Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control

•Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milde...

Full description

Saved in:
Bibliographic Details
Published inVirus research Vol. 286; p. 198045
Main Authors Jung, Kwonil, Saif, Linda J., Wang, Qiuhong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease.•The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur.•PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
AbstractList •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014.•The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease.•The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur.•PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
• Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig. • S INDEL and non-S INDEL strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. • The non-S INDEL PEDV was highly virulent, whereas the S INDEL PEDV caused milder disease. • The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may also occur. • PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity. Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae , causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013–2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal–oral, but airborne transmission via the fecal–nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
ArticleNumber 198045
Author Saif, Linda J.
Jung, Kwonil
Wang, Qiuhong
Author_xml – sequence: 1
  givenname: Kwonil
  surname: Jung
  fullname: Jung, Kwonil
  email: jung.221@osu.edu
– sequence: 2
  givenname: Linda J.
  surname: Saif
  fullname: Saif, Linda J.
  email: saif.2@osu.edu
– sequence: 3
  givenname: Qiuhong
  surname: Wang
  fullname: Wang, Qiuhong
  email: wang.655@osu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32502552$$D View this record in MEDLINE/PubMed
BookMark eNqNUl9v0zActNAQ6wZfYfLjkJpiO_GfIISYxgZIk9gD8Go5zi-tq9TO7KTSvj3uuqLBy3iybN_d7-y7E3TkgweEzihZUELFu_Vi6-KUIqQFIywf1opU_AWaUSVZIauaHaFZBqqCSsKO0UlKa0KIKKV4hY5LxgnjnM3QdBuidR4wDK6FjbO4dSbGFRj8MACf3159_vX2Pb7weBpaMwIOHsPoQh-W93M8RuPTxqXkgp_jwYyrsAQPyaU5Nr7FQ4Qt-Az3D1sb_BhD_xq97Eyf4M3jeop-Xl_9uPxa3Hz_8u3y4qawnFRjwWqpSN3QTnSNYIYR1SheUloR0XDGRMltJVldK1FSoypoRGkEdI0ypWpqKspT9HGvO0zNBlqbnUTT6yG6jYn3Ohin_77xbqWXYaslE4LXO4HzR4EY7iZIo85vtdD3xkOYkmaVlIJWipL_gGYQ55TKDD17auuPn0MsGfBhD7AxpBxyp60bze4Xs0vXa0r0rgV6rQ8t0LsW6H0LMl38Qz9MeJb4aU-EHMrWQdTJOvAWWhfBjroN7jmJ37DH0Sc
CitedBy_id crossref_primary_10_1016_j_virusres_2023_199300
crossref_primary_10_1016_j_prevetmed_2022_105759
crossref_primary_10_3389_fcimb_2025_1531415
crossref_primary_10_1016_j_virol_2023_05_001
crossref_primary_10_3390_v14061338
crossref_primary_10_3390_v14081746
crossref_primary_10_1016_j_antiviral_2023_105754
crossref_primary_10_1128_mbio_00358_22
crossref_primary_10_3389_fmicb_2021_738082
crossref_primary_10_3389_fmicb_2024_1303915
crossref_primary_10_3389_fmicb_2024_1344344
crossref_primary_10_1128_jvi_00645_24
crossref_primary_10_3390_genes15020165
crossref_primary_10_3390_polym13234097
crossref_primary_10_3390_v16010044
crossref_primary_10_3390_v16111787
crossref_primary_10_3389_fvets_2022_1015717
crossref_primary_10_1007_s12602_024_10243_1
crossref_primary_10_3390_pathogens13010024
crossref_primary_10_1080_01652176_2024_2429472
crossref_primary_10_3390_vaccines13030223
crossref_primary_10_1038_s42003_022_03205_2
crossref_primary_10_1186_s12951_024_02884_9
crossref_primary_10_3390_v14071371
crossref_primary_10_1016_j_vetmic_2025_110370
crossref_primary_10_3390_vaccines10111810
crossref_primary_10_1186_s12917_024_04151_3
crossref_primary_10_1186_s12917_021_03073_8
crossref_primary_10_1016_j_ijbiomac_2024_137006
crossref_primary_10_1111_tbed_14595
crossref_primary_10_1016_j_vetmic_2022_109525
crossref_primary_10_1371_journal_ppat_1012629
crossref_primary_10_1128_jvi_01193_23
crossref_primary_10_3390_v15091874
crossref_primary_10_1007_s00705_023_05725_6
crossref_primary_10_1016_j_jbc_2022_102190
crossref_primary_10_3390_v14112434
crossref_primary_10_3390_v15112204
crossref_primary_10_1016_j_envint_2023_108074
crossref_primary_10_3390_cimb45120637
crossref_primary_10_1016_j_peptides_2021_170526
crossref_primary_10_1016_j_virol_2022_12_011
crossref_primary_10_3390_v14020258
crossref_primary_10_1016_j_rvsc_2022_07_019
crossref_primary_10_3390_v16030431
crossref_primary_10_3390_ani14152185
crossref_primary_10_3389_fvets_2022_930608
crossref_primary_10_1186_s12917_023_03708_y
crossref_primary_10_3390_v13081562
crossref_primary_10_1007_s12602_023_10138_7
crossref_primary_10_1007_s00705_022_05580_x
crossref_primary_10_1186_s40813_023_00326_w
crossref_primary_10_1038_s41598_024_80844_x
crossref_primary_10_3390_v17030401
crossref_primary_10_1016_j_meegid_2021_104751
crossref_primary_10_3390_ani15020281
crossref_primary_10_3390_ani14020294
crossref_primary_10_1016_j_vetmic_2021_108994
crossref_primary_10_1155_2024_2876278
crossref_primary_10_3390_v14071355
crossref_primary_10_1186_s40813_022_00268_9
crossref_primary_10_3389_fimmu_2023_1269409
crossref_primary_10_1080_19490976_2022_2110821
crossref_primary_10_3390_v13122527
crossref_primary_10_3390_v14030591
crossref_primary_10_1016_j_vetmic_2024_110200
crossref_primary_10_29328_journal_ivs_1001044
crossref_primary_10_3390_v14040833
crossref_primary_10_1186_s40813_024_00382_w
crossref_primary_10_1016_j_micpath_2025_107509
crossref_primary_10_1038_s41598_024_70059_5
crossref_primary_10_1186_s12917_024_04052_5
crossref_primary_10_1016_j_medidd_2021_100099
crossref_primary_10_1016_j_vetmic_2023_109975
crossref_primary_10_1093_af_vfac085
crossref_primary_10_3390_cimb44110368
crossref_primary_10_3390_v15071555
crossref_primary_10_1186_s12917_024_04091_y
crossref_primary_10_1016_j_vacun_2023_08_002
crossref_primary_10_1128_jvi_00469_22
crossref_primary_10_1016_j_micpath_2023_106096
crossref_primary_10_1099_jgv_0_002070
crossref_primary_10_3390_vetsci11110533
crossref_primary_10_3389_fvets_2021_652000
crossref_primary_10_3390_v14081819
crossref_primary_10_1111_jpn_13555
crossref_primary_10_3389_fcimb_2023_1249034
crossref_primary_10_1016_j_arabjc_2023_104881
crossref_primary_10_3390_vaccines9080833
crossref_primary_10_3390_v16081229
crossref_primary_10_3390_pathogens12101272
crossref_primary_10_1038_s41598_022_13396_7
crossref_primary_10_1134_S1022795422120158
crossref_primary_10_3390_vaccines12010011
crossref_primary_10_3390_vetsci11110548
crossref_primary_10_3390_pathogens12040510
crossref_primary_10_1128_jvi_01309_24
crossref_primary_10_3390_pharmaceutics16050601
crossref_primary_10_1016_j_cyto_2025_156880
crossref_primary_10_3390_v15020300
crossref_primary_10_1016_j_micpath_2022_105703
crossref_primary_10_4167_jbv_2022_52_3_120
crossref_primary_10_1111_jpi_12754
crossref_primary_10_3389_fmicb_2024_1418959
crossref_primary_10_1016_j_micpath_2024_106958
crossref_primary_10_1038_s41467_023_41264_z
crossref_primary_10_1007_s44307_024_00015_x
crossref_primary_10_1016_j_ijpara_2024_12_002
crossref_primary_10_1186_s13567_023_01139_z
crossref_primary_10_1007_s00705_023_05779_6
crossref_primary_10_1007_s42247_021_00178_6
crossref_primary_10_1016_j_vetmic_2023_109956
crossref_primary_10_1016_j_vetmic_2023_109834
crossref_primary_10_3389_fmicb_2022_1007115
crossref_primary_10_2478_macvetrev_2024_0025
crossref_primary_10_1186_s13568_023_01573_4
crossref_primary_10_3389_fvets_2022_980381
crossref_primary_10_3390_ijms25063096
crossref_primary_10_3390_pathogens10020173
crossref_primary_10_3390_v14050991
crossref_primary_10_3390_ijms23179661
crossref_primary_10_1155_2023_7082352
crossref_primary_10_1186_s40813_023_00346_6
crossref_primary_10_3390_ijms24044000
crossref_primary_10_1016_j_ab_2022_115013
crossref_primary_10_3390_v14020202
crossref_primary_10_1021_acsnano_0c07489
crossref_primary_10_1016_j_carres_2024_109205
crossref_primary_10_1007_s40203_021_00101_1
crossref_primary_10_3389_fphar_2023_1112610
crossref_primary_10_3390_biom14091116
crossref_primary_10_3390_v15071426
crossref_primary_10_1016_j_micpath_2021_105195
crossref_primary_10_3390_pathogens12081040
crossref_primary_10_3390_ijms24065071
crossref_primary_10_3390_v14030551
crossref_primary_10_3390_v16101580
crossref_primary_10_1016_j_vetmic_2024_110003
crossref_primary_10_3390_pathogens10020180
crossref_primary_10_3389_fimmu_2021_741425
crossref_primary_10_1007_s00705_025_06251_3
crossref_primary_10_1080_21505594_2021_1972202
crossref_primary_10_3390_v14071420
crossref_primary_10_1016_j_isci_2023_106280
crossref_primary_10_3390_v16060833
crossref_primary_10_1128_JCM_01355_20
crossref_primary_10_3390_vaccines11050965
crossref_primary_10_3389_fmicb_2024_1378070
crossref_primary_10_3389_fmicb_2025_1475273
crossref_primary_10_1021_acssynbio_4c00446
crossref_primary_10_1186_s12917_022_03419_w
crossref_primary_10_1016_j_ijbiomac_2024_135352
crossref_primary_10_1016_j_virol_2025_110407
crossref_primary_10_3389_fimmu_2024_1451154
crossref_primary_10_1016_j_vetmic_2025_110402
crossref_primary_10_1177_09720634241278820
crossref_primary_10_1016_j_micpath_2023_106185
crossref_primary_10_3389_fvets_2023_1279162
crossref_primary_10_1080_15548627_2023_2181615
crossref_primary_10_3390_v15112165
crossref_primary_10_1016_j_virol_2023_03_017
crossref_primary_10_1016_j_antiviral_2023_105579
crossref_primary_10_14202_vetworld_2023_1695_1701
crossref_primary_10_3390_pathogens12060845
crossref_primary_10_1128_jvi_02086_21
crossref_primary_10_1016_j_csbj_2022_02_001
crossref_primary_10_1128_jvi_00591_24
crossref_primary_10_1016_j_vetmic_2022_109599
crossref_primary_10_1155_2024_5531899
crossref_primary_10_3390_v14102261
crossref_primary_10_1186_s13567_025_01456_5
crossref_primary_10_3390_v14122754
crossref_primary_10_3390_v14122751
crossref_primary_10_1111_tbed_13997
crossref_primary_10_3390_v16020238
crossref_primary_10_1021_acsomega_1c06093
crossref_primary_10_1186_s12934_024_02409_x
crossref_primary_10_1128_JVI_01372_21
crossref_primary_10_1186_s40168_023_01734_4
crossref_primary_10_1186_s12917_023_03605_4
crossref_primary_10_1016_j_vaccine_2023_09_017
crossref_primary_10_1093_tas_txae009
crossref_primary_10_1016_j_vetmic_2021_109206
crossref_primary_10_3390_v14020402
crossref_primary_10_1016_j_ejmcr_2023_100125
crossref_primary_10_1186_s11671_025_04220_y
crossref_primary_10_1186_s12985_023_02231_8
crossref_primary_10_3389_fcimb_2023_1338740
crossref_primary_10_3389_fmicb_2021_755599
crossref_primary_10_3389_fvets_2023_1278997
crossref_primary_10_1128_msphere_00777_24
crossref_primary_10_3390_v14112413
crossref_primary_10_1016_j_vacune_2024_02_013
crossref_primary_10_3390_v16071126
crossref_primary_10_3389_fvets_2022_1033864
crossref_primary_10_3390_ani14152168
crossref_primary_10_3390_vaccines11040830
crossref_primary_10_1016_j_ecoenv_2022_113209
crossref_primary_10_3390_microorganisms8111840
crossref_primary_10_3390_ani14020280
crossref_primary_10_1038_s41597_022_01394_3
crossref_primary_10_3389_fimmu_2023_1058327
crossref_primary_10_1128_jvi_00400_22
crossref_primary_10_1016_j_ijbiomac_2025_141036
crossref_primary_10_1016_j_virol_2025_110451
crossref_primary_10_3390_v13122486
crossref_primary_10_1186_s44149_021_00029_1
crossref_primary_10_3390_pharmaceutics14091793
crossref_primary_10_3390_vetsci9080422
crossref_primary_10_3390_v13040580
crossref_primary_10_1016_j_vetmic_2023_109691
crossref_primary_10_1038_s41467_022_32588_3
crossref_primary_10_1016_j_vetmic_2024_110152
crossref_primary_10_1016_j_vetmic_2024_110273
crossref_primary_10_1186_s12915_024_02094_7
crossref_primary_10_1080_21505594_2024_2397492
crossref_primary_10_3390_ani15010103
crossref_primary_10_1128_JVI_00853_21
crossref_primary_10_1016_j_virs_2023_01_008
crossref_primary_10_1186_s13036_023_00342_y
crossref_primary_10_3389_fvets_2022_1067364
crossref_primary_10_1186_s13567_021_00954_6
crossref_primary_10_1080_01652176_2022_2079756
crossref_primary_10_3390_v15071601
crossref_primary_10_1016_j_ijbiomac_2023_127276
crossref_primary_10_3390_antiox12061305
crossref_primary_10_3389_fvets_2021_802816
crossref_primary_10_1016_j_vetimm_2024_110753
crossref_primary_10_1016_j_vetmic_2024_110065
crossref_primary_10_1186_s12917_024_04390_4
crossref_primary_10_3390_v15071492
crossref_primary_10_1128_mbio_02958_23
crossref_primary_10_3390_agriculture14010043
crossref_primary_10_1186_s40813_023_00331_z
crossref_primary_10_3390_ani13142375
crossref_primary_10_1016_j_virol_2021_03_006
crossref_primary_10_1128_spectrum_05017_22
crossref_primary_10_3389_fmicb_2024_1357470
crossref_primary_10_1016_j_micpath_2025_107486
crossref_primary_10_1016_j_virusres_2024_199496
crossref_primary_10_1007_s11259_021_09808_0
crossref_primary_10_1111_tbed_13953
crossref_primary_10_3390_v14010125
crossref_primary_10_3389_fmicb_2021_805472
crossref_primary_10_3390_v13061139
crossref_primary_10_1016_j_vetmic_2021_109081
crossref_primary_10_1016_j_ijbiomac_2023_127722
crossref_primary_10_3389_fmicb_2023_1273589
crossref_primary_10_3390_v15081629
crossref_primary_10_1002_smtd_202300293
crossref_primary_10_1080_21688370_2022_2087454
crossref_primary_10_1111_1751_7915_14518
crossref_primary_10_1186_s12985_023_02233_6
crossref_primary_10_1016_j_antiviral_2024_106073
crossref_primary_10_1186_s44149_025_00161_2
crossref_primary_10_3390_ani12192712
crossref_primary_10_3390_ani13020262
Cites_doi 10.1016/j.vetmic.2016.11.029
10.1016/j.prevetmed.2015.11.013
10.1016/j.vetmic.2017.09.021
10.1128/JVI.02000-18
10.1186/s13567-014-0073-z
10.3201/eid1803.120002
10.1111/tbed.12509
10.1016/j.vetmic.2015.05.016
10.1016/j.molimm.2008.04.017
10.1016/j.virol.2007.03.031
10.1186/s12917-017-1300-4
10.1016/j.rvsc.2016.10.009
10.1016/j.rvsc.2006.03.005
10.1016/S0899-9007(00)00421-4
10.1128/JVI.01758-18
10.1016/j.virusres.2016.05.016
10.1186/s13567-018-0505-2
10.1007/s11248-018-0100-3
10.3201/eid2005.140195
10.1038/s41598-017-11160-w
10.1111/tbed.12409
10.1007/0-306-46832-8_32
10.1128/JVI.00406-19
10.1016/j.jviromet.2017.01.002
10.1371/journal.pone.0135675
10.3201/eid2004.131685
10.1007/BF01317606
10.1177/0300985815591080
10.1016/j.vetmic.2018.09.025
10.1186/s13567-015-0285-x
10.1007/s00705-017-3545-4
10.1093/jas/sky320
10.1186/s13567-019-0719-y
10.1016/j.virol.2018.02.019
10.3390/pathogens9020130
10.1016/j.vetmic.2017.09.020
10.3390/v7102891
10.1111/tbed.12269
10.3390/ijms20215478
10.1016/j.rvsc.2006.03.007
10.1186/s12985-018-0940-8
10.54846/jshap/882
10.1128/JVI.00430-15
10.1016/j.vetmic.2015.03.022
10.1371/journal.pone.0104766
10.3201/eid2007.140296
10.1128/JVI.00202-17
10.1016/j.vetmic.2014.09.002
10.1099/jgv.0.000513
10.1016/j.virusres.2016.06.002
10.1038/s41598-017-17830-z
10.1016/j.vetmic.2017.01.015
10.54846/jshap/985
10.1053/jcpa.2000.0386
10.1099/jgv.0.000563
10.1016/j.rvsc.2018.06.009
10.1007/s11262-011-0617-5
10.1016/j.vetmic.2015.04.022
10.1038/s41586-018-0010-9
10.1371/journal.pone.0144818
10.1186/s12917-016-0697-5
10.1186/s13567-016-0402-5
10.1016/j.tvjl.2015.02.017
10.1023/A:1011831902219
10.1016/j.virusres.2017.03.018
10.1371/journal.pone.0187309
10.1007/s12250-019-00127-y
10.1186/s12917-015-0348-2
10.1186/s13567-017-0469-7
10.1128/JVI.01677-17
10.1038/s41467-018-06056-w
10.1177/030098588201900108
10.1186/s12985-019-1232-7
10.1099/jgv.0.000419
10.1016/j.vetmic.2017.07.014
10.1016/j.virusres.2016.05.015
10.1186/s12917-017-1017-4
10.3201/eid2407.172077
10.3201/eid2104.141859
10.1186/s12917-015-0624-1
10.1128/genomeA.00535-15
10.1128/JVI.06540-11
10.1371/journal.pone.0192992
10.1016/j.vetimm.2015.09.006
10.1111/tbed.12823
10.1016/S0165-2427(01)00417-2
10.1016/j.vetmic.2016.07.003
10.1136/vr.100.12.243
10.1128/JCM.02507-16
10.1021/acs.jproteome.6b00957
10.1016/j.virusres.2016.05.031
10.3201/eid2309.170915
10.1128/JVI.01682-18
10.1016/j.vetmic.2015.10.022
10.1016/j.virusres.2016.05.030
10.1016/S0264-410X(03)00027-6
10.1016/S0166-0934(02)00063-0
10.1371/journal.pone.0219868
10.3389/fimmu.2019.00727
10.1186/s12985-015-0421-2
10.3389/fvets.2019.00273
10.1007/s00284-015-0895-6
10.1007/s11262-018-1542-7
10.1186/s13567-015-0180-5
10.1186/s12917-014-0176-9
10.1016/S0264-410X(99)00059-6
10.1016/j.vetmic.2016.02.004
10.1186/s13567-015-0249-1
10.3201/eid2010.140491
10.1186/s13567-015-0278-9
10.1016/j.virol.2014.04.040
10.1128/JVI.03196-14
10.1089/vim.2017.0023
10.3201/eid2005.131628
10.1016/S0021-9975(05)80069-6
10.1128/mBio.00737-13
10.1099/jgv.0.001216
10.1016/j.vetmic.2017.12.019
10.1016/0378-1135(89)90036-9
10.1177/1040638713501675
10.1016/j.virusres.2016.05.023
10.3201/eid2201.150544
10.1264/jsme2.ME15046
10.1007/s00705-018-3874-y
10.1371/journal.pone.0139266
10.3390/v11080743
10.3389/fimmu.2016.00214
10.1016/j.prevetmed.2017.12.009
10.1016/j.virusres.2016.08.005
10.1371/journal.pone.0117441
10.24425/pjvs.2019.129226
10.1128/JVI.00227-17
10.1016/j.febslet.2012.01.005
10.3389/fvets.2019.00034
10.1177/1040638716663251
10.1016/j.jprot.2015.09.002
10.1186/s12917-017-1283-1
10.3201/eid1912.121088
10.1016/j.rvsc.2015.09.024
10.1016/S0165-2427(01)00386-5
10.1128/mBio.01451-15
10.3390/v8030055
10.1186/s12917-015-0454-1
10.1016/j.virusres.2016.05.003
10.1111/tbed.12945
10.1128/JCM.02820-13
10.1016/0378-1135(81)90007-9
10.1016/j.vetmic.2014.12.019
10.1016/j.vetmic.2009.12.024
10.1016/j.vetmic.2015.05.027
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.virusres.2020.198045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-7492
EndPage 198045
ExternalDocumentID PMC7266596
32502552
10_1016_j_virusres_2020_198045
S0168170220301209
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD095881
– fundername: NIH HHS
  grantid: HD095881
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMG
HVGLF
HZ~
IH2
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPM
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WH7
WUQ
ZGI
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c504t-297809b1f6fb62a208b85311406b522635c472998631a84eb63a6efb8a38b9163
IEDL.DBID .~1
ISSN 0168-1702
1872-7492
IngestDate Thu Aug 21 13:57:19 EDT 2025
Fri Jul 11 06:22:46 EDT 2025
Mon Jul 21 10:35:24 EDT 2025
Wed Feb 19 02:29:00 EST 2025
Tue Jul 01 01:45:28 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Fri Feb 23 02:45:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Prevention
Pigs
Porcine epidemic diarrhea virus
PEDV
Coronavirus
Pathogenesis
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-297809b1f6fb62a208b85311406b522635c472998631a84eb63a6efb8a38b9163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7266596
PMID 32502552
PQID 2410355117
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7266596
proquest_miscellaneous_2477614810
proquest_miscellaneous_2410355117
pubmed_primary_32502552
crossref_citationtrail_10_1016_j_virusres_2020_198045
crossref_primary_10_1016_j_virusres_2020_198045
elsevier_sciencedirect_doi_10_1016_j_virusres_2020_198045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Virus research
PublicationTitleAlternate Virus Res
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gallien, Andraud, Moro, Lediguerher, Morin, Gauger, Bigault, Paboeuf, Berri, Rose, Grasland (bib0165) 2018; 65
Jung, Saif (bib0285) 2015; 204
Beall, Yount, Lin, Hou, Wang, Saif, Baric (bib0040) 2016; 7
Gong, Li, Zhou, Xu, Chen, Zhang, Xue, Wen, Cao (bib0210) 2017; 23
Yamamoto, Soma, Nakanishi, Yamaguchi, Niinuma (bib0750) 2015; 103
Zhang, Ke, Blikslager, Fujita, Yoo (bib0765) 2018; 92
Saif, Pensaert, Sestak, Yeo, Jung (bib0575) 2012
Sueyoshi, Tsuda, Yamazaki, Yoshida, Nakazawa, Sato, Minami, Iwashita, Watanabe, Suzuki (bib0665) 1995; 113
Leidenberger, Schroder, Zani, Auste, Pinette, Ambagala, Nikolin, de Smit, Beer, Blome (bib0405) 2017; 7
Pasick, Berhane, Ojkic, Maxie, Embury-Hyatt, Swekla, Handel, Fairles, Alexandersen (bib0555) 2014; 61
Jung, Wang, Scheuer, Lu, Zhang, Saif (bib0300) 2014; 20
Luo, Guo, Zhang, Xu, Gu, Feng, Wang (bib0490) 2017; 91
Jung, Ahn, Chae (bib0295) 2006; 81
Huang, Wang, Wang, Cui, Yang, Liu, Kong, Li (bib0265) 2018; 13
Sato, Takeyama, Katsumata, Tuchiya, Kodama, Kusanagi (bib0585) 2011; 43
Gallien, Moro, Lediguerher, Catinot, Paboeuf, Bigault, Gauger, Pozzi, Berri, Authie, Rose, Grasland (bib0175) 2019; 228
Stevenson, Hoang, Schwartz, Burrough, Sun, Madson, Cooper, Pillatzki, Gauger, Schmitt, Koster, Killian, Yoon (bib0655) 2013; 25
Ma, Zhang, Liang, Oglesbee, Krakowka, Niehaus, Wang, Jia, Song, Li (bib0495) 2016; 186
Zong, Huang, Wu, Wu, Wu, Bao (bib0795) 2019; 22
Crawford, Lager, Kulshreshtha, Miller, Faaberg (bib0120) 2016; 226
Jung, Hu, Saif (bib0320) 2016; 182
de Arriba, Carvajal, Pozo, Rubio (bib0135) 2002; 105
Pensaert, de Bouck (bib0560) 1978; 58
Chen, Zhang, Liu, Liu (bib0100) 2017; 242
Goede, Murtaugh, Nerem, Yeske, Rossow, Morrison (bib0205) 2015; 176
Langel, Paim, Alhamo, Lager, Vlasova, Saif (bib0380) 2019; 50
Zhou, Ederveen, Egberink, Pensaert, Horzinek (bib0785) 1988; 102
Gillespie, Song, Inskeep, Stone, Murtaugh (bib0195) 2018; 31
Langel, Paim, Alhamo, Buckley, Van Geelen, Lager, Vlasova, Saif (bib0375) 2019; 10
Li, Fu, Guo, Wang, He, Xue, Yin, Feng, Liu (bib0435) 2019; 93
Bowman, Krogwold, Price, Davis, Moeller (bib0065) 2015; 11
Kim, Yang, Goyal, Cheeran, Torremorell (bib0345) 2017; 13
Koh, Kim, Lee, Kim, Park (bib0355) 2015; 30
Pensaert, Martelli (bib0565) 2016; 226
Kim, Kim, Tai, Chae (bib0335) 2000; 123
Lin, Gao, Oka, Vlasova, Esseili, Wang, Saif (bib0445) 2015; 89
Ouyang, Shyu, Dhakal, Hiremath, Binjawadagi, Lakshmanappa, Guo, Ransburgh, Bondra, Gauger, Zhang, Specht, Gilbertie, Minton, Fang, Renukaradhya (bib0545) 2015; 46
Li, Wu, Huang, Yuan, Wang, Yang (bib0430) 2018; 9
Steinrigl, Fernandez, Stoiber, Pikalo, Sattler, Schmoll (bib0650) 2015; 11
Gao, Zhao, Qin, Yin, Yang (bib0180) 2015; 179
Jung, Miyazaki, Saif (bib0325) 2018; 119
Liu, Tang, Ma, Liang, Yang, Peng, Qi, Jiang, Li, Du, Li (bib0465) 2015; 89
Langel, Wang, Vlasova, Saif (bib0385) 2020; 9
Zhao, Li, Schuurman, van Kuppeveld, Bosch, Egberink (bib0780) 2019; 11
Hou, Ke, Kim, Yoo, Su, Boley, Chepngeno, Vlasova, Saif, Wang (bib0250) 2019; 93
Wang, Lu, Chen, Xie, Shi, Hsu, Yu, Xu, Bian, Fischer, Schwarz, Feng, Sun (bib0700) 2012; 586
Langel, Paim, Lager, Vlasova, Saif (bib0370) 2016; 226
Pan, Tian, Qin, Wang, Zhao, Yang, Wang, Wang, Song, Zhang, Huang (bib0550) 2017; 211
Whitworth, Rowland, Petrovan, Sheahan, Cino-Ozuna, Fang, Hesse, Mileham, Samuel, Wells, Prather (bib0725) 2019; 28
Song, Stone, Drebes, Greiner, Dvorak, Murtaugh (bib0635) 2016; 226
Alonso, Goede, Morrison, Davies, Rovira, Marthaler, Torremorell (bib0005) 2014; 45
Gordon, Kotowski, Coulson, Link, MacKenzie, Bowling-Heyward (bib0215) 2019; 6
Dee, Clement, Schelkopf, Nerem, Knudsen, Christopher-Hennings, Nelson (bib0150) 2014; 10
Stadler, Zoels, Fux, Hanke, Pohlmann, Blome, Weissenbock, Weissenbacher-Lang, Ritzmann, Ladinig (bib0645) 2015; 11
Schumacher, Cochrane, Huss, Gebhardt, Woodworth, Stark, Jones, Bai, Main, Chen, Zhang, Gauger, DeRouchey, Goodband, Tokach, Dritz (bib0600) 2018; 96
Schumacher, Huss, Cochrane, Stark, Woodworth, Bai, Poulsen, Chen, Main, Zhang, Gauger, Ramirez, Derscheid, Magstadt, Dritz, Jones (bib0595) 2017; 12
Wu, Li, Zhou, Li, Xu, Shen, Chen (bib0740) 2019; 16
Mavronmichalis (bib0510) 2016
Thomas, Karriker, Ramirez, Zhang, Ellingson, Crawford, Bates, Hammen, Holtkamp (bib0690) 2015; 23
Sato, Oroku, Ohshima, Furuya, Sasakawa (bib0590) 2018; 15
Beam, Goede, Fox, McCool, Wall, Haley, Morrison (bib0045) 2015; 10
Ji, Wang, Zhou, Huang (bib0275) 2018; 517
Jiang, Hu, Thirumalai, Zhang (bib0280) 2016; 7
Opriessnig, Xiao, Gerber, Zhang, Halbur (bib0540) 2014; 9
Moon, Norman, Lambert (bib0520) 1973; 37
Jung, Annamalai, Lu, Saif (bib0305) 2015; 178
Zhao, Wang, Liu, Huang, Zhai, He, Ding, Wang, Wang, Fan, Zhao, Meng (bib0775) 2015; 10
Annamalai, Lin, Gao, Liu, Lu, Saif, Wang (bib0020) 2017; 48
Li, Ge, Li (bib0410) 2007; 365
Nam, Lee (bib0525) 2010; 144
Boniotti, Papetti, Lavazza, Alborali, Sozzi, Chiapponi, Faccini, Bonilauri, Cordioli, Marthaler (bib0055) 2016; 22
Song, Yang, Oh, Han, Park (bib0625) 2003; 21
Niederwerder, Hesse (bib0530) 2018; 65
Bourges, Meurens, Berri, Chevaleyre, Zanello, Levast, Melo, Gerdts, Salmon (bib0060) 2008; 45
Canning, Ruston, Madson, Bates, Skoland, Davenport, Gaul, Wang, Chen, Zhang, Karriker (bib0075) 2017; 25
Li, Li, Liu, Pan, Deng, Song, Tang, He (bib0415) 2012; 18
Zhang, Yoo (bib0755) 2016; 226
Perri, Poljak, Dewey, Harding, O’Sullivan (bib0570) 2018; 150
Lowe, Gauger, Harmon, Zhang, Connor, Yeske, Loula, Levis, Dufresne, Main (bib0485) 2014; 20
Alonso, Raynor, Davies, Torremorell (bib0010) 2015; 10
Jung, Eyerly, Annamalai, Lu, Saif (bib0310) 2015; 177
Suzuki, Shibahara, Yamaguchi, Nakade, Yamamoto, Miyazaki, Ohashi (bib0670) 2016; 97
Sirichokchatchawan, Temeeyasen, Nilubol, Prapasarakul (bib0620) 2017
Debouck, Pensaert, Coussement (bib0145) 1981; 6
Kweon, Kwon, Lee, Kwon, Kang (bib0365) 1999; 17
Chen, Thomas, Gimenez-Lirola, Hardham, Gao, Gerber, Opriessnig, Zheng, Li, Gauger, Madson, Magstadt, Zhang (bib0095) 2016; 12
Anon (bib0025) 2015; 247
Gerber, Xiao, Lager, Crawford, Kulshreshtha, Cao, Meng, Opriessnig (bib0185) 2016; 47
Hou, Wang (bib0240) 2019; 20
Baker, Mowrer, Zhang, Chen, Ramirez, Wang, Karriker, Holtkamp (bib0035) 2018; 214
Huang, Dickerman, Pineyro, Li, Fang, Kiehne, Opriessnig, Meng (bib0260) 2013; 4
Wang, Byrum, Zhang (bib0715) 2014; 20
Lee (bib0395) 2015; 12
Woo, Lau, Lam, Lau, Tsang, Lau, Bai, Teng, Tsang, Wang, Zheng, Chan, Yuen (bib0730) 2012; 86
Shirato, Maejima, Islam, Miyazaki, Kawase, Matsuyama, Taguchi (bib0610) 2016; 97
Deng, van Geelen, Buckley, O’Brien, Pillatzki, Lager, Faaberg, Baker (bib0160) 2019; 93
Siegrist (bib0615) 2013
Chen, Gauger, Stafne, Thomas, Madson, Huang, Zheng, Li, Zhang (bib0090) 2016; 97
Li, Luo, He, van Kuppeveld, Rottier, Bosch (bib0425) 2017; 235
Scott, McCluskey, Brown-Reid, Grear, Pitcher, Ramos, Spencer, Singrey (bib0605) 2016; 123
Gimenez-Lirola, Zhang, Carrillo-Avila, Chen, Magtoto, Poonsuk, Baum, Pineyro, Zimmerman (bib0200) 2017; 55
Guo, Hu, Chen, Li, Ye, Cheng, Zhang, He (bib0225) 2016; 130
Deng, Ye, Liu, Navid, Zhong, Li, Wan, Xiao, He, Fu, Peng (bib0155) 2016; 8
Hofmann, Wyler (bib0230) 1989; 20
Liu, Lin, Annamalai, Gao, Lu, Esseili, Jung, El-Tholoth, Saif, Wang (bib0475) 2015; 46
Jung, Hu, Eyerly, Lu, Chepngeno, Saif (bib0315) 2015; 21
Kim, Lee (bib0330) 2014; 460–461
Zhou, Fan, Lan, Yang, Shi, Zhang, Zhu, Zhang, Xie, Mani, Zheng, Li, Li, Guo, Pei, An, Chen, Zhou, Mai, Wu, Li, Anderson, Zhang, Li, Mi, He, Cong, Guo, Huang, Luo, Liu, Chen, Huang, Sun, Zhang, Wang, Xing, Chen, Sun, Li, Daszak, Wang, Shi, Tong, Ma (bib0790) 2018; 556
Wood (bib0735) 1977; 100
Kocherhans, Bridgen, Ackermann, Tobler (bib0350) 2001; 23
Koonpaew, Teeravechyan, Frantz, Chailangkarn, Jongkaewwattana (bib0360) 2019; 6
Lin, Annamalai, Liu, Gao, Lu, El-Tholoth, Hu, Saif, Wang (bib0440) 2015; 46
Chen, Zhu, Wu, Ku, Ye, Li, Guo, He (bib0085) 2015; 7
Salmon (bib0580) 2000; 480
Liu, Zhao, Zhai, Zhao, Ding, Dai, Sun, Meng (bib0470) 2015; 71
Langhans (bib0390) 2000; 16
Wang, Zhao, Guo, Liu, Du, Ren, Li, Zhang, Fan, Huang, Liu, Wu (bib0705) 2013; 19
Gallien, Moro, Lediguerher, Catinot, Paboeuf, Bigault, Berri, Gauger, Pozzi, Authie, Rose, Grasland (bib0170) 2018; 49
Song, Peng, Chen, Zhou, Zhang, Li, Huang, Wu, Ye, He, Wang, Tang (bib0640) 2017; 7
Gerdts, Zakhartchouk (bib0190) 2017; 206
Wang, Byrum, Zhang (bib0710) 2014; 20
Wang, Ohnstad, Nelsen, Nelson (bib0720) 2017; 208
Chen, Li, Stasko, Thomas, Stensland, Pillatzki, Gauger, Schwartz, Madson, Yoon, Stevenson, Burrough, Harmon, Main, Zhang (bib0080) 2014; 52
de Arriba, Carvajal, Pozo, Rubio (bib0130) 2002; 84
Lin, Li, Chen, Ma, He, Fan (bib0460) 2017; 16
Lee, Kwon, Je, Yoo, Seo, Sunwoo, Lyoo (bib0400) 2016; 192
Madson, Arruda, Magstadt, Burrough, Hoang, Sun, Bower, Bhandari, Gauger, Stevenson, Wilberts, Wang, Zhang, Yoon (bib0505) 2016; 53
Thomas, Chen, Gauger, Gimenez-Lirola, Sinha, Harmon, Madson, Burrough, Magstadt, Salzbrenner, Welch, Yoon, Zimmerman, Zhang (bib0685) 2015; 10
Coussement, Ducatelle, Debouck, Hoorens (bib0110) 1982; 19
Hou, Meulia, Gao, Saif, Wang (bib0255) 2019; 93
Hou, Lin, Yokoyama, Yount, Marthaler, Douglas, Ghimire, Qin, Baric, Saif, Wang (bib0245) 2017; 91
Kim, Oh, Shivanna, Hesse, Chang (bib0340) 2017; 13
Zhang, Yim-Im, Chen, Zheng, Schumacher, Huang, Gauger, Harmon, Li (bib0760) 2018; 54
Holtkamp, Myers, Thomas, Karriker, Ramirez, Zhang, Wang (bib0235) 2017; 81
Lohse, Krog, Strandbygaard, Rasmussen, Kjaer, Belsham, Botner (bib0480) 2017; 64
Madson, Magstadt, Arruda, Hoang, Sun, Bower, Bhandari, Burrough, Gauger, Pillatzki, Stevenson, Wilberts, Brodie, Harmon, Wang, Main, Zhang, Yoon (bib0500) 2014; 174
Niederwerder, Nietfeld, Bai, Peddireddi, Breazeale, Anderson, Kerrigan, An, Oberst, Crawford, Lager, Madson, Rowland, Anderson, Hesse (bib0535) 2016; 28
Bevins, Lutman, Pedersen, Barrett, Gidlewski, Deliberto, Franklin (bib0050) 2018; 24
Li, van Kuppeveld, He, Rottier, Bosch (bib0420) 2016; 226
Zhang, Wu, Yang (bib0770) 2019; 34
Lin, Hou, Marthaler, Gao, Liu, Zheng, Saif, Wang (bib0455) 2017; 201
Cima (bib0105) 2013; 243
Lin, Saif, Marthaler, Wang (bib0450) 2016; 226
Su, Hou, Prarat, Zhang, Wang (bib0660) 2018; 163
Grasland, Bigaul
Sirichokchatchawan (10.1016/j.virusres.2020.198045_bib0620) 2017
Deng (10.1016/j.virusres.2020.198045_bib0160) 2019; 93
Annamalai (10.1016/j.virusres.2020.198045_bib0020) 2017; 48
Whitworth (10.1016/j.virusres.2020.198045_bib0725) 2019; 28
Bowman (10.1016/j.virusres.2020.198045_bib0070) 2015; 179
Wang (10.1016/j.virusres.2020.198045_bib0720) 2017; 208
Canning (10.1016/j.virusres.2020.198045_bib0075) 2017; 25
Kim (10.1016/j.virusres.2020.198045_bib0335) 2000; 123
Siegrist (10.1016/j.virusres.2020.198045_bib0615) 2013
Curry (10.1016/j.virusres.2020.198045_bib0125) 2017; 211
Langel (10.1016/j.virusres.2020.198045_bib0380) 2019; 50
Lin (10.1016/j.virusres.2020.198045_bib0450) 2016; 226
Chen (10.1016/j.virusres.2020.198045_bib0095) 2016; 12
Madson (10.1016/j.virusres.2020.198045_bib0505) 2016; 53
Tan (10.1016/j.virusres.2020.198045_bib0675) 2019; 14
Dee (10.1016/j.virusres.2020.198045_bib0150) 2014; 10
Sato (10.1016/j.virusres.2020.198045_bib0590) 2018; 15
Liu (10.1016/j.virusres.2020.198045_bib0465) 2015; 89
Debouck (10.1016/j.virusres.2020.198045_bib0145) 1981; 6
Leidenberger (10.1016/j.virusres.2020.198045_bib0405) 2017; 7
de Arriba (10.1016/j.virusres.2020.198045_bib0130) 2002; 84
Ouyang (10.1016/j.virusres.2020.198045_bib0545) 2015; 46
Pensaert (10.1016/j.virusres.2020.198045_bib0560) 1978; 58
Woo (10.1016/j.virusres.2020.198045_bib0730) 2012; 86
Gong (10.1016/j.virusres.2020.198045_bib0210) 2017; 23
Jung (10.1016/j.virusres.2020.198045_bib0325) 2018; 119
Li (10.1016/j.virusres.2020.198045_bib0435) 2019; 93
Lin (10.1016/j.virusres.2020.198045_bib0455) 2017; 201
Liu (10.1016/j.virusres.2020.198045_bib0475) 2015; 46
Crawford (10.1016/j.virusres.2020.198045_bib0120) 2016; 226
Gallien (10.1016/j.virusres.2020.198045_bib0175) 2019; 228
Liu (10.1016/j.virusres.2020.198045_bib0470) 2015; 71
Jeon (10.1016/j.virusres.2020.198045_bib0270) 2017; 162
Cima (10.1016/j.virusres.2020.198045_bib0105) 2013; 243
Zhou (10.1016/j.virusres.2020.198045_bib0785) 1988; 102
Alonso (10.1016/j.virusres.2020.198045_bib0005) 2014; 45
Langel (10.1016/j.virusres.2020.198045_bib0385) 2020; 9
de Arriba (10.1016/j.virusres.2020.198045_bib0135) 2002; 105
Kocherhans (10.1016/j.virusres.2020.198045_bib0350) 2001; 23
Stevenson (10.1016/j.virusres.2020.198045_bib0655) 2013; 25
Thomas (10.1016/j.virusres.2020.198045_bib0690) 2015; 23
Hou (10.1016/j.virusres.2020.198045_bib0255) 2019; 93
Anon (10.1016/j.virusres.2020.198045_bib0025) 2015; 247
Langel (10.1016/j.virusres.2020.198045_bib0370) 2016; 226
Schumacher (10.1016/j.virusres.2020.198045_bib0595) 2017; 12
Koh (10.1016/j.virusres.2020.198045_bib0355) 2015; 30
Li (10.1016/j.virusres.2020.198045_bib0410) 2007; 365
Baker (10.1016/j.virusres.2020.198045_bib0030) 2017; 13
Steinrigl (10.1016/j.virusres.2020.198045_bib0650) 2015; 11
Chen (10.1016/j.virusres.2020.198045_bib0090) 2016; 97
Crawford (10.1016/j.virusres.2020.198045_bib0115) 2015; 46
Bevins (10.1016/j.virusres.2020.198045_bib0050) 2018; 24
Jung (10.1016/j.virusres.2020.198045_bib0315) 2015; 21
Lin (10.1016/j.virusres.2020.198045_bib0440) 2015; 46
Jung (10.1016/j.virusres.2020.198045_bib0300) 2014; 20
Langel (10.1016/j.virusres.2020.198045_bib0375) 2019; 10
Chen (10.1016/j.virusres.2020.198045_bib0085) 2015; 7
Grasland (10.1016/j.virusres.2020.198045_bib0220) 2015; 3
Lin (10.1016/j.virusres.2020.198045_bib0460) 2017; 16
Jung (10.1016/j.virusres.2020.198045_bib0290) 2017; 110
Baker (10.1016/j.virusres.2020.198045_bib0035) 2018; 214
Jung (10.1016/j.virusres.2020.198045_bib0305) 2015; 178
Kim (10.1016/j.virusres.2020.198045_bib0340) 2017; 13
Salmon (10.1016/j.virusres.2020.198045_bib0580) 2000; 480
Kim (10.1016/j.virusres.2020.198045_bib0345) 2017; 13
Luo (10.1016/j.virusres.2020.198045_bib0490) 2017; 91
Schumacher (10.1016/j.virusres.2020.198045_bib0600) 2018; 96
Gallien (10.1016/j.virusres.2020.198045_bib0165) 2018; 65
Sato (10.1016/j.virusres.2020.198045_bib0585) 2011; 43
Huang (10.1016/j.virusres.2020.198045_bib0260) 2013; 4
Song (10.1016/j.virusres.2020.198045_bib0640) 2017; 7
Boniotti (10.1016/j.virusres.2020.198045_bib0055) 2016; 22
Mavronmichalis (10.1016/j.virusres.2020.198045_bib0510) 2016
Zhou (10.1016/j.virusres.2020.198045_bib0790) 2018; 556
Perri (10.1016/j.virusres.2020.198045_bib0570) 2018; 150
Annamalai (10.1016/j.virusres.2020.198045_bib0015) 2015; 168
Kim (10.1016/j.virusres.2020.198045_bib0330) 2014; 460–461
Langhans (10.1016/j.virusres.2020.198045_bib0390) 2000; 16
Lin (10.1016/j.virusres.2020.198045_bib0445) 2015; 89
Ma (10.1016/j.virusres.2020.198045_bib0495) 2016; 186
Madson (10.1016/j.virusres.2020.198045_bib0500) 2014; 174
Xie (10.1016/j.virusres.2020.198045_bib0745) 2019; 100
Zhao (10.1016/j.virusres.2020.198045_bib0775) 2015; 10
Gerdts (10.1016/j.virusres.2020.198045_bib0190) 2017; 206
Chen (10.1016/j.virusres.2020.198045_bib0100) 2017; 242
Bourges (10.1016/j.virusres.2020.198045_bib0060) 2008; 45
Jung (10.1016/j.virusres.2020.198045_bib0320) 2016; 182
Jiang (10.1016/j.virusres.2020.198045_bib0280) 2016; 7
Lohse (10.1016/j.virusres.2020.198045_bib0480) 2017; 64
Zong (10.1016/j.virusres.2020.198045_bib0795) 2019; 22
Gordon (10.1016/j.virusres.2020.198045_bib0215) 2019; 6
Niederwerder (10.1016/j.virusres.2020.198045_bib0530) 2018; 65
Zhao (10.1016/j.virusres.2020.198045_bib0780) 2019; 11
Vlasova (10.1016/j.virusres.2020.198045_bib0695) 2014; 20
Wang (10.1016/j.virusres.2020.198045_bib0710) 2014; 20
Teeravechyan (10.1016/j.virusres.2020.198045_bib0680) 2016; 226
Zhang (10.1016/j.virusres.2020.198045_bib0770) 2019; 34
Huang (10.1016/j.virusres.2020.198045_bib0265) 2018; 13
Saif (10.1016/j.virusres.2020.198045_bib0575) 2012
Guo (10.1016/j.virusres.2020.198045_bib0225) 2016; 130
Nam (10.1016/j.virusres.2020.198045_bib0525) 2010; 144
Shirato (10.1016/j.virusres.2020.198045_bib0610) 2016; 97
Pan (10.1016/j.virusres.2020.198045_bib0550) 2017; 211
Jung (10.1016/j.virusres.2020.198045_bib0310) 2015; 177
Scott (10.1016/j.virusres.2020.198045_bib0605) 2016; 123
Li (10.1016/j.virusres.2020.198045_bib0420) 2016; 226
Deng (10.1016/j.virusres.2020.198045_bib0155) 2016; 8
Beam (10.1016/j.virusres.2020.198045_bib0045) 2015; 10
Jung (10.1016/j.virusres.2020.198045_bib0295) 2006; 81
Niederwerder (10.1016/j.virusres.2020.198045_bib0535) 2016; 28
Opriessnig (10.1016/j.virusres.2020.198045_bib0540) 2014; 9
Li (10.1016/j.virusres.2020.198045_bib0430) 2018; 9
Zhang (10.1016/j.virusres.2020.198045_bib0760) 2018; 54
Song (10.1016/j.virusres.2020.198045_bib0635) 2016; 226
Alonso (10.1016/j.virusres.2020.198045_bib0010) 2015; 10
Wang (10.1016/j.virusres.2020.198045_bib0700) 2012; 586
Thomas (10.1016/j.virusres.2020.198045_bib0685) 2015; 10
Beall (10.1016/j.virusres.2020.198045_bib0040) 2016; 7
Zhang (10.1016/j.virusres.2020.198045_bib0755) 2016; 226
Lee (10.1016/j.virusres.2020.198045_bib0395) 2015; 12
Coussement (10.1016/j.virusres.2020.198045_bib0110) 1982; 19
Su (10.1016/j.virusres.2020.198045_bib0660) 2018; 163
Pasick (10.1016/j.virusres.2020.198045_bib0555) 2014; 61
de Arriba (10.1016/j.virusres.2020.198045_bib0140) 2002; 85
Wang (10.1016/j.virusres.2020.198045_bib0715) 2014; 20
Gao (10.1016/j.virusres.2020.198045_bib0180) 2015; 179
Stadler (10.1016/j.virusres.2020.198045_bib0645) 2015; 11
Kweon (10.1016/j.virusres.2020.198045_bib0365) 1999; 17
Song (10.1016/j.virusres.2020.198045_bib0625) 2003; 21
Koonpaew (10.1016/j.virusres.2020.198045_bib0360) 2019; 6
Lowe (10.1016/j.virusres.2020.198045_bib0485) 2014; 20
Wood (10.1016/j.virusres.2020.198045_bib0735) 1977; 100
Hofmann (10.1016/j.virusres.2020.198045_bib0230) 1989; 20
Gerber (10.1016/j.virusres.2020.198045_bib0185) 2016; 47
Holtkamp (10.1016/j.virusres.2020.198045_bib0235) 2017; 81
Yamamoto (10.1016/j.virusres.2020.198045_bib0750) 2015; 103
Li (10.1016/j.virusres.2020.198045_bib0415) 2012; 18
Ji (10.1016/j.virusres.2020.198045_bib0275) 2018; 517
Chen (10.1016/j.virusres.2020.198045_bib0080) 2014; 52
Gimenez-Lirola (10.1016/j.virusres.2020.198045_bib0200) 2017; 55
Suzuki (10.1016/j.virusres.2020.198045_bib0670) 2016; 97
Mesquita (10.1016/j.virusres.2020.198045_bib0515) 2015; 62
Hou (10.1016/j.virusres.2020.198045_bib0245) 2017; 91
Li (10.1016/j.virusres.2020.198045_bib0425) 2017; 235
Hou (10.1016/j.virusres.2020.198045_bib0240) 2019; 20
Zhang (10.1016/j.virusres.2020.198045_bib0765) 2018; 92
Jung (10.1016/j.virusres.2020.198045_bib0285) 2015; 204
Pensaert (10.1016/j.virusres.2020.198045_bib0565) 2016; 226
Gillespie (10.1016/j.virusres.2020.198045_bib0195) 2018; 31
Wu (10.1016/j.virusres.2020.198045_bib0740) 2019; 16
Bowman (10.1016/j.virusres.2020.198045_bib0065) 2015; 11
Sueyoshi (10.1016/j.virusres.2020.198045_bib0665) 1995; 113
Song (10.1016/j.virusres.2020.198045_bib0630) 2007; 82
Goede (10.1016/j.virusres.2020.198045_bib0205) 2015; 176
Lee (10.1016/j.virusres.2020.198045_bib0400) 2016; 192
Wang (10.1016/j.virusres.2020.198045_bib0705) 2013; 19
Gallien (10.1016/j.virusres.2020.198045_bib0170) 2018; 49
Moon (10.1016/j.virusres.2020.198045_bib0520) 1973; 37
Hou (10.1016/j.virusres.2020.198045_bib0250) 2019; 93
References_xml – volume: 53
  start-page: 44
  year: 2016
  end-page: 52
  ident: bib0505
  article-title: Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-Day-Old cesarean-derived colostrum-deprived piglets
  publication-title: Vet. Pathol.
– volume: 93
  year: 2019
  ident: bib0435
  article-title: Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response
  publication-title: J. Virol.
– volume: 97
  start-page: 1107
  year: 2016
  end-page: 1121
  ident: bib0090
  article-title: Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets
  publication-title: J. Gen. Virol.
– volume: 19
  start-page: 46
  year: 1982
  end-page: 56
  ident: bib0110
  article-title: Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study
  publication-title: Vet. Pathol.
– volume: 10
  start-page: 176
  year: 2014
  ident: bib0150
  article-title: An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept
  publication-title: BMC Vet. Res.
– volume: 7
  start-page: 10825
  year: 2017
  ident: bib0405
  article-title: Virulence of current German PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies
  publication-title: Sci. Rep.
– volume: 89
  start-page: 3332
  year: 2015
  end-page: 3342
  ident: bib0445
  article-title: Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains
  publication-title: J. Virol.
– volume: 20
  year: 2019
  ident: bib0240
  article-title: Emerging highly virulent porcine epidemic diarrhea virus: molecular mechanisms of attenuation and rational design of live attenuated vaccines
  publication-title: Int. J. Mol. Sci.
– volume: 123
  start-page: 192
  year: 2016
  end-page: 201
  ident: bib0605
  article-title: Porcine epidemic diarrhea virus introduction into the United States: root cause investigation
  publication-title: Prev. Vet. Med.
– volume: 22
  start-page: 83
  year: 2016
  end-page: 87
  ident: bib0055
  article-title: Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy
  publication-title: Emerg. Infect. diseases
– volume: 12
  start-page: 193
  year: 2015
  ident: bib0395
  article-title: Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus
  publication-title: Virol. J.
– volume: 45
  start-page: 3354
  year: 2008
  end-page: 3362
  ident: bib0060
  article-title: New insights into the dual recruitment of IgA(+) B cells in the developing mammary gland
  publication-title: Mol. Immunol.
– volume: 517
  start-page: 16
  year: 2018
  end-page: 23
  ident: bib0275
  article-title: Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells
  publication-title: Virology
– volume: 91
  year: 2017
  ident: bib0490
  article-title: Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor
  publication-title: J. Virol.
– start-page: 501
  year: 2012
  end-page: 524
  ident: bib0575
  article-title: Coronaviruses
  publication-title: Diseases of Swine
– volume: 20
  start-page: 131
  year: 1989
  end-page: 142
  ident: bib0230
  article-title: Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV)
  publication-title: Vet. Microbiol.
– volume: 82
  start-page: 134
  year: 2007
  end-page: 140
  ident: bib0630
  article-title: Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain
  publication-title: Res. Vet. Sci.
– volume: 13
  start-page: 356
  year: 2017
  ident: bib0340
  article-title: Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism
  publication-title: BMC Vet. Res.
– volume: 6
  start-page: 273
  year: 2019
  ident: bib0215
  article-title: The role of non-animal origin feed ingredients in transmission of viral pathogens of swine: a review of scientific literature
  publication-title: Front. Vet. Sci.
– volume: 65
  start-page: 660
  year: 2018
  end-page: 675
  ident: bib0530
  article-title: Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada
  publication-title: Transbound. Emerg. Dis.
– volume: 11
  start-page: 38
  year: 2015
  ident: bib0065
  article-title: Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation
  publication-title: BMC Vet. Res.
– volume: 46
  start-page: 134
  year: 2015
  ident: bib0440
  article-title: Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection
  publication-title: Vet. Res.
– volume: 176
  start-page: 161
  year: 2015
  end-page: 164
  ident: bib0205
  article-title: Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain
  publication-title: Vet. Microbiol.
– volume: 28
  start-page: 671
  year: 2016
  end-page: 678
  ident: bib0535
  article-title: Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs
  publication-title: J. Vet. Diagn. Invest.
– volume: 61
  start-page: 397
  year: 2014
  end-page: 410
  ident: bib0555
  article-title: Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada
  publication-title: Transbound. Emerg. Dis.
– volume: 208
  start-page: 77
  year: 2017
  end-page: 81
  ident: bib0720
  article-title: Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine
  publication-title: Vet. Microbiol.
– volume: 86
  start-page: 3995
  year: 2012
  end-page: 4008
  ident: bib0730
  article-title: Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus
  publication-title: J. Virol.
– start-page: 14
  year: 2013
  end-page: 32
  ident: bib0615
  article-title: 2. Vaccine immunology
  publication-title: Vaccines
– volume: 16
  start-page: 2113
  year: 2017
  end-page: 2120
  ident: bib0460
  article-title: Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection
  publication-title: J. Proteome Res.
– volume: 20
  year: 2014
  ident: bib0695
  article-title: Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014
  publication-title: Emerg. Infect. Dis.
– volume: 6
  start-page: 157
  year: 1981
  end-page: 165
  ident: bib0145
  article-title: The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, Cv-777
  publication-title: Vet. Microbiol.
– volume: 119
  start-page: 99
  year: 2018
  end-page: 108
  ident: bib0325
  article-title: Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection
  publication-title: Res. Vet. Sci.
– volume: 235
  start-page: 6
  year: 2017
  end-page: 13
  ident: bib0425
  article-title: Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry
  publication-title: Virus Res.
– volume: 85
  start-page: 85
  year: 2002
  end-page: 97
  ident: bib0140
  article-title: Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus
  publication-title: Vet. Immunol. Immunopathol.
– volume: 179
  start-page: 213
  year: 2015
  end-page: 218
  ident: bib0070
  article-title: Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus
  publication-title: Vet. Microbiol.
– volume: 174
  start-page: 60
  year: 2014
  end-page: 68
  ident: bib0500
  article-title: Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs
  publication-title: Vet. Microbiol.
– volume: 226
  start-page: 152
  year: 2016
  end-page: 171
  ident: bib0680
  article-title: Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics
  publication-title: Virus Res.
– volume: 7
  start-page: 214
  year: 2016
  ident: bib0280
  article-title: Immunoglobulin transporting receptors are potential targets for the immunity enhancement and generation of mammary gland bioreactor
  publication-title: Front. Immunol.
– volume: 226
  start-page: 20
  year: 2016
  end-page: 39
  ident: bib0450
  article-title: Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains
  publication-title: Virus Res.
– volume: 58
  start-page: 243
  year: 1978
  end-page: 247
  ident: bib0560
  article-title: A new coronavirus-like particle associated with diarrhea in swine
  publication-title: Arch. Virol.
– volume: 168
  start-page: 193
  year: 2015
  end-page: 202
  ident: bib0015
  article-title: Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs
  publication-title: Vet. Immunol. Immunopathol.
– volume: 11
  start-page: 142
  year: 2015
  ident: bib0645
  article-title: Emergence of porcine epidemic diarrhea virus in southern Germany
  publication-title: BMC Vet. Res.
– volume: 162
  start-page: 3753
  year: 2017
  end-page: 3767
  ident: bib0270
  article-title: Cellular cholesterol is required for porcine nidovirus infection
  publication-title: Arch. Virol.
– volume: 23
  start-page: 84
  year: 2015
  end-page: 90
  ident: bib0690
  article-title: Evaluation of time and temperature sufficient to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces
  publication-title: J. Swine Health Prod.
– volume: 10
  year: 2015
  ident: bib0775
  article-title: The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments
  publication-title: PLoS One
– volume: 226
  start-page: 117
  year: 2016
  end-page: 127
  ident: bib0420
  article-title: Cellular entry of the porcine epidemic diarrhea virus
  publication-title: Virus Res.
– volume: 204
  start-page: 134
  year: 2015
  end-page: 143
  ident: bib0285
  article-title: Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis
  publication-title: Vet. J.
– volume: 24
  start-page: 1390
  year: 2018
  end-page: 1392
  ident: bib0050
  article-title: Spillover of swine coronaviruses, United States
  publication-title: Emerging Infect. Dis.
– volume: 102
  start-page: 63
  year: 1988
  end-page: 71
  ident: bib0785
  article-title: Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related
  publication-title: Arch. Virol.
– volume: 31
  start-page: 62
  year: 2018
  end-page: 68
  ident: bib0195
  article-title: Effect of booster vaccination with inactivated porcine epidemic diarrhea virus on neutralizing antibody response in mammary secretions
  publication-title: Viral Immunol.
– volume: 4
  start-page: e00737
  year: 2013
  end-page: 00713
  ident: bib0260
  article-title: Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States
  publication-title: mBio
– volume: 179
  start-page: 131
  year: 2015
  end-page: 141
  ident: bib0180
  article-title: Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells
  publication-title: Vet. Microbiol.
– volume: 96
  start-page: 4562
  year: 2018
  end-page: 4570
  ident: bib0600
  article-title: Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing
  publication-title: J. Anim. Sci.
– volume: 9
  start-page: 3811
  year: 2018
  ident: bib0430
  article-title: An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine
  publication-title: Nat. Commun.
– volume: 47
  start-page: 118
  year: 2016
  ident: bib0185
  article-title: Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge
  publication-title: Vet. Res.
– volume: 10
  year: 2015
  ident: bib0685
  article-title: Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs
  publication-title: PLoS One
– volume: 460–461
  start-page: 180
  year: 2014
  end-page: 193
  ident: bib0330
  article-title: Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor
  publication-title: Virology
– volume: 7
  start-page: 17439
  year: 2017
  ident: bib0640
  article-title: Altered gut microbiota profiles in sows and neonatal piglets associated with porcine epidemic diarrhea virus infection
  publication-title: Sci. Rep.
– volume: 23
  start-page: 137
  year: 2001
  end-page: 144
  ident: bib0350
  article-title: Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence
  publication-title: Virus Genes
– volume: 586
  start-page: 384
  year: 2012
  end-page: 391
  ident: bib0700
  article-title: PEDV ORF3 encodes an ion channel protein and regulates virus production
  publication-title: FEBS Lett.
– volume: 71
  start-page: 643
  year: 2015
  end-page: 649
  ident: bib0470
  article-title: Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets
  publication-title: Curr. Microbiol.
– volume: 21
  start-page: 1833
  year: 2003
  end-page: 1842
  ident: bib0625
  article-title: Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3
  publication-title: Vaccine
– volume: 30
  start-page: 284
  year: 2015
  end-page: 287
  ident: bib0355
  article-title: Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection
  publication-title: Microbes Environ.
– volume: 144
  start-page: 41
  year: 2010
  end-page: 50
  ident: bib0525
  article-title: Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection
  publication-title: Vet. Microbiol.
– volume: 177
  start-page: 373
  year: 2015
  end-page: 378
  ident: bib0310
  article-title: Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus
  publication-title: Vet. Microbiol.
– volume: 23
  year: 2017
  ident: bib0210
  article-title: A new Bat-HKU2-like coronavirus in swine, China, 2017
  publication-title: Emerging Infect. Dis.
– volume: 48
  start-page: 61
  year: 2017
  ident: bib0020
  article-title: Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain
  publication-title: Vet. Res.
– volume: 8
  start-page: 55
  year: 2016
  ident: bib0155
  article-title: Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains
  publication-title: Viruses
– volume: 228
  start-page: 20
  year: 2019
  end-page: 25
  ident: bib0175
  article-title: Limited shedding of an S-InDel strain of porcine epidemic diarrhea virus (PEDV) in semen and questions regarding the infectivity of the detected virus
  publication-title: Vet. Microbiol.
– volume: 226
  start-page: 93
  year: 2016
  end-page: 107
  ident: bib0370
  article-title: Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts
  publication-title: Virus Res.
– volume: 52
  start-page: 234
  year: 2014
  end-page: 243
  ident: bib0080
  article-title: Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States
  publication-title: J. Clin. Microbiol.
– volume: 20
  start-page: 1227
  year: 2014
  end-page: 1230
  ident: bib0710
  article-title: Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014
  publication-title: Emerg. Infect. Dis.
– volume: 19
  start-page: 2048
  year: 2013
  end-page: 2049
  ident: bib0705
  article-title: Porcine epidemic diarrhea virus variants with high pathogenicity, China
  publication-title: Emerg. Infect. Dis.
– volume: 43
  start-page: 72
  year: 2011
  end-page: 78
  ident: bib0585
  article-title: Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo
  publication-title: Virus Genes
– volume: 243
  start-page: 467
  year: 2013
  end-page: 470
  ident: bib0105
  article-title: Fighting a deadly pig disease
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 211
  start-page: 58
  year: 2017
  end-page: 66
  ident: bib0125
  article-title: Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity
  publication-title: Vet. Microbiol.
– volume: 25
  start-page: 129
  year: 2017
  end-page: 137
  ident: bib0075
  article-title: Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus
  publication-title: J. Swine Health Prod.
– volume: 22
  start-page: 345
  year: 2019
  end-page: 353
  ident: bib0795
  article-title: Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs
  publication-title: Pol. J. Vet. Sci.
– volume: 21
  start-page: 650
  year: 2015
  end-page: 654
  ident: bib0315
  article-title: Pathogenecity of 2 porcine deltacoronavirus strains in gnotobiotic pigs
  publication-title: Emerg. Infect. Dis.
– volume: 7
  start-page: e01451
  year: 2016
  end-page: 1415
  ident: bib0040
  article-title: Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A
  publication-title: mBio
– volume: 123
  start-page: 64
  year: 2000
  end-page: 66
  ident: bib0335
  article-title: Transmissible gastroenteritis virus induces apoptosis in swine testicular cell lines but not in intestinal enterocytes
  publication-title: J. Comp. Pathol.
– volume: 93
  year: 2019
  ident: bib0160
  article-title: Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses
  publication-title: J. Virol.
– volume: 103
  start-page: 103
  year: 2015
  end-page: 106
  ident: bib0750
  article-title: Isolation and experimental inoculation of an S INDEL strain of porcine epidemic diarrhea virus in Japan
  publication-title: Res. Vet. Sci.
– volume: 178
  start-page: 31
  year: 2015
  end-page: 40
  ident: bib0305
  article-title: Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs
  publication-title: Vet. Microbiol.
– volume: 84
  start-page: 1
  year: 2002
  end-page: 16
  ident: bib0130
  article-title: Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV
  publication-title: Vet. Immunol. Immunopathol.
– volume: 105
  start-page: 37
  year: 2002
  end-page: 47
  ident: bib0135
  article-title: Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus
  publication-title: J. Virol. Methods
– volume: 10
  year: 2015
  ident: bib0010
  article-title: Concentration, size distribution, and infectivity of airborne particles carrying swine viruses
  publication-title: PLoS One
– volume: 13
  year: 2018
  ident: bib0265
  article-title: Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus
  publication-title: PLoS One
– volume: 10
  start-page: 727
  year: 2019
  ident: bib0375
  article-title: Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets
  publication-title: Front. Immunol.
– volume: 16
  start-page: 121
  year: 2019
  ident: bib0740
  article-title: Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain
  publication-title: Virol. J.
– volume: 20
  start-page: 872
  year: 2014
  end-page: 874
  ident: bib0485
  article-title: Role of transportation in spread of porcine epidemic diarrhea virus infection, United States
  publication-title: Emerging Infect. Dis.
– volume: 89
  start-page: 6121
  year: 2015
  end-page: 6125
  ident: bib0465
  article-title: Receptor usage and cell entry of porcine epidemic diarrhea coronavirus
  publication-title: J. Virol.
– volume: 9
  start-page: 130
  year: 2020
  ident: bib0385
  article-title: Host factors affecting generation of immunity against porcine epidemic diarrhea virus in pregnant and lactating swine and passive protection of neonates
  publication-title: Pathogens
– volume: 480
  start-page: 279
  year: 2000
  end-page: 286
  ident: bib0580
  article-title: Mammary gland immunology and neonate protection in pigs - Homing of lymphocytes into the MG
  publication-title: Adv. Exp. Med. Biol.
– volume: 62
  start-page: 586
  year: 2015
  end-page: 588
  ident: bib0515
  article-title: Outbreak of porcine epidemic diarrhea virus in Portugal, 2015
  publication-title: Transbound. Emerg. Dis.
– volume: 201
  start-page: 62
  year: 2017
  end-page: 71
  ident: bib0455
  article-title: Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage
  publication-title: Vet. Microbiol.
– volume: 6
  start-page: 34
  year: 2019
  ident: bib0360
  article-title: PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses
  publication-title: Front. Vet. Sci.
– volume: 226
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib0565
  article-title: Porcine epidemic diarrhea: a retrospect from Europe and matters of debate
  publication-title: Virus Res.
– volume: 214
  start-page: 99
  year: 2018
  end-page: 107
  ident: bib0035
  article-title: Evaluation of a peroxygen-based disinfectant for inactivation of porcine epidemic diarrhea virus at low temperatures on metal surfaces
  publication-title: Vet. Microbiol.
– volume: 192
  start-page: 90
  year: 2016
  end-page: 94
  ident: bib0400
  article-title: Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir
  publication-title: Vet. Microbiol.
– volume: 100
  start-page: 206
  year: 2019
  end-page: 216
  ident: bib0745
  article-title: Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus
  publication-title: J. Gen. Virol.
– volume: 54
  start-page: 323
  year: 2018
  end-page: 327
  ident: bib0760
  article-title: Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States
  publication-title: Virus Genes
– volume: 17
  start-page: 2546
  year: 1999
  end-page: 2553
  ident: bib0365
  article-title: Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate
  publication-title: Vaccine
– year: 2016
  ident: bib0510
  article-title: How Piglet Gastric pH Development Affects Gut Health
– volume: 91
  year: 2017
  ident: bib0245
  article-title: Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets
  publication-title: J. Virol.
– volume: 37
  start-page: 157
  year: 1973
  end-page: 166
  ident: bib0520
  article-title: Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine
  publication-title: Can. J. Comp. Med.
– volume: 34
  start-page: 592
  year: 2019
  end-page: 595
  ident: bib0770
  article-title: Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection
  publication-title: Virol. Sin.
– volume: 150
  start-page: 101
  year: 2018
  end-page: 109
  ident: bib0570
  article-title: An epidemiological investigation of the early phase of the porcine epidemic diarrhea (PED) outbreak in Canadian swine herds in 2014: a case-control study
  publication-title: Prev. Vet. Med.
– volume: 25
  start-page: 649
  year: 2013
  end-page: 654
  ident: bib0655
  article-title: Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences
  publication-title: J. Vet. Diagn. Investig.
– volume: 46
  start-page: 109
  year: 2015
  ident: bib0475
  article-title: Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain
  publication-title: Vet. Res.
– volume: 206
  start-page: 45
  year: 2017
  end-page: 51
  ident: bib0190
  article-title: Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses
  publication-title: Vet. Microbiol.
– volume: 3
  year: 2015
  ident: bib0220
  article-title: Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in france in december 2014
  publication-title: Genome Announc.
– volume: 242
  start-page: 27
  year: 2017
  end-page: 29
  ident: bib0100
  article-title: Super-oxidized water inactivates major viruses circulating in swine farms
  publication-title: J. Virol. Methods
– volume: 556
  start-page: 255
  year: 2018
  end-page: 258
  ident: bib0790
  article-title: Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin
  publication-title: Nature
– volume: 49
  start-page: 7
  year: 2018
  ident: bib0170
  article-title: Evidence of porcine epidemic diarrhea virus (PEDV) shedding in semen from infected specific pathogen-free boars
  publication-title: Vet. Res.
– year: 2017
  ident: bib0620
  article-title: Protective Effects of Cell-Free Supernatant and Live Lactic Acid Bacteria Isolated from Thai Pigs Against a Pandemic Strain of Porcine Epidemic Diarrhea Virus. Probiotics and Antimicrobial Proteins
– volume: 100
  start-page: 243
  year: 1977
  end-page: 244
  ident: bib0735
  article-title: An apparently new syndrome of porcine epidemic diarrhoea
  publication-title: Vet. Rec.
– volume: 92
  year: 2018
  ident: bib0765
  article-title: Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling
  publication-title: J. Virol.
– volume: 18
  start-page: 1350
  year: 2012
  end-page: 1353
  ident: bib0415
  article-title: New variants of porcine epidemic diarrhea virus, China, 2011
  publication-title: Emerg. Infect. Dis.
– volume: 186
  start-page: 90
  year: 2016
  end-page: 96
  ident: bib0495
  article-title: Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus
  publication-title: Vet. Microbiol.
– volume: 15
  start-page: 28
  year: 2018
  ident: bib0590
  article-title: Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan
  publication-title: Virol. J.
– volume: 28
  start-page: 21
  year: 2019
  end-page: 32
  ident: bib0725
  article-title: Resistance to coronavirus infection in amino peptidase N-deficient pigs
  publication-title: Transgenic Res.
– volume: 50
  start-page: 101
  year: 2019
  ident: bib0380
  article-title: Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets
  publication-title: Vet. Res.
– volume: 55
  start-page: 1426
  year: 2017
  end-page: 1436
  ident: bib0200
  article-title: Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications
  publication-title: J. Clin. Microbiol.
– volume: 11
  start-page: 310
  year: 2015
  ident: bib0650
  article-title: First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria
  publication-title: BMC Vet. Res.
– volume: 10
  year: 2015
  ident: bib0045
  article-title: A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread
  publication-title: PLoS One
– volume: 14
  year: 2019
  ident: bib0675
  article-title: Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus
  publication-title: PLoS One
– volume: 9
  year: 2014
  ident: bib0540
  article-title: Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs
  publication-title: PLoS One
– volume: 20
  start-page: 917
  year: 2014
  end-page: 919
  ident: bib0715
  article-title: New variant of porcine epidemic diarrhea virus, United States, 2014
  publication-title: Emerg. Infect. Dis.
– volume: 226
  start-page: 128
  year: 2016
  end-page: 141
  ident: bib0755
  article-title: Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling
  publication-title: Virus Res.
– volume: 46
  start-page: 140
  year: 2015
  ident: bib0545
  article-title: Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions
  publication-title: Vet. Res.
– volume: 13
  start-page: 89
  year: 2017
  ident: bib0345
  article-title: Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus
  publication-title: BMC Vet. Res.
– volume: 81
  start-page: 100
  year: 2017
  end-page: 107
  ident: bib0235
  article-title: Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces
  publication-title: Can. J. Vet. Res.
– volume: 81
  start-page: 310
  year: 2006
  end-page: 315
  ident: bib0295
  article-title: Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus
  publication-title: Res. Vet. Sci.
– volume: 16
  start-page: 996
  year: 2000
  end-page: 1005
  ident: bib0390
  article-title: Anorexia of infection: current prospects
  publication-title: Nutrition
– volume: 93
  year: 2019
  ident: bib0255
  article-title: Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs
  publication-title: J. Virol.
– volume: 11
  year: 2019
  ident: bib0780
  article-title: Serological screening for coronavirus infections in cats
  publication-title: Viruses
– volume: 46
  start-page: 49
  year: 2015
  ident: bib0115
  article-title: Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs
  publication-title: Vet. Res.
– volume: 64
  start-page: 1380
  year: 2017
  end-page: 1386
  ident: bib0480
  article-title: Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain
  publication-title: Transbound. Emerg. Dis.
– volume: 163
  start-page: 2485
  year: 2018
  end-page: 2489
  ident: bib0660
  article-title: New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017
  publication-title: Arch. Virol.
– volume: 12
  start-page: 70
  year: 2016
  ident: bib0095
  article-title: Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains
  publication-title: BMC Vet. Res.
– volume: 12
  year: 2017
  ident: bib0595
  article-title: Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility
  publication-title: PLoS One
– volume: 45
  start-page: 73
  year: 2014
  ident: bib0005
  article-title: Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds
  publication-title: Vet. Res.
– volume: 226
  start-page: 85
  year: 2016
  end-page: 92
  ident: bib0635
  article-title: Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions
  publication-title: Virus Res.
– volume: 130
  start-page: 65
  year: 2016
  end-page: 75
  ident: bib0225
  article-title: iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus
  publication-title: J. Proteomics
– volume: 247
  start-page: 1083
  year: 2015
  end-page: 1084
  ident: bib0025
  article-title: Feed tote bags implicated in pig disease spread
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 226
  start-page: 108
  year: 2016
  end-page: 116
  ident: bib0120
  article-title: Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada
  publication-title: Virus Res.
– volume: 110
  start-page: 12
  year: 2017
  end-page: 15
  ident: bib0290
  article-title: Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus
  publication-title: Res. Vet. Sci.
– volume: 365
  start-page: 166
  year: 2007
  end-page: 172
  ident: bib0410
  article-title: Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus
  publication-title: Virology
– volume: 93
  year: 2019
  ident: bib0250
  article-title: Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-O-methyltransferase and the Endocytosis Signal of the spike protein
  publication-title: J. Virol.
– volume: 211
  start-page: 15
  year: 2017
  end-page: 21
  ident: bib0550
  article-title: Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China
  publication-title: Vet. Microbiol.
– volume: 113
  start-page: 59
  year: 1995
  end-page: 67
  ident: bib0665
  article-title: An immunohistochemical investigation of porcine epidemic diarrhoea
  publication-title: J. Comp. Pathol.
– volume: 65
  start-page: 1720
  year: 2018
  end-page: 1732
  ident: bib0165
  article-title: Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus
  publication-title: Transbound. Emerg. Dis.
– volume: 97
  start-page: 2528
  year: 2016
  end-page: 2539
  ident: bib0610
  article-title: Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity
  publication-title: J. Gen. Virol.
– volume: 20
  start-page: 662
  year: 2014
  end-page: 665
  ident: bib0300
  article-title: Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs
  publication-title: Emerg. Infect. Dis.
– volume: 13
  start-page: 372
  year: 2017
  ident: bib0030
  article-title: Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions
  publication-title: BMC Vet. Res.
– volume: 7
  start-page: 5525
  year: 2015
  end-page: 5538
  ident: bib0085
  article-title: Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus
  publication-title: Viruses
– volume: 182
  start-page: 57
  year: 2016
  end-page: 63
  ident: bib0320
  article-title: Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo
  publication-title: Vet. Microbiol.
– volume: 97
  start-page: 1823
  year: 2016
  end-page: 1828
  ident: bib0670
  article-title: Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets
  publication-title: J. Gen. Virol.
– volume: 206
  start-page: 45
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0190
  article-title: Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2016.11.029
– volume: 123
  start-page: 192
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0605
  article-title: Porcine epidemic diarrhea virus introduction into the United States: root cause investigation
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2015.11.013
– volume: 211
  start-page: 58
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0125
  article-title: Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2017.09.021
– volume: 93
  issue: 8
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0160
  article-title: Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses
  publication-title: J. Virol.
  doi: 10.1128/JVI.02000-18
– volume: 45
  start-page: 73
  issue: 1
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0005
  article-title: Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds
  publication-title: Vet. Res.
  doi: 10.1186/s13567-014-0073-z
– volume: 18
  start-page: 1350
  issue: 8
  year: 2012
  ident: 10.1016/j.virusres.2020.198045_bib0415
  article-title: New variants of porcine epidemic diarrhea virus, China, 2011
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1803.120002
– volume: 64
  start-page: 1380
  issue: 5
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0480
  article-title: Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.12509
– volume: 179
  start-page: 131
  issue: 3–4
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0180
  article-title: Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2015.05.016
– volume: 45
  start-page: 3354
  issue: 12
  year: 2008
  ident: 10.1016/j.virusres.2020.198045_bib0060
  article-title: New insights into the dual recruitment of IgA(+) B cells in the developing mammary gland
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2008.04.017
– volume: 365
  start-page: 166
  issue: 1
  year: 2007
  ident: 10.1016/j.virusres.2020.198045_bib0410
  article-title: Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus
  publication-title: Virology
  doi: 10.1016/j.virol.2007.03.031
– volume: 13
  start-page: 372
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0030
  article-title: Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-017-1300-4
– volume: 110
  start-page: 12
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0290
  article-title: Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2016.10.009
– volume: 81
  start-page: 310
  issue: 3
  year: 2006
  ident: 10.1016/j.virusres.2020.198045_bib0295
  article-title: Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2006.03.005
– volume: 81
  start-page: 100
  issue: 2
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0235
  article-title: Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces
  publication-title: Can. J. Vet. Res.
