: 3235 year: 2015 end-page: 3238 ident: b0130 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. (Camb) – volume: 108 start-page: 470 year: 2011 end-page: 474 ident: b0070 article-title: Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii publication-title: Biotechnol. Bioeng. – volume: 35 start-page: 10660 year: 2010 end-page: 10673 ident: b0135 article-title: Hydrogen production from agricultural waste by dark fermentation: a review publication-title: Int. J. Hydrogen Energy – volume: 52 start-page: 153 year: 2005 end-page: 160 ident: b0200 article-title: Effect of pretreatment on acid fermentation of organic solid waste publication-title: Water Sci. Technol. – volume: 100 start-page: 2329 year: 2009 end-page: 2335 ident: b0035 article-title: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste publication-title: Bioresour. Technol. – volume: 41 start-page: 837 year: 2014 end-page: 852 ident: b0365 article-title: Development of an industrializable fermentation process for propionic acid production publication-title: J. Ind. Microbiol. Biotechnol. – volume: 42 start-page: 902 year: 2011 end-page: 907 ident: b0425 article-title: The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum publication-title: J. Taiwan Inst. Chem. Eng. – volume: 47 start-page: 615 year: 2013 end-page: 622 ident: b0050 article-title: Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici publication-title: Water Res. – start-page: 3 year: 1994 end-page: 60 ident: b0085 article-title: Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives publication-title: Acetogenesis – volume: 168 start-page: 249 year: 2011 end-page: 254 ident: b0105 article-title: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW) publication-title: Chem. Eng. J. – volume: 38 start-page: 13172 issue: 30 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0335 article-title: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.07.122 – volume: 29 start-page: 569 issue: 6 year: 2004 ident: 10.1016/j.biortech.2017.06.121_b0140 article-title: Biohydrogen production by anaerobic fermentation of food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.09.001 – volume: 44 start-page: 163 issue: 2 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0410 article-title: Biotechnological production of lactic acid and its recent applications publication-title: Food Technol. Biotechnol. – volume: 38 start-page: 383 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0450 article-title: Reviewing the anaerobic digestion of food waste for biogas production publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.05.038 – volume: 143 start-page: 525 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0175 article-title: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.025 – volume: 26 start-page: 329 issue: 3 year: 2005 ident: 10.1016/j.biortech.2017.06.121_b0440 article-title: The influence of pH hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion publication-title: Environ. Technol. doi: 10.1080/09593332608618563 – volume: 38 start-page: 691 issue: 4 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0115 article-title: Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment publication-title: Bioprocess. Biosyst. Eng. doi: 10.1007/s00449-014-1308-0 – volume: 30 start-page: 70 issue: 1 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0040 article-title: Lactic acid properties, applications and production: a review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2012.11.007 – volume: 42 start-page: 599 issue: 4 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0290 article-title: Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process publication-title: Process. Biochem. doi: 10.1016/j.procbio.2006.11.007 – start-page: 354 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0090 article-title: Acetogenic prokaryotes – volume: 24 start-page: 427 issue: 6 year: 2002 ident: 10.1016/j.biortech.2017.06.121_b0270 article-title: Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose publication-title: Biotechnol. Lett. doi: 10.1023/A:1014562504882 – volume: 48 start-page: 1088 issue: 6 year: 1984 ident: 10.1016/j.biortech.2017.06.121_b0305 article-title: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.48.6.1088-1095.1984 – volume: 51 start-page: 2354 issue: 5 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0315 article-title: Propionic acid production from raw glycerol using commercial and engineered strains publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201300d – volume: 8 issue: 3 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0025 article-title: Products produced from organic waste using managed ecosystem fermentation publication-title: J. Sustainable Dev. doi: 10.5539/jsd.v8n3p43 – volume: 82 start-page: 791 issue: 7 year: 2003 ident: 10.1016/j.biortech.2017.06.121_b0310 article-title: Dynamics of the anaerobic process: effects of volatile fatty acids publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10628 – volume: 40 start-page: 2025 issue: 6 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0435 article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es052252b – volume: 8 start-page: 371 issue: 3 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b9010 article-title: Exocellular electron transfer in anaerobic microbial communities publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.00989.x – volume: 168 start-page: 249 issue: 1 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0105 article-title: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.12.074 – volume: 41 start-page: 152 issue: 1 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0405 article-title: Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer publication-title: Process. Biochem. doi: 10.1016/j.procbio.2005.06.015 – volume: 89 start-page: 1333 issue: 5 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0255 article-title: Chemical inhibitors of methanogenesis and putative applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-3066-5 – volume: 52 start-page: 153 issue: 1–2 year: 2005 ident: 10.1016/j.biortech.2017.06.121_b0200 article-title: Effect of pretreatment on acid fermentation of organic solid waste publication-title: Water Sci. Technol. doi: 10.2166/wst.2005.0511 – volume: 98 start-page: 929 issue: 4 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0460 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.02.039 – volume: 31 start-page: 2158 issue: 15 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0190 article-title: Effect of gas sparging on continuous fermentative hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.012 – volume: 99 start-page: 7866 issue: 16 year: 2008 ident: 10.1016/j.biortech.2017.06.121_b0245 article-title: Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.06.028 – volume: 33 start-page: 3651 issue: 14 year: 2008 ident: 10.1016/j.biortech.2017.06.121_b0470 article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.04.040 – volume: 102 start-page: 2695 issue: 3 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0110 article-title: The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.141 – volume: 14 start-page: 457 issue: 3 year: 1998 ident: 10.1016/j.biortech.2017.06.121_b0180 article-title: Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici publication-title: Biotechnol. Progr. doi: 10.1021/bp980026i – volume: 29 start-page: 1355 issue: 13 year: 2004 ident: 10.1016/j.biortech.2017.06.121_b0345 article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.09.011 – volume: 41 start-page: 837 issue: 5 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0365 article-title: Development of an industrializable fermentation process for propionic acid production publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-014-1423-6 – volume: 98 start-page: 69 issue: 1 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0375 article-title: Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21412 – volume: 102 start-page: 5048 issue: 8 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0455 article-title: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.082 – volume: 35 start-page: 10660 issue: 19 year: 2010 ident: 10.1016/j.biortech.2017.06.121_b0135 article-title: Hydrogen production from agricultural waste by dark fermentation: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.008 – volume: 80 start-page: 909 issue: 8 year: 2005 ident: 10.1016/j.biortech.2017.06.121_b0275 article-title: Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1261 – volume: 107 start-page: 166 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0325 article-title: Electro-extractive fermentation for efficient biohydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.026 – volume: 38 start-page: 153 issue: 2–3 year: 2001 ident: 10.1016/j.biortech.2017.06.121_b0215 article-title: Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2001.tb00893.x – volume: 100 start-page: 2329 issue: 8 year: 2009 ident: 10.1016/j.biortech.2017.06.121_b0035 article-title: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.051 – volume: 23 start-page: 163 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0060 article-title: Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.08.010 – volume: 40 start-page: 4474 issue: 13 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0150 article-title: Fermentative hydrogen production using wheat flour hydrolysate by mixed culture publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.016 – volume: 16 start-page: 85 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0155 article-title: Influence of temperature on hydrolysis acidification of food waste publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2012.10.012 – volume: 175 start-page: 27 year: 2017 ident: 10.1016/j.biortech.2017.06.121_b0005 article-title: In-situ carboxylate recovery and simultaneous pH control with tailor-configured bipolar membrane electrodialysis during continuous mixed culture fermentation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.11.032 – volume: 8 start-page: 399 issue: 1 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0020 article-title: Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives publication-title: Energies doi: 10.3390/en8010399 – volume: 143 start-page: 322 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0260 article-title: Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.015 – volume: 108 start-page: 470 issue: 2 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0070 article-title: Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22935 – volume: 106 start-page: 83 issue: 2–3 year: 2004 ident: 10.1016/j.biortech.2017.06.121_b0285 article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2003.11.014 – volume: 144 start-page: 80 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0340 article-title: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.099 – volume: 6 start-page: 294 issue: 4 year: 2004 ident: 10.1016/j.biortech.2017.06.121_b0380 article-title: Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli publication-title: Metab. Eng. doi: 10.1016/j.ymben.2004.02.006 – volume: 36 start-page: 14141 issue: 21 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0030 article-title: Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.161 – volume: 46 start-page: 592 issue: 6 year: 2016 ident: 10.1016/j.biortech.2017.06.121_b9005 article-title: Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2016.1145959 – volume: 40 start-page: 3409 issue: 10 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0385 article-title: Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace publication-title: Environ. Sci. Technol. doi: 10.1021/es052119j – volume: 104 start-page: 440 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0295 article-title: Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming–evaluation of a concept for a farm-scale biorefinery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.060 – volume: 189 start-page: 279 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0185 article-title: Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.001 – volume: 28 start-page: 27 issue: 1 year: 1994 ident: 10.1016/j.biortech.2017.06.121_b0465 article-title: Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes publication-title: Water Res. doi: 10.1016/0043-1354(94)90116-3 – volume: 58 start-page: 62 year: 2016 ident: 10.1016/j.biortech.2017.06.121_b0075 article-title: Volatile fatty acids as an added value from biowaste publication-title: Waste Manage. doi: 10.1016/j.wasman.2016.08.006 – volume: 51 start-page: 3235 issue: 15 year: 2015 ident: 10.1016/j.biortech.2017.06.121_b0130 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. (Camb) doi: 10.1039/C4CC10121A – volume: 160 start-page: 643 issue: 2 year: 2010 ident: 10.1016/j.biortech.2017.06.121_b0230 article-title: Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8533-z – volume: 4 start-page: 4 issue: 1 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0010 article-title: The epigenetic effects of butyrate: potential therapeutic implications for clinical practice publication-title: Clin. Epigenetics doi: 10.1186/1868-7083-4-4 – volume: 97 start-page: 1460 issue: 6 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0095 article-title: Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21373 – volume: 52 start-page: 242 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0125 article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron publication-title: Water Res. doi: 10.1016/j.watres.2013.10.072 – volume: 162 start-page: 243 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0430 article-title: Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.089 – volume: 27 start-page: 276 issue: 4 year: 2009 ident: 10.1016/j.biortech.2017.06.121_b0300 article-title: Exploitation of food feedstock and waste for production of biobutanol publication-title: Czech. J. Food Sci. doi: 10.17221/106/2009-CJFS – volume: 24 start-page: 1183 issue: 9 year: 2003 ident: 10.1016/j.biortech.2017.06.121_b0205 article-title: Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion publication-title: Environ. Technol. doi: 10.1080/09593330309385659 – volume: 83 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.biortech.2017.06.121_b0320 article-title: Reduction in butanol inhibition by perstraction publication-title: Food Bioprod. Process. doi: 10.1205/fbp.04163 – volume: 224 start-page: 349 year: 2017 ident: 10.1016/j.biortech.2017.06.121_b9015 article-title: Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.096 – volume: 82 start-page: 87 issue: 1 year: 2002 ident: 10.1016/j.biortech.2017.06.121_b0100 article-title: Effect of pH on hydrogen production from glucose by a mixed culture publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00110-9 – volume: 288 start-page: 1 issue: 1–2 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0170 article-title: Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2006.11.026 – volume: 41 start-page: 4204 issue: 18 year: 2007 ident: 10.1016/j.biortech.2017.06.121_b0360 article-title: Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis publication-title: Water Res. doi: 10.1016/j.watres.2007.05.037 – volume: 16 start-page: 633 issue: 5 year: 1982 ident: 10.1016/j.biortech.2017.06.121_b0480 article-title: Product inhibition in the acid forming stage of the anaerobic digestion process publication-title: Water Res. doi: 10.1016/0043-1354(82)90084-7 – volume: 72 start-page: 159 issue: 2 year: 2000 ident: 10.1016/j.biortech.2017.06.121_b0080 article-title: Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(99)00105-4 – volume: 42 start-page: 2401 issue: 7 year: 2008 ident: 10.1016/j.biortech.2017.06.121_b0220 article-title: Thermodynamic evaluation on H2 production in glucose fermentation publication-title: Environ. Sci. Technol. doi: 10.1021/es702610v – volume: 2 start-page: 489 issue: 4 year: 2010 ident: 10.1016/j.biortech.2017.06.121_b0280 article-title: Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2010.00147.x – volume: 128 start-page: 533 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0045 article-title: Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.121 – volume: 161 start-page: 395 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0400 article-title: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.088 – volume: 34 start-page: 2022 issue: 11 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0235 article-title: Lactic acid production with undefined mixed culture fermentation of potato peel waste publication-title: Waste Manage. doi: 10.1016/j.wasman.2014.07.009 – volume: 43 start-page: 6164 issue: 16 year: 2009 ident: 10.1016/j.biortech.2017.06.121_b0445 article-title: Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal publication-title: Environ. Sci. Technol. doi: 10.1021/es9005948 – volume: 11 start-page: 538 issue: 6 year: 2006 ident: 10.1016/j.biortech.2017.06.121_b0240 article-title: Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes publication-title: Biotechnol. Bioprocess. Eng. doi: 10.1007/BF02932080 – volume: 100 start-page: 5097 issue: 21 year: 2009 ident: 10.1016/j.biortech.2017.06.121_b0475 article-title: Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.02.066 – volume: 168 start-page: 64 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0415 article-title: Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.085 – volume: 159 start-page: 249 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0420 article-title: A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.014 – start-page: 3 year: 1994 ident: 10.1016/j.biortech.2017.06.121_b0085 article-title: Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives – volume: 38 start-page: 571 issue: 6 year: 1991 ident: 10.1016/j.biortech.2017.06.121_b0165 article-title: Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260380603 – volume: 43 start-page: 4373 issue: 12 year: 2009 ident: 10.1016/j.biortech.2017.06.121_b0120 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. doi: 10.1021/es8037142 – volume: 47 start-page: 615 issue: 2 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0050 article-title: Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici publication-title: Water Res. doi: 10.1016/j.watres.2012.10.035 – volume: 29 start-page: 1607 issue: 15 year: 2004 ident: 10.1016/j.biortech.2017.06.121_b0210 article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.02.018 – volume: 235 start-page: 83 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0225 article-title: A review of the production and applications of waste-derived volatile fatty acids publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.002 – volume: 16 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.biortech.2017.06.121_b0350 article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis publication-title: Biodegradation doi: 10.1007/s10531-004-0377-9 – volume: 202 start-page: 107 year: 2016 ident: 10.1016/j.biortech.2017.06.121_b0145 article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.072 – volume: 102 start-page: 1197 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0055 article-title: Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.06.056 – volume: 44 start-page: 4838 issue: 17 year: 2010 ident: 10.1016/j.biortech.2017.06.121_b0355 article-title: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater publication-title: Water Res. doi: 10.1016/j.watres.2010.07.019 – volume: 5 start-page: e00889 year: 2014 ident: 10.1016/j.biortech.2017.06.121_b0390 article-title: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data publication-title: mBio doi: 10.1128/mBio.00889-14 – volume: 38 start-page: 4361 issue: 11 year: 2013 ident: 10.1016/j.biortech.2017.06.121_b0395 article-title: Biohydrogen from molasses with ethanol-type fermentation: effect of hydraulic retention time publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.120 – volume: 42 start-page: 902 issue: 6 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0425 article-title: The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2011.05.006 – volume: 182 start-page: 620 issue: 3 year: 2000 ident: 10.1016/j.biortech.2017.06.121_b0330 article-title: Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.182.3.620-626.2000 – volume: 46 start-page: 799 issue: 3 year: 2012 ident: 10.1016/j.biortech.2017.06.121_b0250 article-title: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH publication-title: Water Res. doi: 10.1016/j.watres.2011.11.047 – volume: 40 start-page: 492 issue: 3 year: 2008 ident: 10.1016/j.biortech.2017.06.121_b0015 article-title: Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2008.02.004 – volume: 102 start-page: 8646 issue: 18 year: 2011 ident: 10.1016/j.biortech.2017.06.121_b0195 article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.030 – volume: 30 start-page: 47 issue: 1 year: 1999 ident: 10.1016/j.biortech.2017.06.121_b0065 article-title: How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil? publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1999.tb00634.x – volume: 30 start-page: 1772 issue: 10 year: 2010 ident: 10.1016/j.biortech.2017.06.121_b0265 article-title: Effect of microwave irradiation on anaerobic degradability of model kitchen waste publication-title: Waste Manage. doi: 10.1016/j.wasman.2010.01.033 |
SSID | ssj0003172 |
Score | 2.6718593 |
SecondaryResourceType | review_article |
Snippet | •Major acidogenic metabolic pathways during anaerobic fermentation of food waste were summarized.•The intensification measures for enhancing each acidogenic... Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 68 |
SubjectTerms | Acids anaerobic digestion Anaerobic fermentation Anaerobiosis biochemical pathways biodegradability Bioreactors chemical industry energy recovery Fatty Acids, Volatile Fermentation Food Food waste Metabolic Networks and Pathways Metabolic pathway nutrient availability volatile fatty acids Volatile fatty acids (VFAs) waste disposal water content |
Title | Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways |
URI | https://dx.doi.org/10.1016/j.biortech.2017.06.121 https://www.ncbi.nlm.nih.gov/pubmed/28693950 https://www.proquest.com/docview/1917960296 https://www.proquest.com/docview/2000424407 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqAcEH3BAq2M1Ku7iRPnwW21arWA6AUq9WaNX-1W22TVTVX1wh_gTzOTRymHVQ_c8hhHVubLzDie-Yaxo6jInQoyFblJjUitsqIISSysDJBAkfjU0n_I72fZ7Dz9eqEuNth0qIWhtMre9nc2vbXW_ZVx_zbHy_l8_IOC70KhB8oxRJGKCn6JvQ4xffzrb5oH-sd2JwGFBUk_qRK-PjZzymhtNyXinHg8Yxmvc1DrAtDWEZ2-Ya_7CJJPuklusw1f7bBXk8vbnkXD77CX06GNG955wji4y36fVFftnj9Hs4RKWXgeoGkeONi5W_Flx_-KuuJUd8KhAk9ETZYHtOB9mVLF68BDXTt-D4iRz3zCiaBEdFUweMdSMv0lR0F6ao0QxQfc-AbxtsAjaoJ8Dw-rPXZ-evJzOhN9PwZhVZQ2IsflmbclZFmQTkJIIHfW2hAyDxgWQem8Sm1MHINSAlELFs4EozIXyiRgILTPNqu68u8YxyvSGAeQlxiwmQQs9clCQcRHloIZMTUoQduerJx6Ziz0kJV2rQflaVKejjKNyhux8eO4ZUfX8eyIctCx_gd4Gn3Ks2M_DaDQqFXaaoHK13crTatgRJwss_UyVCRFZYZRPmJvO0Q9zhnfRZmUKnr_H7P7wLbwrOj-F31km83tnT_ACKoxh-0ncsheTL58m539AV_xH1o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMGzdK3tqwK5eYtnyY7cgaJGubS5rgd4ESpbaFJkdNC6K_ob96ZF-BN0h6GE3QxIFQaRJSiI_AnwbZ2mhvIyD1MQmiK2yQeajMLDSY4RZ5GLL95Cn82R2Hv-8UBc7MO1zYTisstP9rU5vtHXXMup2c7RaLEa_2PnOFFmglFwUqbInsMvoVPEAdidHx7P5RiGTiWweE2h8wAQPEoWvv5sFB7U27xJhylCeoQy32ahtPmhjiw5fwPPOiRSTdp0vYceV-_BscnnTAWm4fdib9pXcqOcB6OAr-HNQXjXP_oI0E_Fl6YTHur4XaBfFWqxaCFhil-DUE4ElOsZqssKTEu8ylUpReeGrqhB3SGLyQ0wEY5QEbSIM9ViOp78UNJBnrUhKaYLfriaRW9IX10G-w_v1azg_PDibzoKuJENg1Tiug5ROaM7mmCReFhJ9hGlhrfU-cUieEeaFU7ENGWZQSmR0waww3qik8HnkyRd6A4OyKt07ENQijSkQ05x8NhOh5VJZNJBEJInRDEH1TNC2wyvnshlL3QemXeueeZqZp8eJJuYNYbShW7WIHY9S5D2P9T-yp8msPEr7tRcKTVzl1xYsXXW71nwQJomTebJ9DOdJcabhOB3C21aiNmumvcijXI3f_8fqvsDe7Oz0RJ8czY8_wFPqydrro48wqG9u3SdyqGrzufth_gIa8SIL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+volatile+fatty+acids+production+from+anaerobic+fermentation+of+food+waste%3A+A+mini-review+focusing+on+acidogenic+metabolic+pathways&rft.jtitle=Bioresource+technology&rft.au=Zhou%2C+Miaomiao&rft.au=Yan%2C+Binghua&rft.au=Wong%2C+Jonathan+W.C.&rft.au=Zhang%2C+Yang&rft.date=2018-01-01&rft.issn=0960-8524&rft.volume=248+p.68-78&rft.spage=68&rft.epage=78&rft_id=info:doi/10.1016%2Fj.biortech.2017.06.121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |