Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control
•Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milde...
Saved in:
Published in | Virus research Vol. 286; p. 198045 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease.•The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur.•PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity.
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection. |
---|---|
AbstractList | •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease.•The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur.•PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity.
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection. • Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig. • S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. • The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease. • The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur. • PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae , causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection. |
ArticleNumber | 198045 |
Author | Saif, Linda J. Jung, Kwonil Wang, Qiuhong |
Author_xml | – sequence: 1 givenname: Kwonil surname: Jung fullname: Jung, Kwonil email: jung.221@osu.edu – sequence: 2 givenname: Linda J. surname: Saif fullname: Saif, Linda J. email: saif.2@osu.edu – sequence: 3 givenname: Qiuhong surname: Wang fullname: Wang, Qiuhong email: wang.655@osu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32502552$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl9v0zActNAQ6wZfYfLjkJpiO_GfIISYxgZIk9gD8Go5zi-tq9TO7KTSvj3uuqLBy3iybN_d7-y7E3TkgweEzihZUELFu_Vi6-KUIqQFIywf1opU_AWaUSVZIauaHaFZBqqCSsKO0UlKa0KIKKV4hY5LxgnjnM3QdBuidR4wDK6FjbO4dSbGFRj8MACf3159_vX2Pb7weBpaMwIOHsPoQh-W93M8RuPTxqXkgp_jwYyrsAQPyaU5Nr7FQ4Qt-Az3D1sb_BhD_xq97Eyf4M3jeop-Xl_9uPxa3Hz_8u3y4qawnFRjwWqpSN3QTnSNYIYR1SheUloR0XDGRMltJVldK1FSoypoRGkEdI0ypWpqKspT9HGvO0zNBlqbnUTT6yG6jYn3Ohin_77xbqWXYaslE4LXO4HzR4EY7iZIo85vtdD3xkOYkmaVlIJWipL_gGYQ55TKDD17auuPn0MsGfBhD7AxpBxyp60bze4Xs0vXa0r0rgV6rQ8t0LsW6H0LMl38Qz9MeJb4aU-EHMrWQdTJOvAWWhfBjroN7jmJ37DH0Sc |
CitedBy_id | crossref_primary_10_1016_j_virusres_2023_199300 crossref_primary_10_1016_j_prevetmed_2022_105759 crossref_primary_10_3389_fcimb_2025_1531415 crossref_primary_10_1016_j_virol_2023_05_001 crossref_primary_10_3390_v14061338 crossref_primary_10_3390_v14081746 crossref_primary_10_1016_j_antiviral_2023_105754 crossref_primary_10_1128_mbio_00358_22 crossref_primary_10_3389_fmicb_2021_738082 crossref_primary_10_3389_fmicb_2024_1303915 crossref_primary_10_3389_fmicb_2024_1344344 crossref_primary_10_1128_jvi_00645_24 crossref_primary_10_3390_genes15020165 crossref_primary_10_3390_polym13234097 crossref_primary_10_3390_v16010044 crossref_primary_10_3390_v16111787 crossref_primary_10_3389_fvets_2022_1015717 crossref_primary_10_1007_s12602_024_10243_1 crossref_primary_10_3390_pathogens13010024 crossref_primary_10_1080_01652176_2024_2429472 crossref_primary_10_3390_vaccines13030223 crossref_primary_10_1038_s42003_022_03205_2 crossref_primary_10_1186_s12951_024_02884_9 crossref_primary_10_3390_v14071371 crossref_primary_10_1016_j_vetmic_2025_110370 crossref_primary_10_3390_vaccines10111810 crossref_primary_10_1186_s12917_024_04151_3 crossref_primary_10_1186_s12917_021_03073_8 crossref_primary_10_1016_j_ijbiomac_2024_137006 crossref_primary_10_1111_tbed_14595 crossref_primary_10_1016_j_vetmic_2022_109525 crossref_primary_10_1371_journal_ppat_1012629 crossref_primary_10_1128_jvi_01193_23 crossref_primary_10_3390_v15091874 crossref_primary_10_1007_s00705_023_05725_6 crossref_primary_10_1016_j_jbc_2022_102190 crossref_primary_10_3390_v14112434 crossref_primary_10_3390_v15112204 crossref_primary_10_1016_j_envint_2023_108074 crossref_primary_10_3390_cimb45120637 crossref_primary_10_1016_j_peptides_2021_170526 crossref_primary_10_1016_j_virol_2022_12_011 crossref_primary_10_3390_v14020258 crossref_primary_10_1016_j_rvsc_2022_07_019 crossref_primary_10_3390_v16030431 crossref_primary_10_3390_ani14152185 crossref_primary_10_3389_fvets_2022_930608 crossref_primary_10_1186_s12917_023_03708_y crossref_primary_10_3390_v13081562 crossref_primary_10_1007_s12602_023_10138_7 crossref_primary_10_1007_s00705_022_05580_x crossref_primary_10_1186_s40813_023_00326_w crossref_primary_10_1038_s41598_024_80844_x crossref_primary_10_3390_v17030401 crossref_primary_10_1016_j_meegid_2021_104751 crossref_primary_10_3390_ani15020281 crossref_primary_10_3390_ani14020294 crossref_primary_10_1016_j_vetmic_2021_108994 crossref_primary_10_1155_2024_2876278 crossref_primary_10_3390_v14071355 crossref_primary_10_1186_s40813_022_00268_9 crossref_primary_10_3389_fimmu_2023_1269409 crossref_primary_10_1080_19490976_2022_2110821 crossref_primary_10_3390_v13122527 crossref_primary_10_3390_v14030591 crossref_primary_10_1016_j_vetmic_2024_110200 crossref_primary_10_29328_journal_ivs_1001044 crossref_primary_10_3390_v14040833 crossref_primary_10_1186_s40813_024_00382_w crossref_primary_10_1016_j_micpath_2025_107509 crossref_primary_10_1038_s41598_024_70059_5 crossref_primary_10_1186_s12917_024_04052_5 crossref_primary_10_1016_j_medidd_2021_100099 crossref_primary_10_1016_j_vetmic_2023_109975 crossref_primary_10_1093_af_vfac085 crossref_primary_10_3390_cimb44110368 crossref_primary_10_3390_v15071555 crossref_primary_10_1186_s12917_024_04091_y crossref_primary_10_1016_j_vacun_2023_08_002 crossref_primary_10_1128_jvi_00469_22 crossref_primary_10_1016_j_micpath_2023_106096 crossref_primary_10_1099_jgv_0_002070 crossref_primary_10_3390_vetsci11110533 crossref_primary_10_3389_fvets_2021_652000 crossref_primary_10_3390_v14081819 crossref_primary_10_1111_jpn_13555 crossref_primary_10_3389_fcimb_2023_1249034 crossref_primary_10_1016_j_arabjc_2023_104881 crossref_primary_10_3390_vaccines9080833 crossref_primary_10_3390_v16081229 crossref_primary_10_3390_pathogens12101272 crossref_primary_10_1038_s41598_022_13396_7 crossref_primary_10_1134_S1022795422120158 crossref_primary_10_3390_vaccines12010011 crossref_primary_10_3390_vetsci11110548 crossref_primary_10_3390_pathogens12040510 crossref_primary_10_1128_jvi_01309_24 crossref_primary_10_3390_pharmaceutics16050601 crossref_primary_10_1016_j_cyto_2025_156880 crossref_primary_10_3390_v15020300 crossref_primary_10_1016_j_micpath_2022_105703 crossref_primary_10_4167_jbv_2022_52_3_120 crossref_primary_10_1111_jpi_12754 crossref_primary_10_3389_fmicb_2024_1418959 crossref_primary_10_1016_j_micpath_2024_106958 crossref_primary_10_1038_s41467_023_41264_z crossref_primary_10_1007_s44307_024_00015_x crossref_primary_10_1016_j_ijpara_2024_12_002 crossref_primary_10_1186_s13567_023_01139_z crossref_primary_10_1007_s00705_023_05779_6 crossref_primary_10_1007_s42247_021_00178_6 crossref_primary_10_1016_j_vetmic_2023_109956 crossref_primary_10_1016_j_vetmic_2023_109834 crossref_primary_10_3389_fmicb_2022_1007115 crossref_primary_10_2478_macvetrev_2024_0025 crossref_primary_10_1186_s13568_023_01573_4 crossref_primary_10_3389_fvets_2022_980381 crossref_primary_10_3390_ijms25063096 crossref_primary_10_3390_pathogens10020173 crossref_primary_10_3390_v14050991 crossref_primary_10_3390_ijms23179661 crossref_primary_10_1155_2023_7082352 crossref_primary_10_1186_s40813_023_00346_6 crossref_primary_10_3390_ijms24044000 crossref_primary_10_1016_j_ab_2022_115013 crossref_primary_10_3390_v14020202 crossref_primary_10_1021_acsnano_0c07489 crossref_primary_10_1016_j_carres_2024_109205 crossref_primary_10_1007_s40203_021_00101_1 crossref_primary_10_3389_fphar_2023_1112610 crossref_primary_10_3390_biom14091116 crossref_primary_10_3390_v15071426 crossref_primary_10_1016_j_micpath_2021_105195 crossref_primary_10_3390_pathogens12081040 crossref_primary_10_3390_ijms24065071 crossref_primary_10_3390_v14030551 crossref_primary_10_3390_v16101580 crossref_primary_10_1016_j_vetmic_2024_110003 crossref_primary_10_3390_pathogens10020180 crossref_primary_10_3389_fimmu_2021_741425 crossref_primary_10_1007_s00705_025_06251_3 crossref_primary_10_1080_21505594_2021_1972202 crossref_primary_10_3390_v14071420 crossref_primary_10_1016_j_isci_2023_106280 crossref_primary_10_3390_v16060833 crossref_primary_10_1128_JCM_01355_20 crossref_primary_10_3390_vaccines11050965 crossref_primary_10_3389_fmicb_2024_1378070 crossref_primary_10_3389_fmicb_2025_1475273 crossref_primary_10_1021_acssynbio_4c00446 crossref_primary_10_1186_s12917_022_03419_w crossref_primary_10_1016_j_ijbiomac_2024_135352 crossref_primary_10_1016_j_virol_2025_110407 crossref_primary_10_3389_fimmu_2024_1451154 crossref_primary_10_1016_j_vetmic_2025_110402 crossref_primary_10_1177_09720634241278820 crossref_primary_10_1016_j_micpath_2023_106185 crossref_primary_10_3389_fvets_2023_1279162 crossref_primary_10_1080_15548627_2023_2181615 crossref_primary_10_3390_v15112165 crossref_primary_10_1016_j_virol_2023_03_017 crossref_primary_10_1016_j_antiviral_2023_105579 crossref_primary_10_14202_vetworld_2023_1695_1701 crossref_primary_10_3390_pathogens12060845 crossref_primary_10_1128_jvi_02086_21 crossref_primary_10_1016_j_csbj_2022_02_001 crossref_primary_10_1128_jvi_00591_24 crossref_primary_10_1016_j_vetmic_2022_109599 crossref_primary_10_1155_2024_5531899 crossref_primary_10_3390_v14102261 crossref_primary_10_1186_s13567_025_01456_5 crossref_primary_10_3390_v14122754 crossref_primary_10_3390_v14122751 crossref_primary_10_1111_tbed_13997 crossref_primary_10_3390_v16020238 crossref_primary_10_1021_acsomega_1c06093 crossref_primary_10_1186_s12934_024_02409_x crossref_primary_10_1128_JVI_01372_21 crossref_primary_10_1186_s40168_023_01734_4 crossref_primary_10_1186_s12917_023_03605_4 crossref_primary_10_1016_j_vaccine_2023_09_017 crossref_primary_10_1093_tas_txae009 crossref_primary_10_1016_j_vetmic_2021_109206 crossref_primary_10_3390_v14020402 crossref_primary_10_1016_j_ejmcr_2023_100125 crossref_primary_10_1186_s11671_025_04220_y crossref_primary_10_1186_s12985_023_02231_8 crossref_primary_10_3389_fcimb_2023_1338740 crossref_primary_10_3389_fmicb_2021_755599 crossref_primary_10_3389_fvets_2023_1278997 crossref_primary_10_1128_msphere_00777_24 crossref_primary_10_3390_v14112413 crossref_primary_10_1016_j_vacune_2024_02_013 crossref_primary_10_3390_v16071126 crossref_primary_10_3389_fvets_2022_1033864 crossref_primary_10_3390_ani14152168 crossref_primary_10_3390_vaccines11040830 crossref_primary_10_1016_j_ecoenv_2022_113209 crossref_primary_10_3390_microorganisms8111840 crossref_primary_10_3390_ani14020280 crossref_primary_10_1038_s41597_022_01394_3 crossref_primary_10_3389_fimmu_2023_1058327 crossref_primary_10_1128_jvi_00400_22 crossref_primary_10_1016_j_ijbiomac_2025_141036 crossref_primary_10_1016_j_virol_2025_110451 crossref_primary_10_3390_v13122486 crossref_primary_10_1186_s44149_021_00029_1 crossref_primary_10_3390_pharmaceutics14091793 crossref_primary_10_3390_vetsci9080422 crossref_primary_10_3390_v13040580 crossref_primary_10_1016_j_vetmic_2023_109691 crossref_primary_10_1038_s41467_022_32588_3 crossref_primary_10_1016_j_vetmic_2024_110152 crossref_primary_10_1016_j_vetmic_2024_110273 crossref_primary_10_1186_s12915_024_02094_7 crossref_primary_10_1080_21505594_2024_2397492 crossref_primary_10_3390_ani15010103 crossref_primary_10_1128_JVI_00853_21 crossref_primary_10_1016_j_virs_2023_01_008 crossref_primary_10_1186_s13036_023_00342_y crossref_primary_10_3389_fvets_2022_1067364 crossref_primary_10_1186_s13567_021_00954_6 crossref_primary_10_1080_01652176_2022_2079756 crossref_primary_10_3390_v15071601 crossref_primary_10_1016_j_ijbiomac_2023_127276 crossref_primary_10_3390_antiox12061305 crossref_primary_10_3389_fvets_2021_802816 crossref_primary_10_1016_j_vetimm_2024_110753 crossref_primary_10_1016_j_vetmic_2024_110065 crossref_primary_10_1186_s12917_024_04390_4 crossref_primary_10_3390_v15071492 crossref_primary_10_1128_mbio_02958_23 crossref_primary_10_3390_agriculture14010043 crossref_primary_10_1186_s40813_023_00331_z crossref_primary_10_3390_ani13142375 crossref_primary_10_1016_j_virol_2021_03_006 crossref_primary_10_1128_spectrum_05017_22 crossref_primary_10_3389_fmicb_2024_1357470 crossref_primary_10_1016_j_micpath_2025_107486 crossref_primary_10_1016_j_virusres_2024_199496 crossref_primary_10_1007_s11259_021_09808_0 crossref_primary_10_1111_tbed_13953 crossref_primary_10_3390_v14010125 crossref_primary_10_3389_fmicb_2021_805472 crossref_primary_10_3390_v13061139 crossref_primary_10_1016_j_vetmic_2021_109081 crossref_primary_10_1016_j_ijbiomac_2023_127722 crossref_primary_10_3389_fmicb_2023_1273589 crossref_primary_10_3390_v15081629 crossref_primary_10_1002_smtd_202300293 crossref_primary_10_1080_21688370_2022_2087454 crossref_primary_10_1111_1751_7915_14518 crossref_primary_10_1186_s12985_023_02233_6 crossref_primary_10_1016_j_antiviral_2024_106073 crossref_primary_10_1186_s44149_025_00161_2 crossref_primary_10_3390_ani12192712 crossref_primary_10_3390_ani13020262 |
Cites_doi | 10.1016/j.vetmic.2016.11.029 10.1016/j.prevetmed.2015.11.013 10.1016/j.vetmic.2017.09.021 10.1128/JVI.02000-18 10.1186/s13567-014-0073-z 10.3201/eid1803.120002 10.1111/tbed.12509 10.1016/j.vetmic.2015.05.016 10.1016/j.molimm.2008.04.017 10.1016/j.virol.2007.03.031 10.1186/s12917-017-1300-4 10.1016/j.rvsc.2016.10.009 10.1016/j.rvsc.2006.03.005 10.1016/S0899-9007(00)00421-4 10.1128/JVI.01758-18 10.1016/j.virusres.2016.05.016 10.1186/s13567-018-0505-2 10.1007/s11248-018-0100-3 10.3201/eid2005.140195 10.1038/s41598-017-11160-w 10.1111/tbed.12409 10.1007/0-306-46832-8_32 10.1128/JVI.00406-19 10.1016/j.jviromet.2017.01.002 10.1371/journal.pone.0135675 10.3201/eid2004.131685 10.1007/BF01317606 10.1177/0300985815591080 10.1016/j.vetmic.2018.09.025 10.1186/s13567-015-0285-x 10.1007/s00705-017-3545-4 10.1093/jas/sky320 10.1186/s13567-019-0719-y 10.1016/j.virol.2018.02.019 10.3390/pathogens9020130 10.1016/j.vetmic.2017.09.020 10.3390/v7102891 10.1111/tbed.12269 10.3390/ijms20215478 10.1016/j.rvsc.2006.03.007 10.1186/s12985-018-0940-8 10.54846/jshap/882 10.1128/JVI.00430-15 10.1016/j.vetmic.2015.03.022 10.1371/journal.pone.0104766 10.3201/eid2007.140296 10.1128/JVI.00202-17 10.1016/j.vetmic.2014.09.002 10.1099/jgv.0.000513 10.1016/j.virusres.2016.06.002 10.1038/s41598-017-17830-z 10.1016/j.vetmic.2017.01.015 10.54846/jshap/985 10.1053/jcpa.2000.0386 10.1099/jgv.0.000563 10.1016/j.rvsc.2018.06.009 10.1007/s11262-011-0617-5 10.1016/j.vetmic.2015.04.022 10.1038/s41586-018-0010-9 10.1371/journal.pone.0144818 10.1186/s12917-016-0697-5 10.1186/s13567-016-0402-5 10.1016/j.tvjl.2015.02.017 10.1023/A:1011831902219 10.1016/j.virusres.2017.03.018 10.1371/journal.pone.0187309 10.1007/s12250-019-00127-y 10.1186/s12917-015-0348-2 10.1186/s13567-017-0469-7 10.1128/JVI.01677-17 10.1038/s41467-018-06056-w 10.1177/030098588201900108 10.1186/s12985-019-1232-7 10.1099/jgv.0.000419 10.1016/j.vetmic.2017.07.014 10.1016/j.virusres.2016.05.015 10.1186/s12917-017-1017-4 10.3201/eid2407.172077 10.3201/eid2104.141859 10.1186/s12917-015-0624-1 10.1128/genomeA.00535-15 10.1128/JVI.06540-11 10.1371/journal.pone.0192992 10.1016/j.vetimm.2015.09.006 10.1111/tbed.12823 10.1016/S0165-2427(01)00417-2 10.1016/j.vetmic.2016.07.003 10.1136/vr.100.12.243 10.1128/JCM.02507-16 10.1021/acs.jproteome.6b00957 10.1016/j.virusres.2016.05.031 10.3201/eid2309.170915 10.1128/JVI.01682-18 10.1016/j.vetmic.2015.10.022 10.1016/j.virusres.2016.05.030 10.1016/S0264-410X(03)00027-6 10.1016/S0166-0934(02)00063-0 10.1371/journal.pone.0219868 10.3389/fimmu.2019.00727 10.1186/s12985-015-0421-2 10.3389/fvets.2019.00273 10.1007/s00284-015-0895-6 10.1007/s11262-018-1542-7 10.1186/s13567-015-0180-5 10.1186/s12917-014-0176-9 10.1016/S0264-410X(99)00059-6 10.1016/j.vetmic.2016.02.004 10.1186/s13567-015-0249-1 10.3201/eid2010.140491 10.1186/s13567-015-0278-9 10.1016/j.virol.2014.04.040 10.1128/JVI.03196-14 10.1089/vim.2017.0023 10.3201/eid2005.131628 10.1016/S0021-9975(05)80069-6 10.1128/mBio.00737-13 10.1099/jgv.0.001216 10.1016/j.vetmic.2017.12.019 10.1016/0378-1135(89)90036-9 10.1177/1040638713501675 10.1016/j.virusres.2016.05.023 10.3201/eid2201.150544 10.1264/jsme2.ME15046 10.1007/s00705-018-3874-y 10.1371/journal.pone.0139266 10.3390/v11080743 10.3389/fimmu.2016.00214 10.1016/j.prevetmed.2017.12.009 10.1016/j.virusres.2016.08.005 10.1371/journal.pone.0117441 10.24425/pjvs.2019.129226 10.1128/JVI.00227-17 10.1016/j.febslet.2012.01.005 10.3389/fvets.2019.00034 10.1177/1040638716663251 10.1016/j.jprot.2015.09.002 10.1186/s12917-017-1283-1 10.3201/eid1912.121088 10.1016/j.rvsc.2015.09.024 10.1016/S0165-2427(01)00386-5 10.1128/mBio.01451-15 10.3390/v8030055 10.1186/s12917-015-0454-1 10.1016/j.virusres.2016.05.003 10.1111/tbed.12945 10.1128/JCM.02820-13 10.1016/0378-1135(81)90007-9 10.1016/j.vetmic.2014.12.019 10.1016/j.vetmic.2009.12.024 10.1016/j.vetmic.2015.05.027 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.virusres.2020.198045 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1872-7492 |
EndPage | 198045 |
ExternalDocumentID | PMC7266596 32502552 10_1016_j_virusres_2020_198045 S0168170220301209 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD095881 – fundername: NIH HHS grantid: HD095881 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMG HVGLF HZ~ IH2 IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPM RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WH7 WUQ ZGI ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c504t-297809b1f6fb62a208b85311406b522635c472998631a84eb63a6efb8a38b9163 |
IEDL.DBID | .~1 |
ISSN | 0168-1702 1872-7492 |
IngestDate | Thu Aug 21 13:57:19 EDT 2025 Fri Jul 11 06:22:46 EDT 2025 Mon Jul 21 10:35:24 EDT 2025 Wed Feb 19 02:29:00 EST 2025 Tue Jul 01 01:45:28 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Fri Feb 23 02:45:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prevention Pigs Porcine epidemic diarrhea virus PEDV Coronavirus Pathogenesis |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-297809b1f6fb62a208b85311406b522635c472998631a84eb63a6efb8a38b9163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7266596 |
PMID | 32502552 |
PQID | 2410355117 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7266596 proquest_miscellaneous_2477614810 proquest_miscellaneous_2410355117 pubmed_primary_32502552 crossref_citationtrail_10_1016_j_virusres_2020_198045 crossref_primary_10_1016_j_virusres_2020_198045 elsevier_sciencedirect_doi_10_1016_j_virusres_2020_198045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Virus research |
PublicationTitleAlternate | Virus Res |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gallien, Andraud, Moro, Lediguerher, Morin, Gauger, Bigault, Paboeuf, Berri, Rose, Grasland (bib0165) 2018; 65 Jung, Saif (bib0285) 2015; 204 Beall, Yount, Lin, Hou, Wang, Saif, Baric (bib0040) 2016; 7 Gong, Li, Zhou, Xu, Chen, Zhang, Xue, Wen, Cao (bib0210) 2017; 23 Yamamoto, Soma, Nakanishi, Yamaguchi, Niinuma (bib0750) 2015; 103 Zhang, Ke, Blikslager, Fujita, Yoo (bib0765) 2018; 92 Saif, Pensaert, Sestak, Yeo, Jung (bib0575) 2012 Sueyoshi, Tsuda, Yamazaki, Yoshida, Nakazawa, Sato, Minami, Iwashita, Watanabe, Suzuki (bib0665) 1995; 113 Leidenberger, Schroder, Zani, Auste, Pinette, Ambagala, Nikolin, de Smit, Beer, Blome (bib0405) 2017; 7 Pasick, Berhane, Ojkic, Maxie, Embury-Hyatt, Swekla, Handel, Fairles, Alexandersen (bib0555) 2014; 61 Jung, Wang, Scheuer, Lu, Zhang, Saif (bib0300) 2014; 20 Luo, Guo, Zhang, Xu, Gu, Feng, Wang (bib0490) 2017; 91 Jung, Ahn, Chae (bib0295) 2006; 81 Huang, Wang, Wang, Cui, Yang, Liu, Kong, Li (bib0265) 2018; 13 Sato, Takeyama, Katsumata, Tuchiya, Kodama, Kusanagi (bib0585) 2011; 43 Gallien, Moro, Lediguerher, Catinot, Paboeuf, Bigault, Gauger, Pozzi, Berri, Authie, Rose, Grasland (bib0175) 2019; 228 Stevenson, Hoang, Schwartz, Burrough, Sun, Madson, Cooper, Pillatzki, Gauger, Schmitt, Koster, Killian, Yoon (bib0655) 2013; 25 Ma, Zhang, Liang, Oglesbee, Krakowka, Niehaus, Wang, Jia, Song, Li (bib0495) 2016; 186 Zong, Huang, Wu, Wu, Wu, Bao (bib0795) 2019; 22 Crawford, Lager, Kulshreshtha, Miller, Faaberg (bib0120) 2016; 226 Jung, Hu, Saif (bib0320) 2016; 182 de Arriba, Carvajal, Pozo, Rubio (bib0135) 2002; 105 Pensaert, de Bouck (bib0560) 1978; 58 Chen, Zhang, Liu, Liu (bib0100) 2017; 242 Goede, Murtaugh, Nerem, Yeske, Rossow, Morrison (bib0205) 2015; 176 Langel, Paim, Alhamo, Lager, Vlasova, Saif (bib0380) 2019; 50 Zhou, Ederveen, Egberink, Pensaert, Horzinek (bib0785) 1988; 102 Gillespie, Song, Inskeep, Stone, Murtaugh (bib0195) 2018; 31 Langel, Paim, Alhamo, Buckley, Van Geelen, Lager, Vlasova, Saif (bib0375) 2019; 10 Li, Fu, Guo, Wang, He, Xue, Yin, Feng, Liu (bib0435) 2019; 93 Bowman, Krogwold, Price, Davis, Moeller (bib0065) 2015; 11 Kim, Yang, Goyal, Cheeran, Torremorell (bib0345) 2017; 13 Koh, Kim, Lee, Kim, Park (bib0355) 2015; 30 Pensaert, Martelli (bib0565) 2016; 226 Kim, Kim, Tai, Chae (bib0335) 2000; 123 Lin, Gao, Oka, Vlasova, Esseili, Wang, Saif (bib0445) 2015; 89 Ouyang, Shyu, Dhakal, Hiremath, Binjawadagi, Lakshmanappa, Guo, Ransburgh, Bondra, Gauger, Zhang, Specht, Gilbertie, Minton, Fang, Renukaradhya (bib0545) 2015; 46 Li, Wu, Huang, Yuan, Wang, Yang (bib0430) 2018; 9 Steinrigl, Fernandez, Stoiber, Pikalo, Sattler, Schmoll (bib0650) 2015; 11 Gao, Zhao, Qin, Yin, Yang (bib0180) 2015; 179 Jung, Miyazaki, Saif (bib0325) 2018; 119 Liu, Tang, Ma, Liang, Yang, Peng, Qi, Jiang, Li, Du, Li (bib0465) 2015; 89 Langel, Wang, Vlasova, Saif (bib0385) 2020; 9 Zhao, Li, Schuurman, van Kuppeveld, Bosch, Egberink (bib0780) 2019; 11 Hou, Ke, Kim, Yoo, Su, Boley, Chepngeno, Vlasova, Saif, Wang (bib0250) 2019; 93 Wang, Lu, Chen, Xie, Shi, Hsu, Yu, Xu, Bian, Fischer, Schwarz, Feng, Sun (bib0700) 2012; 586 Langel, Paim, Lager, Vlasova, Saif (bib0370) 2016; 226 Pan, Tian, Qin, Wang, Zhao, Yang, Wang, Wang, Song, Zhang, Huang (bib0550) 2017; 211 Whitworth, Rowland, Petrovan, Sheahan, Cino-Ozuna, Fang, Hesse, Mileham, Samuel, Wells, Prather (bib0725) 2019; 28 Song, Stone, Drebes, Greiner, Dvorak, Murtaugh (bib0635) 2016; 226 Alonso, Goede, Morrison, Davies, Rovira, Marthaler, Torremorell (bib0005) 2014; 45 Gordon, Kotowski, Coulson, Link, MacKenzie, Bowling-Heyward (bib0215) 2019; 6 Dee, Clement, Schelkopf, Nerem, Knudsen, Christopher-Hennings, Nelson (bib0150) 2014; 10 Stadler, Zoels, Fux, Hanke, Pohlmann, Blome, Weissenbock, Weissenbacher-Lang, Ritzmann, Ladinig (bib0645) 2015; 11 Schumacher, Cochrane, Huss, Gebhardt, Woodworth, Stark, Jones, Bai, Main, Chen, Zhang, Gauger, DeRouchey, Goodband, Tokach, Dritz (bib0600) 2018; 96 Schumacher, Huss, Cochrane, Stark, Woodworth, Bai, Poulsen, Chen, Main, Zhang, Gauger, Ramirez, Derscheid, Magstadt, Dritz, Jones (bib0595) 2017; 12 Wu, Li, Zhou, Li, Xu, Shen, Chen (bib0740) 2019; 16 Mavronmichalis (bib0510) 2016 Thomas, Karriker, Ramirez, Zhang, Ellingson, Crawford, Bates, Hammen, Holtkamp (bib0690) 2015; 23 Sato, Oroku, Ohshima, Furuya, Sasakawa (bib0590) 2018; 15 Beam, Goede, Fox, McCool, Wall, Haley, Morrison (bib0045) 2015; 10 Ji, Wang, Zhou, Huang (bib0275) 2018; 517 Jiang, Hu, Thirumalai, Zhang (bib0280) 2016; 7 Opriessnig, Xiao, Gerber, Zhang, Halbur (bib0540) 2014; 9 Moon, Norman, Lambert (bib0520) 1973; 37 Jung, Annamalai, Lu, Saif (bib0305) 2015; 178 Zhao, Wang, Liu, Huang, Zhai, He, Ding, Wang, Wang, Fan, Zhao, Meng (bib0775) 2015; 10 Annamalai, Lin, Gao, Liu, Lu, Saif, Wang (bib0020) 2017; 48 Li, Ge, Li (bib0410) 2007; 365 Nam, Lee (bib0525) 2010; 144 Boniotti, Papetti, Lavazza, Alborali, Sozzi, Chiapponi, Faccini, Bonilauri, Cordioli, Marthaler (bib0055) 2016; 22 Song, Yang, Oh, Han, Park (bib0625) 2003; 21 Niederwerder, Hesse (bib0530) 2018; 65 Bourges, Meurens, Berri, Chevaleyre, Zanello, Levast, Melo, Gerdts, Salmon (bib0060) 2008; 45 Canning, Ruston, Madson, Bates, Skoland, Davenport, Gaul, Wang, Chen, Zhang, Karriker (bib0075) 2017; 25 Li, Li, Liu, Pan, Deng, Song, Tang, He (bib0415) 2012; 18 Zhang, Yoo (bib0755) 2016; 226 Perri, Poljak, Dewey, Harding, O’Sullivan (bib0570) 2018; 150 Lowe, Gauger, Harmon, Zhang, Connor, Yeske, Loula, Levis, Dufresne, Main (bib0485) 2014; 20 Alonso, Raynor, Davies, Torremorell (bib0010) 2015; 10 Jung, Eyerly, Annamalai, Lu, Saif (bib0310) 2015; 177 Suzuki, Shibahara, Yamaguchi, Nakade, Yamamoto, Miyazaki, Ohashi (bib0670) 2016; 97 Sirichokchatchawan, Temeeyasen, Nilubol, Prapasarakul (bib0620) 2017 Debouck, Pensaert, Coussement (bib0145) 1981; 6 Kweon, Kwon, Lee, Kwon, Kang (bib0365) 1999; 17 Chen, Thomas, Gimenez-Lirola, Hardham, Gao, Gerber, Opriessnig, Zheng, Li, Gauger, Madson, Magstadt, Zhang (bib0095) 2016; 12 Anon (bib0025) 2015; 247 Gerber, Xiao, Lager, Crawford, Kulshreshtha, Cao, Meng, Opriessnig (bib0185) 2016; 47 Hou, Wang (bib0240) 2019; 20 Baker, Mowrer, Zhang, Chen, Ramirez, Wang, Karriker, Holtkamp (bib0035) 2018; 214 Huang, Dickerman, Pineyro, Li, Fang, Kiehne, Opriessnig, Meng (bib0260) 2013; 4 Wang, Byrum, Zhang (bib0715) 2014; 20 Lee (bib0395) 2015; 12 Woo, Lau, Lam, Lau, Tsang, Lau, Bai, Teng, Tsang, Wang, Zheng, Chan, Yuen (bib0730) 2012; 86 Shirato, Maejima, Islam, Miyazaki, Kawase, Matsuyama, Taguchi (bib0610) 2016; 97 Deng, van Geelen, Buckley, O’Brien, Pillatzki, Lager, Faaberg, Baker (bib0160) 2019; 93 Siegrist (bib0615) 2013 Chen, Gauger, Stafne, Thomas, Madson, Huang, Zheng, Li, Zhang (bib0090) 2016; 97 Li, Luo, He, van Kuppeveld, Rottier, Bosch (bib0425) 2017; 235 Scott, McCluskey, Brown-Reid, Grear, Pitcher, Ramos, Spencer, Singrey (bib0605) 2016; 123 Gimenez-Lirola, Zhang, Carrillo-Avila, Chen, Magtoto, Poonsuk, Baum, Pineyro, Zimmerman (bib0200) 2017; 55 Guo, Hu, Chen, Li, Ye, Cheng, Zhang, He (bib0225) 2016; 130 Deng, Ye, Liu, Navid, Zhong, Li, Wan, Xiao, He, Fu, Peng (bib0155) 2016; 8 Hofmann, Wyler (bib0230) 1989; 20 Liu, Lin, Annamalai, Gao, Lu, Esseili, Jung, El-Tholoth, Saif, Wang (bib0475) 2015; 46 Jung, Hu, Eyerly, Lu, Chepngeno, Saif (bib0315) 2015; 21 Kim, Lee (bib0330) 2014; 460–461 Zhou, Fan, Lan, Yang, Shi, Zhang, Zhu, Zhang, Xie, Mani, Zheng, Li, Li, Guo, Pei, An, Chen, Zhou, Mai, Wu, Li, Anderson, Zhang, Li, Mi, He, Cong, Guo, Huang, Luo, Liu, Chen, Huang, Sun, Zhang, Wang, Xing, Chen, Sun, Li, Daszak, Wang, Shi, Tong, Ma (bib0790) 2018; 556 Wood (bib0735) 1977; 100 Kocherhans, Bridgen, Ackermann, Tobler (bib0350) 2001; 23 Koonpaew, Teeravechyan, Frantz, Chailangkarn, Jongkaewwattana (bib0360) 2019; 6 Lin, Annamalai, Liu, Gao, Lu, El-Tholoth, Hu, Saif, Wang (bib0440) 2015; 46 Chen, Zhu, Wu, Ku, Ye, Li, Guo, He (bib0085) 2015; 7 Salmon (bib0580) 2000; 480 Liu, Zhao, Zhai, Zhao, Ding, Dai, Sun, Meng (bib0470) 2015; 71 Langhans (bib0390) 2000; 16 Wang, Zhao, Guo, Liu, Du, Ren, Li, Zhang, Fan, Huang, Liu, Wu (bib0705) 2013; 19 Gallien, Moro, Lediguerher, Catinot, Paboeuf, Bigault, Berri, Gauger, Pozzi, Authie, Rose, Grasland (bib0170) 2018; 49 Song, Peng, Chen, Zhou, Zhang, Li, Huang, Wu, Ye, He, Wang, Tang (bib0640) 2017; 7 Gerdts, Zakhartchouk (bib0190) 2017; 206 Wang, Byrum, Zhang (bib0710) 2014; 20 Wang, Ohnstad, Nelsen, Nelson (bib0720) 2017; 208 Chen, Li, Stasko, Thomas, Stensland, Pillatzki, Gauger, Schwartz, Madson, Yoon, Stevenson, Burrough, Harmon, Main, Zhang (bib0080) 2014; 52 de Arriba, Carvajal, Pozo, Rubio (bib0130) 2002; 84 Lin, Li, Chen, Ma, He, Fan (bib0460) 2017; 16 Lee, Kwon, Je, Yoo, Seo, Sunwoo, Lyoo (bib0400) 2016; 192 Madson, Arruda, Magstadt, Burrough, Hoang, Sun, Bower, Bhandari, Gauger, Stevenson, Wilberts, Wang, Zhang, Yoon (bib0505) 2016; 53 Thomas, Chen, Gauger, Gimenez-Lirola, Sinha, Harmon, Madson, Burrough, Magstadt, Salzbrenner, Welch, Yoon, Zimmerman, Zhang (bib0685) 2015; 10 Coussement, Ducatelle, Debouck, Hoorens (bib0110) 1982; 19 Hou, Meulia, Gao, Saif, Wang (bib0255) 2019; 93 Hou, Lin, Yokoyama, Yount, Marthaler, Douglas, Ghimire, Qin, Baric, Saif, Wang (bib0245) 2017; 91 Kim, Oh, Shivanna, Hesse, Chang (bib0340) 2017; 13 Zhang, Yim-Im, Chen, Zheng, Schumacher, Huang, Gauger, Harmon, Li (bib0760) 2018; 54 Holtkamp, Myers, Thomas, Karriker, Ramirez, Zhang, Wang (bib0235) 2017; 81 Lohse, Krog, Strandbygaard, Rasmussen, Kjaer, Belsham, Botner (bib0480) 2017; 64 Madson, Magstadt, Arruda, Hoang, Sun, Bower, Bhandari, Burrough, Gauger, Pillatzki, Stevenson, Wilberts, Brodie, Harmon, Wang, Main, Zhang, Yoon (bib0500) 2014; 174 Niederwerder, Nietfeld, Bai, Peddireddi, Breazeale, Anderson, Kerrigan, An, Oberst, Crawford, Lager, Madson, Rowland, Anderson, Hesse (bib0535) 2016; 28 Bevins, Lutman, Pedersen, Barrett, Gidlewski, Deliberto, Franklin (bib0050) 2018; 24 Li, van Kuppeveld, He, Rottier, Bosch (bib0420) 2016; 226 Zhang, Wu, Yang (bib0770) 2019; 34 Lin, Hou, Marthaler, Gao, Liu, Zheng, Saif, Wang (bib0455) 2017; 201 Cima (bib0105) 2013; 243 Lin, Saif, Marthaler, Wang (bib0450) 2016; 226 Su, Hou, Prarat, Zhang, Wang (bib0660) 2018; 163 Grasland, Bigaul Sirichokchatchawan (10.1016/j.virusres.2020.198045_bib0620) 2017 Deng (10.1016/j.virusres.2020.198045_bib0160) 2019; 93 Annamalai (10.1016/j.virusres.2020.198045_bib0020) 2017; 48 Whitworth (10.1016/j.virusres.2020.198045_bib0725) 2019; 28 Bowman (10.1016/j.virusres.2020.198045_bib0070) 2015; 179 Wang (10.1016/j.virusres.2020.198045_bib0720) 2017; 208 Canning (10.1016/j.virusres.2020.198045_bib0075) 2017; 25 Kim (10.1016/j.virusres.2020.198045_bib0335) 2000; 123 Siegrist (10.1016/j.virusres.2020.198045_bib0615) 2013 Curry (10.1016/j.virusres.2020.198045_bib0125) 2017; 211 Langel (10.1016/j.virusres.2020.198045_bib0380) 2019; 50 Lin (10.1016/j.virusres.2020.198045_bib0450) 2016; 226 Chen (10.1016/j.virusres.2020.198045_bib0095) 2016; 12 Madson (10.1016/j.virusres.2020.198045_bib0505) 2016; 53 Tan (10.1016/j.virusres.2020.198045_bib0675) 2019; 14 Dee (10.1016/j.virusres.2020.198045_bib0150) 2014; 10 Sato (10.1016/j.virusres.2020.198045_bib0590) 2018; 15 Liu (10.1016/j.virusres.2020.198045_bib0465) 2015; 89 Debouck (10.1016/j.virusres.2020.198045_bib0145) 1981; 6 Leidenberger (10.1016/j.virusres.2020.198045_bib0405) 2017; 7 de Arriba (10.1016/j.virusres.2020.198045_bib0130) 2002; 84 Ouyang (10.1016/j.virusres.2020.198045_bib0545) 2015; 46 Pensaert (10.1016/j.virusres.2020.198045_bib0560) 1978; 58 Woo (10.1016/j.virusres.2020.198045_bib0730) 2012; 86 Gong (10.1016/j.virusres.2020.198045_bib0210) 2017; 23 Jung (10.1016/j.virusres.2020.198045_bib0325) 2018; 119 Li (10.1016/j.virusres.2020.198045_bib0435) 2019; 93 Lin (10.1016/j.virusres.2020.198045_bib0455) 2017; 201 Liu (10.1016/j.virusres.2020.198045_bib0475) 2015; 46 Crawford (10.1016/j.virusres.2020.198045_bib0120) 2016; 226 Gallien (10.1016/j.virusres.2020.198045_bib0175) 2019; 228 Liu (10.1016/j.virusres.2020.198045_bib0470) 2015; 71 Jeon (10.1016/j.virusres.2020.198045_bib0270) 2017; 162 Cima (10.1016/j.virusres.2020.198045_bib0105) 2013; 243 Zhou (10.1016/j.virusres.2020.198045_bib0785) 1988; 102 Alonso (10.1016/j.virusres.2020.198045_bib0005) 2014; 45 Langel (10.1016/j.virusres.2020.198045_bib0385) 2020; 9 de Arriba (10.1016/j.virusres.2020.198045_bib0135) 2002; 105 Kocherhans (10.1016/j.virusres.2020.198045_bib0350) 2001; 23 Stevenson (10.1016/j.virusres.2020.198045_bib0655) 2013; 25 Thomas (10.1016/j.virusres.2020.198045_bib0690) 2015; 23 Hou (10.1016/j.virusres.2020.198045_bib0255) 2019; 93 Anon (10.1016/j.virusres.2020.198045_bib0025) 2015; 247 Langel (10.1016/j.virusres.2020.198045_bib0370) 2016; 226 Schumacher (10.1016/j.virusres.2020.198045_bib0595) 2017; 12 Koh (10.1016/j.virusres.2020.198045_bib0355) 2015; 30 Li (10.1016/j.virusres.2020.198045_bib0410) 2007; 365 Baker (10.1016/j.virusres.2020.198045_bib0030) 2017; 13 Steinrigl (10.1016/j.virusres.2020.198045_bib0650) 2015; 11 Chen (10.1016/j.virusres.2020.198045_bib0090) 2016; 97 Crawford (10.1016/j.virusres.2020.198045_bib0115) 2015; 46 Bevins (10.1016/j.virusres.2020.198045_bib0050) 2018; 24 Jung (10.1016/j.virusres.2020.198045_bib0315) 2015; 21 Lin (10.1016/j.virusres.2020.198045_bib0440) 2015; 46 Jung (10.1016/j.virusres.2020.198045_bib0300) 2014; 20 Langel (10.1016/j.virusres.2020.198045_bib0375) 2019; 10 Chen (10.1016/j.virusres.2020.198045_bib0085) 2015; 7 Grasland (10.1016/j.virusres.2020.198045_bib0220) 2015; 3 Lin (10.1016/j.virusres.2020.198045_bib0460) 2017; 16 Jung (10.1016/j.virusres.2020.198045_bib0290) 2017; 110 Baker (10.1016/j.virusres.2020.198045_bib0035) 2018; 214 Jung (10.1016/j.virusres.2020.198045_bib0305) 2015; 178 Kim (10.1016/j.virusres.2020.198045_bib0340) 2017; 13 Salmon (10.1016/j.virusres.2020.198045_bib0580) 2000; 480 Kim (10.1016/j.virusres.2020.198045_bib0345) 2017; 13 Luo (10.1016/j.virusres.2020.198045_bib0490) 2017; 91 Schumacher (10.1016/j.virusres.2020.198045_bib0600) 2018; 96 Gallien (10.1016/j.virusres.2020.198045_bib0165) 2018; 65 Sato (10.1016/j.virusres.2020.198045_bib0585) 2011; 43 Huang (10.1016/j.virusres.2020.198045_bib0260) 2013; 4 Song (10.1016/j.virusres.2020.198045_bib0640) 2017; 7 Boniotti (10.1016/j.virusres.2020.198045_bib0055) 2016; 22 Mavronmichalis (10.1016/j.virusres.2020.198045_bib0510) 2016 Zhou (10.1016/j.virusres.2020.198045_bib0790) 2018; 556 Perri (10.1016/j.virusres.2020.198045_bib0570) 2018; 150 Annamalai (10.1016/j.virusres.2020.198045_bib0015) 2015; 168 Kim (10.1016/j.virusres.2020.198045_bib0330) 2014; 460–461 Langhans (10.1016/j.virusres.2020.198045_bib0390) 2000; 16 Lin (10.1016/j.virusres.2020.198045_bib0445) 2015; 89 Ma (10.1016/j.virusres.2020.198045_bib0495) 2016; 186 Madson (10.1016/j.virusres.2020.198045_bib0500) 2014; 174 Xie (10.1016/j.virusres.2020.198045_bib0745) 2019; 100 Zhao (10.1016/j.virusres.2020.198045_bib0775) 2015; 10 Gerdts (10.1016/j.virusres.2020.198045_bib0190) 2017; 206 Chen (10.1016/j.virusres.2020.198045_bib0100) 2017; 242 Bourges (10.1016/j.virusres.2020.198045_bib0060) 2008; 45 Jung (10.1016/j.virusres.2020.198045_bib0320) 2016; 182 Jiang (10.1016/j.virusres.2020.198045_bib0280) 2016; 7 Lohse (10.1016/j.virusres.2020.198045_bib0480) 2017; 64 Zong (10.1016/j.virusres.2020.198045_bib0795) 2019; 22 Gordon (10.1016/j.virusres.2020.198045_bib0215) 2019; 6 Niederwerder (10.1016/j.virusres.2020.198045_bib0530) 2018; 65 Zhao (10.1016/j.virusres.2020.198045_bib0780) 2019; 11 Vlasova (10.1016/j.virusres.2020.198045_bib0695) 2014; 20 Wang (10.1016/j.virusres.2020.198045_bib0710) 2014; 20 Teeravechyan (10.1016/j.virusres.2020.198045_bib0680) 2016; 226 Zhang (10.1016/j.virusres.2020.198045_bib0770) 2019; 34 Huang (10.1016/j.virusres.2020.198045_bib0265) 2018; 13 Saif (10.1016/j.virusres.2020.198045_bib0575) 2012 Guo (10.1016/j.virusres.2020.198045_bib0225) 2016; 130 Nam (10.1016/j.virusres.2020.198045_bib0525) 2010; 144 Shirato (10.1016/j.virusres.2020.198045_bib0610) 2016; 97 Pan (10.1016/j.virusres.2020.198045_bib0550) 2017; 211 Jung (10.1016/j.virusres.2020.198045_bib0310) 2015; 177 Scott (10.1016/j.virusres.2020.198045_bib0605) 2016; 123 Li (10.1016/j.virusres.2020.198045_bib0420) 2016; 226 Deng (10.1016/j.virusres.2020.198045_bib0155) 2016; 8 Beam (10.1016/j.virusres.2020.198045_bib0045) 2015; 10 Jung (10.1016/j.virusres.2020.198045_bib0295) 2006; 81 Niederwerder (10.1016/j.virusres.2020.198045_bib0535) 2016; 28 Opriessnig (10.1016/j.virusres.2020.198045_bib0540) 2014; 9 Li (10.1016/j.virusres.2020.198045_bib0430) 2018; 9 Zhang (10.1016/j.virusres.2020.198045_bib0760) 2018; 54 Song (10.1016/j.virusres.2020.198045_bib0635) 2016; 226 Alonso (10.1016/j.virusres.2020.198045_bib0010) 2015; 10 Wang (10.1016/j.virusres.2020.198045_bib0700) 2012; 586 Thomas (10.1016/j.virusres.2020.198045_bib0685) 2015; 10 Beall (10.1016/j.virusres.2020.198045_bib0040) 2016; 7 Zhang (10.1016/j.virusres.2020.198045_bib0755) 2016; 226 Lee (10.1016/j.virusres.2020.198045_bib0395) 2015; 12 Coussement (10.1016/j.virusres.2020.198045_bib0110) 1982; 19 Su (10.1016/j.virusres.2020.198045_bib0660) 2018; 163 Pasick (10.1016/j.virusres.2020.198045_bib0555) 2014; 61 de Arriba (10.1016/j.virusres.2020.198045_bib0140) 2002; 85 Wang (10.1016/j.virusres.2020.198045_bib0715) 2014; 20 Gao (10.1016/j.virusres.2020.198045_bib0180) 2015; 179 Stadler (10.1016/j.virusres.2020.198045_bib0645) 2015; 11 Kweon (10.1016/j.virusres.2020.198045_bib0365) 1999; 17 Song (10.1016/j.virusres.2020.198045_bib0625) 2003; 21 Koonpaew (10.1016/j.virusres.2020.198045_bib0360) 2019; 6 Lowe (10.1016/j.virusres.2020.198045_bib0485) 2014; 20 Wood (10.1016/j.virusres.2020.198045_bib0735) 1977; 100 Hofmann (10.1016/j.virusres.2020.198045_bib0230) 1989; 20 Gerber (10.1016/j.virusres.2020.198045_bib0185) 2016; 47 Holtkamp (10.1016/j.virusres.2020.198045_bib0235) 2017; 81 Yamamoto (10.1016/j.virusres.2020.198045_bib0750) 2015; 103 Li (10.1016/j.virusres.2020.198045_bib0415) 2012; 18 Ji (10.1016/j.virusres.2020.198045_bib0275) 2018; 517 Chen (10.1016/j.virusres.2020.198045_bib0080) 2014; 52 Gimenez-Lirola (10.1016/j.virusres.2020.198045_bib0200) 2017; 55 Suzuki (10.1016/j.virusres.2020.198045_bib0670) 2016; 97 Mesquita (10.1016/j.virusres.2020.198045_bib0515) 2015; 62 Hou (10.1016/j.virusres.2020.198045_bib0245) 2017; 91 Li (10.1016/j.virusres.2020.198045_bib0425) 2017; 235 Hou (10.1016/j.virusres.2020.198045_bib0240) 2019; 20 Zhang (10.1016/j.virusres.2020.198045_bib0765) 2018; 92 Jung (10.1016/j.virusres.2020.198045_bib0285) 2015; 204 Pensaert (10.1016/j.virusres.2020.198045_bib0565) 2016; 226 Gillespie (10.1016/j.virusres.2020.198045_bib0195) 2018; 31 Wu (10.1016/j.virusres.2020.198045_bib0740) 2019; 16 Bowman (10.1016/j.virusres.2020.198045_bib0065) 2015; 11 Sueyoshi (10.1016/j.virusres.2020.198045_bib0665) 1995; 113 Song (10.1016/j.virusres.2020.198045_bib0630) 2007; 82 Goede (10.1016/j.virusres.2020.198045_bib0205) 2015; 176 Lee (10.1016/j.virusres.2020.198045_bib0400) 2016; 192 Wang (10.1016/j.virusres.2020.198045_bib0705) 2013; 19 Gallien (10.1016/j.virusres.2020.198045_bib0170) 2018; 49 Moon (10.1016/j.virusres.2020.198045_bib0520) 1973; 37 Hou (10.1016/j.virusres.2020.198045_bib0250) 2019; 93 |
References_xml | – volume: 53 start-page: 44 year: 2016 end-page: 52 ident: bib0505 article-title: Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-Day-Old cesarean-derived colostrum-deprived piglets publication-title: Vet. Pathol. – volume: 93 year: 2019 ident: bib0435 article-title: Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response publication-title: J. Virol. – volume: 97 start-page: 1107 year: 2016 end-page: 1121 ident: bib0090 article-title: Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets publication-title: J. Gen. Virol. – volume: 19 start-page: 46 year: 1982 end-page: 56 ident: bib0110 article-title: Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study publication-title: Vet. Pathol. – volume: 10 start-page: 176 year: 2014 ident: bib0150 article-title: An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept publication-title: BMC Vet. Res. – volume: 7 start-page: 10825 year: 2017 ident: bib0405 article-title: Virulence of current German PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies publication-title: Sci. Rep. – volume: 89 start-page: 3332 year: 2015 end-page: 3342 ident: bib0445 article-title: Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains publication-title: J. Virol. – volume: 20 year: 2019 ident: bib0240 article-title: Emerging highly virulent porcine epidemic diarrhea virus: molecular mechanisms of attenuation and rational design of live attenuated vaccines publication-title: Int. J. Mol. Sci. – volume: 123 start-page: 192 year: 2016 end-page: 201 ident: bib0605 article-title: Porcine epidemic diarrhea virus introduction into the United States: root cause investigation publication-title: Prev. Vet. Med. – volume: 22 start-page: 83 year: 2016 end-page: 87 ident: bib0055 article-title: Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy publication-title: Emerg. Infect. diseases – volume: 12 start-page: 193 year: 2015 ident: bib0395 article-title: Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus publication-title: Virol. J. – volume: 45 start-page: 3354 year: 2008 end-page: 3362 ident: bib0060 article-title: New insights into the dual recruitment of IgA(+) B cells in the developing mammary gland publication-title: Mol. Immunol. – volume: 517 start-page: 16 year: 2018 end-page: 23 ident: bib0275 article-title: Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells publication-title: Virology – volume: 91 year: 2017 ident: bib0490 article-title: Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor publication-title: J. Virol. – start-page: 501 year: 2012 end-page: 524 ident: bib0575 article-title: Coronaviruses publication-title: Diseases of Swine – volume: 20 start-page: 131 year: 1989 end-page: 142 ident: bib0230 article-title: Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV) publication-title: Vet. Microbiol. – volume: 82 start-page: 134 year: 2007 end-page: 140 ident: bib0630 article-title: Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain publication-title: Res. Vet. Sci. – volume: 13 start-page: 356 year: 2017 ident: bib0340 article-title: Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism publication-title: BMC Vet. Res. – volume: 6 start-page: 273 year: 2019 ident: bib0215 article-title: The role of non-animal origin feed ingredients in transmission of viral pathogens of swine: a review of scientific literature publication-title: Front. Vet. Sci. – volume: 65 start-page: 660 year: 2018 end-page: 675 ident: bib0530 article-title: Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada publication-title: Transbound. Emerg. Dis. – volume: 11 start-page: 38 year: 2015 ident: bib0065 article-title: Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation publication-title: BMC Vet. Res. – volume: 46 start-page: 134 year: 2015 ident: bib0440 article-title: Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection publication-title: Vet. Res. – volume: 176 start-page: 161 year: 2015 end-page: 164 ident: bib0205 article-title: Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain publication-title: Vet. Microbiol. – volume: 28 start-page: 671 year: 2016 end-page: 678 ident: bib0535 article-title: Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs publication-title: J. Vet. Diagn. Invest. – volume: 61 start-page: 397 year: 2014 end-page: 410 ident: bib0555 article-title: Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada publication-title: Transbound. Emerg. Dis. – volume: 208 start-page: 77 year: 2017 end-page: 81 ident: bib0720 article-title: Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine publication-title: Vet. Microbiol. – volume: 86 start-page: 3995 year: 2012 end-page: 4008 ident: bib0730 article-title: Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus publication-title: J. Virol. – start-page: 14 year: 2013 end-page: 32 ident: bib0615 article-title: 2. Vaccine immunology publication-title: Vaccines – volume: 16 start-page: 2113 year: 2017 end-page: 2120 ident: bib0460 article-title: Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection publication-title: J. Proteome Res. – volume: 20 year: 2014 ident: bib0695 article-title: Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 publication-title: Emerg. Infect. Dis. – volume: 6 start-page: 157 year: 1981 end-page: 165 ident: bib0145 article-title: The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, Cv-777 publication-title: Vet. Microbiol. – volume: 119 start-page: 99 year: 2018 end-page: 108 ident: bib0325 article-title: Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection publication-title: Res. Vet. Sci. – volume: 235 start-page: 6 year: 2017 end-page: 13 ident: bib0425 article-title: Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry publication-title: Virus Res. – volume: 85 start-page: 85 year: 2002 end-page: 97 ident: bib0140 article-title: Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus publication-title: Vet. Immunol. Immunopathol. – volume: 179 start-page: 213 year: 2015 end-page: 218 ident: bib0070 article-title: Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus publication-title: Vet. Microbiol. – volume: 174 start-page: 60 year: 2014 end-page: 68 ident: bib0500 article-title: Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs publication-title: Vet. Microbiol. – volume: 226 start-page: 152 year: 2016 end-page: 171 ident: bib0680 article-title: Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics publication-title: Virus Res. – volume: 7 start-page: 214 year: 2016 ident: bib0280 article-title: Immunoglobulin transporting receptors are potential targets for the immunity enhancement and generation of mammary gland bioreactor publication-title: Front. Immunol. – volume: 226 start-page: 20 year: 2016 end-page: 39 ident: bib0450 article-title: Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains publication-title: Virus Res. – volume: 58 start-page: 243 year: 1978 end-page: 247 ident: bib0560 article-title: A new coronavirus-like particle associated with diarrhea in swine publication-title: Arch. Virol. – volume: 168 start-page: 193 year: 2015 end-page: 202 ident: bib0015 article-title: Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs publication-title: Vet. Immunol. Immunopathol. – volume: 11 start-page: 142 year: 2015 ident: bib0645 article-title: Emergence of porcine epidemic diarrhea virus in southern Germany publication-title: BMC Vet. Res. – volume: 162 start-page: 3753 year: 2017 end-page: 3767 ident: bib0270 article-title: Cellular cholesterol is required for porcine nidovirus infection publication-title: Arch. Virol. – volume: 23 start-page: 84 year: 2015 end-page: 90 ident: bib0690 article-title: Evaluation of time and temperature sufficient to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces publication-title: J. Swine Health Prod. – volume: 10 year: 2015 ident: bib0775 article-title: The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments publication-title: PLoS One – volume: 226 start-page: 117 year: 2016 end-page: 127 ident: bib0420 article-title: Cellular entry of the porcine epidemic diarrhea virus publication-title: Virus Res. – volume: 204 start-page: 134 year: 2015 end-page: 143 ident: bib0285 article-title: Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis publication-title: Vet. J. – volume: 24 start-page: 1390 year: 2018 end-page: 1392 ident: bib0050 article-title: Spillover of swine coronaviruses, United States publication-title: Emerging Infect. Dis. – volume: 102 start-page: 63 year: 1988 end-page: 71 ident: bib0785 article-title: Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related publication-title: Arch. Virol. – volume: 31 start-page: 62 year: 2018 end-page: 68 ident: bib0195 article-title: Effect of booster vaccination with inactivated porcine epidemic diarrhea virus on neutralizing antibody response in mammary secretions publication-title: Viral Immunol. – volume: 4 start-page: e00737 year: 2013 end-page: 00713 ident: bib0260 article-title: Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States publication-title: mBio – volume: 179 start-page: 131 year: 2015 end-page: 141 ident: bib0180 article-title: Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells publication-title: Vet. Microbiol. – volume: 96 start-page: 4562 year: 2018 end-page: 4570 ident: bib0600 article-title: Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing publication-title: J. Anim. Sci. – volume: 9 start-page: 3811 year: 2018 ident: bib0430 article-title: An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine publication-title: Nat. Commun. – volume: 47 start-page: 118 year: 2016 ident: bib0185 article-title: Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge publication-title: Vet. Res. – volume: 10 year: 2015 ident: bib0685 article-title: Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs publication-title: PLoS One – volume: 460–461 start-page: 180 year: 2014 end-page: 193 ident: bib0330 article-title: Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor publication-title: Virology – volume: 7 start-page: 17439 year: 2017 ident: bib0640 article-title: Altered gut microbiota profiles in sows and neonatal piglets associated with porcine epidemic diarrhea virus infection publication-title: Sci. Rep. – volume: 23 start-page: 137 year: 2001 end-page: 144 ident: bib0350 article-title: Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence publication-title: Virus Genes – volume: 586 start-page: 384 year: 2012 end-page: 391 ident: bib0700 article-title: PEDV ORF3 encodes an ion channel protein and regulates virus production publication-title: FEBS Lett. – volume: 71 start-page: 643 year: 2015 end-page: 649 ident: bib0470 article-title: Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets publication-title: Curr. Microbiol. – volume: 21 start-page: 1833 year: 2003 end-page: 1842 ident: bib0625 article-title: Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3 publication-title: Vaccine – volume: 30 start-page: 284 year: 2015 end-page: 287 ident: bib0355 article-title: Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection publication-title: Microbes Environ. – volume: 144 start-page: 41 year: 2010 end-page: 50 ident: bib0525 article-title: Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection publication-title: Vet. Microbiol. – volume: 177 start-page: 373 year: 2015 end-page: 378 ident: bib0310 article-title: Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus publication-title: Vet. Microbiol. – volume: 23 year: 2017 ident: bib0210 article-title: A new Bat-HKU2-like coronavirus in swine, China, 2017 publication-title: Emerging Infect. Dis. – volume: 48 start-page: 61 year: 2017 ident: bib0020 article-title: Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain publication-title: Vet. Res. – volume: 8 start-page: 55 year: 2016 ident: bib0155 article-title: Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains publication-title: Viruses – volume: 228 start-page: 20 year: 2019 end-page: 25 ident: bib0175 article-title: Limited shedding of an S-InDel strain of porcine epidemic diarrhea virus (PEDV) in semen and questions regarding the infectivity of the detected virus publication-title: Vet. Microbiol. – volume: 226 start-page: 93 year: 2016 end-page: 107 ident: bib0370 article-title: Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts publication-title: Virus Res. – volume: 52 start-page: 234 year: 2014 end-page: 243 ident: bib0080 article-title: Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States publication-title: J. Clin. Microbiol. – volume: 20 start-page: 1227 year: 2014 end-page: 1230 ident: bib0710 article-title: Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 publication-title: Emerg. Infect. Dis. – volume: 19 start-page: 2048 year: 2013 end-page: 2049 ident: bib0705 article-title: Porcine epidemic diarrhea virus variants with high pathogenicity, China publication-title: Emerg. Infect. Dis. – volume: 43 start-page: 72 year: 2011 end-page: 78 ident: bib0585 article-title: Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo publication-title: Virus Genes – volume: 243 start-page: 467 year: 2013 end-page: 470 ident: bib0105 article-title: Fighting a deadly pig disease publication-title: J. Am. Vet. Med. Assoc. – volume: 211 start-page: 58 year: 2017 end-page: 66 ident: bib0125 article-title: Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity publication-title: Vet. Microbiol. – volume: 25 start-page: 129 year: 2017 end-page: 137 ident: bib0075 article-title: Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus publication-title: J. Swine Health Prod. – volume: 22 start-page: 345 year: 2019 end-page: 353 ident: bib0795 article-title: Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs publication-title: Pol. J. Vet. Sci. – volume: 21 start-page: 650 year: 2015 end-page: 654 ident: bib0315 article-title: Pathogenecity of 2 porcine deltacoronavirus strains in gnotobiotic pigs publication-title: Emerg. Infect. Dis. – volume: 7 start-page: e01451 year: 2016 end-page: 1415 ident: bib0040 article-title: Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A publication-title: mBio – volume: 123 start-page: 64 year: 2000 end-page: 66 ident: bib0335 article-title: Transmissible gastroenteritis virus induces apoptosis in swine testicular cell lines but not in intestinal enterocytes publication-title: J. Comp. Pathol. – volume: 93 year: 2019 ident: bib0160 article-title: Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses publication-title: J. Virol. – volume: 103 start-page: 103 year: 2015 end-page: 106 ident: bib0750 article-title: Isolation and experimental inoculation of an S INDEL strain of porcine epidemic diarrhea virus in Japan publication-title: Res. Vet. Sci. – volume: 178 start-page: 31 year: 2015 end-page: 40 ident: bib0305 article-title: Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs publication-title: Vet. Microbiol. – volume: 84 start-page: 1 year: 2002 end-page: 16 ident: bib0130 article-title: Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV publication-title: Vet. Immunol. Immunopathol. – volume: 105 start-page: 37 year: 2002 end-page: 47 ident: bib0135 article-title: Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus publication-title: J. Virol. Methods – volume: 10 year: 2015 ident: bib0010 article-title: Concentration, size distribution, and infectivity of airborne particles carrying swine viruses publication-title: PLoS One – volume: 13 year: 2018 ident: bib0265 article-title: Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus publication-title: PLoS One – volume: 10 start-page: 727 year: 2019 ident: bib0375 article-title: Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets publication-title: Front. Immunol. – volume: 16 start-page: 121 year: 2019 ident: bib0740 article-title: Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain publication-title: Virol. J. – volume: 20 start-page: 872 year: 2014 end-page: 874 ident: bib0485 article-title: Role of transportation in spread of porcine epidemic diarrhea virus infection, United States publication-title: Emerging Infect. Dis. – volume: 89 start-page: 6121 year: 2015 end-page: 6125 ident: bib0465 article-title: Receptor usage and cell entry of porcine epidemic diarrhea coronavirus publication-title: J. Virol. – volume: 9 start-page: 130 year: 2020 ident: bib0385 article-title: Host factors affecting generation of immunity against porcine epidemic diarrhea virus in pregnant and lactating swine and passive protection of neonates publication-title: Pathogens – volume: 480 start-page: 279 year: 2000 end-page: 286 ident: bib0580 article-title: Mammary gland immunology and neonate protection in pigs - Homing of lymphocytes into the MG publication-title: Adv. Exp. Med. Biol. – volume: 62 start-page: 586 year: 2015 end-page: 588 ident: bib0515 article-title: Outbreak of porcine epidemic diarrhea virus in Portugal, 2015 publication-title: Transbound. Emerg. Dis. – volume: 201 start-page: 62 year: 2017 end-page: 71 ident: bib0455 article-title: Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage publication-title: Vet. Microbiol. – volume: 6 start-page: 34 year: 2019 ident: bib0360 article-title: PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses publication-title: Front. Vet. Sci. – volume: 226 start-page: 1 year: 2016 end-page: 6 ident: bib0565 article-title: Porcine epidemic diarrhea: a retrospect from Europe and matters of debate publication-title: Virus Res. – volume: 214 start-page: 99 year: 2018 end-page: 107 ident: bib0035 article-title: Evaluation of a peroxygen-based disinfectant for inactivation of porcine epidemic diarrhea virus at low temperatures on metal surfaces publication-title: Vet. Microbiol. – volume: 192 start-page: 90 year: 2016 end-page: 94 ident: bib0400 article-title: Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir publication-title: Vet. Microbiol. – volume: 100 start-page: 206 year: 2019 end-page: 216 ident: bib0745 article-title: Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus publication-title: J. Gen. Virol. – volume: 54 start-page: 323 year: 2018 end-page: 327 ident: bib0760 article-title: Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States publication-title: Virus Genes – volume: 17 start-page: 2546 year: 1999 end-page: 2553 ident: bib0365 article-title: Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate publication-title: Vaccine – year: 2016 ident: bib0510 article-title: How Piglet Gastric pH Development Affects Gut Health – volume: 91 year: 2017 ident: bib0245 article-title: Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets publication-title: J. Virol. – volume: 37 start-page: 157 year: 1973 end-page: 166 ident: bib0520 article-title: Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine publication-title: Can. J. Comp. Med. – volume: 34 start-page: 592 year: 2019 end-page: 595 ident: bib0770 article-title: Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection publication-title: Virol. Sin. – volume: 150 start-page: 101 year: 2018 end-page: 109 ident: bib0570 article-title: An epidemiological investigation of the early phase of the porcine epidemic diarrhea (PED) outbreak in Canadian swine herds in 2014: a case-control study publication-title: Prev. Vet. Med. – volume: 25 start-page: 649 year: 2013 end-page: 654 ident: bib0655 article-title: Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences publication-title: J. Vet. Diagn. Investig. – volume: 46 start-page: 109 year: 2015 ident: bib0475 article-title: Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain publication-title: Vet. Res. – volume: 206 start-page: 45 year: 2017 end-page: 51 ident: bib0190 article-title: Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses publication-title: Vet. Microbiol. – volume: 3 year: 2015 ident: bib0220 article-title: Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in france in december 2014 publication-title: Genome Announc. – volume: 242 start-page: 27 year: 2017 end-page: 29 ident: bib0100 article-title: Super-oxidized water inactivates major viruses circulating in swine farms publication-title: J. Virol. Methods – volume: 556 start-page: 255 year: 2018 end-page: 258 ident: bib0790 article-title: Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin publication-title: Nature – volume: 49 start-page: 7 year: 2018 ident: bib0170 article-title: Evidence of porcine epidemic diarrhea virus (PEDV) shedding in semen from infected specific pathogen-free boars publication-title: Vet. Res. – year: 2017 ident: bib0620 article-title: Protective Effects of Cell-Free Supernatant and Live Lactic Acid Bacteria Isolated from Thai Pigs Against a Pandemic Strain of Porcine Epidemic Diarrhea Virus. Probiotics and Antimicrobial Proteins – volume: 100 start-page: 243 year: 1977 end-page: 244 ident: bib0735 article-title: An apparently new syndrome of porcine epidemic diarrhoea publication-title: Vet. Rec. – volume: 92 year: 2018 ident: bib0765 article-title: Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling publication-title: J. Virol. – volume: 18 start-page: 1350 year: 2012 end-page: 1353 ident: bib0415 article-title: New variants of porcine epidemic diarrhea virus, China, 2011 publication-title: Emerg. Infect. Dis. – volume: 186 start-page: 90 year: 2016 end-page: 96 ident: bib0495 article-title: Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus publication-title: Vet. Microbiol. – volume: 15 start-page: 28 year: 2018 ident: bib0590 article-title: Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan publication-title: Virol. J. – volume: 28 start-page: 21 year: 2019 end-page: 32 ident: bib0725 article-title: Resistance to coronavirus infection in amino peptidase N-deficient pigs publication-title: Transgenic Res. – volume: 50 start-page: 101 year: 2019 ident: bib0380 article-title: Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets publication-title: Vet. Res. – volume: 55 start-page: 1426 year: 2017 end-page: 1436 ident: bib0200 article-title: Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications publication-title: J. Clin. Microbiol. – volume: 11 start-page: 310 year: 2015 ident: bib0650 article-title: First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria publication-title: BMC Vet. Res. – volume: 10 year: 2015 ident: bib0045 article-title: A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread publication-title: PLoS One – volume: 14 year: 2019 ident: bib0675 article-title: Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus publication-title: PLoS One – volume: 9 year: 2014 ident: bib0540 article-title: Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs publication-title: PLoS One – volume: 20 start-page: 917 year: 2014 end-page: 919 ident: bib0715 article-title: New variant of porcine epidemic diarrhea virus, United States, 2014 publication-title: Emerg. Infect. Dis. – volume: 226 start-page: 128 year: 2016 end-page: 141 ident: bib0755 article-title: Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling publication-title: Virus Res. – volume: 46 start-page: 140 year: 2015 ident: bib0545 article-title: Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions publication-title: Vet. Res. – volume: 13 start-page: 89 year: 2017 ident: bib0345 article-title: Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus publication-title: BMC Vet. Res. – volume: 81 start-page: 100 year: 2017 end-page: 107 ident: bib0235 article-title: Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces publication-title: Can. J. Vet. Res. – volume: 81 start-page: 310 year: 2006 end-page: 315 ident: bib0295 article-title: Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus publication-title: Res. Vet. Sci. – volume: 16 start-page: 996 year: 2000 end-page: 1005 ident: bib0390 article-title: Anorexia of infection: current prospects publication-title: Nutrition – volume: 93 year: 2019 ident: bib0255 article-title: Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs publication-title: J. Virol. – volume: 11 year: 2019 ident: bib0780 article-title: Serological screening for coronavirus infections in cats publication-title: Viruses – volume: 46 start-page: 49 year: 2015 ident: bib0115 article-title: Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs publication-title: Vet. Res. – volume: 64 start-page: 1380 year: 2017 end-page: 1386 ident: bib0480 article-title: Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain publication-title: Transbound. Emerg. Dis. – volume: 163 start-page: 2485 year: 2018 end-page: 2489 ident: bib0660 article-title: New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017 publication-title: Arch. Virol. – volume: 12 start-page: 70 year: 2016 ident: bib0095 article-title: Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains publication-title: BMC Vet. Res. – volume: 12 year: 2017 ident: bib0595 article-title: Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility publication-title: PLoS One – volume: 45 start-page: 73 year: 2014 ident: bib0005 article-title: Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds publication-title: Vet. Res. – volume: 226 start-page: 85 year: 2016 end-page: 92 ident: bib0635 article-title: Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions publication-title: Virus Res. – volume: 130 start-page: 65 year: 2016 end-page: 75 ident: bib0225 article-title: iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus publication-title: J. Proteomics – volume: 247 start-page: 1083 year: 2015 end-page: 1084 ident: bib0025 article-title: Feed tote bags implicated in pig disease spread publication-title: J. Am. Vet. Med. Assoc. – volume: 226 start-page: 108 year: 2016 end-page: 116 ident: bib0120 article-title: Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada publication-title: Virus Res. – volume: 110 start-page: 12 year: 2017 end-page: 15 ident: bib0290 article-title: Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus publication-title: Res. Vet. Sci. – volume: 365 start-page: 166 year: 2007 end-page: 172 ident: bib0410 article-title: Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus publication-title: Virology – volume: 93 year: 2019 ident: bib0250 article-title: Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-O-methyltransferase and the Endocytosis Signal of the spike protein publication-title: J. Virol. – volume: 211 start-page: 15 year: 2017 end-page: 21 ident: bib0550 article-title: Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China publication-title: Vet. Microbiol. – volume: 113 start-page: 59 year: 1995 end-page: 67 ident: bib0665 article-title: An immunohistochemical investigation of porcine epidemic diarrhoea publication-title: J. Comp. Pathol. – volume: 65 start-page: 1720 year: 2018 end-page: 1732 ident: bib0165 article-title: Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus publication-title: Transbound. Emerg. Dis. – volume: 97 start-page: 2528 year: 2016 end-page: 2539 ident: bib0610 article-title: Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity publication-title: J. Gen. Virol. – volume: 20 start-page: 662 year: 2014 end-page: 665 ident: bib0300 article-title: Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs publication-title: Emerg. Infect. Dis. – volume: 13 start-page: 372 year: 2017 ident: bib0030 article-title: Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions publication-title: BMC Vet. Res. – volume: 7 start-page: 5525 year: 2015 end-page: 5538 ident: bib0085 article-title: Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus publication-title: Viruses – volume: 182 start-page: 57 year: 2016 end-page: 63 ident: bib0320 article-title: Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo publication-title: Vet. Microbiol. – volume: 97 start-page: 1823 year: 2016 end-page: 1828 ident: bib0670 article-title: Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets publication-title: J. Gen. Virol. – volume: 206 start-page: 45 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0190 article-title: Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2016.11.029 – volume: 123 start-page: 192 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0605 article-title: Porcine epidemic diarrhea virus introduction into the United States: root cause investigation publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2015.11.013 – volume: 211 start-page: 58 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0125 article-title: Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2017.09.021 – volume: 93 issue: 8 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0160 article-title: Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses publication-title: J. Virol. doi: 10.1128/JVI.02000-18 – volume: 45 start-page: 73 issue: 1 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0005 article-title: Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds publication-title: Vet. Res. doi: 10.1186/s13567-014-0073-z – volume: 18 start-page: 1350 issue: 8 year: 2012 ident: 10.1016/j.virusres.2020.198045_bib0415 article-title: New variants of porcine epidemic diarrhea virus, China, 2011 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1803.120002 – volume: 64 start-page: 1380 issue: 5 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0480 article-title: Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.12509 – volume: 179 start-page: 131 issue: 3–4 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0180 article-title: Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2015.05.016 – volume: 45 start-page: 3354 issue: 12 year: 2008 ident: 10.1016/j.virusres.2020.198045_bib0060 article-title: New insights into the dual recruitment of IgA(+) B cells in the developing mammary gland publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2008.04.017 – volume: 365 start-page: 166 issue: 1 year: 2007 ident: 10.1016/j.virusres.2020.198045_bib0410 article-title: Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus publication-title: Virology doi: 10.1016/j.virol.2007.03.031 – volume: 13 start-page: 372 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0030 article-title: Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions publication-title: BMC Vet. Res. doi: 10.1186/s12917-017-1300-4 – volume: 110 start-page: 12 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0290 article-title: Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2016.10.009 – volume: 81 start-page: 310 issue: 3 year: 2006 ident: 10.1016/j.virusres.2020.198045_bib0295 article-title: Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2006.03.005 – volume: 81 start-page: 100 issue: 2 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0235 article-title: Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces publication-title: Can. J. Vet. Res. – volume: 16 start-page: 996 issue: 10 year: 2000 ident: 10.1016/j.virusres.2020.198045_bib0390 article-title: Anorexia of infection: current prospects publication-title: Nutrition doi: 10.1016/S0899-9007(00)00421-4 – volume: 93 issue: 2 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0255 article-title: Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs publication-title: J. Virol. doi: 10.1128/JVI.01758-18 – volume: 226 start-page: 93 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0370 article-title: Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.016 – volume: 49 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0170 article-title: Evidence of porcine epidemic diarrhea virus (PEDV) shedding in semen from infected specific pathogen-free boars publication-title: Vet. Res. doi: 10.1186/s13567-018-0505-2 – volume: 28 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0725 article-title: Resistance to coronavirus infection in amino peptidase N-deficient pigs publication-title: Transgenic Res. doi: 10.1007/s11248-018-0100-3 – volume: 20 start-page: 917 issue: 5 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0715 article-title: New variant of porcine epidemic diarrhea virus, United States, 2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2005.140195 – volume: 7 start-page: 10825 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0405 article-title: Virulence of current German PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies publication-title: Sci. Rep. doi: 10.1038/s41598-017-11160-w – start-page: 501 year: 2012 ident: 10.1016/j.virusres.2020.198045_bib0575 article-title: Coronaviruses – volume: 62 start-page: 586 issue: 6 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0515 article-title: Outbreak of porcine epidemic diarrhea virus in Portugal, 2015 publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.12409 – volume: 480 start-page: 279 year: 2000 ident: 10.1016/j.virusres.2020.198045_bib0580 article-title: Mammary gland immunology and neonate protection in pigs - Homing of lymphocytes into the MG publication-title: Adv. Exp. Med. Biol. doi: 10.1007/0-306-46832-8_32 – volume: 93 issue: 15 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0250 article-title: Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-O-methyltransferase and the Endocytosis Signal of the spike protein publication-title: J. Virol. doi: 10.1128/JVI.00406-19 – volume: 242 start-page: 27 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0100 article-title: Super-oxidized water inactivates major viruses circulating in swine farms publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2017.01.002 – volume: 10 issue: 8 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0010 article-title: Concentration, size distribution, and infectivity of airborne particles carrying swine viruses publication-title: PLoS One doi: 10.1371/journal.pone.0135675 – volume: 20 start-page: 662 issue: 4 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0300 article-title: Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2004.131685 – volume: 58 start-page: 243 issue: 3 year: 1978 ident: 10.1016/j.virusres.2020.198045_bib0560 article-title: A new coronavirus-like particle associated with diarrhea in swine publication-title: Arch. Virol. doi: 10.1007/BF01317606 – volume: 53 start-page: 44 issue: 1 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0505 article-title: Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-Day-Old cesarean-derived colostrum-deprived piglets publication-title: Vet. Pathol. doi: 10.1177/0300985815591080 – volume: 228 start-page: 20 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0175 article-title: Limited shedding of an S-InDel strain of porcine epidemic diarrhea virus (PEDV) in semen and questions regarding the infectivity of the detected virus publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2018.09.025 – volume: 46 start-page: 140 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0545 article-title: Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions publication-title: Vet. Res. doi: 10.1186/s13567-015-0285-x – volume: 162 start-page: 3753 issue: 12 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0270 article-title: Cellular cholesterol is required for porcine nidovirus infection publication-title: Arch. Virol. doi: 10.1007/s00705-017-3545-4 – volume: 96 start-page: 4562 issue: 11 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0600 article-title: Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing publication-title: J. Anim. Sci. doi: 10.1093/jas/sky320 – volume: 50 start-page: 101 issue: 1 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0380 article-title: Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets publication-title: Vet. Res. doi: 10.1186/s13567-019-0719-y – volume: 517 start-page: 16 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0275 article-title: Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells publication-title: Virology doi: 10.1016/j.virol.2018.02.019 – volume: 9 start-page: 130 year: 2020 ident: 10.1016/j.virusres.2020.198045_bib0385 article-title: Host factors affecting generation of immunity against porcine epidemic diarrhea virus in pregnant and lactating swine and passive protection of neonates publication-title: Pathogens doi: 10.3390/pathogens9020130 – volume: 211 start-page: 15 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0550 article-title: Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2017.09.020 – volume: 7 start-page: 5525 issue: 10 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0085 article-title: Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus publication-title: Viruses doi: 10.3390/v7102891 – volume: 61 start-page: 397 issue: 5 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0555 article-title: Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.12269 – volume: 20 issue: 21 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0240 article-title: Emerging highly virulent porcine epidemic diarrhea virus: molecular mechanisms of attenuation and rational design of live attenuated vaccines publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20215478 – volume: 82 start-page: 134 issue: 1 year: 2007 ident: 10.1016/j.virusres.2020.198045_bib0630 article-title: Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2006.03.007 – volume: 15 start-page: 28 issue: 1 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0590 article-title: Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan publication-title: Virol. J. doi: 10.1186/s12985-018-0940-8 – volume: 23 start-page: 84 issue: 2 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0690 article-title: Evaluation of time and temperature sufficient to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces publication-title: J. Swine Health Prod. doi: 10.54846/jshap/882 – volume: 89 start-page: 6121 issue: 11 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0465 article-title: Receptor usage and cell entry of porcine epidemic diarrhea coronavirus publication-title: J. Virol. doi: 10.1128/JVI.00430-15 – volume: 177 start-page: 373 issue: 3–4 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0310 article-title: Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2015.03.022 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0540 article-title: Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs publication-title: PLoS One doi: 10.1371/journal.pone.0104766 – volume: 20 start-page: 1227 issue: 7 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0710 article-title: Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2007.140296 – year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0620 – volume: 91 issue: 10 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0490 article-title: Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor publication-title: J. Virol. doi: 10.1128/JVI.00202-17 – volume: 174 start-page: 60 issue: 1–2 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0500 article-title: Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2014.09.002 – volume: 97 start-page: 1823 issue: 8 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0670 article-title: Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000513 – volume: 226 start-page: 85 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0635 article-title: Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions publication-title: Virus Res. doi: 10.1016/j.virusres.2016.06.002 – volume: 7 start-page: 17439 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0640 article-title: Altered gut microbiota profiles in sows and neonatal piglets associated with porcine epidemic diarrhea virus infection publication-title: Sci. Rep. doi: 10.1038/s41598-017-17830-z – volume: 201 start-page: 62 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0455 article-title: Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2017.01.015 – volume: 25 start-page: 129 issue: 3 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0075 article-title: Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus publication-title: J. Swine Health Prod. doi: 10.54846/jshap/985 – volume: 243 start-page: 467 issue: 4 year: 2013 ident: 10.1016/j.virusres.2020.198045_bib0105 article-title: Fighting a deadly pig disease publication-title: J. Am. Vet. Med. Assoc. – volume: 123 start-page: 64 issue: 1 year: 2000 ident: 10.1016/j.virusres.2020.198045_bib0335 article-title: Transmissible gastroenteritis virus induces apoptosis in swine testicular cell lines but not in intestinal enterocytes publication-title: J. Comp. Pathol. doi: 10.1053/jcpa.2000.0386 – volume: 97 start-page: 2528 issue: 10 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0610 article-title: Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000563 – volume: 119 start-page: 99 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0325 publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2018.06.009 – volume: 43 start-page: 72 issue: 1 year: 2011 ident: 10.1016/j.virusres.2020.198045_bib0585 article-title: Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo publication-title: Virus Genes doi: 10.1007/s11262-011-0617-5 – volume: 178 start-page: 31 issue: 1–2 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0305 article-title: Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2015.04.022 – volume: 556 start-page: 255 issue: 7700 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0790 article-title: Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin publication-title: Nature doi: 10.1038/s41586-018-0010-9 – volume: 10 issue: 12 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0045 article-title: A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread publication-title: PLoS One doi: 10.1371/journal.pone.0144818 – volume: 12 start-page: 70 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0095 article-title: Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains publication-title: BMC Vet. Res. doi: 10.1186/s12917-016-0697-5 – volume: 47 start-page: 118 issue: 1 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0185 article-title: Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge publication-title: Vet. Res. doi: 10.1186/s13567-016-0402-5 – volume: 204 start-page: 134 issue: 2 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0285 article-title: Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis publication-title: Vet. J. doi: 10.1016/j.tvjl.2015.02.017 – volume: 23 start-page: 137 issue: 2 year: 2001 ident: 10.1016/j.virusres.2020.198045_bib0350 article-title: Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence publication-title: Virus Genes doi: 10.1023/A:1011831902219 – year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0510 – volume: 235 start-page: 6 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0425 article-title: Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry publication-title: Virus Res. doi: 10.1016/j.virusres.2017.03.018 – volume: 12 issue: 11 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0595 article-title: Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility publication-title: PLoS One doi: 10.1371/journal.pone.0187309 – start-page: 14 year: 2013 ident: 10.1016/j.virusres.2020.198045_bib0615 article-title: 2. Vaccine immunology – volume: 34 start-page: 592 issue: 5 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0770 article-title: Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection publication-title: Virol. Sin. doi: 10.1007/s12250-019-00127-y – volume: 247 start-page: 1083 issue: 10 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0025 article-title: Feed tote bags implicated in pig disease spread publication-title: J. Am. Vet. Med. Assoc. – volume: 11 start-page: 38 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0065 article-title: Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation publication-title: BMC Vet. Res. doi: 10.1186/s12917-015-0348-2 – volume: 48 start-page: 61 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0020 article-title: Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain publication-title: Vet. Res. doi: 10.1186/s13567-017-0469-7 – volume: 92 issue: 4 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0765 article-title: Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling publication-title: J. Virol. doi: 10.1128/JVI.01677-17 – volume: 9 start-page: 3811 issue: 1 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0430 article-title: An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine publication-title: Nat. Commun. doi: 10.1038/s41467-018-06056-w – volume: 19 start-page: 46 issue: 1 year: 1982 ident: 10.1016/j.virusres.2020.198045_bib0110 article-title: Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study publication-title: Vet. Pathol. doi: 10.1177/030098588201900108 – volume: 16 start-page: 121 issue: 1 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0740 article-title: Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain publication-title: Virol. J. doi: 10.1186/s12985-019-1232-7 – volume: 97 start-page: 1107 issue: 5 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0090 article-title: Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000419 – volume: 208 start-page: 77 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0720 article-title: Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2017.07.014 – volume: 226 start-page: 128 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0755 article-title: Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.015 – volume: 13 start-page: 89 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0345 article-title: Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus publication-title: BMC Vet. Res. doi: 10.1186/s12917-017-1017-4 – volume: 24 start-page: 1390 issue: 7 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0050 article-title: Spillover of swine coronaviruses, United States publication-title: Emerging Infect. Dis. doi: 10.3201/eid2407.172077 – volume: 21 start-page: 650 issue: 4 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0315 article-title: Pathogenecity of 2 porcine deltacoronavirus strains in gnotobiotic pigs publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2104.141859 – volume: 11 start-page: 310 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0650 article-title: First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria publication-title: BMC Vet. Res. doi: 10.1186/s12917-015-0624-1 – volume: 3 issue: 3 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0220 article-title: Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in france in december 2014 publication-title: Genome Announc. doi: 10.1128/genomeA.00535-15 – volume: 86 start-page: 3995 issue: 7 year: 2012 ident: 10.1016/j.virusres.2020.198045_bib0730 publication-title: J. Virol. doi: 10.1128/JVI.06540-11 – volume: 13 issue: 2 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0265 article-title: Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus publication-title: PLoS One doi: 10.1371/journal.pone.0192992 – volume: 168 start-page: 193 issue: 3–4 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0015 article-title: Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/j.vetimm.2015.09.006 – volume: 65 start-page: 660 issue: 3 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0530 article-title: Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.12823 – volume: 85 start-page: 85 issue: 1–2 year: 2002 ident: 10.1016/j.virusres.2020.198045_bib0140 article-title: Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/S0165-2427(01)00417-2 – volume: 192 start-page: 90 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0400 article-title: Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2016.07.003 – volume: 100 start-page: 243 issue: 12 year: 1977 ident: 10.1016/j.virusres.2020.198045_bib0735 article-title: An apparently new syndrome of porcine epidemic diarrhoea publication-title: Vet. Rec. doi: 10.1136/vr.100.12.243 – volume: 55 start-page: 1426 issue: 5 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0200 article-title: Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.02507-16 – volume: 16 start-page: 2113 issue: 6 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0460 article-title: Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00957 – volume: 37 start-page: 157 issue: 2 year: 1973 ident: 10.1016/j.virusres.2020.198045_bib0520 article-title: Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine publication-title: Can. J. Comp. Med. – volume: 226 start-page: 117 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0420 article-title: Cellular entry of the porcine epidemic diarrhea virus publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.031 – volume: 23 issue: 9 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0210 article-title: A new Bat-HKU2-like coronavirus in swine, China, 2017 publication-title: Emerging Infect. Dis. doi: 10.3201/eid2309.170915 – volume: 93 issue: 5 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0435 article-title: Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response publication-title: J. Virol. doi: 10.1128/JVI.01682-18 – volume: 182 start-page: 57 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0320 article-title: Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2015.10.022 – volume: 226 start-page: 1 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0565 article-title: Porcine epidemic diarrhea: a retrospect from Europe and matters of debate publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.030 – volume: 21 start-page: 1833 issue: 17–18 year: 2003 ident: 10.1016/j.virusres.2020.198045_bib0625 article-title: Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3 publication-title: Vaccine doi: 10.1016/S0264-410X(03)00027-6 – volume: 105 start-page: 37 issue: 1 year: 2002 ident: 10.1016/j.virusres.2020.198045_bib0135 article-title: Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus publication-title: J. Virol. Methods doi: 10.1016/S0166-0934(02)00063-0 – volume: 14 issue: 7 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0675 article-title: Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus publication-title: PLoS One doi: 10.1371/journal.pone.0219868 – volume: 10 start-page: 727 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0375 article-title: Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00727 – volume: 12 start-page: 193 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0395 article-title: Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus publication-title: Virol. J. doi: 10.1186/s12985-015-0421-2 – volume: 6 start-page: 273 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0215 article-title: The role of non-animal origin feed ingredients in transmission of viral pathogens of swine: a review of scientific literature publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2019.00273 – volume: 71 start-page: 643 issue: 6 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0470 article-title: Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets publication-title: Curr. Microbiol. doi: 10.1007/s00284-015-0895-6 – volume: 54 start-page: 323 issue: 2 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0760 article-title: Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States publication-title: Virus Genes doi: 10.1007/s11262-018-1542-7 – volume: 46 start-page: 49 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0115 article-title: Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs publication-title: Vet. Res. doi: 10.1186/s13567-015-0180-5 – volume: 10 start-page: 176 issue: 1 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0150 article-title: An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept publication-title: BMC Vet. Res. doi: 10.1186/s12917-014-0176-9 – volume: 17 start-page: 2546 issue: 20–21 year: 1999 ident: 10.1016/j.virusres.2020.198045_bib0365 article-title: Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate publication-title: Vaccine doi: 10.1016/S0264-410X(99)00059-6 – volume: 186 start-page: 90 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0495 article-title: Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2016.02.004 – volume: 46 start-page: 109 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0475 article-title: Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain publication-title: Vet. Res. doi: 10.1186/s13567-015-0249-1 – volume: 20 issue: 10 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0695 article-title: Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2010.140491 – volume: 46 start-page: 134 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0440 article-title: Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection publication-title: Vet. Res. doi: 10.1186/s13567-015-0278-9 – volume: 460–461 start-page: 180 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0330 article-title: Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor publication-title: Virology doi: 10.1016/j.virol.2014.04.040 – volume: 89 start-page: 3332 issue: 6 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0445 article-title: Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains publication-title: J. Virol. doi: 10.1128/JVI.03196-14 – volume: 31 start-page: 62 issue: 1 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0195 article-title: Effect of booster vaccination with inactivated porcine epidemic diarrhea virus on neutralizing antibody response in mammary secretions publication-title: Viral Immunol. doi: 10.1089/vim.2017.0023 – volume: 20 start-page: 872 issue: 5 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0485 article-title: Role of transportation in spread of porcine epidemic diarrhea virus infection, United States publication-title: Emerging Infect. Dis. doi: 10.3201/eid2005.131628 – volume: 113 start-page: 59 issue: 1 year: 1995 ident: 10.1016/j.virusres.2020.198045_bib0665 article-title: An immunohistochemical investigation of porcine epidemic diarrhoea publication-title: J. Comp. Pathol. doi: 10.1016/S0021-9975(05)80069-6 – volume: 4 start-page: e00737 issue: 5 year: 2013 ident: 10.1016/j.virusres.2020.198045_bib0260 article-title: Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States publication-title: mBio doi: 10.1128/mBio.00737-13 – volume: 100 start-page: 206 issue: 2 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0745 article-title: Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001216 – volume: 214 start-page: 99 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0035 article-title: Evaluation of a peroxygen-based disinfectant for inactivation of porcine epidemic diarrhea virus at low temperatures on metal surfaces publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2017.12.019 – volume: 20 start-page: 131 issue: 2 year: 1989 ident: 10.1016/j.virusres.2020.198045_bib0230 article-title: Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV) publication-title: Vet. Microbiol. doi: 10.1016/0378-1135(89)90036-9 – volume: 25 start-page: 649 issue: 5 year: 2013 ident: 10.1016/j.virusres.2020.198045_bib0655 article-title: Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences publication-title: J. Vet. Diagn. Investig. doi: 10.1177/1040638713501675 – volume: 226 start-page: 20 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0450 article-title: Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.023 – volume: 22 start-page: 83 issue: 1 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0055 article-title: Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy publication-title: Emerg. Infect. diseases doi: 10.3201/eid2201.150544 – volume: 30 start-page: 284 issue: 3 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0355 article-title: Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection publication-title: Microbes Environ. doi: 10.1264/jsme2.ME15046 – volume: 163 start-page: 2485 issue: 9 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0660 article-title: New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017 publication-title: Arch. Virol. doi: 10.1007/s00705-018-3874-y – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0685 article-title: Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs publication-title: PLoS One doi: 10.1371/journal.pone.0139266 – volume: 11 issue: 8 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0780 article-title: Serological screening for coronavirus infections in cats publication-title: Viruses doi: 10.3390/v11080743 – volume: 102 start-page: 63 issue: 1–2 year: 1988 ident: 10.1016/j.virusres.2020.198045_bib0785 article-title: Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related publication-title: Arch. Virol. – volume: 7 start-page: 214 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0280 article-title: Immunoglobulin transporting receptors are potential targets for the immunity enhancement and generation of mammary gland bioreactor publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00214 – volume: 150 start-page: 101 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0570 article-title: An epidemiological investigation of the early phase of the porcine epidemic diarrhea (PED) outbreak in Canadian swine herds in 2014: a case-control study publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2017.12.009 – volume: 226 start-page: 108 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0120 article-title: Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada publication-title: Virus Res. doi: 10.1016/j.virusres.2016.08.005 – volume: 10 issue: 2 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0775 article-title: The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments publication-title: PLoS One doi: 10.1371/journal.pone.0117441 – volume: 22 start-page: 345 issue: 2 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0795 article-title: Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs publication-title: Pol. J. Vet. Sci. doi: 10.24425/pjvs.2019.129226 – volume: 91 issue: 14 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0245 article-title: Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets publication-title: J. Virol. doi: 10.1128/JVI.00227-17 – volume: 586 start-page: 384 issue: 4 year: 2012 ident: 10.1016/j.virusres.2020.198045_bib0700 article-title: PEDV ORF3 encodes an ion channel protein and regulates virus production publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.01.005 – volume: 6 start-page: 34 year: 2019 ident: 10.1016/j.virusres.2020.198045_bib0360 article-title: PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2019.00034 – volume: 28 start-page: 671 issue: 6 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0535 article-title: Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs publication-title: J. Vet. Diagn. Invest. doi: 10.1177/1040638716663251 – volume: 130 start-page: 65 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0225 article-title: iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.09.002 – volume: 13 start-page: 356 issue: 1 year: 2017 ident: 10.1016/j.virusres.2020.198045_bib0340 article-title: Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism publication-title: BMC Vet. Res. doi: 10.1186/s12917-017-1283-1 – volume: 19 start-page: 2048 issue: 12 year: 2013 ident: 10.1016/j.virusres.2020.198045_bib0705 article-title: Porcine epidemic diarrhea virus variants with high pathogenicity, China publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1912.121088 – volume: 103 start-page: 103 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0750 article-title: Isolation and experimental inoculation of an S INDEL strain of porcine epidemic diarrhea virus in Japan publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2015.09.024 – volume: 84 start-page: 1 issue: 1–2 year: 2002 ident: 10.1016/j.virusres.2020.198045_bib0130 article-title: Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/S0165-2427(01)00386-5 – volume: 7 start-page: e01451 issue: 1 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0040 article-title: Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A publication-title: mBio doi: 10.1128/mBio.01451-15 – volume: 8 start-page: 55 issue: 3 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0155 article-title: Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains publication-title: Viruses doi: 10.3390/v8030055 – volume: 11 start-page: 142 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0645 article-title: Emergence of porcine epidemic diarrhea virus in southern Germany publication-title: BMC Vet. Res. doi: 10.1186/s12917-015-0454-1 – volume: 226 start-page: 152 year: 2016 ident: 10.1016/j.virusres.2020.198045_bib0680 article-title: Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics publication-title: Virus Res. doi: 10.1016/j.virusres.2016.05.003 – volume: 65 start-page: 1720 issue: 6 year: 2018 ident: 10.1016/j.virusres.2020.198045_bib0165 article-title: Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.12945 – volume: 52 start-page: 234 issue: 1 year: 2014 ident: 10.1016/j.virusres.2020.198045_bib0080 article-title: Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.02820-13 – volume: 6 start-page: 157 issue: 2 year: 1981 ident: 10.1016/j.virusres.2020.198045_bib0145 article-title: The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, Cv-777 publication-title: Vet. Microbiol. doi: 10.1016/0378-1135(81)90007-9 – volume: 176 start-page: 161 issue: 1–2 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0205 article-title: Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2014.12.019 – volume: 144 start-page: 41 issue: 1–2 year: 2010 ident: 10.1016/j.virusres.2020.198045_bib0525 article-title: Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2009.12.024 – volume: 179 start-page: 213 issue: 3–4 year: 2015 ident: 10.1016/j.virusres.2020.198045_bib0070 article-title: Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2015.05.027 |
SSID | ssj0006376 |
Score | 2.6754744 |
SecondaryResourceType | review_article |
Snippet | •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected... Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration... • Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig. • S INDEL and non-S INDEL strains were detected... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 198045 |
SubjectTerms | Aerosols airborne transmission Animals B-lymphocytes biosecurity Coronavirus Coronavirus Infections - pathology Coronavirus Infections - prevention & control Coronavirus Infections - transmission diarrhea disease outbreaks Disease Progression enteritis etiology farms herd immunity ileum Immunity, Humoral - immunology immunoglobulin A innate immunity Intestinal Mucosa - pathology Intestinal Mucosa - virology jejunum mortality nasal cavity Pathogenesis PEDV piglets Pigs Porcine epidemic diarrhea virus Porcine epidemic diarrhea virus - genetics Porcine epidemic diarrhea virus - immunology Porcine epidemic diarrhea virus - pathogenicity Prevention Receptors, Virus - metabolism RNA sows Swine swine diseases Swine Diseases - pathology Swine Diseases - transmission Swine Diseases - virology United States vaccines viral shedding Viral Tropism - physiology viremia Viremia - blood virulence viruses vomiting |
Title | Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control |
URI | https://dx.doi.org/10.1016/j.virusres.2020.198045 https://www.ncbi.nlm.nih.gov/pubmed/32502552 https://www.proquest.com/docview/2410355117 https://www.proquest.com/docview/2477614810 https://pubmed.ncbi.nlm.nih.gov/PMC7266596 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9NADLemoUm8INgGFNh0SDyA1KzJfSXHWzU2FRDTJBjaW3SXXrdMU1KFBIkX_nbsfJR1IPbAY1tbup5d--fG_hngFXGay8SZQPq5DqQyKsAyyAVm7ikjacstzQ5_OtGzM_nhXJ1vwOEwC0NtlX3s72J6G637dyb9bU6WeT75jGCF2OU4J1TP2yE-KWPy8oOfv9s8tGgXzJFwQNI3poSvDr7nVYOZiGi7OQ3uJSGNNf09Qf0JQG_3Ud5ITMcP4UGPKNm0O_Qj2PDFNmx1OyZ_7EBzWlb08Jz5bhdsxtAjqgpjMGvPxV6fHr37-uYtmxasWVL9z8qC-brTH7Oakhk6A_2rNma0wLi8oPiYfxszW8zZsueAQiV62be-78LZ8dGXw1nQ71oIMhXKOuDERGRctNALp7nlYeIwkWOxFGpHEE2oTCION4kWkU2kd1pY7RcusQItjaDuMWwWZeGfArNyLqXJqBJy0hljhbBSeaeiJBOJjUaghgtOs56InPZhXKdDx9lVOhgmJcOknWFGMFnpLTsqjjs1zGC_dM2pUswXd-q-HAye4iXTYxRb-LJBIRmFiNKiKP6XTBwTxWoUjuBJ5ySrMwtEnVjI8RHEa-6zEiDG7_VPivyyZf6OEU4po5_9x_d6Dvc5rTBu2-RewGZdNX4PcVXt9tsfzj7cm77_ODv5BYhfI74 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJvlaSSQQNp0E8dx4kocKtpqSx-qRIt6M3bWC6lQskoTUC_8Kf5gZ_JYuoDoAfWYxI4cz2Tmm2TmG4CXxGkuEqs84SbSE5GKPAyDrKcmjjySNNxQ7fDunhwfivdH0dES_OxrYSitsrP9rU1vrHV3ZtTt5miWZaMPCFaIXY5zQvXcV11m5bY7_Y5x28nbrXUU8ivONzcO3o29rrWAl0a-qDxOxDvKBlM5tZIb7icW_RbGBr60hEjCKBUIO1Uiw8AkwlkZGummNjEhPhhiGLzvFbgq0FxQ24SVH7_ySmTYdLSj1Xm0vHNlyccr37KyRtdHPOGcKgUTn-qo_u4R_0S8vydunvOEm7fgZgdh2Vq7S7dhyeV34Frb1PL0LtT7RUl_65lrm8-mDFWwLNHos2Zd7PX-xvrHN6tsLWf1jD44sCJnrmrnD1lF3hO1jz7jDRl1TC4-k0HOTobM5BM260incBIddrn29-DwUiRwH5bzIncPgRkxEUKlFHpZYZUyYWhE5GwUJGmYmGAAUb_BOu2Yz6kBx1fdp7gd614wmgSjW8EMYDSfN2u5Py6coXr56QUt1uigLpz7ohe4xk2m_zYmd0WNg0TgIywMgvhfY-KYOF0DfwAPWiWZrzlEmIuRIx9AvKA-8wFEMb54Jc--NFTjMeK3SMlH__Fcz-H6-GB3R-9s7W0_hht0pc3RewLLVVm7pwjqKvuseYkYfLrst_YMyO5cjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porcine+epidemic+diarrhea+virus+%28PEDV%29%3A+An+update+on+etiology%2C+transmission%2C+pathogenesis%2C+and+prevention+and+control&rft.jtitle=Virus+research&rft.au=Jung%2C+Kwonil&rft.au=Saif%2C+Linda+J&rft.au=Wang%2C+Qiuhong&rft.date=2020-09-01&rft.eissn=1872-7492&rft.volume=286&rft.spage=198045&rft_id=info:doi/10.1016%2Fj.virusres.2020.198045&rft_id=info%3Apmid%2F32502552&rft.externalDocID=32502552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon |