Circular Polarization in Atmospheric Aerosols
Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amou...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 22; no. 20; pp. 13581 - 13605 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
European Geosciences Union
20.10.2022
Copernicus GmbH Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures.
In this manuscript, circularly polarized radiation that results from the interaction of incident unpolarized radiation are considered in three physical settings: optical activity originating in biogenic aerosols, alignment of non-spherical particles in the presence of electrical fields (such as dust, smoke, and volcanic ash) and aerosol multiple scattering effects. Observational and theoretical evidence of, and the settings and conditions for non-zero aerosol circular polarization generated from incident unpolarized radiation are here gathered and discussed. In addition, novel radiative transfer simulations are shown to illustrate notable spectral and other features where circular polarization may provide additional information that is possibly independent from total intensity and linear polarization only observations.
Current techniques for detection of aerosol composition (also referred as aerosol type) from space provide limited information. Remote identification of aerosols such as smoke, volcanic ash, and dust particles can only be accomplished with some degree of confidence for moderate to high concentrations. When the same aerosols are found at lower concentrations (but still high enough to be of importance for air quality and cloud formation), these methods often produce ambiguous results. The circular polarization of aerosols is rarely utilized, and we explore its value for improved determination aerosol composition. This study is presented as an overview with a goal to provide a new perspective on an overlooked optical property and to trigger interest in further exploration of this subject. |
---|---|
AbstractList | Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures. In this paper, circularly polarized radiation that results from the interaction of incident unpolarized radiation is considered in three physical settings: optical activity originating in biogenic aerosols, alignment of non-spherical particles in the presence of electrical fields (such as dust, smoke, and volcanic ash), and aerosol multiple scattering effects. Observational and theoretical evidence of, and the settings and conditions for, non-zero aerosol circular polarization generated from incident unpolarized radiation are here gathered and discussed. In addition, novel radiative transfer simulations are shown to illustrate notable spectral and other features where circular polarization may provide additional information that is possibly independent from total intensity and linear polarization-only observations. Current techniques for the detection of aerosol composition (also referred as aerosol type) from space provide limited information. Remote identification of aerosols such as smoke, volcanic ash, and dust particles can only be accomplished with some degree of confidence for moderate to high concentrations. When the same aerosols are found at lower concentrations (but still high enough to be of importance for air quality and cloud formation), these methods often produce ambiguous results. The circular polarization of aerosols is rarely utilized, and we explore its value for improved determination aerosol composition. This study is presented as an overview with a goal to provide a new perspective on an overlooked optical property and to trigger interest in further exploration of this subject. Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures. In this paper, circularly polarized radiation that results from the interaction of incident unpolarized radiation is considered in three physical settings: optical activity originating in biogenic aerosols, alignment of non-spherical particles in the presence of electrical fields (such as dust, smoke, and volcanic ash), and aerosol multiple scattering effects. Observational and theoretical evidence of, and the settings and conditions for, non-zero aerosol circular polarization generated from incident unpolarized radiation are here gathered and discussed. In addition, novel radiative transfer simulations are shown to illustrate notable spectral and other features where circular polarization may provide additional information that is possibly independent from total intensity and linear polarization-only observations. Current techniques for the detection of aerosol composition (also referred as aerosol type) from space provide limited information. Remote identification of aerosols such as smoke, volcanic ash, and dust particles can only be accomplished with some degree of confidence for moderate to high concentrations. When the same aerosols are found at lower concentrations (but still high enough to be of importance for air quality and cloud formation), these methods often produce ambiguous results. The circular polarization of aerosols is rarely utilized, and we explore its value for improved determination aerosol composition. This study is presented as an overview with a goal to provide a new perspective on an overlooked optical property and to trigger interest in further exploration of this subject. Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures. In this manuscript, circularly polarized radiation that results from the interaction of incident unpolarized radiation are considered in three physical settings: optical activity originating in biogenic aerosols, alignment of non-spherical particles in the presence of electrical fields (such as dust, smoke, and volcanic ash) and aerosol multiple scattering effects. Observational and theoretical evidence of, and the settings and conditions for non-zero aerosol circular polarization generated from incident unpolarized radiation are here gathered and discussed. In addition, novel radiative transfer simulations are shown to illustrate notable spectral and other features where circular polarization may provide additional information that is possibly independent from total intensity and linear polarization only observations. Current techniques for detection of aerosol composition (also referred as aerosol type) from space provide limited information. Remote identification of aerosols such as smoke, volcanic ash, and dust particles can only be accomplished with some degree of confidence for moderate to high concentrations. When the same aerosols are found at lower concentrations (but still high enough to be of importance for air quality and cloud formation), these methods often produce ambiguous results. The circular polarization of aerosols is rarely utilized, and we explore its value for improved determination aerosol composition. This study is presented as an overview with a goal to provide a new perspective on an overlooked optical property and to trigger interest in further exploration of this subject. Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures. |
Audience | PUBLIC Academic |
Author | Knobelspiesse, Kirk D Gassó, Santiago |
Author_xml | – sequence: 1 givenname: Santiago orcidid: 0000-0002-6872-0018 surname: Gassó fullname: Gassó, Santiago organization: University of Maryland, College Park – sequence: 2 givenname: Kirk D orcidid: 0000-0001-5986-1751 surname: Knobelspiesse fullname: Knobelspiesse, Kirk D organization: Goddard Space Flight Center |
BookMark | eNp9kluLUzEUhYOM4MzoDxB8KPjkwxmzcz-PpehMYUDx8hzSJKemnJ7UJIXRX-9uKyMVkYQkbL612MnKFbmY8hQJeQn0RkIv3jq_6xjrgEsDHaOMPSGXoAztNGfi4vEM6hm5qnVDKZMUxCXpFqn4_ejK7GPGNf10LeVplqbZvG1z3X2LJfnZPJZc81ifk6eDG2t88Xu_Jl_fv_uyuOvuP9wuF_P7zksqWseE68GE3ihQUkcljOdOhBWD6L3XMqyCC0Jp1_MBVkZwyQ1IGJTwjK905NdkefIN2W3srqStKz9sdskeC7msrSst-TFaTrXHS2sQOMOARr3qpeo10yZQbdDr9clrV_L3fazNbvK-TNi-ZZopOIDyD7V2aJqmIbfi_DZVb-eacWG4ZBqpm39QOELcJo-JDAnrZ4I3ZwJkWnxoa7ev1S4_fzpn4cR6fOxa4vB4caD2ELLFkC1j9hiyPYSMGv2Xxqd2jBAbS-N_la9OyslVZxGvhzqn-DO0UPwXkkOw0A |
CitedBy_id | crossref_primary_10_3390_photonics12030228 crossref_primary_10_3390_rs15205010 crossref_primary_10_1016_j_measurement_2024_115024 crossref_primary_10_1038_s43247_024_01682_3 crossref_primary_10_1016_j_jqsrt_2023_108849 crossref_primary_10_1016_j_scitotenv_2024_174793 crossref_primary_10_1109_JSEN_2024_3360241 crossref_primary_10_1525_elementa_2023_00043 crossref_primary_10_5194_amt_16_5863_2023 crossref_primary_10_1109_OJAP_2024_3514122 crossref_primary_10_1109_TGRS_2023_3317845 crossref_primary_10_5194_amt_16_4529_2023 crossref_primary_10_1016_j_jqsrt_2024_109244 crossref_primary_10_3390_s24113312 crossref_primary_10_1016_j_scitotenv_2025_178768 crossref_primary_10_1080_02786826_2023_2279525 crossref_primary_10_1016_j_jqsrt_2023_108494 crossref_primary_10_1039_D3CP05109A |
Cites_doi | 10.1039/b715312k 10.1029/97JD02074 10.1029/2000JD900584 10.1016/j.rse.2005.06.006 10.1093/toxsci/kfp097 10.1016/j.envint.2020.106057 10.1117/12.237598 10.1016/j.jqsrt.2010.07.001 10.1134/S1024856009010163 10.1088/0957-0233/11/12/705 10.1029/2018JD029465 10.1126/science.aax1839 10.1046/j.1365-8711.2000.03323.x 10.1038/326270a0 10.1007/978-1-4020-5502-7_6 10.1111/maps.13560 10.5194/acp-7-6161-2007 10.1038/s41598-018-21590-9 10.1364/OE.448288 10.1364/AO.45.005453 10.1002/9783527618156 10.1126/science.207.4429.434 10.1117/1.2434980 10.1007/BF01491442 10.5194/amt-4-975-2011 10.1016/j.atmosenv.2014.05.061 10.1364/AO.6.000741 10.1039/C6EM00354K 10.1002/chir.20789 10.1364/AO.46.003332 10.5194/acp-16-1081-2016 10.1007/978-3-319-35095-0_121 10.1029/2011JD016689 10.1364/AO.38.003937 10.1016/0009-2614(74)85144-4 10.1364/JOSAA.11.001491 10.1029/2020GH000330 10.1201/9781003220435 10.1089/ast.2019.2050 10.1002/jgrd.50712 10.5194/acp-12-4207-2012 10.1038/ncomms3122 10.1016/j.marchem.2005.03.007 10.5194/amt-15-2299-2022 10.1088/1464-4258/4/3/312 10.5194/acp-17-12911-2017 10.1021/jp302631z 10.5194/amt-14-7453-2021 10.1007/978-94-007-1636-0_7 10.1063/1.430622 10.1021/acs.chemrev.9b00474 10.1002/2013JD020188 10.1364/JOSA.69.001051 10.1175/1520-0469(1974)031<1137:IOTPOV>2.0.CO;2 10.5194/amt-8-237-2015 10.1029/JC077i030p05856 10.1364/OL.42.000494 10.1615/ICHMT.2007.ConfElectromagLigScat.480 10.1002/2013JD021411 10.1039/c4em00102h 10.1364/AO.34.004563 10.1364/BOE.7.001160 10.1146/annurev.pc.35.100184.001553 10.1029/2000JD900282 10.1038/232165a0 10.1002/jgrd.50600 10.1023/A:1016028930938 10.1071/EN08047 10.1029/2004JD004798 10.3389/fenvs.2019.00094 10.5194/amt-14-3233-2021 10.1007/978-94-010-2661-1_19 10.3389/frsen.2021.709040 10.1029/2009JD012820 10.1007/978-94-007-1636-0_17 10.1117/12.893741 10.1086/507955 10.5194/acp-13-303-2013 10.1117/12.278811 10.1117/12.2053245 10.5772/16456 10.1017/CBO9780511535468 10.5194/acp-19-13409-2019 10.5194/acp-22-3931-2022 10.1088/1538-3873/ab1933 10.1175/MWR-D-17-0253.1 10.1371/journal.pone.0213909 10.1039/c1cp20428a 10.5194/amt-9-3031-2016 10.1088/1748-9326/aae591 10.5194/amt-6-2989-2013 10.1021/jacs.1c07509 10.5194/acp-19-3357-2019 10.1029/2001JD001409 10.3389/fspas.2020.00026 10.1088/1748-9326/5/2/024004 10.1016/j.jqsrt.2017.11.024 10.1175/BAMS-D-14-00199.1 10.1364/AO.18.000712 10.1029/2007JD009661 10.1007/BF03342662 10.3389/fpubh.2020.00014 10.1364/OE.26.003791 10.1016/j.pss.2014.01.002 10.1007/s11120-018-0572-2 10.1063/1.1723743 10.1038/nature02959 10.1117/12.2273361 10.1175/2009JTECHA1231.1 10.1016/j.jms.2018.08.007 10.1117/1.3652896 10.1016/j.atmosenv.2008.04.038 10.1126/sciadv.1500157 10.1016/j.jqsrt.2013.02.012 10.1073/pnas.73.2.486 10.1029/2020EF001673 10.1017/CBO9781139019064 10.1364/OE.20.021457 10.1016/j.jqsrt.2015.10.014 10.1366/0003702934066073 10.5194/acp-19-3515-2019 10.3402/tellusb.v64i0.15598 10.1073/pnas.0811618106 10.1177/0033354916679983 10.1175/1520-0469(1971)028<1515:CPOSRB>2.0.CO;2 10.3402/tellusb.v65i0.20805 10.1007/978-3-540-48546-9_6 10.1016/j.bbagen.2018.03.005 10.1016/j.tree.2006.07.004 10.1029/2008GL034210 10.1175/2010BAMS3009.1 10.1088/1742-6596/301/1/012004 10.1146/annurev-biodatasci-110920-093120 10.1016/0019-1035(78)90035-0 10.1080/10643389.2019.1665944 10.1117/1.3595850 10.1002/2016GL068463 10.1086/340901 10.5194/acp-16-7917-2016 10.1111/j.1600-0889.2005.00148.x 10.1073/pnas.0810215106 10.1364/AO.57.006817 10.5194/acp-21-927-2021 10.1134/S1028334X1311010X 10.1029/2002JD002544 10.5194/acp-18-11547-2018 10.1016/j.jqsrt.2019.02.006 10.1126/science.275.5302.951 10.1364/AO.57.005464 10.5303/JKAS.2014.47.1.15 10.1117/3.2537401.ch1 10.1126/science.281.5377.672 10.1117/12.21485 10.1002/jbio.201600152 10.1103/PhysRevE.60.4899 10.1051/0004-6361/202140845 10.3847/PSJ/abe4da 10.1002/2015JD023322 10.1088/1748-9326/6/1/014001 10.1007/BF00815892 10.1007/BF00057992 10.5194/acp-10-1315-2010 10.1016/j.jqsrt.2018.11.024 10.3390/app11198892 10.1117/12.619576 10.5194/acp-15-5457-2015 10.1117/12.945741 10.1364/AO.36.005168 10.1029/2000JD900725 10.5194/acp-15-12011-2015 10.1364/OL.20.001356 10.1038/srep05508 10.1016/B978-0-12-810437-8.00003-7 10.1364/AO.19.000962 10.1038/sj.bjp.0701415 10.1016/j.scitotenv.2018.11.146 10.1021/ar50111a002 10.1364/AO.37.007897 10.1117/1.1483879 10.1016/0022-2860(95)08538-7 10.5194/acp-19-13773-2019 10.1117/1.2960934 10.1021/acs.estlett.8b00229 10.1016/j.jaerosci.2020.105657 10.1177/193229681100500227 10.1029/JA085iA13p08129 10.1103/PhysRevLett.100.014501 10.1029/2000GL012798 10.1029/2000JD000164 10.1002/2014JD021672 10.1002/2014JD022495 10.1201/9780203911587 10.5194/amt-8-4083-2015 10.5194/acp-20-14801-2020 10.1042/bj1420193 10.1016/S0021-9673(01)00587-8 10.1016/j.rse.2017.05.002 10.1364/AO.57.002394 10.1073/pnas.82.2.401 10.1364/AO.48.004130 10.1364/AO.28.001752 10.1002/2017JD026577 10.1051/0004-6361/202141333 10.5194/acp-21-6895-2021 10.1117/1.429877 10.1093/toxsci/kfr088 10.1029/2020EA001222 10.1086/156866 10.1002/jbio.201400104 10.1364/AO.41.000792 10.1016/B978-0-444-64027-7.00002-1 10.1134/S1024856022040133 10.1029/2011GL048599 10.1029/2011GL047323 10.1016/j.newar.2020.101596 10.5194/amt-12-6489-2019 10.1016/S0022-4073(02)00320-5 10.5194/acp-13-4235-2013 10.1117/12.49258 10.5194/acp-7-973-2007 10.5194/acp-20-3181-2020 10.1016/j.marchem.2004.06.017 10.5194/bg-11-1435-2014 10.1117/1.3657505 10.3389/fmicb.2021.764178 10.1029/2008GL035085 |
ContentType | Journal Article |
Copyright | Copyright Determination: GOV_PERMITTED COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright Determination: GOV_PERMITTED – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | CYE CYI AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-22-13581-2022 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Public Health |
EISSN | 1680-7324 |
EndPage | 13605 |
ExternalDocumentID | oai_doaj_org_article_307c358714714df3819695697278d078 A723483527 10_5194_acp_22_13581_2022 20230002746 |
GrantInformation | NNX17AE79A 478643.02.12.02.13 |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CYE CYI D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 AAYXX CITATION BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c504t-24a918d9861657e648c3a4db21eccc75dbdad467a93f1b843538151f64c23b7e3 |
IEDL.DBID | BENPR |
ISSN | 1680-7316 1680-7324 |
IngestDate | Wed Aug 27 01:22:47 EDT 2025 Fri Jul 25 06:03:45 EDT 2025 Tue Jun 17 20:53:35 EDT 2025 Tue Jun 10 20:21:53 EDT 2025 Fri Jun 27 04:59:46 EDT 2025 Tue Jul 01 04:35:56 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Aug 15 15:23:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | Aerosol Type Circular Polarization |
Language | English |
License | Creative Commons License: CCBY https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-24a918d9861657e648c3a4db21eccc75dbdad467a93f1b843538151f64c23b7e3 |
Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5986-1751 0000-0002-6872-0018 |
OpenAccessLink | https://www.proquest.com/docview/2726172785?pq-origsite=%requestingapplication% |
PQID | 2726172785 |
PQPubID | 105744 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_307c358714714df3819695697278d078 proquest_journals_2726172785 gale_infotracmisc_A723483527 gale_infotracacademiconefile_A723483527 gale_incontextgauss_ISR_A723483527 crossref_primary_10_5194_acp_22_13581_2022 crossref_citationtrail_10_5194_acp_22_13581_2022 nasa_ntrs_20230002746 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-20 |
PublicationDateYYYYMMDD | 2022-10-20 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2022 |
Publisher | European Geosciences Union Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: European Geosciences Union – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
References_xml | – ident: ref32 doi: 10.1039/b715312k – ident: ref79 doi: 10.1029/97JD02074 – ident: ref80 doi: 10.1029/2000JD900584 – ident: ref40 doi: 10.1016/j.rse.2005.06.006 – ident: ref198 doi: 10.1093/toxsci/kfp097 – ident: ref200 doi: 10.1016/j.envint.2020.106057 – ident: ref16 doi: 10.1117/12.237598 – ident: ref137 doi: 10.1016/j.jqsrt.2010.07.001 – ident: ref169 doi: 10.1134/S1024856009010163 – ident: ref146 doi: 10.1088/0957-0233/11/12/705 – ident: ref189 doi: 10.1029/2018JD029465 – ident: ref179 doi: 10.1126/science.aax1839 – ident: ref66 doi: 10.1046/j.1365-8711.2000.03323.x – ident: ref98 doi: 10.1038/326270a0 – ident: ref67 doi: 10.1007/978-1-4020-5502-7_6 – ident: ref44 – ident: ref64 doi: 10.1111/maps.13560 – ident: ref212 doi: 10.5194/acp-7-6161-2007 – ident: ref184 doi: 10.1038/s41598-018-21590-9 – ident: ref163 doi: 10.1364/OE.448288 – ident: ref211 doi: 10.1364/AO.45.005453 – ident: ref21 doi: 10.1002/9783527618156 – ident: ref58 doi: 10.1126/science.207.4429.434 – ident: ref227 doi: 10.1117/1.2434980 – ident: ref22 doi: 10.1007/BF01491442 – ident: ref46 doi: 10.5194/amt-4-975-2011 – ident: ref48 doi: 10.1016/j.atmosenv.2014.05.061 – ident: ref61 doi: 10.1364/AO.6.000741 – ident: ref25 doi: 10.1039/C6EM00354K – ident: ref9 doi: 10.1002/chir.20789 – ident: ref76 doi: 10.1364/AO.46.003332 – ident: ref38 doi: 10.5194/acp-16-1081-2016 – ident: ref150 doi: 10.1007/978-3-319-35095-0_121 – ident: ref187 doi: 10.1029/2011JD016689 – ident: ref118 doi: 10.1364/AO.38.003937 – ident: ref19 doi: 10.1016/0009-2614(74)85144-4 – ident: ref43 doi: 10.1364/JOSAA.11.001491 – ident: ref133 doi: 10.1029/2020GH000330 – ident: ref149 doi: 10.1201/9781003220435 – ident: ref129 doi: 10.1089/ast.2019.2050 – ident: ref86 doi: 10.1002/jgrd.50712 – ident: ref156 doi: 10.5194/acp-12-4207-2012 – ident: ref29 doi: 10.1038/ncomms3122 – ident: ref110 doi: 10.1016/j.marchem.2005.03.007 – ident: ref164 doi: 10.5194/amt-15-2299-2022 – ident: ref106 doi: 10.1088/1464-4258/4/3/312 – ident: ref15 doi: 10.5194/acp-17-12911-2017 – ident: ref153 – ident: ref50 doi: 10.1021/jp302631z – ident: ref209 doi: 10.5194/amt-14-7453-2021 – ident: ref84 doi: 10.1007/978-94-007-1636-0_7 – ident: ref20 doi: 10.1063/1.430622 – ident: ref65 doi: 10.1021/acs.chemrev.9b00474 – ident: ref1 doi: 10.1002/2013JD020188 – ident: ref30 doi: 10.1364/JOSA.69.001051 – ident: ref73 doi: 10.1175/1520-0469(1974)031<1137:IOTPOV>2.0.CO;2 – ident: ref41 doi: 10.5194/amt-8-237-2015 – ident: ref93 doi: 10.1029/JC077i030p05856 – ident: ref145 doi: 10.1364/OL.42.000494 – ident: ref178 doi: 10.1615/ICHMT.2007.ConfElectromagLigScat.480 – ident: ref180 doi: 10.1002/2013JD021411 – ident: ref69 doi: 10.1039/c4em00102h – ident: ref78 doi: 10.1364/AO.34.004563 – ident: ref223 doi: 10.1364/BOE.7.001160 – ident: ref206 doi: 10.1146/annurev.pc.35.100184.001553 – ident: ref45 doi: 10.1029/2000JD900282 – ident: ref99 doi: 10.1038/232165a0 – ident: ref188 doi: 10.1002/jgrd.50600 – ident: ref141 doi: 10.1023/A:1016028930938 – ident: ref229 doi: 10.1071/EN08047 – ident: ref81 doi: 10.1029/2004JD004798 – ident: ref175 doi: 10.3389/fenvs.2019.00094 – ident: ref103 doi: 10.5194/amt-14-3233-2021 – ident: ref190 doi: 10.1007/978-94-010-2661-1_19 – ident: ref204 doi: 10.3389/frsen.2021.709040 – ident: ref31 doi: 10.1029/2009JD012820 – ident: ref186 doi: 10.1007/978-94-007-1636-0_17 – ident: ref217 doi: 10.1117/12.893741 – ident: ref85 doi: 10.1086/507955 – ident: ref181 doi: 10.5194/acp-13-303-2013 – ident: ref131 doi: 10.1117/12.278811 – ident: ref33 doi: 10.1117/12.2053245 – ident: ref108 doi: 10.5772/16456 – ident: ref13 doi: 10.1017/CBO9780511535468 – ident: ref119 doi: 10.5194/acp-19-13409-2019 – ident: ref192 doi: 10.5194/acp-22-3931-2022 – ident: ref202 doi: 10.1088/1538-3873/ab1933 – ident: ref113 doi: 10.1175/MWR-D-17-0253.1 – ident: ref216 doi: 10.1371/journal.pone.0213909 – ident: ref139 doi: 10.1039/c1cp20428a – ident: ref57 doi: 10.5194/amt-9-3031-2016 – ident: ref75 doi: 10.1088/1748-9326/aae591 – ident: ref116 doi: 10.5194/amt-6-2989-2013 – ident: ref14 doi: 10.1021/jacs.1c07509 – ident: ref183 doi: 10.5194/acp-19-3357-2019 – ident: ref18 doi: 10.1029/2001JD001409 – ident: ref155 doi: 10.3389/fspas.2020.00026 – ident: ref74 doi: 10.1088/1748-9326/5/2/024004 – ident: ref158 doi: 10.1016/j.jqsrt.2017.11.024 – ident: ref168 doi: 10.1175/BAMS-D-14-00199.1 – ident: ref7 doi: 10.1364/AO.18.000712 – ident: ref174 doi: 10.1029/2007JD009661 – ident: ref52 doi: 10.1007/BF03342662 – ident: ref135 doi: 10.3389/fpubh.2020.00014 – ident: ref120 doi: 10.1364/OE.26.003791 – ident: ref107 doi: 10.1016/j.pss.2014.01.002 – ident: ref128 doi: 10.1007/s11120-018-0572-2 – ident: ref166 doi: 10.1063/1.1723743 – ident: ref160 doi: 10.1038/nature02959 – ident: ref125 doi: 10.1117/12.2273361 – ident: ref28 – ident: ref162 doi: 10.1175/2009JTECHA1231.1 – ident: ref55 doi: 10.1016/j.jms.2018.08.007 – ident: ref59 doi: 10.1117/1.3652896 – ident: ref221 doi: 10.1016/j.atmosenv.2008.04.038 – ident: ref140 doi: 10.1126/sciadv.1500157 – ident: ref122 doi: 10.1016/j.jqsrt.2013.02.012 – ident: ref17 doi: 10.1073/pnas.73.2.486 – ident: ref210 doi: 10.1029/2020EF001673 – ident: ref143 doi: 10.1017/CBO9781139019064 – ident: ref102 doi: 10.1364/OE.20.021457 – ident: ref138 doi: 10.1016/j.jqsrt.2015.10.014 – ident: ref177 doi: 10.1366/0003702934066073 – ident: ref88 doi: 10.5194/acp-19-3515-2019 – ident: ref39 doi: 10.3402/tellusb.v64i0.15598 – ident: ref63 doi: 10.1073/pnas.0811618106 – ident: ref123 doi: 10.1177/0033354916679983 – ident: ref72 doi: 10.1175/1520-0469(1971)028<1515:CPOSRB>2.0.CO;2 – ident: ref4 doi: 10.3402/tellusb.v65i0.20805 – ident: ref26 doi: 10.1007/978-3-540-48546-9_6 – ident: ref126 doi: 10.1016/j.bbagen.2018.03.005 – ident: ref97 doi: 10.1016/j.tree.2006.07.004 – ident: ref6 – ident: ref53 doi: 10.1029/2008GL034210 – ident: ref226 doi: 10.1175/2010BAMS3009.1 – ident: ref112 doi: 10.1088/1742-6596/301/1/012004 – ident: ref83 doi: 10.1146/annurev-biodatasci-110920-093120 – ident: ref95 doi: 10.1016/0019-1035(78)90035-0 – ident: ref222 doi: 10.1080/10643389.2019.1665944 – ident: ref2 doi: 10.1117/1.3595850 – ident: ref51 doi: 10.1002/2016GL068463 – ident: ref224 doi: 10.1086/340901 – ident: ref82 doi: 10.5194/acp-16-7917-2016 – ident: ref114 doi: 10.1111/j.1600-0889.2005.00148.x – ident: ref201 doi: 10.1073/pnas.0810215106 – ident: ref230 doi: 10.1364/AO.57.006817 – ident: ref35 doi: 10.5194/acp-21-927-2021 – ident: ref89 doi: 10.1134/S1028334X1311010X – ident: ref136 doi: 10.1029/2002JD002544 – ident: ref115 doi: 10.5194/acp-18-11547-2018 – ident: ref77 doi: 10.1016/j.jqsrt.2019.02.006 – ident: ref34 doi: 10.1126/science.275.5302.951 – ident: ref213 – ident: ref215 doi: 10.1364/AO.57.005464 – ident: ref208 doi: 10.5303/JKAS.2014.47.1.15 – ident: ref121 doi: 10.1117/3.2537401.ch1 – ident: ref11 doi: 10.1126/science.281.5377.672 – ident: ref111 – ident: ref193 doi: 10.1117/12.21485 – ident: ref172 doi: 10.1002/jbio.201600152 – ident: ref105 doi: 10.1103/PhysRevE.60.4899 – ident: ref130 doi: 10.1051/0004-6361/202140845 – ident: ref132 doi: 10.3847/PSJ/abe4da – ident: ref92 doi: 10.1002/2015JD023322 – ident: ref157 doi: 10.1088/1748-9326/6/1/014001 – ident: ref170 doi: 10.1007/BF00815892 – ident: ref37 doi: 10.1007/BF00057992 – ident: ref182 doi: 10.5194/acp-10-1315-2010 – ident: ref47 doi: 10.1016/j.jqsrt.2018.11.024 – ident: ref195 doi: 10.3390/app11198892 – ident: ref196 doi: 10.1117/12.619576 – ident: ref12 doi: 10.5194/acp-15-5457-2015 – ident: ref124 doi: 10.1117/12.945741 – ident: ref173 doi: 10.1364/AO.36.005168 – ident: ref56 doi: 10.1029/2000JD900725 – ident: ref100 doi: 10.5194/acp-15-12011-2015 – ident: ref144 doi: 10.1364/OL.20.001356 – ident: ref27 doi: 10.1038/srep05508 – ident: ref142 doi: 10.1016/B978-0-12-810437-8.00003-7 – ident: ref8 doi: 10.1364/AO.19.000962 – ident: ref154 doi: 10.1038/sj.bjp.0701415 – ident: ref205 doi: 10.1016/j.scitotenv.2018.11.146 – ident: ref5 doi: 10.1021/ar50111a002 – ident: ref165 doi: 10.1364/AO.37.007897 – ident: ref36 doi: 10.1117/1.1483879 – ident: ref151 doi: 10.1016/0022-2860(95)08538-7 – ident: ref71 doi: 10.5194/acp-19-13773-2019 – ident: ref60 doi: 10.1117/1.2960934 – ident: ref62 doi: 10.1021/acs.estlett.8b00229 – ident: ref134 doi: 10.1016/j.jaerosci.2020.105657 – ident: ref171 doi: 10.1177/193229681100500227 – ident: ref94 doi: 10.1029/JA085iA13p08129 – ident: ref104 doi: 10.1103/PhysRevLett.100.014501 – ident: ref161 doi: 10.1029/2000GL012798 – ident: ref148 doi: 10.1029/2000JD000164 – ident: ref91 doi: 10.1002/2014JD021672 – ident: ref167 doi: 10.1002/2014JD022495 – ident: ref68 doi: 10.1201/9780203911587 – ident: ref117 doi: 10.5194/amt-8-4083-2015 – ident: ref231 doi: 10.5194/acp-20-14801-2020 – ident: ref70 doi: 10.1042/bj1420193 – ident: ref228 doi: 10.1016/S0021-9673(01)00587-8 – ident: ref54 doi: 10.1016/j.rse.2017.05.002 – ident: ref203 doi: 10.1364/AO.57.002394 – ident: ref96 doi: 10.1073/pnas.82.2.401 – ident: ref23 doi: 10.1364/AO.48.004130 – ident: ref197 doi: 10.1364/AO.28.001752 – ident: ref42 doi: 10.1002/2017JD026577 – ident: ref214 doi: 10.1051/0004-6361/202141333 – ident: ref191 doi: 10.5194/acp-21-6895-2021 – ident: ref219 doi: 10.1117/1.429877 – ident: ref101 doi: 10.1093/toxsci/kfr088 – ident: ref232 doi: 10.1029/2020EA001222 – ident: ref176 doi: 10.1086/156866 – ident: ref109 doi: 10.1002/jbio.201400104 – ident: ref220 doi: 10.1364/AO.41.000792 – ident: ref127 doi: 10.1016/B978-0-444-64027-7.00002-1 – ident: ref152 doi: 10.1134/S1024856022040133 – ident: ref49 doi: 10.1029/2011GL048599 – ident: ref159 doi: 10.1029/2011GL047323 – ident: ref10 doi: 10.1016/j.newar.2020.101596 – ident: ref90 doi: 10.5194/amt-12-6489-2019 – ident: ref87 doi: 10.1016/S0022-4073(02)00320-5 – ident: ref147 doi: 10.5194/acp-13-4235-2013 – ident: ref194 doi: 10.1117/12.49258 – ident: ref225 doi: 10.5194/acp-7-973-2007 – ident: ref207 doi: 10.5194/acp-20-3181-2020 – ident: ref218 doi: 10.1016/j.marchem.2004.06.017 – ident: ref199 doi: 10.5194/bg-11-1435-2014 – ident: ref24 doi: 10.1117/1.3657505 – ident: ref3 doi: 10.3389/fmicb.2021.764178 – ident: ref185 doi: 10.1029/2008GL035085 |
SSID | ssj0025014 |
Score | 2.5013306 |
Snippet | Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement... Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement... |
SourceID | doaj proquest gale crossref nasa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13581 |
SubjectTerms | Aerosol composition Aerosols Air quality Air sampling Atmosphere Atmospheric aerosols Atmospheric particulates Atmospheric physics Circular polarization Cloud formation Clouds Coefficients Composition Detectors Dust Dust particles Electric fields Electric properties Geophysics Linear polarization Multiple scattering Optical activity Optical properties Outdoor air quality Polarization Polarized radiation Production methods Public health Radiation Radiative transfer Remote sensing Sensors Smoke Technology application Volcanic ash Volcanic dust |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15KP1LqNi2mhBQKIta3fEyXhjSQHNoGchOSLJeFrb2sN_-_M7J26VJoLz3aHoH1PJp5Y0lPhJzaEDUER0bbqDiVwIgopBFB-5gsVBg69Q1ucL651Vd38vpe3f921BeuCZvlgWfgzsEHo1BA6yGKyq7HAkMDp28h79oO8htGX8h5u2KqlFo4W4allrYNxbOZ5vlMYCvy3Mc1hQKMofAX-AjnBxkpC_fvw_PR4Cf_R5TOqefyKXlSOGN9Mb_rM_IoDc9JdQN0d9zkv-L1Wb1YLYF75qsXhC6Wm7y-tF5j5Vq2WtbLofbbn-OESgLLWPsE7zOupmNyd_n5--KKlnMRaFSN3FIufcts11rNtDJJSxuFl13gDL5HNKoLne8gAPpW9CxYIESAmmK9lpGLYJJ4CR0bh_SK1HAHBrQJjWmZjF55FoziTWxEx0PPU0WaHTYuFtFwPLti5aB4QDgdwOk4dxlOh3BW5OO-yXpWzPib8ScEfG-IYtf5BriAKy7g_uUCFXmPn8uhnMWA62V--Idpcl--fXUXhguJJNNU5EMx6kfoQfRl-wHggApYB5YnB5Yw3uLB42P0Cgc4TNgHMWsAaWi2cxNX4gA8NzxTRKte_4-eviGPETXMnbw5IUfbzUN6C6RoG95l__8FJXb9nQ priority: 102 providerName: Directory of Open Access Journals |
Title | Circular Polarization in Atmospheric Aerosols |
URI | https://ntrs.nasa.gov/citations/20230002746 https://www.proquest.com/docview/2726172785 https://doaj.org/article/307c358714714df3819695697278d078 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ri9QwEA7e3osgoueJ1XMpIgpCuCZNk_RJ7pZbT2EPPT28t5Cm6bGwtut27_87k2YLi3BPpc0Emslk5ptJMkPIe105CcqR0dIVnApARBTMSE4b5zV4GNI3GV5wXlzJyxvx7ba4jQG3Ph6r3OnEoKjrzmGM_JQrHoytLj6v_1KsGoW7q7GExgE5BBWs9YQcnl9cfb8eXS7cNUOXS-qMYo2mYV8TUIs4tW5NwRFjmAAMZIXzPcsUEviPanrS2t7-p62DCZo_I08jdkzPhsl-Th759ogkC4C93SZEx9MP6Wy1BAwa3o7IkyEolw53jV4QOltuwrnTdI0ebbyCmS7b1G7_dD1mGABq6-H_ulV_TG7mF79mlzTWS6CuyMSWcmFLputSSyYL5aXQLreirjiDeXKqqKva1qAYbZk3rNIAlMBcF6yRwvG8Uj5_CQPtWv-KpPAFFrqqMlUy4WxhWaUKnrksr3nVcJ-QbMcr42IycaxpsTLgVCB7DbDXcG4Cew2yNyGfxi7rIZPGQ8TnOAEjISbBDh-6zZ2Ja8qAenLQQzEwsKJu0PeU4O6VKCU1QJ-EvMPpM5jmosVzNHf2vu_N15_X5kzxXCD4VAn5GImaDkbgbLyWAHzAzFh7lCd7lLAO3V7zMUqJAT70OIZ8yA0kodtObEzUD9A-SvPrh5vfkMfID7SWPDshk-3m3r8FGLStpuRAz79Mo8Tjc7748Xsaggr_AAR9AbQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCEEJQiQgtEiIeEZDV2HDs5IFQWll3a7QFaqTfXcZxqpSXZbrZC_Cl-IzPOQ1oh9dZj4nEUj8fzzdieGULepLmVoBwZzWzCqQCLiAKMxLS0LgUPQ7oywgDn2YmcnInv58n5Fvnbx8LgtcpeJ3pFXdQW98gPuOIebNPk0_KKYtUoPF3tS2i0YnHk_vwGl635OP0C8_uW8_HX09GEdlUFqE0isaZcmIylRZZKJhPlpEhtbESRcwajsSop8sIUoD5MFpcsT8GcAFBLWCmF5XGuXAzfvUPuihiQHCPTx98GBw_P6NDBk2lEsSJUe4oKNpI4MHZJwe1jmG4MJJPzDRz05QIGUNiuTGP-wwYPeONH5GFnqYaHrWg9Jluu2iHBDIzseuX34sN34WgxB4vXP-2QB-0WYNhGNj0hdDRf-Vuu4RL95y7gM5xXoVn_qhvMZwDUxsH_1Ytml5zdCh-fwkDryj0jIbwBtaLySGVMWJMYlquERzaKC56X3AUk6nmlbZe6HCtoLDS4MMheDezVnGvPXo3sDciHocuyzdtxE_FnnICBEFNu-xf16lJ3K1iDMrTQQzGAc1GU6OlKcC4zlMkCDK2AvMbp05hUo8JbO5fmumn09OcPfah4LNDUVQF53xGVNYzAmi4IAviAebg2KPc3KGHV243mXZQSDXxocAxxm4lIQrdebHSnjaB9WDvPb25-Re5NTmfH-nh6crRH7iNvEKd5tE-216tr9wIMsHX-0kt9SC5ue5n9A2CBOSs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swEBddCmMwxtZ1zFu3mbE_MBCxZFmyH8Zo04ZmXUPpVuibKstyCWR2FqeMfbV9ut3ZiiEM-tZHWydjnU5395N0d4S8S3MrQTkymtmEUwEeEQUzEtPSuhQQhnRlhAHOp1N5fCG-XiaXW-TvOhYGr1WudWKrqIva4h75kCveGts0GZb-WsTZ4fjL4hfFClJ40roup9GJyIn78xvgW_N5cghz_Z7z8dGP0TH1FQaoTSKxolyYjKVFlkomE-WkSG1sRJFzBiOzKinywhSgSkwWlyxPwbUAA5ewUgrL41y5GL57j2wrREUDsn1wND077-Eentgh3JNpRLE-VHemCh6TGBq7oAACGSYfAznlfMMqtsUDehMxqExj_rMUrfkbPyaPvN8a7neC9oRsuWqHBKfgctfLdmc-_BCO5jPwf9unHfKw2xAMuzinp4SOZsv2zmu4QDTtwz_DWRWa1c-6wewGQG0c_F89b3bJxZ1w8hkMtK7ccxLCG1AyKo9UxoQ1iWG5Snhko7jgecldQKI1r7T1icyxnsZcA6BB9mpgr-Zct-zVyN6AfOq7LLosHrcRH-AE9ISYgLt9US-vtV_PGlSjhR6KgXEXRYm4VwLUzFBCC3C7AvIWp09jio0KhfXa3DSNnnw_1_uKxwIdXxWQj56orGEE1viQCOADZuXaoNzboAQdYDead1FKNPChwTHEXV4iCd3WYqO9boL2fiW9uL35DbkPS0x_m0xPXpIHyBo02jzaI4PV8sa9Am9slb_2Yh-Sq7teaf8Asqk-vQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+polarization+in+atmospheric+aerosols&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Gass%C3%B3%2C+Santiago&rft.au=Knobelspiesse%2C+Kirk+D.&rft.date=2022-10-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=22&rft.issue=20&rft.spage=13581&rft.epage=13605&rft_id=info:doi/10.5194%2Facp-22-13581-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_22_13581_2022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7316&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7316&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7316&client=summon |