– volume: 16
  start-page: 996
  issue: 10
  year: 2000
  ident: 10.1016/j.virusres.2020.198045_bib0390
  article-title: Anorexia of infection: current prospects
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(00)00421-4
– volume: 93
  issue: 2
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0255
  article-title: Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs
  publication-title: J. Virol.
  doi: 10.1128/JVI.01758-18
– volume: 226
  start-page: 93
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0370
  article-title: Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.016
– volume: 49
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0170
  article-title: Evidence of porcine epidemic diarrhea virus (PEDV) shedding in semen from infected specific pathogen-free boars
  publication-title: Vet. Res.
  doi: 10.1186/s13567-018-0505-2
– volume: 28
  start-page: 21
  issue: 1
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0725
  article-title: Resistance to coronavirus infection in amino peptidase N-deficient pigs
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-018-0100-3
– volume: 20
  start-page: 917
  issue: 5
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0715
  article-title: New variant of porcine epidemic diarrhea virus, United States, 2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2005.140195
– volume: 7
  start-page: 10825
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0405
  article-title: Virulence of current German PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11160-w
– start-page: 501
  year: 2012
  ident: 10.1016/j.virusres.2020.198045_bib0575
  article-title: Coronaviruses
– volume: 62
  start-page: 586
  issue: 6
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0515
  article-title: Outbreak of porcine epidemic diarrhea virus in Portugal, 2015
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.12409
– volume: 480
  start-page: 279
  year: 2000
  ident: 10.1016/j.virusres.2020.198045_bib0580
  article-title: Mammary gland immunology and neonate protection in pigs - Homing of lymphocytes into the MG
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/0-306-46832-8_32
– volume: 93
  issue: 15
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0250
  article-title: Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-O-methyltransferase and the Endocytosis Signal of the spike protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.00406-19
– volume: 242
  start-page: 27
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0100
  article-title: Super-oxidized water inactivates major viruses circulating in swine farms
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2017.01.002
– volume: 10
  issue: 8
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0010
  article-title: Concentration, size distribution, and infectivity of airborne particles carrying swine viruses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135675
– volume: 20
  start-page: 662
  issue: 4
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0300
  article-title: Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2004.131685
– volume: 58
  start-page: 243
  issue: 3
  year: 1978
  ident: 10.1016/j.virusres.2020.198045_bib0560
  article-title: A new coronavirus-like particle associated with diarrhea in swine
  publication-title: Arch. Virol.
  doi: 10.1007/BF01317606
– volume: 53
  start-page: 44
  issue: 1
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0505
  article-title: Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-Day-Old cesarean-derived colostrum-deprived piglets
  publication-title: Vet. Pathol.
  doi: 10.1177/0300985815591080
– volume: 228
  start-page: 20
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0175
  article-title: Limited shedding of an S-InDel strain of porcine epidemic diarrhea virus (PEDV) in semen and questions regarding the infectivity of the detected virus
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2018.09.025
– volume: 46
  start-page: 140
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0545
  article-title: Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions
  publication-title: Vet. Res.
  doi: 10.1186/s13567-015-0285-x
– volume: 162
  start-page: 3753
  issue: 12
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0270
  article-title: Cellular cholesterol is required for porcine nidovirus infection
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-017-3545-4
– volume: 96
  start-page: 4562
  issue: 11
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0600
  article-title: Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/sky320
– volume: 50
  start-page: 101
  issue: 1
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0380
  article-title: Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets
  publication-title: Vet. Res.
  doi: 10.1186/s13567-019-0719-y
– volume: 517
  start-page: 16
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0275
  article-title: Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells
  publication-title: Virology
  doi: 10.1016/j.virol.2018.02.019
– volume: 9
  start-page: 130
  year: 2020
  ident: 10.1016/j.virusres.2020.198045_bib0385
  article-title: Host factors affecting generation of immunity against porcine epidemic diarrhea virus in pregnant and lactating swine and passive protection of neonates
  publication-title: Pathogens
  doi: 10.3390/pathogens9020130
– volume: 211
  start-page: 15
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0550
  article-title: Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2017.09.020
– volume: 7
  start-page: 5525
  issue: 10
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0085
  article-title: Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus
  publication-title: Viruses
  doi: 10.3390/v7102891
– volume: 61
  start-page: 397
  issue: 5
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0555
  article-title: Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.12269
– volume: 20
  issue: 21
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0240
  article-title: Emerging highly virulent porcine epidemic diarrhea virus: molecular mechanisms of attenuation and rational design of live attenuated vaccines
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20215478
– volume: 82
  start-page: 134
  issue: 1
  year: 2007
  ident: 10.1016/j.virusres.2020.198045_bib0630
  article-title: Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2006.03.007
– volume: 15
  start-page: 28
  issue: 1
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0590
  article-title: Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan
  publication-title: Virol. J.
  doi: 10.1186/s12985-018-0940-8
– volume: 23
  start-page: 84
  issue: 2
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0690
  article-title: Evaluation of time and temperature sufficient to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces
  publication-title: J. Swine Health Prod.
  doi: 10.54846/jshap/882
– volume: 89
  start-page: 6121
  issue: 11
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0465
  article-title: Receptor usage and cell entry of porcine epidemic diarrhea coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.00430-15
– volume: 177
  start-page: 373
  issue: 3–4
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0310
  article-title: Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2015.03.022
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0540
  article-title: Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104766
– volume: 20
  start-page: 1227
  issue: 7
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0710
  article-title: Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2007.140296
– year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0620
– volume: 91
  issue: 10
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0490
  article-title: Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor
  publication-title: J. Virol.
  doi: 10.1128/JVI.00202-17
– volume: 174
  start-page: 60
  issue: 1–2
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0500
  article-title: Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2014.09.002
– volume: 97
  start-page: 1823
  issue: 8
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0670
  article-title: Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000513
– volume: 226
  start-page: 85
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0635
  article-title: Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.06.002
– volume: 7
  start-page: 17439
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0640
  article-title: Altered gut microbiota profiles in sows and neonatal piglets associated with porcine epidemic diarrhea virus infection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17830-z
– volume: 201
  start-page: 62
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0455
  article-title: Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2017.01.015
– volume: 25
  start-page: 129
  issue: 3
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0075
  article-title: Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus
  publication-title: J. Swine Health Prod.
  doi: 10.54846/jshap/985
– volume: 243
  start-page: 467
  issue: 4
  year: 2013
  ident: 10.1016/j.virusres.2020.198045_bib0105
  article-title: Fighting a deadly pig disease
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 123
  start-page: 64
  issue: 1
  year: 2000
  ident: 10.1016/j.virusres.2020.198045_bib0335
  article-title: Transmissible gastroenteritis virus induces apoptosis in swine testicular cell lines but not in intestinal enterocytes
  publication-title: J. Comp. Pathol.
  doi: 10.1053/jcpa.2000.0386
– volume: 97
  start-page: 2528
  issue: 10
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0610
  article-title: Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000563
– volume: 119
  start-page: 99
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0325
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2018.06.009
– volume: 43
  start-page: 72
  issue: 1
  year: 2011
  ident: 10.1016/j.virusres.2020.198045_bib0585
  article-title: Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo
  publication-title: Virus Genes
  doi: 10.1007/s11262-011-0617-5
– volume: 178
  start-page: 31
  issue: 1–2
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0305
  article-title: Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2015.04.022
– volume: 556
  start-page: 255
  issue: 7700
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0790
  article-title: Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin
  publication-title: Nature
  doi: 10.1038/s41586-018-0010-9
– volume: 10
  issue: 12
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0045
  article-title: A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144818
– volume: 12
  start-page: 70
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0095
  article-title: Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-016-0697-5
– volume: 47
  start-page: 118
  issue: 1
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0185
  article-title: Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge
  publication-title: Vet. Res.
  doi: 10.1186/s13567-016-0402-5
– volume: 204
  start-page: 134
  issue: 2
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0285
  article-title: Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2015.02.017
– volume: 23
  start-page: 137
  issue: 2
  year: 2001
  ident: 10.1016/j.virusres.2020.198045_bib0350
  article-title: Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence
  publication-title: Virus Genes
  doi: 10.1023/A:1011831902219
– year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0510
– volume: 235
  start-page: 6
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0425
  article-title: Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2017.03.018
– volume: 12
  issue: 11
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0595
  article-title: Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187309
– start-page: 14
  year: 2013
  ident: 10.1016/j.virusres.2020.198045_bib0615
  article-title: 2. Vaccine immunology
– volume: 34
  start-page: 592
  issue: 5
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0770
  article-title: Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection
  publication-title: Virol. Sin.
  doi: 10.1007/s12250-019-00127-y
– volume: 247
  start-page: 1083
  issue: 10
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0025
  article-title: Feed tote bags implicated in pig disease spread
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 11
  start-page: 38
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0065
  article-title: Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-015-0348-2
– volume: 48
  start-page: 61
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0020
  article-title: Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain
  publication-title: Vet. Res.
  doi: 10.1186/s13567-017-0469-7
– volume: 92
  issue: 4
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0765
  article-title: Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01677-17
– volume: 9
  start-page: 3811
  issue: 1
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0430
  article-title: An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06056-w
– volume: 19
  start-page: 46
  issue: 1
  year: 1982
  ident: 10.1016/j.virusres.2020.198045_bib0110
  article-title: Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study
  publication-title: Vet. Pathol.
  doi: 10.1177/030098588201900108
– volume: 16
  start-page: 121
  issue: 1
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0740
  article-title: Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain
  publication-title: Virol. J.
  doi: 10.1186/s12985-019-1232-7
– volume: 97
  start-page: 1107
  issue: 5
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0090
  article-title: Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000419
– volume: 208
  start-page: 77
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0720
  article-title: Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2017.07.014
– volume: 226
  start-page: 128
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0755
  article-title: Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.015
– volume: 13
  start-page: 89
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0345
  article-title: Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-017-1017-4
– volume: 24
  start-page: 1390
  issue: 7
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0050
  article-title: Spillover of swine coronaviruses, United States
  publication-title: Emerging Infect. Dis.
  doi: 10.3201/eid2407.172077
– volume: 21
  start-page: 650
  issue: 4
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0315
  article-title: Pathogenecity of 2 porcine deltacoronavirus strains in gnotobiotic pigs
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2104.141859
– volume: 11
  start-page: 310
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0650
  article-title: First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-015-0624-1
– volume: 3
  issue: 3
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0220
  article-title: Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in france in december 2014
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00535-15
– volume: 86
  start-page: 3995
  issue: 7
  year: 2012
  ident: 10.1016/j.virusres.2020.198045_bib0730
  publication-title: J. Virol.
  doi: 10.1128/JVI.06540-11
– volume: 13
  issue: 2
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0265
  article-title: Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192992
– volume: 168
  start-page: 193
  issue: 3–4
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0015
  article-title: Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs
  publication-title: Vet. Immunol. Immunopathol.
  doi: 10.1016/j.vetimm.2015.09.006
– volume: 65
  start-page: 660
  issue: 3
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0530
  article-title: Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.12823
– volume: 85
  start-page: 85
  issue: 1–2
  year: 2002
  ident: 10.1016/j.virusres.2020.198045_bib0140
  article-title: Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus
  publication-title: Vet. Immunol. Immunopathol.
  doi: 10.1016/S0165-2427(01)00417-2
– volume: 192
  start-page: 90
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0400
  article-title: Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2016.07.003
– volume: 100
  start-page: 243
  issue: 12
  year: 1977
  ident: 10.1016/j.virusres.2020.198045_bib0735
  article-title: An apparently new syndrome of porcine epidemic diarrhoea
  publication-title: Vet. Rec.
  doi: 10.1136/vr.100.12.243
– volume: 55
  start-page: 1426
  issue: 5
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0200
  article-title: Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02507-16
– volume: 16
  start-page: 2113
  issue: 6
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0460
  article-title: Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00957
– volume: 37
  start-page: 157
  issue: 2
  year: 1973
  ident: 10.1016/j.virusres.2020.198045_bib0520
  article-title: Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine
  publication-title: Can. J. Comp. Med.
– volume: 226
  start-page: 117
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0420
  article-title: Cellular entry of the porcine epidemic diarrhea virus
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.031
– volume: 23
  issue: 9
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0210
  article-title: A new Bat-HKU2-like coronavirus in swine, China, 2017
  publication-title: Emerging Infect. Dis.
  doi: 10.3201/eid2309.170915
– volume: 93
  issue: 5
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0435
  article-title: Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response
  publication-title: J. Virol.
  doi: 10.1128/JVI.01682-18
– volume: 182
  start-page: 57
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0320
  article-title: Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2015.10.022
– volume: 226
  start-page: 1
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0565
  article-title: Porcine epidemic diarrhea: a retrospect from Europe and matters of debate
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.030
– volume: 21
  start-page: 1833
  issue: 17–18
  year: 2003
  ident: 10.1016/j.virusres.2020.198045_bib0625
  article-title: Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(03)00027-6
– volume: 105
  start-page: 37
  issue: 1
  year: 2002
  ident: 10.1016/j.virusres.2020.198045_bib0135
  article-title: Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus
  publication-title: J. Virol. Methods
  doi: 10.1016/S0166-0934(02)00063-0
– volume: 14
  issue: 7
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0675
  article-title: Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219868
– volume: 10
  start-page: 727
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0375
  article-title: Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00727
– volume: 12
  start-page: 193
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0395
  article-title: Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus
  publication-title: Virol. J.
  doi: 10.1186/s12985-015-0421-2
– volume: 6
  start-page: 273
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0215
  article-title: The role of non-animal origin feed ingredients in transmission of viral pathogens of swine: a review of scientific literature
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2019.00273
– volume: 71
  start-page: 643
  issue: 6
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0470
  article-title: Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-015-0895-6
– volume: 54
  start-page: 323
  issue: 2
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0760
  article-title: Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States
  publication-title: Virus Genes
  doi: 10.1007/s11262-018-1542-7
– volume: 46
  start-page: 49
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0115
  article-title: Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs
  publication-title: Vet. Res.
  doi: 10.1186/s13567-015-0180-5
– volume: 10
  start-page: 176
  issue: 1
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0150
  article-title: An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-014-0176-9
– volume: 17
  start-page: 2546
  issue: 20–21
  year: 1999
  ident: 10.1016/j.virusres.2020.198045_bib0365
  article-title: Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(99)00059-6
– volume: 186
  start-page: 90
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0495
  article-title: Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2016.02.004
– volume: 46
  start-page: 109
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0475
  article-title: Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain
  publication-title: Vet. Res.
  doi: 10.1186/s13567-015-0249-1
– volume: 20
  issue: 10
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0695
  article-title: Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2010.140491
– volume: 46
  start-page: 134
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0440
  article-title: Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection
  publication-title: Vet. Res.
  doi: 10.1186/s13567-015-0278-9
– volume: 460–461
  start-page: 180
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0330
  article-title: Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor
  publication-title: Virology
  doi: 10.1016/j.virol.2014.04.040
– volume: 89
  start-page: 3332
  issue: 6
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0445
  article-title: Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains
  publication-title: J. Virol.
  doi: 10.1128/JVI.03196-14
– volume: 31
  start-page: 62
  issue: 1
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0195
  article-title: Effect of booster vaccination with inactivated porcine epidemic diarrhea virus on neutralizing antibody response in mammary secretions
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2017.0023
– volume: 20
  start-page: 872
  issue: 5
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0485
  article-title: Role of transportation in spread of porcine epidemic diarrhea virus infection, United States
  publication-title: Emerging Infect. Dis.
  doi: 10.3201/eid2005.131628
– volume: 113
  start-page: 59
  issue: 1
  year: 1995
  ident: 10.1016/j.virusres.2020.198045_bib0665
  article-title: An immunohistochemical investigation of porcine epidemic diarrhoea
  publication-title: J. Comp. Pathol.
  doi: 10.1016/S0021-9975(05)80069-6
– volume: 4
  start-page: e00737
  issue: 5
  year: 2013
  ident: 10.1016/j.virusres.2020.198045_bib0260
  article-title: Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States
  publication-title: mBio
  doi: 10.1128/mBio.00737-13
– volume: 100
  start-page: 206
  issue: 2
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0745
  article-title: Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001216
– volume: 214
  start-page: 99
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0035
  article-title: Evaluation of a peroxygen-based disinfectant for inactivation of porcine epidemic diarrhea virus at low temperatures on metal surfaces
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2017.12.019
– volume: 20
  start-page: 131
  issue: 2
  year: 1989
  ident: 10.1016/j.virusres.2020.198045_bib0230
  article-title: Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV)
  publication-title: Vet. Microbiol.
  doi: 10.1016/0378-1135(89)90036-9
– volume: 25
  start-page: 649
  issue: 5
  year: 2013
  ident: 10.1016/j.virusres.2020.198045_bib0655
  article-title: Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences
  publication-title: J. Vet. Diagn. Investig.
  doi: 10.1177/1040638713501675
– volume: 226
  start-page: 20
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0450
  article-title: Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.023
– volume: 22
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0055
  article-title: Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy
  publication-title: Emerg. Infect. diseases
  doi: 10.3201/eid2201.150544
– volume: 30
  start-page: 284
  issue: 3
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0355
  article-title: Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME15046
– volume: 163
  start-page: 2485
  issue: 9
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0660
  article-title: New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-018-3874-y
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0685
  article-title: Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139266
– volume: 11
  issue: 8
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0780
  article-title: Serological screening for coronavirus infections in cats
  publication-title: Viruses
  doi: 10.3390/v11080743
– volume: 102
  start-page: 63
  issue: 1–2
  year: 1988
  ident: 10.1016/j.virusres.2020.198045_bib0785
  article-title: Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related
  publication-title: Arch. Virol.
– volume: 7
  start-page: 214
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0280
  article-title: Immunoglobulin transporting receptors are potential targets for the immunity enhancement and generation of mammary gland bioreactor
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00214
– volume: 150
  start-page: 101
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0570
  article-title: An epidemiological investigation of the early phase of the porcine epidemic diarrhea (PED) outbreak in Canadian swine herds in 2014: a case-control study
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2017.12.009
– volume: 226
  start-page: 108
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0120
  article-title: Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.08.005
– volume: 10
  issue: 2
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0775
  article-title: The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117441
– volume: 22
  start-page: 345
  issue: 2
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0795
  article-title: Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs
  publication-title: Pol. J. Vet. Sci.
  doi: 10.24425/pjvs.2019.129226
– volume: 91
  issue: 14
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0245
  article-title: Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets
  publication-title: J. Virol.
  doi: 10.1128/JVI.00227-17
– volume: 586
  start-page: 384
  issue: 4
  year: 2012
  ident: 10.1016/j.virusres.2020.198045_bib0700
  article-title: PEDV ORF3 encodes an ion channel protein and regulates virus production
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.01.005
– volume: 6
  start-page: 34
  year: 2019
  ident: 10.1016/j.virusres.2020.198045_bib0360
  article-title: PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2019.00034
– volume: 28
  start-page: 671
  issue: 6
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0535
  article-title: Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs
  publication-title: J. Vet. Diagn. Invest.
  doi: 10.1177/1040638716663251
– volume: 130
  start-page: 65
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0225
  article-title: iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.09.002
– volume: 13
  start-page: 356
  issue: 1
  year: 2017
  ident: 10.1016/j.virusres.2020.198045_bib0340
  article-title: Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-017-1283-1
– volume: 19
  start-page: 2048
  issue: 12
  year: 2013
  ident: 10.1016/j.virusres.2020.198045_bib0705
  article-title: Porcine epidemic diarrhea virus variants with high pathogenicity, China
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1912.121088
– volume: 103
  start-page: 103
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0750
  article-title: Isolation and experimental inoculation of an S INDEL strain of porcine epidemic diarrhea virus in Japan
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2015.09.024
– volume: 84
  start-page: 1
  issue: 1–2
  year: 2002
  ident: 10.1016/j.virusres.2020.198045_bib0130
  article-title: Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV
  publication-title: Vet. Immunol. Immunopathol.
  doi: 10.1016/S0165-2427(01)00386-5
– volume: 7
  start-page: e01451
  issue: 1
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0040
  article-title: Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A
  publication-title: mBio
  doi: 10.1128/mBio.01451-15
– volume: 8
  start-page: 55
  issue: 3
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0155
  article-title: Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains
  publication-title: Viruses
  doi: 10.3390/v8030055
– volume: 11
  start-page: 142
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0645
  article-title: Emergence of porcine epidemic diarrhea virus in southern Germany
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-015-0454-1
– volume: 226
  start-page: 152
  year: 2016
  ident: 10.1016/j.virusres.2020.198045_bib0680
  article-title: Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.05.003
– volume: 65
  start-page: 1720
  issue: 6
  year: 2018
  ident: 10.1016/j.virusres.2020.198045_bib0165
  article-title: Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.12945
– volume: 52
  start-page: 234
  issue: 1
  year: 2014
  ident: 10.1016/j.virusres.2020.198045_bib0080
  article-title: Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02820-13
– volume: 6
  start-page: 157
  issue: 2
  year: 1981
  ident: 10.1016/j.virusres.2020.198045_bib0145
  article-title: The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, Cv-777
  publication-title: Vet. Microbiol.
  doi: 10.1016/0378-1135(81)90007-9
– volume: 176
  start-page: 161
  issue: 1–2
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0205
  article-title: Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2014.12.019
– volume: 144
  start-page: 41
  issue: 1–2
  year: 2010
  ident: 10.1016/j.virusres.2020.198045_bib0525
  article-title: Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2009.12.024
– volume: 179
  start-page: 213
  issue: 3–4
  year: 2015
  ident: 10.1016/j.virusres.2020.198045_bib0070
  article-title: Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2015.05.027
SSID ssj0006376
Score 2.6754744
SecondaryResourceType review_article
Snippet •Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig.•S INDEL and non-S INDEL strains were detected...
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration...
• Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration and high mortality in neonatal pig. • S INDEL and non-S INDEL strains were detected...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 198045
SubjectTerms Aerosols
airborne transmission
Animals
B-lymphocytes
biosecurity
Coronavirus
Coronavirus Infections - pathology
Coronavirus Infections - prevention & control
Coronavirus Infections - transmission
diarrhea
disease outbreaks
Disease Progression
enteritis
etiology
farms
herd immunity
ileum
Immunity, Humoral - immunology
immunoglobulin A
innate immunity
Intestinal Mucosa - pathology
Intestinal Mucosa - virology
jejunum
mortality
nasal cavity
Pathogenesis
PEDV
piglets
Pigs
Porcine epidemic diarrhea virus
Porcine epidemic diarrhea virus - genetics
Porcine epidemic diarrhea virus - immunology
Porcine epidemic diarrhea virus - pathogenicity
Prevention
Receptors, Virus - metabolism
RNA
sows
Swine
swine diseases
Swine Diseases - pathology
Swine Diseases - transmission
Swine Diseases - virology
United States
vaccines
viral shedding
Viral Tropism - physiology
viremia
Viremia - blood
virulence
viruses
vomiting
Title Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control
URI https://dx.doi.org/10.1016/j.virusres.2020.198045
https://www.ncbi.nlm.nih.gov/pubmed/32502552
https://www.proquest.com/docview/2410355117
https://www.proquest.com/docview/2477614810
https://pubmed.ncbi.nlm.nih.gov/PMC7266596
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9NADLemoUm8INgGFNh0SDyA1KzJfSXHWzU2FRDTJBjaW3SXXrdMU1KFBIkX_nbsfJR1IPbAY1tbup5d--fG_hngFXGay8SZQPq5DqQyKsAyyAVm7ikjacstzQ5_OtGzM_nhXJ1vwOEwC0NtlX3s72J6G637dyb9bU6WeT75jGCF2OU4J1TP2yE-KWPy8oOfv9s8tGgXzJFwQNI3poSvDr7nVYOZiGi7OQ3uJSGNNf09Qf0JQG_3Ud5ITMcP4UGPKNm0O_Qj2PDFNmx1OyZ_7EBzWlb08Jz5bhdsxtAjqgpjMGvPxV6fHr37-uYtmxasWVL9z8qC-brTH7Oakhk6A_2rNma0wLi8oPiYfxszW8zZsueAQiV62be-78LZ8dGXw1nQ71oIMhXKOuDERGRctNALp7nlYeIwkWOxFGpHEE2oTCION4kWkU2kd1pY7RcusQItjaDuMWwWZeGfArNyLqXJqBJy0hljhbBSeaeiJBOJjUaghgtOs56InPZhXKdDx9lVOhgmJcOknWFGMFnpLTsqjjs1zGC_dM2pUswXd-q-HAye4iXTYxRb-LJBIRmFiNKiKP6XTBwTxWoUjuBJ5ySrMwtEnVjI8RHEa-6zEiDG7_VPivyyZf6OEU4po5_9x_d6Dvc5rTBu2-RewGZdNX4PcVXt9tsfzj7cm77_ODv5BYhfI74
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJvlaSSQQNp0E8dx4kocKtpqSx-qRIt6M3bWC6lQskoTUC_8Kf5gZ_JYuoDoAfWYxI4cz2Tmm2TmG4CXxGkuEqs84SbSE5GKPAyDrKcmjjySNNxQ7fDunhwfivdH0dES_OxrYSitsrP9rU1vrHV3ZtTt5miWZaMPCFaIXY5zQvXcV11m5bY7_Y5x28nbrXUU8ivONzcO3o29rrWAl0a-qDxOxDvKBlM5tZIb7icW_RbGBr60hEjCKBUIO1Uiw8AkwlkZGummNjEhPhhiGLzvFbgq0FxQ24SVH7_ySmTYdLSj1Xm0vHNlyccr37KyRtdHPOGcKgUTn-qo_u4R_0S8vydunvOEm7fgZgdh2Vq7S7dhyeV34Frb1PL0LtT7RUl_65lrm8-mDFWwLNHos2Zd7PX-xvrHN6tsLWf1jD44sCJnrmrnD1lF3hO1jz7jDRl1TC4-k0HOTobM5BM260incBIddrn29-DwUiRwH5bzIncPgRkxEUKlFHpZYZUyYWhE5GwUJGmYmGAAUb_BOu2Yz6kBx1fdp7gd614wmgSjW8EMYDSfN2u5Py6coXr56QUt1uigLpz7ohe4xk2m_zYmd0WNg0TgIywMgvhfY-KYOF0DfwAPWiWZrzlEmIuRIx9AvKA-8wFEMb54Jc--NFTjMeK3SMlH__Fcz-H6-GB3R-9s7W0_hht0pc3RewLLVVm7pwjqKvuseYkYfLrst_YMyO5cjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porcine+epidemic+diarrhea+virus+%28PEDV%29%3A+An+update+on+etiology%2C+transmission%2C+pathogenesis%2C+and+prevention+and+control&rft.jtitle=Virus+research&rft.au=Jung%2C+Kwonil&rft.au=Saif%2C+Linda+J&rft.au=Wang%2C+Qiuhong&rft.date=2020-09-01&rft.eissn=1872-7492&rft.volume=286&rft.spage=198045&rft_id=info:doi/10.1016%2Fj.virusres.2020.198045&rft_id=info%3Apmid%2F32502552&rft.externalDocID=32502552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon