Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness
This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 s...
Saved in:
Published in | Translational psychiatry Vol. 4; no. 3; p. e366 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.03.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by
miR-182
in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of
miR-182
had different levels of
miR-182
target gene expression, indicating an active role of
miR-182
in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG
miR-182
signaling in these conditions. |
---|---|
AbstractList | This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions.This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions. This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions. This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions. |
Author | Haugen, E Kohen, R Dobra, A Tracy, J H |
Author_xml | – sequence: 1 givenname: R surname: Kohen fullname: Kohen, R email: ruko@uw.edu organization: Department of Psychiatry and Behavioral Sciences, University of Washington – sequence: 2 givenname: A surname: Dobra fullname: Dobra, A organization: Department of Statistics, University of Washington, Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA, Center for Statistics and The Social Sciences, University of Washington, Seattle, WA, USA – sequence: 3 givenname: J H surname: Tracy fullname: Tracy, J H organization: Department of Psychiatry and Behavioral Sciences, University of Washington – sequence: 4 givenname: E surname: Haugen fullname: Haugen, E organization: Department of Genome Sciences, University of Washington, Seattle, WA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24594777$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFL5DAUxsMysuqsh_0HloAXFWYmadOmvQgiu6sgeHEvewlp56UTSZOYtIL__aaMyuxoLsnj_d7H9-Udo5l1FhD6TsmSkrxaDX6ZEcqW9Rd0lNGiWuS0qmY770N0EuMjSadgFeX0KzrMWFEzzvkR-vsQpI1t0H5wPWAfnNJG2w47hTdjLy3eaO9dK3s_RrwGO8gBcPcSUtWl0dEAbsGYiLXF_dQ2WBtjIcZv6EBJE-Hk9Z6jP79-PlzfLO7uf99eX90t2oKwYUHrhq055VBzXhfAGmDQQAlk8gqKgKqAMMUhBYJWFdAwKdeqqPKmpIqW-RxdbnX92PSwbpOJII3wQfcyvAgntfi_Y_VGdO5Z5HVZEjYJnL0KBPc0QhxEr-MUSlpwYxQ0-eSMkKxK6Oke-ujGYFM8QXlNacZ5niXqx66jdytv356A8y3QBhdjAPWOUCKmrYrBi2mrok7sao9tdVqCdlMYbT6duNhOxKRqOwg7Jj_A_wCsXbSH |
CitedBy_id | crossref_primary_10_1111_pcn_12550 crossref_primary_10_3892_mmr_2019_10009 crossref_primary_10_1007_s00702_014_1338_4 crossref_primary_10_2217_epi_2017_0161 crossref_primary_10_1093_procel_pwad056 crossref_primary_10_1093_schbul_sbab039 crossref_primary_10_1016_j_jpsychires_2021_01_021 crossref_primary_10_1038_s41380_020_0696_6 crossref_primary_10_1093_nar_gky686 crossref_primary_10_1038_nbt_3838 crossref_primary_10_1016_j_mcn_2015_12_001 crossref_primary_10_3390_genes10110946 crossref_primary_10_1126_sciadv_adj5279 crossref_primary_10_4236_pp_2014_57079 crossref_primary_10_1016_j_pnpbp_2017_11_017 crossref_primary_10_1186_s13293_024_00635_x crossref_primary_10_1093_nar_gkv703 crossref_primary_10_1016_j_biopsych_2017_09_023 crossref_primary_10_1038_ncomms12594 crossref_primary_10_1016_j_biopsych_2017_03_018 crossref_primary_10_4137_BBI_S28992 crossref_primary_10_1111_gbb_12323 crossref_primary_10_3390_genes10020088 crossref_primary_10_3389_fpsyt_2020_543893 crossref_primary_10_3390_ijms25052866 crossref_primary_10_1111_pcn_12852 crossref_primary_10_1016_j_neubiorev_2016_08_018 crossref_primary_10_1186_1471_2105_15_194 crossref_primary_10_1038_s41380_020_0692_x crossref_primary_10_1016_j_molmed_2018_01_002 crossref_primary_10_1016_j_pnpbp_2016_03_010 crossref_primary_10_5483_BMBRep_2015_48_7_218 crossref_primary_10_1016_j_schres_2019_06_001 crossref_primary_10_1016_j_pharmthera_2016_07_006 crossref_primary_10_3389_fgene_2020_565749 crossref_primary_10_3389_fnmol_2017_00248 crossref_primary_10_1016_j_jpsychires_2018_08_012 crossref_primary_10_1016_j_jad_2017_09_025 crossref_primary_10_1093_bib_bbae098 crossref_primary_10_1038_ncomms12091 crossref_primary_10_1038_s41467_018_03567_4 crossref_primary_10_3390_biomedicines9111659 crossref_primary_10_1016_j_neubiorev_2016_02_011 crossref_primary_10_1007_s11033_021_06725_y crossref_primary_10_1186_s13073_017_0458_5 crossref_primary_10_1111_brv_12959 crossref_primary_10_1038_npp_2014_176 crossref_primary_10_1016_j_celrep_2025_115300 crossref_primary_10_1016_j_cobeha_2018_12_003 |
Cites_doi | 10.1016/S0920-9964(99)00192-9 10.1016/j.brainres.2010.03.035 10.1016/j.neubiorev.2008.08.007 10.1038/tp.2012.56 10.1038/nn.3082 10.1016/j.biopsych.2010.09.030 10.1016/j.jbiotec.2003.09.008 10.1016/j.neuropharm.2009.12.013 10.1016/j.cell.2010.03.039 10.1016/B978-012373960-5.00335-X 10.1016/j.ijdevneu.2010.08.007 10.1073/pnas.1015691107 10.1017/S1461145706007322 10.1093/schbul/sbq091 10.1186/1471-2164-10-246 10.1038/npp.2008.172 10.1016/j.neuropharm.2011.08.020 10.1016/j.nbd.2011.03.001 10.1016/j.yexmp.2007.08.019 10.1073/pnas.1113793109 10.1093/nar/gks750 10.1002/jbmr.1604 10.1038/nn.2909 10.1016/j.bbr.2011.03.048 10.1016/j.neubiorev.2011.12.015 10.1016/j.biopsych.2010.09.039 10.1111/j.1399-5618.2011.00893.x 10.1093/nar/gki567 10.1371/journal.pone.0036351 10.1385/JMN:31:03:221 10.1101/gad.1781009 10.1038/tp.2013.94 10.1016/S0079-6123(06)58001-X 10.1016/j.schres.2010.07.002 10.1371/journal.pone.0015182 10.1093/nar/gkr148 10.1016/S0920-9964(99)00117-6 10.1016/j.neuroscience.2010.07.016 10.1038/nmeth.1226 10.1523/JNEUROSCI.4710-03.2004 10.1016/j.nbd.2011.12.029 10.1016/j.nbd.2011.01.025 10.1016/j.neulet.2009.04.052 10.3109/15622970902737998 10.1038/mp.2009.84 10.1186/1471-2164-5-87 10.1371/journal.pmed.0020212 10.1016/S0140-6736(09)60072-6 10.1016/j.schres.2011.06.007 10.1038/mp.2010.100 10.1016/j.schres.2009.01.022 10.1016/j.neuron.2008.12.008 10.1007/s00702-012-0817-8 10.1111/j.1460-9568.2004.03738.x 10.1111/j.1460-9568.2011.07614.x 10.1001/archgenpsychiatry.2010.175 10.1073/pnas.0306244101 10.1016/j.heares.2012.02.005 10.1038/npp.2009.151 10.1192/bjp.bp.111.096321 10.1001/archpsyc.60.5.497 10.1038/mp.2012.110 10.1097/FBP.0b013e3282df3cde 10.1016/j.jneumeth.2007.06.001 10.1186/1471-2164-7-70 10.1038/npp.2011.220 10.1002/ajmg.c.20013 10.1007/BF03033484 10.1097/PAI.0b013e31824d0519 10.1086/321969 10.1007/s10561-010-9210-8 10.1126/science.1139089 10.1016/j.coi.2012.07.011 10.1186/gb-2007-8-2-r27 10.1371/journal.pone.0033201 10.1016/j.biopsych.2005.03.031 10.1038/sj.mp.4001830 10.1074/jbc.M111.262915 10.1186/1471-2105-11-94 10.1093/hmg/ddq316 10.1093/hmg/ddn005 10.1016/j.ymgme.2005.08.007 10.1016/j.tins.2012.01.004 10.1016/j.neuroscience.2009.08.033 10.1186/1471-2164-11-163 10.1074/jbc.M112.356733 10.1093/bioinformatics/btq033 10.1016/j.molcel.2011.01.005 10.1016/j.brainres.2010.03.109 10.1176/appi.ajp.157.10.1552 10.1177/1073858410395147 10.1158/0008-5472.CAN-04-3936 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 Copyright Nature Publishing Group Mar 2014 Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited |
Copyright_xml | – notice: The Author(s) 2014 – notice: Copyright Nature Publishing Group Mar 2014 – notice: Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/tp.2014.9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Dentate gyrus transcriptome |
EISSN | 2158-3188 |
EndPage | e366 |
ExternalDocumentID | PMC3966046 4067020871 24594777 10_1038_tp_2014_9 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K08MH076098 – fundername: NIMH NIH HHS grantid: K08 MH076098 |
GroupedDBID | --- 0R~ 3V. 4.4 53G 5VS 7X7 88E 8FI 8FJ AAJSJ AAKDD ABUWG ACGFO ACGFS ACMJI ACSMW ADBBV ADFRT AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE KQ8 LGEZI LOTEE M1P M~E NADUK NAO NXXTH OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c504t-19b4d717e97795e4be4ebe6e08171ef0ef8e04f7e215ecf5eb4aadf583b61f163 |
IEDL.DBID | 7X7 |
ISSN | 2158-3188 |
IngestDate | Thu Aug 21 18:01:52 EDT 2025 Fri Jul 11 02:21:33 EDT 2025 Sat Aug 23 13:21:40 EDT 2025 Thu Jan 02 22:19:04 EST 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 00:55:00 EDT 2025 Fri Feb 21 02:38:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microRNA bipolar disorder schizophrenia RNA-seq laser capture microdissection major depression |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-19b4d717e97795e4be4ebe6e08171ef0ef8e04f7e215ecf5eb4aadf583b61f163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1791127732?pq-origsite=%requestingapplication% |
PMID | 24594777 |
PQID | 1791127732 |
PQPubID | 2041978 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3966046 proquest_miscellaneous_1504740028 proquest_journals_1791127732 pubmed_primary_24594777 crossref_primary_10_1038_tp_2014_9 crossref_citationtrail_10_1038_tp_2014_9 springer_journals_10_1038_tp_2014_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-Mar-04 |
PublicationDateYYYYMMDD | 2014-03-04 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-Mar-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Translational psychiatry |
PublicationTitleAbbrev | Transl Psychiatry |
PublicationTitleAlternate | Transl Psychiatry |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | MagillSTCambronneXALuikartBWLioyDTLeightonBHWestbrookGLmicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampusProc Natl Acad Sci USA201010720382203871:CAS:528:DC%2BC3cXhsFaju7fO10.1073/pnas.1015691107210599062996687 ChenCHSucklingJLennoxBROoiCBullmoreETA quantitative meta-analysis of fMRI studies in bipolar disorderBipolar Disord2011131151:CAS:528:DC%2BC3MXjsFShu7k%3D10.1111/j.1399-5618.2011.00893.x21320248 KimAHReimersMMaherBWilliamsonVMcMichaelOMcClayJLMicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disordersSchizophr Res201012418319110.1016/j.schres.2010.07.002206751014373420 WangSWangLZhuTGaoXLiJWuYImprovement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumorsBMC Genomics20101116310.1186/1471-2164-11-1631:CAS:528:DC%2BC3cXjsFCltro%3D202191152853520 WeisSLlenosICDulayJRElashoffMMartinez-MurilloFMillerCLQuality control for microarray analysis of human brain samples: the impact of postmortem factors, RNA characteristics, and histopathologyJ Neurosci Methods20071651982091:CAS:528:DC%2BD2sXovFOjsbo%3D10.1016/j.jneumeth.2007.06.00117628689 PerkinsDOJeffriesCDJarskogLFThomsonJMWoodsKNewmanMAmicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorderGenome Biol20078R2710.1186/gb-2007-8-2-r271:CAS:528:DC%2BD2sXivVOhs7k%3D173268211852419 EkerCGonulASVolumetric MRI studies of the hippocampus in major depressive disorder: Meanings of inconsistency and directions for future researchWorld J Biol Psychiatry201011193510.3109/1562297090273799819347777 LuikartBWPerederiyJVWestbrookGLDentate gyrus neurogenesis, integration and microRNAsBehav Brain Res20122273483551:CAS:528:DC%2BC38Xht1yrtr0%3D10.1016/j.bbr.2011.03.04821443907 WangXRZhangXMDuJJiangHMicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 geneHear Res201228655631:CAS:528:DC%2BC38XjsVGntLw%3D10.1016/j.heares.2012.02.00522381690 LiYLiTLiuSQiuMHanZJiangZSystematic comparison of the fidelity of aRNA, mRNA and T-RNA on gene expression profiling using cDNA microarrayJ Biotechnol200410719281:CAS:528:DC%2BD3sXpvF2htr4%3D10.1016/j.jbiotec.2003.09.00814687968 ElashoffMHiggsBWYolkenRHKnableMBWeisSWebsterMJMeta-analysis of 12 genomic studies in bipolar disorderJ Mol Neurosci2007312212431:CAS:528:DC%2BD2sXlvFKqsLg%3D17726228 XuBKarayiorgouMGogosJAMicroRNAs in psychiatric and neurodevelopmental disordersBrain Res2010133878881:CAS:528:DC%2BC3cXmslShsrc%3D10.1016/j.brainres.2010.03.10920388499 SethiPLukiwWJMicro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortexNeurosci Lett20094591001041:CAS:528:DC%2BD1MXmsFyksro%3D10.1016/j.neulet.2009.04.05219406203 GantierMPMcCoyCERusinovaISaulepDWangDXuDAnalysis of microRNA turnover in mammalian cells following Dicer1 ablationNucleic Acids Res201139569257031:CAS:528:DC%2BC3MXptlyjs70%3D10.1093/nar/gkr148214475623141258 MihelichBLKhramtsovaEAArvaNVaishnavAJohnsonDNGiangrecoAAmiR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cellsJ Biol Chem201128644503445111:CAS:528:DC%2BC3MXhs1Ois7vI10.1074/jbc.M111.262915220458133247959 WaltonNMZhouYKoganJHShinRWebsterMGrossAKDetection of an immature dentate gyrus feature in human schizophrenia/bipolar patientsTransl Psychiatry20122e1351:STN:280:DC%2BC38jovVGntw%3D%3D10.1038/tp.2012.56227811683410619 BlackwoodDHPickardBJThomsonPAEvansKLPorteousDJMuirWJAre some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1Neurotox Res20071173831:CAS:528:DC%2BD2sXktVeqt74%3D10.1007/BF0303348417449450 RichJNHansCJonesBIversenESMcLendonRERasheedBKGene expression profiling and genetic markers in glioblastoma survivalCancer Res200565405140581:CAS:528:DC%2BD2MXktlSmsLY%3D10.1158/0008-5472.CAN-04-393615899794 MoreauMPBruseSEDavid-RusRBuyskeSBrzustowiczLMAltered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorderBiol Psychiatry2011691881931:CAS:528:DC%2BC3cXhs1WntLrJ10.1016/j.biopsych.2010.09.039211830103038345 KimSWebsterMJThe stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markersNeuropsychopharmacology2010354734821:CAS:528:DC%2BD1MXhsFGmsrnI10.1038/npp.2009.15119829293 ThompsonCLPathakSDJerominANgLLMacPhersonCRMortrudMTGenomic anatomy of the hippocampusNeuron200860101010211:CAS:528:DC%2BD1MXlsVGqug%3D%3D10.1016/j.neuron.2008.12.00819109908 HiggsBWElashoffMRichmanSBarciBAn online database for brain disease researchBMC Genomics200677010.1186/1471-2164-7-701:CAS:528:DC%2BD28XjvVCju7w%3D165949981489945 VawterMPTomitaHMengFBolstadBLiJEvansSMitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disordersMol Psychiatry2006116636791:CAS:528:DC%2BD28XmtFyrt7s%3D10.1038/sj.mp.4001830 ChanMKTsangTMHarrisLWGuestPCHolmesEBahnSEvidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patientsMol Psychiatry201116118912021:CAS:528:DC%2BC3MXhsV2ju7jF10.1038/mp.2010.10020921955 LambertTJStormDRSullivanJMMicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neuronsPLoS One20105e151821:CAS:528:DC%2BC3MXktlSltA%3D%3D10.1371/journal.pone.0015182212069193012071 CeribelliASatohMChanEKMicroRNAs and autoimmunityCurr Opin Immunol2012246866911:CAS:528:DC%2BC38Xht1SktL3N10.1016/j.coi.2012.07.011229020473508200 SamuelsBAHenRNeurogenesis and affective disordersEur J Neurosci2011331152115910.1111/j.1460-9568.2011.07614.x21395859 ZhuYKalbfleischTBrennanMDLiYA MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility geneSchizophr Res2009109868910.1016/j.schres.2009.01.022192644532664103 YaoEVenturaAA new role for miR-182 in DNA repairMol Cell2011411351371:CAS:528:DC%2BC3MXhtVWqtbo%3D10.1016/j.molcel.2011.01.00521255724 YuBQianTWangYZhouSDingGDingFmiR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injuryNucleic Acids Res20124010356103651:CAS:528:DC%2BC38Xhs1Wqt77I10.1093/nar/gks750229175883488220 GatfieldDLe MartelotGVejnarCEGerlachDSchaadOFleury-OlelaFIntegration of microRNA miR-122 in hepatic circadian gene expressionGenes Dev200923131313261:CAS:528:DC%2BD1MXntlegsbY%3D10.1101/gad.1781009194875722701584 KrolJBusskampVMarkiewiczIStadlerMBRibiSRichterJCharacterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAsCell20101416186311:CAS:528:DC%2BC3cXms1ehu7Y%3D10.1016/j.cell.2010.03.03920478254 BirdsillACWalkerDGLueLSueLIBeachTGPostmortem interval effect on RNA and gene expression in human brain tissueCell Tissue Bank2011123113181:CAS:528:DC%2BC3MXhsVCgtbrM10.1007/s10561-010-9210-820703815 SokolovBPOligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies?Int J Neuropsychopharmacol2007105475551:CAS:528:DC%2BD2sXnt1Kgt70%3D10.1017/S146114570600732217291372 BaluDTLuckiIAdult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathologyNeurosci Biobehav Rev20093323225210.1016/j.neubiorev.2008.08.00718786562 DeCarolisNAEischAJHippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluationNeuropharmacology2010588848931:CAS:528:DC%2BC3cXjt1anu7c%3D10.1016/j.neuropharm.2009.12.013200600072839019 BeveridgeNJGardinerECarrollAPTooneyPACairnsMJSchizophrenia is associated with an increase in cortical microRNA biogenesisMol Psychiatry201015117611891:CAS:528:DC%2BC3cXhsVGitrnL10.1038/mp.2009.8419721432 MortazaviAWilliamsBAMcCueKSchaefferLWoldBMapping and quantifying mammalian transcriptomes by RNA-SeqNat Methods200856216281:CAS:528:DC%2BD1cXnslyqs7k%3D10.1038/nmeth.122618516045 SequeiraPAMartinMVVawterMPThe first decade and beyond of transcriptional profiling in schizophreniaNeurobiol Dis20124523361:CAS:528:DC%2BC3MXhsFGqsLvM10.1016/j.nbd.2011.03.00121396449 BullardJHPurdomEHansenKDDudoitSEvaluation of statistical methods for normalization and differential expression in mRNA-Seq experimentsBMC Bioinformatics2010119410.1186/1471-2105-11-941:CAS:528:DC%2BC3cXitl2rtbk%3D201671102838869 Clement-ZizaMGentienDLyonnetSThieryJPBesmondCDecraeneCEvaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profilingBMC Genomics20091024610.1186/1471-2164-10-2461:CAS:528:DC%2BD1MXmvVCmtL0%3D194701672700135 McKinnonMCYucelKNazarovAMacQueenGMA meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorderJ Psychiatry Neurosci2009344154191252122612082 MelliosNGaldzickaMGinnsEBakerSPRogaevEXuJGender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophreniaSchizophr Bull20123843344310.1093/schbul/sbq09120732949 MelliosNSugiharaHCastroJBanerjeeALeCKumarAmiR-132, an experience-dependent microRNA, is essential for visual cortex plasticityNat Neurosci201114124012421:CAS:528:DC%2BC3MXhtFWkurjI10.1038/nn.2909218921553183341 BeveridgeNJTooneyPACarrollAPGardinerEBowdenNScottRJDysregulation of miRNA 181b in the temporal cortex in schizophreniaHum Mol Genet200817115611681:CAS:528:DC%2BD1cXktlSktbg%3D10.1093/hmg/ddn00518184693 FillmanSGCloonanNCattsVSMillerLCWongJMcCrossinTIncreased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophreniaMol Psychiatry2013182062141:CAS:528:DC%2BC3sXhsVKntrw%3D10.1038/mp.2012.11022869038 AltuviaYLandgrafPLithwickGElefantNPfefferSAravinAClustering and conservation patterns of human microRNAsNucleic Acids Res200533269727061:CAS:528:DC%2BD2MXktF2nsLc%3D10.1093 BW Higgs (BFtp20149_CR29) 2006; 7 XR Wang (BFtp20149_CR86) 2012; 286 M Elashoff (BFtp20149_CR14) 2007; 31 BT Aldrich (BFtp20149_CR89) 2009; 164 HB Clay (BFtp20149_CR11) 2011; 29 D Pritchett (BFtp20149_CR91) 2012; 119 JW Smoller (BFtp20149_CR4) 2003; 123C B Xu (BFtp20149_CR63) 2010; 1338 B Yu (BFtp20149_CR88) 2012; 40 MP Vawter (BFtp20149_CR51) 2006; 11 Federico Dajas-Bailador (BFtp20149_CR59) 2012; 15 EF Torrey (BFtp20149_CR39) 2000; 44 TJ Lambert (BFtp20149_CR61) 2010; 5 PF Sullivan (BFtp20149_CR2) 2005; 2 C Konradi (BFtp20149_CR26) 2011; 131 HI Im (BFtp20149_CR65) 2012; 35 K Wulff (BFtp20149_CR92) 2012; 200 I Chevyreva (BFtp20149_CR53) 2008; 84 MP Moreau (BFtp20149_CR73) 2011; 69 E Saus (BFtp20149_CR48) 2010; 19 N Mellios (BFtp20149_CR71) 2012; 38 C Eker (BFtp20149_CR24) 2010; 11 DM Santarelli (BFtp20149_CR70) 2011; 69 AH Kim (BFtp20149_CR72) 2010; 124 ST Magill (BFtp20149_CR60) 2010; 107 C Konradi (BFtp20149_CR10) 2012; 45 MJ Webster (BFtp20149_CR52) 2006; 158 NA DeCarolis (BFtp20149_CR19) 2010; 58 P Lichtenstein (BFtp20149_CR7) 2009; 373 S Weis (BFtp20149_CR50) 2007; 165 N Mellios (BFtp20149_CR58) 2011; 14 C Mathers (BFtp20149_CR1) 2008 MK Chan (BFtp20149_CR55) 2011; 16 JN Rich (BFtp20149_CR56) 2005; 65 Y Altuvia (BFtp20149_CR82) 2005; 33 P McGuffin (BFtp20149_CR6) 2003; 60 S Wang (BFtp20149_CR43) 2010; 11 DO Perkins (BFtp20149_CR66) 2007; 8 M Clement-Ziza (BFtp20149_CR46) 2009; 10 Y Zhu (BFtp20149_CR68) 2009; 109 AC Birdsill (BFtp20149_CR54) 2011; 12 N Kronfeld-Schor (BFtp20149_CR93) 2012; 62 CA Altar (BFtp20149_CR57) 2005; 58 HR Ueda (BFtp20149_CR41) 2004; 101 A Mortazavi (BFtp20149_CR47) 2008; 5 C Wei (BFtp20149_CR49) 2004; 5 AM Shepherd (BFtp20149_CR21) 2012; 36 CH Chen (BFtp20149_CR23) 2011; 13 BP Sokolov (BFtp20149_CR15) 2007; 10 PA Sequeira (BFtp20149_CR13) 2012; 45 JQ Wu (BFtp20149_CR18) 2012; 7 JH Bullard (BFtp20149_CR42) 2010; 11 CA Altar (BFtp20149_CR12) 2009; 34 Y Hwang (BFtp20149_CR17) 2013; 3 P Sethi (BFtp20149_CR80) 2009; 459 NM Walton (BFtp20149_CR28) 2012; 2 C Konradi (BFtp20149_CR27) 2011; 68 BH Miller (BFtp20149_CR74) 2012; 109 BW Luikart (BFtp20149_CR62) 2012; 227 D Gatfield (BFtp20149_CR78) 2009; 23 E Yao (BFtp20149_CR85) 2011; 41 NJ Beveridge (BFtp20149_CR67) 2008; 17 J Krol (BFtp20149_CR79) 2010; 141 S Kim (BFtp20149_CR30) 2010; 35 NJ Beveridge (BFtp20149_CR81) 2012; 46 Y Li (BFtp20149_CR44) 2004; 107 DH Blackwood (BFtp20149_CR9) 2001; 69 NJ Beveridge (BFtp20149_CR69) 2010; 15 DT Balu (BFtp20149_CR36) 2009; 33 BL Mihelich (BFtp20149_CR83) 2011; 286 KM Kim (BFtp20149_CR87) 2012; 27 CL Thompson (BFtp20149_CR33) 2008; 60 B Zhu (BFtp20149_CR45) 2006; 87 MP Gantier (BFtp20149_CR76) 2011; 39 NA Datson (BFtp20149_CR31) 2004; 20 E van Rooij (BFtp20149_CR77) 2007; 316 BN Frey (BFtp20149_CR22) 2007; 18 L Cheng (BFtp20149_CR38) 2012; 21 DH Blackwood (BFtp20149_CR8) 2007; 11 PF Sullivan (BFtp20149_CR3) 2000; 157 V Valles (BFtp20149_CR5) 2000; 42 T Christensen (BFtp20149_CR34) 2010; 170 MC McKinnon (BFtp20149_CR25) 2009; 34 AR Quinlan (BFtp20149_CR40) 2010; 26 ES Lein (BFtp20149_CR32) 2004; 24 SJ Clokie (BFtp20149_CR90) 2012; 287 BH Miller (BFtp20149_CR64) 2010; 1338 SG Fillman (BFtp20149_CR16) 2013; 18 F Adriano (BFtp20149_CR20) 2012; 18 NR Smalheiser (BFtp20149_CR75) 2012; 7 ND Hanson (BFtp20149_CR35) 2011; 36 BA Samuels (BFtp20149_CR37) 2011; 33 A Ceribelli (BFtp20149_CR84) 2012; 24 14601036 - Am J Med Genet C Semin Med Genet. 2003 Nov 15;123C(1):48-58 20303342 - Brain Res. 2010 Jun 18;1338:89-99 24169640 - Transl Psychiatry. 2013;3:e321 17449450 - Neurotox Res. 2007 Jan;11(1):73-83 17959169 - Exp Mol Pathol. 2008 Feb;84(1):71-7 15891114 - Nucleic Acids Res. 2005;33(8):2697-706 19125212 - J Psychiatry Neurosci. 2009 Jan;34(1):41-54 16636682 - Mol Psychiatry. 2006 Jul;11(7):615, 663-79 22908386 - J Biol Chem. 2012 Jul 20;287(30):25312-24 20656788 - Hum Mol Genet. 2010 Oct 15;19(20):4017-25 19347777 - World J Biol Psychiatry. 2010 Feb;11(1):19-35 17027689 - Prog Brain Res. 2006;158:3-14 21183010 - Biol Psychiatry. 2011 Jan 15;69(2):188-93 20703815 - Cell Tissue Bank. 2011 Nov;12(4):311-8 20732949 - Schizophr Bull. 2012 May;38(3):433-43 14999098 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3765-9 21310238 - Neurobiol Dis. 2012 Jan;45(1):37-47 21059906 - Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20382-7 19487572 - Genes Dev. 2009 Jun 1;23(11):1313-26 15899794 - Cancer Res. 2005 May 15;65(10):4051-8 20060007 - Neuropharmacology. 2010 May;58(6):884-93 19470167 - BMC Genomics. 2009;10:246 21320248 - Bipolar Disord. 2011 Feb;13(1):1-15 19109908 - Neuron. 2008 Dec 26;60(6):1010-21 15084669 - J Neurosci. 2004 Apr 14;24(15):3879-89 22436491 - Trends Neurosci. 2012 May;35(5):325-34 17726228 - J Mol Neurosci. 2007;31(3):221-43 10742646 - Schizophr Res. 2000 Apr 7;42(2):83-90 20478254 - Cell. 2010 May 14;141(4):618-31 19699278 - Neuroscience. 2009 Dec 1;164(2):711-23 21871466 - Neuropharmacology. 2012 Jan;62(1):101-14 21531988 - Neuroscientist. 2012 Apr;18(2):180-200 22431396 - J Bone Miner Res. 2012 Aug;27(8):1669-79 21396449 - Neurobiol Dis. 2012 Jan;45(1):23-36 20167110 - BMC Bioinformatics. 2010;11:94 11443544 - Am J Hum Genet. 2001 Aug;69(2):428-33 18516045 - Nat Methods. 2008 Jul;5(7):621-8 15533245 - BMC Genomics. 2004 Nov 8;5:87 16214384 - Mol Genet Metab. 2006 Jan;87(1):71-9 16594998 - BMC Genomics. 2006;7:70 19721432 - Mol Psychiatry. 2010 Dec;15(12):1176-89 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 22902047 - Curr Opin Immunol. 2012 Dec;24(6):686-91 22194182 - Br J Psychiatry. 2012 Apr;200(4):308-16 21892155 - Nat Neurosci. 2011 Oct;14(10):1240-2 19829293 - Neuropsychopharmacology. 2010 Jan;35(2):473-82 22558445 - PLoS One. 2012;7(4):e36351 21206919 - PLoS One. 2010;5(12):e15182 22207190 - Neurobiol Dis. 2012 May;46(2):263-71 21745723 - Schizophr Res. 2011 Sep;131(1-3):165-73 21135314 - Arch Gen Psychiatry. 2011 Apr;68(4):340-50 19406203 - Neurosci Lett. 2009 Aug 7;459(2):100-4 16038679 - Biol Psychiatry. 2005 Jul 15;58(2):85-96 17379774 - Science. 2007 Apr 27;316(5824):575-9 22315408 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3125-30 18184693 - Hum Mol Genet. 2008 Apr 15;17(8):1156-68 20667465 - Neuroscience. 2010 Oct 27;170(3):731-41 22495368 - Appl Immunohistochem Mol Morphol. 2013 Jan;21(1):31-47 20675101 - Schizophr Res. 2010 Dec;124(1-3):183-91 21255724 - Mol Cell. 2011 Jan 21;41(2):135-7 11007705 - Am J Psychiatry. 2000 Oct;157(10):1552-62 22781168 - Transl Psychiatry. 2012;2:e135 22381690 - Hear Res. 2012 Apr;286(1-2):55-63 22484572 - Nat Neurosci. 2012 Apr 08;:null 17628689 - J Neurosci Methods. 2007 Sep 30;165(2):198-209 21111402 - Biol Psychiatry. 2011 Jan 15;69(2):180-7 21395859 - Eur J Neurosci. 2011 Mar;33(6):1152-9 22917588 - Nucleic Acids Res. 2012 Nov 1;40(20):10356-65 12742871 - Arch Gen Psychiatry. 2003 May;60(5):497-502 18923405 - Neuropsychopharmacology. 2009 Jan;34(1):18-54 14687968 - J Biotechnol. 2004 Jan 8;107(1):19-28 17762510 - Behav Pharmacol. 2007 Sep;18(5-6):419-30 20921955 - Mol Psychiatry. 2011 Dec;16(12):1189-202 20833242 - Int J Dev Neurosci. 2011 May;29(3):311-24 19264453 - Schizophr Res. 2009 Apr;109(1-3):86-9 22869038 - Mol Psychiatry. 2013 Feb;18(2):206-14 22427989 - PLoS One. 2012;7(3):e33201 21447562 - Nucleic Acids Res. 2011 Jul;39(13):5692-703 21937982 - Neuropsychopharmacology. 2011 Dec;36(13):2589-602 17326821 - Genome Biol. 2007;8(2):R27 15548198 - Eur J Neurosci. 2004 Nov;20(10):2541-54 22569850 - J Neural Transm (Vienna). 2012 Oct;119(10):1061-75 16033310 - PLoS Med. 2005 Jul;2(7):e212 22244985 - Neurosci Biobehav Rev. 2012 Apr;36(4):1342-56 20219115 - BMC Genomics. 2010;11:163 19150704 - Lancet. 2009 Jan 17;373(9659):234-9 17291372 - Int J Neuropsychopharmacol. 2007 Aug;10(4):547-55 10913747 - Schizophr Res. 2000 Aug 3;44(2):151-5 22045813 - J Biol Chem. 2011 Dec 30;286(52):44503-11 18786562 - Neurosci Biobehav Rev. 2009 Mar;33(3):232-52 21443907 - Behav Brain Res. 2012 Feb 14;227(2):348-55 20388499 - Brain Res. 2010 Jun 18;1338:78-88 |
References_xml | – reference: AdrianoFCaltagironeCSpallettaGHippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysisNeuroscientist20121818020010.1177/107385841039514721531988 – reference: SullivanPFThe genetics of schizophreniaPLoS Med20052e21210.1371/journal.pmed.00202121:CAS:528:DC%2BD2MXhtVahs7jI160333101181880 – reference: ChristensenTBisgaardCFNielsenHBWiborgOTranscriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layerNeuroscience20101707317411:CAS:528:DC%2BC3cXhtFGjur3F10.1016/j.neuroscience.2010.07.01620667465 – reference: KrolJBusskampVMarkiewiczIStadlerMBRibiSRichterJCharacterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAsCell20101416186311:CAS:528:DC%2BC3cXms1ehu7Y%3D10.1016/j.cell.2010.03.03920478254 – reference: WuJQWangXBeveridgeNJTooneyPAScottRJCarrVJTranscriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophreniaPLoS One20127e363511:CAS:528:DC%2BC38Xnt1Crurw%3D10.1371/journal.pone.0036351225584453338678 – reference: SequeiraPAMartinMVVawterMPThe first decade and beyond of transcriptional profiling in schizophreniaNeurobiol Dis20124523361:CAS:528:DC%2BC3MXhsFGqsLvM10.1016/j.nbd.2011.03.00121396449 – reference: UedaHRHayashiSMatsuyamaSYomoTHashimotoSKaySAUniversality and flexibility in gene expression from bacteria to humanProc Natl Acad Sci USA2004101376537691:CAS:528:DC%2BD2cXis1Kgtb4%3D10.1073/pnas.030624410114999098374318 – reference: YuBQianTWangYZhouSDingGDingFmiR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injuryNucleic Acids Res20124010356103651:CAS:528:DC%2BC38Xhs1Wqt77I10.1093/nar/gks750229175883488220 – reference: HwangYKimJShinJYKimJISeoJSWebsterMJGene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophreniaTransl Psychiatry20133e3211:CAS:528:DC%2BC3sXhslWqu7zK10.1038/tp.2013.94241696403818014 – reference: AltarCAJurataLWCharlesVLemireALiuPBukhmanYDeficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohortsBiol Psychiatry20055885961:CAS:528:DC%2BD2MXmsVWrsb8%3D10.1016/j.biopsych.2005.03.03116038679 – reference: ZhuYKalbfleischTBrennanMDLiYA MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility geneSchizophr Res2009109868910.1016/j.schres.2009.01.022192644532664103 – reference: WebsterMJTissue preparation and bankingProg Brain Res20061583141:CAS:528:DC%2BD2sXpslemtQ%3D%3D10.1016/S0079-6123(06)58001-X17027689 – reference: BlackwoodDHPickardBJThomsonPAEvansKLPorteousDJMuirWJAre some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1Neurotox Res20071173831:CAS:528:DC%2BD2sXktVeqt74%3D10.1007/BF0303348417449450 – reference: McGuffinPRijsdijkFAndrewMShamPKatzRCardnoAThe heritability of bipolar affective disorder and the genetic relationship to unipolar depressionArch Gen Psychiatry20036049750210.1001/archpsyc.60.5.49712742871 – reference: KimAHReimersMMaherBWilliamsonVMcMichaelOMcClayJLMicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disordersSchizophr Res201012418319110.1016/j.schres.2010.07.002206751014373420 – reference: SausESoriaVEscaramisGVivarelliFCrespoJMKagerbauerBGenetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomniaHum Mol Genet201019401740251:CAS:528:DC%2BC3cXht1eqtLjL10.1093/hmg/ddq31620656788 – reference: SullivanPFNealeMCKendlerKSGenetic epidemiology of major depression: review and meta-analysisAm J Psychiatry2000157155215621:STN:280:DC%2BD3M%2FgvVOitQ%3D%3D10.1176/appi.ajp.157.10.155211007705 – reference: KonradiCYangCKZimmermanEILohmannKMGreschPPantazopoulosHHippocampal interneurons are abnormal in schizophreniaSchizophr Res201113116517310.1016/j.schres.2011.06.007217457233159834 – reference: DatsonNAMeijerLSteenbergenPJMorsinkMCvan der LaanSMeijerOCExpression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expressionEur J Neurosci200420254125541:STN:280:DC%2BD2crnvFartw%3D%3D10.1111/j.1460-9568.2004.03738.x15548198 – reference: ClokieSJLauPKimHHCoonSLKleinDCMicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine n-acetyltransferaseJ Biol Chem201228725312253241:CAS:528:DC%2BC38XhtVGnt7jL10.1074/jbc.M112.356733229083863408182 – reference: BeveridgeNJTooneyPACarrollAPGardinerEBowdenNScottRJDysregulation of miRNA 181b in the temporal cortex in schizophreniaHum Mol Genet200817115611681:CAS:528:DC%2BD1cXktlSktbg%3D10.1093/hmg/ddn00518184693 – reference: BeveridgeNJCairnsMJMicroRNA dysregulation in schizophreniaNeurobiol Dis2012462632711:CAS:528:DC%2BC38Xltlagurw%3D10.1016/j.nbd.2011.12.02922207190 – reference: AldrichBTFrakesEPKasuyaJHammondDLKitamotoTChanges in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligationNeuroscience20091647117231:CAS:528:DC%2BD1MXht1GnsL7M10.1016/j.neuroscience.2009.08.03319699278 – reference: SokolovBPOligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies?Int J Neuropsychopharmacol2007105475551:CAS:528:DC%2BD2sXnt1Kgt70%3D10.1017/S146114570600732217291372 – reference: RichJNHansCJonesBIversenESMcLendonRERasheedBKGene expression profiling and genetic markers in glioblastoma survivalCancer Res200565405140581:CAS:528:DC%2BD2MXktlSmsLY%3D10.1158/0008-5472.CAN-04-393615899794 – reference: MagillSTCambronneXALuikartBWLioyDTLeightonBHWestbrookGLmicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampusProc Natl Acad Sci USA201010720382203871:CAS:528:DC%2BC3cXhsFaju7fO10.1073/pnas.1015691107210599062996687 – reference: SmalheiserNRLugliGRizaviHSTorvikVITureckiGDwivediYMicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjectsPLoS One20127e332011:CAS:528:DC%2BC38XksVGitbo%3D10.1371/journal.pone.0033201224279893302855 – reference: MortazaviAWilliamsBAMcCueKSchaefferLWoldBMapping and quantifying mammalian transcriptomes by RNA-SeqNat Methods200856216281:CAS:528:DC%2BD1cXnslyqs7k%3D10.1038/nmeth.122618516045 – reference: GatfieldDLe MartelotGVejnarCEGerlachDSchaadOFleury-OlelaFIntegration of microRNA miR-122 in hepatic circadian gene expressionGenes Dev200923131313261:CAS:528:DC%2BD1MXntlegsbY%3D10.1101/gad.1781009194875722701584 – reference: KonradiCZimmermanEIYangCKLohmannKMGreschPPantazopoulosHHippocampal interneurons in bipolar disorderArch Gen Psychiatry20116834035010.1001/archgenpsychiatry.2010.17521135314 – reference: GantierMPMcCoyCERusinovaISaulepDWangDXuDAnalysis of microRNA turnover in mammalian cells following Dicer1 ablationNucleic Acids Res201139569257031:CAS:528:DC%2BC3MXptlyjs70%3D10.1093/nar/gkr148214475623141258 – reference: MelliosNSugiharaHCastroJBanerjeeALeCKumarAmiR-132, an experience-dependent microRNA, is essential for visual cortex plasticityNat Neurosci201114124012421:CAS:528:DC%2BC3MXhtFWkurjI10.1038/nn.2909218921553183341 – reference: MoreauMPBruseSEDavid-RusRBuyskeSBrzustowiczLMAltered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorderBiol Psychiatry2011691881931:CAS:528:DC%2BC3cXhs1WntLrJ10.1016/j.biopsych.2010.09.039211830103038345 – reference: KimSWebsterMJThe stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markersNeuropsychopharmacology2010354734821:CAS:528:DC%2BD1MXhsFGmsrnI10.1038/npp.2009.15119829293 – reference: ClayHBSillivanSKonradiCMitochondrial dysfunction and pathology in bipolar disorder and schizophreniaInt J Dev Neurosci2011293113241:CAS:528:DC%2BC3MXks1ajsr4%3D10.1016/j.ijdevneu.2010.08.00720833242 – reference: MelliosNGaldzickaMGinnsEBakerSPRogaevEXuJGender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophreniaSchizophr Bull20123843344310.1093/schbul/sbq09120732949 – reference: ChevyrevaIFaullRLGreenCRNicholsonLFAssessing RNA quality in postmortem human brain tissueExp Mol Pathol20088471771:CAS:528:DC%2BD1cXhsVGkurk%3D10.1016/j.yexmp.2007.08.01917959169 – reference: WeisSLlenosICDulayJRElashoffMMartinez-MurilloFMillerCLQuality control for microarray analysis of human brain samples: the impact of postmortem factors, RNA characteristics, and histopathologyJ Neurosci Methods20071651982091:CAS:528:DC%2BD2sXovFOjsbo%3D10.1016/j.jneumeth.2007.06.00117628689 – reference: FillmanSGCloonanNCattsVSMillerLCWongJMcCrossinTIncreased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophreniaMol Psychiatry2013182062141:CAS:528:DC%2BC3sXhsVKntrw%3D10.1038/mp.2012.11022869038 – reference: SmollerJWFinnCTFamily, twin, and adoption studies of bipolar disorderAm J Med Genet C Semin Med Genet2003123C485810.1002/ajmg.c.2001314601036 – reference: BirdsillACWalkerDGLueLSueLIBeachTGPostmortem interval effect on RNA and gene expression in human brain tissueCell Tissue Bank2011123113181:CAS:528:DC%2BC3MXhsVCgtbrM10.1007/s10561-010-9210-820703815 – reference: LichtensteinPYipBHBjorkCPawitanYCannonTDSullivanPFCommon genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based studyLancet20093732342391:CAS:528:DC%2BD1MXmvVKitQ%3D%3D10.1016/S0140-6736(09)60072-619150704 – reference: ChanMKTsangTMHarrisLWGuestPCHolmesEBahnSEvidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patientsMol Psychiatry201116118912021:CAS:528:DC%2BC3MXhsV2ju7jF10.1038/mp.2010.10020921955 – reference: Kronfeld-SchorNEinatHCircadian rhythms and depression: human psychopathology and animal modelsNeuropharmacology2012621011141:CAS:528:DC%2BC3MXhtlaktLrM10.1016/j.neuropharm.2011.08.02021871466 – reference: QuinlanARHallIMBEDTools: a flexible suite of utilities for comparing genomic featuresBioinformatics2010268418421:CAS:528:DC%2BC3cXivFGkurc%3D10.1093/bioinformatics/btq033201102782832824 – reference: DeCarolisNAEischAJHippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluationNeuropharmacology2010588848931:CAS:528:DC%2BC3cXjt1anu7c%3D10.1016/j.neuropharm.2009.12.013200600072839019 – reference: WangSWangLZhuTGaoXLiJWuYImprovement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumorsBMC Genomics20101116310.1186/1471-2164-11-1631:CAS:528:DC%2BC3cXjsFCltro%3D202191152853520 – reference: ChenCHSucklingJLennoxBROoiCBullmoreETA quantitative meta-analysis of fMRI studies in bipolar disorderBipolar Disord2011131151:CAS:528:DC%2BC3MXjsFShu7k%3D10.1111/j.1399-5618.2011.00893.x21320248 – reference: FreyBNAndreazzaACNeryFGMartinsMRQuevedoJSoaresJCThe role of hippocampus in the pathophysiology of bipolar disorderBehav Pharmacol20071841943010.1097/FBP.0b013e3282df3cde17762510 – reference: ImHIKennyPJMicroRNAs in neuronal function and dysfunctionTrends Neurosci2012353253341:CAS:528:DC%2BC38Xkt1Giu78%3D10.1016/j.tins.2012.01.004224364913565236 – reference: KimKMParkSJJungSHKimEJJogeswarGAjitaJmiR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1J Bone Miner Res2012271669167910.1002/jbmr.16041:CAS:528:DC%2BC38XhtVequ77J22431396 – reference: LeinESZhaoXGageFHDefining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridizationJ Neurosci200424387938891:CAS:528:DC%2BD2cXjsV2jtbs%3D10.1523/JNEUROSCI.4710-03.2004150846696729356 – reference: LambertTJStormDRSullivanJMMicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neuronsPLoS One20105e151821:CAS:528:DC%2BC3MXktlSltA%3D%3D10.1371/journal.pone.0015182212069193012071 – reference: WangXRZhangXMDuJJiangHMicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 geneHear Res201228655631:CAS:528:DC%2BC38XjsVGntLw%3D10.1016/j.heares.2012.02.00522381690 – reference: SantarelliDMBeveridgeNJTooneyPACairnsMJUpregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophreniaBiol Psychiatry2011691801871:CAS:528:DC%2BC3cXhs1WntLrP10.1016/j.biopsych.2010.09.03021111402 – reference: ThompsonCLPathakSDJerominANgLLMacPhersonCRMortrudMTGenomic anatomy of the hippocampusNeuron200860101010211:CAS:528:DC%2BD1MXlsVGqug%3D%3D10.1016/j.neuron.2008.12.00819109908 – reference: ShepherdAMLaurensKRMathesonSLCarrVJGreenMJSystematic meta-review and quality assessment of the structural brain alterations in schizophreniaNeurosci Biobehav Rev2012361342135610.1016/j.neubiorev.2011.12.01522244985 – reference: McKinnonMCYucelKNazarovAMacQueenGMA meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorderJ Psychiatry Neurosci2009344154191252122612082 – reference: SamuelsBAHenRNeurogenesis and affective disordersEur J Neurosci2011331152115910.1111/j.1460-9568.2011.07614.x21395859 – reference: MillerBHWahlestedtCMicroRNA dysregulation in psychiatric diseaseBrain Res2010133889991:CAS:528:DC%2BC3cXmslShs74%3D10.1016/j.brainres.2010.03.035203033422891055 – reference: BeveridgeNJGardinerECarrollAPTooneyPACairnsMJSchizophrenia is associated with an increase in cortical microRNA biogenesisMol Psychiatry201015117611891:CAS:528:DC%2BC3cXhsVGitrnL10.1038/mp.2009.8419721432 – reference: CeribelliASatohMChanEKMicroRNAs and autoimmunityCurr Opin Immunol2012246866911:CAS:528:DC%2BC38Xht1SktL3N10.1016/j.coi.2012.07.011229020473508200 – reference: VallesVVan OsJGuillamatRGutierrezBCampilloMGentoPIncreased morbid risk for schizophrenia in families of in-patients with bipolar illnessSchizophr Res20004283901:STN:280:DC%2BD3c3gvV2qsg%3D%3D10.1016/S0920-9964(99)00117-610742646 – reference: HansonNDOwensMJNemeroffCBDepression, antidepressants, and neurogenesis: a critical reappraisalNeuropsychopharmacology2011362589260210.1038/npp.2011.220219379823230505 – reference: ZhuBXuFBabaYAn evaluation of linear RNA amplification in cDNA microarray gene expression analysisMol Genet Metab20068771791:CAS:528:DC%2BD28XkvV2r10.1016/j.ymgme.2005.08.00716214384 – reference: KonradiCSillivanSEClayHBMitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosisNeurobiol Dis20124537471:CAS:528:DC%2BC3MXhsFGqsLbL10.1016/j.nbd.2011.01.02521310238 – reference: SethiPLukiwWJMicro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortexNeurosci Lett20094591001041:CAS:528:DC%2BD1MXmsFyksro%3D10.1016/j.neulet.2009.04.05219406203 – reference: MathersCFatDMBoermaJTThe Global Burden of Disease: 2004 Update2008World Health Organization: Geneva, Switzerland10.1016/B978-012373960-5.00335-X – reference: WeiCLiJBumgarnerRESample size for detecting differentially expressed genes in microarray experimentsBMC Genomics200458710.1186/1471-2164-5-8715533245533874 – reference: AltuviaYLandgrafPLithwickGElefantNPfefferSAravinAClustering and conservation patterns of human microRNAsNucleic Acids Res200533269727061:CAS:528:DC%2BD2MXktF2nsLc%3D10.1093/nar/gki567158911141110742 – reference: AltarCAVawterMPGinsbergSDTarget identification for CNS diseases by transcriptional profilingNeuropsychopharmacology20093418541:CAS:528:DC%2BD1cXhsVyru73L10.1038/npp.2008.17218923405 – reference: WulffKDijkDJMiddletonBFosterRGJoyceEMSleep and circadian rhythm disruption in schizophreniaBr J Psychiatry201220030831610.1192/bjp.bp.111.096321221941823317037 – reference: MihelichBLKhramtsovaEAArvaNVaishnavAJohnsonDNGiangrecoAAmiR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cellsJ Biol Chem201128644503445111:CAS:528:DC%2BC3MXhs1Ois7vI10.1074/jbc.M111.262915220458133247959 – reference: YaoEVenturaAA new role for miR-182 in DNA repairMol Cell2011411351371:CAS:528:DC%2BC3MXhtVWqtbo%3D10.1016/j.molcel.2011.01.00521255724 – reference: HiggsBWElashoffMRichmanSBarciBAn online database for brain disease researchBMC Genomics200677010.1186/1471-2164-7-701:CAS:528:DC%2BD28XjvVCju7w%3D165949981489945 – reference: Dajas-BailadorFedericoBonevBoyanGarcezPatriciaStanleyPeterGuillemotFrancoisPapalopuluNancymicroRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neuronsNature Neuroscience20121556976991:CAS:528:DC%2BC38XltFOiurk%3D10.1038/nn.308222484572 – reference: LuikartBWPerederiyJVWestbrookGLDentate gyrus neurogenesis, integration and microRNAsBehav Brain Res20122273483551:CAS:528:DC%2BC38Xht1yrtr0%3D10.1016/j.bbr.2011.03.04821443907 – reference: ElashoffMHiggsBWYolkenRHKnableMBWeisSWebsterMJMeta-analysis of 12 genomic studies in bipolar disorderJ Mol Neurosci2007312212431:CAS:528:DC%2BD2sXlvFKqsLg%3D17726228 – reference: BlackwoodDHFordyceAWalkerMTStClairDMPorteousDJMuirWJSchizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a familyAm J Hum Genet2001694284331:CAS:528:DC%2BD3MXmtFektrg%3D10.1086/321969114435441235314 – reference: MillerBHZeierZXiLLanzTADengSStrathmannJMicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain functionProc Natl Acad Sci USA2012109312531301:CAS:528:DC%2BC38Xjs1Wmtbw%3D10.1073/pnas.1113793109223154083286960 – reference: BullardJHPurdomEHansenKDDudoitSEvaluation of statistical methods for normalization and differential expression in mRNA-Seq experimentsBMC Bioinformatics2010119410.1186/1471-2105-11-941:CAS:528:DC%2BC3cXitl2rtbk%3D201671102838869 – reference: XuBKarayiorgouMGogosJAMicroRNAs in psychiatric and neurodevelopmental disordersBrain Res2010133878881:CAS:528:DC%2BC3cXmslShsrc%3D10.1016/j.brainres.2010.03.10920388499 – reference: TorreyEFWebsterMKnableMJohnstonNYolkenRHThe stanley foundation brain collection and neuropathology consortiumSchizophr Res2000441511551:STN:280:DC%2BD3cvlsVKgtg%3D%3D10.1016/S0920-9964(99)00192-910913747 – reference: BaluDTLuckiIAdult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathologyNeurosci Biobehav Rev20093323225210.1016/j.neubiorev.2008.08.00718786562 – reference: EkerCGonulASVolumetric MRI studies of the hippocampus in major depressive disorder: Meanings of inconsistency and directions for future researchWorld J Biol Psychiatry201011193510.3109/1562297090273799819347777 – reference: PritchettDWulffKOliverPLBannermanDMDaviesKEHarrisonPJEvaluating the links between schizophrenia and sleep and circadian rhythm disruptionJ Neural Transm20121191061107510.1007/s00702-012-0817-822569850 – reference: PerkinsDOJeffriesCDJarskogLFThomsonJMWoodsKNewmanMAmicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorderGenome Biol20078R2710.1186/gb-2007-8-2-r271:CAS:528:DC%2BD2sXivVOhs7k%3D173268211852419 – reference: Clement-ZizaMGentienDLyonnetSThieryJPBesmondCDecraeneCEvaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profilingBMC Genomics20091024610.1186/1471-2164-10-2461:CAS:528:DC%2BD1MXmvVCmtL0%3D194701672700135 – reference: ChengLZhangSMaclennanGTWilliamsonSRDavidsonDDWangMLaser-assisted microdissection in translational research: theory, technical considerations, and future applicationsAppl Immunohistochem Mol Morphol2012213147 – reference: WaltonNMZhouYKoganJHShinRWebsterMGrossAKDetection of an immature dentate gyrus feature in human schizophrenia/bipolar patientsTransl Psychiatry20122e1351:STN:280:DC%2BC38jovVGntw%3D%3D10.1038/tp.2012.56227811683410619 – reference: LiYLiTLiuSQiuMHanZJiangZSystematic comparison of the fidelity of aRNA, mRNA and T-RNA on gene expression profiling using cDNA microarrayJ Biotechnol200410719281:CAS:528:DC%2BD3sXpvF2htr4%3D10.1016/j.jbiotec.2003.09.00814687968 – reference: VawterMPTomitaHMengFBolstadBLiJEvansSMitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disordersMol Psychiatry2006116636791:CAS:528:DC%2BD28XmtFyrt7s%3D10.1038/sj.mp.4001830 – reference: van RooijESutherlandLBQiXRichardsonJAHillJOlsonENControl of stress-dependent cardiac growth and gene expression by a microRNAScience20073165755791:CAS:528:DC%2BD2sXksFektr4%3D10.1126/science.113908917379774 – volume: 44 start-page: 151 year: 2000 ident: BFtp20149_CR39 publication-title: Schizophr Res doi: 10.1016/S0920-9964(99)00192-9 – volume: 1338 start-page: 89 year: 2010 ident: BFtp20149_CR64 publication-title: Brain Res doi: 10.1016/j.brainres.2010.03.035 – volume: 33 start-page: 232 year: 2009 ident: BFtp20149_CR36 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2008.08.007 – volume: 2 start-page: e135 year: 2012 ident: BFtp20149_CR28 publication-title: Transl Psychiatry doi: 10.1038/tp.2012.56 – volume: 15 start-page: 697 issue: 5 year: 2012 ident: BFtp20149_CR59 publication-title: Nature Neuroscience doi: 10.1038/nn.3082 – volume: 69 start-page: 180 year: 2011 ident: BFtp20149_CR70 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.09.030 – volume: 107 start-page: 19 year: 2004 ident: BFtp20149_CR44 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2003.09.008 – volume: 58 start-page: 884 year: 2010 ident: BFtp20149_CR19 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2009.12.013 – volume: 141 start-page: 618 year: 2010 ident: BFtp20149_CR79 publication-title: Cell doi: 10.1016/j.cell.2010.03.039 – volume-title: The Global Burden of Disease: 2004 Update year: 2008 ident: BFtp20149_CR1 doi: 10.1016/B978-012373960-5.00335-X – volume: 29 start-page: 311 year: 2011 ident: BFtp20149_CR11 publication-title: Int J Dev Neurosci doi: 10.1016/j.ijdevneu.2010.08.007 – volume: 107 start-page: 20382 year: 2010 ident: BFtp20149_CR60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1015691107 – volume: 10 start-page: 547 year: 2007 ident: BFtp20149_CR15 publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145706007322 – volume: 38 start-page: 433 year: 2012 ident: BFtp20149_CR71 publication-title: Schizophr Bull doi: 10.1093/schbul/sbq091 – volume: 10 start-page: 246 year: 2009 ident: BFtp20149_CR46 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-246 – volume: 34 start-page: 18 year: 2009 ident: BFtp20149_CR12 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2008.172 – volume: 62 start-page: 101 year: 2012 ident: BFtp20149_CR93 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.08.020 – volume: 45 start-page: 23 year: 2012 ident: BFtp20149_CR13 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.03.001 – volume: 84 start-page: 71 year: 2008 ident: BFtp20149_CR53 publication-title: Exp Mol Pathol doi: 10.1016/j.yexmp.2007.08.019 – volume: 109 start-page: 3125 year: 2012 ident: BFtp20149_CR74 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113793109 – volume: 40 start-page: 10356 year: 2012 ident: BFtp20149_CR88 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks750 – volume: 27 start-page: 1669 year: 2012 ident: BFtp20149_CR87 publication-title: J Bone Miner Res doi: 10.1002/jbmr.1604 – volume: 14 start-page: 1240 year: 2011 ident: BFtp20149_CR58 publication-title: Nat Neurosci doi: 10.1038/nn.2909 – volume: 227 start-page: 348 year: 2012 ident: BFtp20149_CR62 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2011.03.048 – volume: 36 start-page: 1342 year: 2012 ident: BFtp20149_CR21 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2011.12.015 – volume: 69 start-page: 188 year: 2011 ident: BFtp20149_CR73 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.09.039 – volume: 13 start-page: 1 year: 2011 ident: BFtp20149_CR23 publication-title: Bipolar Disord doi: 10.1111/j.1399-5618.2011.00893.x – volume: 33 start-page: 2697 year: 2005 ident: BFtp20149_CR82 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki567 – volume: 7 start-page: e36351 year: 2012 ident: BFtp20149_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0036351 – volume: 31 start-page: 221 year: 2007 ident: BFtp20149_CR14 publication-title: J Mol Neurosci doi: 10.1385/JMN:31:03:221 – volume: 23 start-page: 1313 year: 2009 ident: BFtp20149_CR78 publication-title: Genes Dev doi: 10.1101/gad.1781009 – volume: 3 start-page: e321 year: 2013 ident: BFtp20149_CR17 publication-title: Transl Psychiatry doi: 10.1038/tp.2013.94 – volume: 158 start-page: 3 year: 2006 ident: BFtp20149_CR52 publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)58001-X – volume: 124 start-page: 183 year: 2010 ident: BFtp20149_CR72 publication-title: Schizophr Res doi: 10.1016/j.schres.2010.07.002 – volume: 5 start-page: e15182 year: 2010 ident: BFtp20149_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0015182 – volume: 39 start-page: 5692 year: 2011 ident: BFtp20149_CR76 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr148 – volume: 42 start-page: 83 year: 2000 ident: BFtp20149_CR5 publication-title: Schizophr Res doi: 10.1016/S0920-9964(99)00117-6 – volume: 170 start-page: 731 year: 2010 ident: BFtp20149_CR34 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.07.016 – volume: 5 start-page: 621 year: 2008 ident: BFtp20149_CR47 publication-title: Nat Methods doi: 10.1038/nmeth.1226 – volume: 24 start-page: 3879 year: 2004 ident: BFtp20149_CR32 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4710-03.2004 – volume: 46 start-page: 263 year: 2012 ident: BFtp20149_CR81 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.12.029 – volume: 45 start-page: 37 year: 2012 ident: BFtp20149_CR10 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.01.025 – volume: 459 start-page: 100 year: 2009 ident: BFtp20149_CR80 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2009.04.052 – volume: 11 start-page: 19 year: 2010 ident: BFtp20149_CR24 publication-title: World J Biol Psychiatry doi: 10.3109/15622970902737998 – volume: 15 start-page: 1176 year: 2010 ident: BFtp20149_CR69 publication-title: Mol Psychiatry doi: 10.1038/mp.2009.84 – volume: 5 start-page: 87 year: 2004 ident: BFtp20149_CR49 publication-title: BMC Genomics doi: 10.1186/1471-2164-5-87 – volume: 2 start-page: e212 year: 2005 ident: BFtp20149_CR2 publication-title: PLoS Med doi: 10.1371/journal.pmed.0020212 – volume: 373 start-page: 234 year: 2009 ident: BFtp20149_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(09)60072-6 – volume: 131 start-page: 165 year: 2011 ident: BFtp20149_CR26 publication-title: Schizophr Res doi: 10.1016/j.schres.2011.06.007 – volume: 16 start-page: 1189 year: 2011 ident: BFtp20149_CR55 publication-title: Mol Psychiatry doi: 10.1038/mp.2010.100 – volume: 109 start-page: 86 year: 2009 ident: BFtp20149_CR68 publication-title: Schizophr Res doi: 10.1016/j.schres.2009.01.022 – volume: 60 start-page: 1010 year: 2008 ident: BFtp20149_CR33 publication-title: Neuron doi: 10.1016/j.neuron.2008.12.008 – volume: 119 start-page: 1061 year: 2012 ident: BFtp20149_CR91 publication-title: J Neural Transm doi: 10.1007/s00702-012-0817-8 – volume: 20 start-page: 2541 year: 2004 ident: BFtp20149_CR31 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2004.03738.x – volume: 33 start-page: 1152 year: 2011 ident: BFtp20149_CR37 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2011.07614.x – volume: 68 start-page: 340 year: 2011 ident: BFtp20149_CR27 publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.175 – volume: 101 start-page: 3765 year: 2004 ident: BFtp20149_CR41 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0306244101 – volume: 286 start-page: 55 year: 2012 ident: BFtp20149_CR86 publication-title: Hear Res doi: 10.1016/j.heares.2012.02.005 – volume: 35 start-page: 473 year: 2010 ident: BFtp20149_CR30 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.151 – volume: 200 start-page: 308 year: 2012 ident: BFtp20149_CR92 publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.111.096321 – volume: 60 start-page: 497 year: 2003 ident: BFtp20149_CR6 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.60.5.497 – volume: 18 start-page: 206 year: 2013 ident: BFtp20149_CR16 publication-title: Mol Psychiatry doi: 10.1038/mp.2012.110 – volume: 18 start-page: 419 year: 2007 ident: BFtp20149_CR22 publication-title: Behav Pharmacol doi: 10.1097/FBP.0b013e3282df3cde – volume: 165 start-page: 198 year: 2007 ident: BFtp20149_CR50 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.06.001 – volume: 7 start-page: 70 year: 2006 ident: BFtp20149_CR29 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-70 – volume: 36 start-page: 2589 year: 2011 ident: BFtp20149_CR35 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.220 – volume: 123C start-page: 48 year: 2003 ident: BFtp20149_CR4 publication-title: Am J Med Genet C Semin Med Genet doi: 10.1002/ajmg.c.20013 – volume: 11 start-page: 73 year: 2007 ident: BFtp20149_CR8 publication-title: Neurotox Res doi: 10.1007/BF03033484 – volume: 21 start-page: 31 year: 2012 ident: BFtp20149_CR38 publication-title: Appl Immunohistochem Mol Morphol doi: 10.1097/PAI.0b013e31824d0519 – volume: 69 start-page: 428 year: 2001 ident: BFtp20149_CR9 publication-title: Am J Hum Genet doi: 10.1086/321969 – volume: 12 start-page: 311 year: 2011 ident: BFtp20149_CR54 publication-title: Cell Tissue Bank doi: 10.1007/s10561-010-9210-8 – volume: 316 start-page: 575 year: 2007 ident: BFtp20149_CR77 publication-title: Science doi: 10.1126/science.1139089 – volume: 24 start-page: 686 year: 2012 ident: BFtp20149_CR84 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2012.07.011 – volume: 8 start-page: R27 year: 2007 ident: BFtp20149_CR66 publication-title: Genome Biol doi: 10.1186/gb-2007-8-2-r27 – volume: 7 start-page: e33201 year: 2012 ident: BFtp20149_CR75 publication-title: PLoS One doi: 10.1371/journal.pone.0033201 – volume: 58 start-page: 85 year: 2005 ident: BFtp20149_CR57 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2005.03.031 – volume: 11 start-page: 663 year: 2006 ident: BFtp20149_CR51 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001830 – volume: 286 start-page: 44503 year: 2011 ident: BFtp20149_CR83 publication-title: J Biol Chem doi: 10.1074/jbc.M111.262915 – volume: 11 start-page: 94 year: 2010 ident: BFtp20149_CR42 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-94 – volume: 19 start-page: 4017 year: 2010 ident: BFtp20149_CR48 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq316 – volume: 17 start-page: 1156 year: 2008 ident: BFtp20149_CR67 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddn005 – volume: 87 start-page: 71 year: 2006 ident: BFtp20149_CR45 publication-title: Mol Genet Metab doi: 10.1016/j.ymgme.2005.08.007 – volume: 35 start-page: 325 year: 2012 ident: BFtp20149_CR65 publication-title: Trends Neurosci doi: 10.1016/j.tins.2012.01.004 – volume: 164 start-page: 711 year: 2009 ident: BFtp20149_CR89 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.08.033 – volume: 11 start-page: 163 year: 2010 ident: BFtp20149_CR43 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-163 – volume: 287 start-page: 25312 year: 2012 ident: BFtp20149_CR90 publication-title: J Biol Chem doi: 10.1074/jbc.M112.356733 – volume: 26 start-page: 841 year: 2010 ident: BFtp20149_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 34 start-page: 41 year: 2009 ident: BFtp20149_CR25 publication-title: J Psychiatry Neurosci – volume: 41 start-page: 135 year: 2011 ident: BFtp20149_CR85 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.01.005 – volume: 1338 start-page: 78 year: 2010 ident: BFtp20149_CR63 publication-title: Brain Res doi: 10.1016/j.brainres.2010.03.109 – volume: 157 start-page: 1552 year: 2000 ident: BFtp20149_CR3 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.157.10.1552 – volume: 18 start-page: 180 year: 2012 ident: BFtp20149_CR20 publication-title: Neuroscientist doi: 10.1177/1073858410395147 – volume: 65 start-page: 4051 year: 2005 ident: BFtp20149_CR56 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-3936 – reference: 19699278 - Neuroscience. 2009 Dec 1;164(2):711-23 – reference: 22381690 - Hear Res. 2012 Apr;286(1-2):55-63 – reference: 21443907 - Behav Brain Res. 2012 Feb 14;227(2):348-55 – reference: 20675101 - Schizophr Res. 2010 Dec;124(1-3):183-91 – reference: 15548198 - Eur J Neurosci. 2004 Nov;20(10):2541-54 – reference: 21059906 - Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20382-7 – reference: 22495368 - Appl Immunohistochem Mol Morphol. 2013 Jan;21(1):31-47 – reference: 22436491 - Trends Neurosci. 2012 May;35(5):325-34 – reference: 19347777 - World J Biol Psychiatry. 2010 Feb;11(1):19-35 – reference: 20667465 - Neuroscience. 2010 Oct 27;170(3):731-41 – reference: 17027689 - Prog Brain Res. 2006;158:3-14 – reference: 21447562 - Nucleic Acids Res. 2011 Jul;39(13):5692-703 – reference: 22194182 - Br J Psychiatry. 2012 Apr;200(4):308-16 – reference: 19721432 - Mol Psychiatry. 2010 Dec;15(12):1176-89 – reference: 22427989 - PLoS One. 2012;7(3):e33201 – reference: 12742871 - Arch Gen Psychiatry. 2003 May;60(5):497-502 – reference: 18923405 - Neuropsychopharmacology. 2009 Jan;34(1):18-54 – reference: 18786562 - Neurosci Biobehav Rev. 2009 Mar;33(3):232-52 – reference: 16636682 - Mol Psychiatry. 2006 Jul;11(7):615, 663-79 – reference: 21396449 - Neurobiol Dis. 2012 Jan;45(1):23-36 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 22569850 - J Neural Transm (Vienna). 2012 Oct;119(10):1061-75 – reference: 22207190 - Neurobiol Dis. 2012 May;46(2):263-71 – reference: 22908386 - J Biol Chem. 2012 Jul 20;287(30):25312-24 – reference: 21135314 - Arch Gen Psychiatry. 2011 Apr;68(4):340-50 – reference: 17726228 - J Mol Neurosci. 2007;31(3):221-43 – reference: 15084669 - J Neurosci. 2004 Apr 14;24(15):3879-89 – reference: 22045813 - J Biol Chem. 2011 Dec 30;286(52):44503-11 – reference: 14999098 - Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3765-9 – reference: 21745723 - Schizophr Res. 2011 Sep;131(1-3):165-73 – reference: 16214384 - Mol Genet Metab. 2006 Jan;87(1):71-9 – reference: 21310238 - Neurobiol Dis. 2012 Jan;45(1):37-47 – reference: 11443544 - Am J Hum Genet. 2001 Aug;69(2):428-33 – reference: 20303342 - Brain Res. 2010 Jun 18;1338:89-99 – reference: 19264453 - Schizophr Res. 2009 Apr;109(1-3):86-9 – reference: 21937982 - Neuropsychopharmacology. 2011 Dec;36(13):2589-602 – reference: 17291372 - Int J Neuropsychopharmacol. 2007 Aug;10(4):547-55 – reference: 10913747 - Schizophr Res. 2000 Aug 3;44(2):151-5 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 22869038 - Mol Psychiatry. 2013 Feb;18(2):206-14 – reference: 19109908 - Neuron. 2008 Dec 26;60(6):1010-21 – reference: 17449450 - Neurotox Res. 2007 Jan;11(1):73-83 – reference: 20388499 - Brain Res. 2010 Jun 18;1338:78-88 – reference: 21206919 - PLoS One. 2010;5(12):e15182 – reference: 21111402 - Biol Psychiatry. 2011 Jan 15;69(2):180-7 – reference: 21531988 - Neuroscientist. 2012 Apr;18(2):180-200 – reference: 22315408 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3125-30 – reference: 20478254 - Cell. 2010 May 14;141(4):618-31 – reference: 22558445 - PLoS One. 2012;7(4):e36351 – reference: 17959169 - Exp Mol Pathol. 2008 Feb;84(1):71-7 – reference: 20833242 - Int J Dev Neurosci. 2011 May;29(3):311-24 – reference: 17762510 - Behav Pharmacol. 2007 Sep;18(5-6):419-30 – reference: 21320248 - Bipolar Disord. 2011 Feb;13(1):1-15 – reference: 20656788 - Hum Mol Genet. 2010 Oct 15;19(20):4017-25 – reference: 24169640 - Transl Psychiatry. 2013;3:e321 – reference: 22917588 - Nucleic Acids Res. 2012 Nov 1;40(20):10356-65 – reference: 14687968 - J Biotechnol. 2004 Jan 8;107(1):19-28 – reference: 10742646 - Schizophr Res. 2000 Apr 7;42(2):83-90 – reference: 17326821 - Genome Biol. 2007;8(2):R27 – reference: 16038679 - Biol Psychiatry. 2005 Jul 15;58(2):85-96 – reference: 21395859 - Eur J Neurosci. 2011 Mar;33(6):1152-9 – reference: 20732949 - Schizophr Bull. 2012 May;38(3):433-43 – reference: 21183010 - Biol Psychiatry. 2011 Jan 15;69(2):188-93 – reference: 19150704 - Lancet. 2009 Jan 17;373(9659):234-9 – reference: 19829293 - Neuropsychopharmacology. 2010 Jan;35(2):473-82 – reference: 20703815 - Cell Tissue Bank. 2011 Nov;12(4):311-8 – reference: 18184693 - Hum Mol Genet. 2008 Apr 15;17(8):1156-68 – reference: 21871466 - Neuropharmacology. 2012 Jan;62(1):101-14 – reference: 20060007 - Neuropharmacology. 2010 May;58(6):884-93 – reference: 16594998 - BMC Genomics. 2006;7:70 – reference: 22431396 - J Bone Miner Res. 2012 Aug;27(8):1669-79 – reference: 15899794 - Cancer Res. 2005 May 15;65(10):4051-8 – reference: 17379774 - Science. 2007 Apr 27;316(5824):575-9 – reference: 22244985 - Neurosci Biobehav Rev. 2012 Apr;36(4):1342-56 – reference: 21892155 - Nat Neurosci. 2011 Oct;14(10):1240-2 – reference: 16033310 - PLoS Med. 2005 Jul;2(7):e212 – reference: 20219115 - BMC Genomics. 2010;11:163 – reference: 20167110 - BMC Bioinformatics. 2010;11:94 – reference: 14601036 - Am J Med Genet C Semin Med Genet. 2003 Nov 15;123C(1):48-58 – reference: 22902047 - Curr Opin Immunol. 2012 Dec;24(6):686-91 – reference: 22484572 - Nat Neurosci. 2012 Apr 08;:null – reference: 19470167 - BMC Genomics. 2009;10:246 – reference: 20921955 - Mol Psychiatry. 2011 Dec;16(12):1189-202 – reference: 19406203 - Neurosci Lett. 2009 Aug 7;459(2):100-4 – reference: 21255724 - Mol Cell. 2011 Jan 21;41(2):135-7 – reference: 19125212 - J Psychiatry Neurosci. 2009 Jan;34(1):41-54 – reference: 15891114 - Nucleic Acids Res. 2005;33(8):2697-706 – reference: 11007705 - Am J Psychiatry. 2000 Oct;157(10):1552-62 – reference: 22781168 - Transl Psychiatry. 2012;2:e135 – reference: 17628689 - J Neurosci Methods. 2007 Sep 30;165(2):198-209 – reference: 15533245 - BMC Genomics. 2004 Nov 8;5:87 – reference: 19487572 - Genes Dev. 2009 Jun 1;23(11):1313-26 |
SSID | ssj0000548171 |
Score | 2.2702448 |
Snippet | This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e366 |
SubjectTerms | 631/208/212/2019 631/378/1595/1554 631/80/86 692/699/476 Adult Aged Aged, 80 and over Behavioral Sciences Biological Psychology Bipolar Disorder - genetics Bipolar Disorder - metabolism Dentate Gyrus - cytology Dentate Gyrus - metabolism Depressive Disorder, Major - genetics Depressive Disorder, Major - metabolism Female Gene Expression Profiling - methods Gene Expression Profiling - standards Genotype Humans Laser Capture Microdissection - methods Male Medicine Medicine & Public Health MicroRNAs - genetics MicroRNAs - metabolism Middle Aged Neurosciences Original original-article Pharmacotherapy Psychiatry Schizophrenia - genetics Schizophrenia - metabolism Tissue Banks Transcriptome - genetics |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4SIgL4k1hoPA4cCm0a9qkRzSBJqRxYhLiUvXhwKTSVaw78O9x0gcMOHBrVSdNbSd2YvczwAVZWCnSICTPLUxs7km0ZZwKOxNBpnSgTZlyPqOHYDjm90_-UwMWPWvSKmtIS7NMt9lh15XGlnT5VbgMqxqxXSvzIBh0xynkeUhXuC12kCe_WixanF9u5O9syB8hUWNp7jZho3ER2U09qC1YwmIb1kZNEHwHno19MbN9-oasrrpNPbGpYqbkHnudlCXZqLdyPmOZ-bkI2cvHO929UNN5jkyf18_YpGA1tj-b5Lle83ZhfHf7OBjaTYkEO_UdXtlumPCMdmRIblzoI0-Qk1QCdDQzUDmoJDpcCSTLjqnyMeFxnClfekngKvLF9mClmBZ4ACx13Jg6iX3UxdJFnJCs-lnQT2NfIZfcgsuWjVHa4IfrMhZ5ZOLYnoyqMtIcj0ILzjrSsgbN-Iuo18oiaubNLNJgqW5fCK9vwWn3mDResyUucDonGvpywfVm0YL9WnTdW0i7Qi6EsEAsCLUj0Gjai0-KyatB1fY0TikPLDhvxf9tWD8Hf_gvqiNY1xcmZY33YKV6n-Mx-TBVcmK09xMC8fQn priority: 102 providerName: Springer Nature |
Title | Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness |
URI | https://link.springer.com/article/10.1038/tp.2014.9 https://www.ncbi.nlm.nih.gov/pubmed/24594777 https://www.proquest.com/docview/1791127732 https://www.proquest.com/docview/1504740028 https://pubmed.ncbi.nlm.nih.gov/PMC3966046 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2FBh2Gbq31yzQHoddvNqxbMmnIQtaFAFaDNsKBLsYflBtgNT2GufQf19Sfmxph50MW7Qtk5JIkfRHgI-kYbXKo5gstzhzZaDR1Wmu3EJFheFAm7HlfE7PopNzuViGy87htunSKvs10S7URZWzj_yQYTT9qVLB9Ev92-WqURxd7UpoPIQ9hi7jlC61VIOPhcwR7Su_BxQK9GHDEJW-_BzvqqF7tuX9FMk7cVKrfo734UlnN4pZK-in8ADLZ_DotIuMP4dfVunYJaC6QtGW4qYnicoIW4dPXK7qmhTXVb3diML-cYTi4uaazi7o1u0aBTvxN2JVihbwX6zWa14IX8D58dHP-Ynb1U1w89CTjevHmSxom4Zk28UhygwliSpCj5mBxkOj0ZNGIal7zE2ImUzTwoQ6yCLfkIH2EkZlVeJrELnnp_SQNESuoK7SjAQ4LaJpnoYGpZYOfOrZmOQdqDjXtlgnNrgd6KSpE-Z4EjvwfiCtWySNfxGNe1kk3WTaJH9E78C7oZmmAbMlLbHaEg19uZK8g3TgVSu64S005GKplHJA7Qh1IGCI7d2WcnVpobYDBi-VkQMfevH_1a27nX_z_84fwGOmswlscgyj5nqLb8miabKJHbYT2JvNFj8WdPx6dPbtO12dR_OJ9RLcAnnZ_rU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CLZiXxCV0kzhxcqgQj1Zb2l0h1EoVl5DHuF1pm4RuVqh_qr-xM84DtkXceow8ntiesWfssecDeEMWNlRZEJHnFqW29EK0wyRTdq6CXHOgTRs4n_EkGB3Ir4f-4Qqcd29h-FpltyaahTovMz4j3-A0mo6rlOd-qH7ZjBrF0dUOQqNRi108-01btvnmzheS71vX3d7a_zyyW1QBO_OHsradKJU5bWKQPJ_IR5mipI4ESLZROaiHqEMcSq2QjCFm2sdUJkmu_dBLA0eT-0J8b8Cq9GgrM4DVT1uTb9_7Ux1ygJhNl8LICzdqTorpyPfRsuG74s1evZR5KTJrDN72XbjTeqriY6Na92AFi_twc9zG4h_AD2PmzKJTnqBowL-Jkyi1MMh_4nhaVWQqT6rFXOTmjROKo7NT-jqiqosZCg4bzMW0EA3EgJjOZrz0PoSDaxnTRzAoygKfgMiGTkJMEh8Zs10lKamMmwdulvgaZSgteNcNY5y1acwZTWMWm3C6F8Z1FfOIx5EFr3rSqsnd8S-itU4WcTt95_EfZbPgZV9ME4-HJSmwXBAN9VxJ3rNa8LgRXf8XUvJIKqUsUEtC7Qk4qfdySTE9Nsm9PU6XKgMLXnfi_6tZlxv_9P-NfwG3RvvjvXhvZ7L7DG5zHXN9Tq7BoD5d4Dr5U3X6vFViAT-ve95cAFJbOXU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeqr6gKbR1H0hc0t0kTpwcqqoqXUEpiANIKy4hjzGstCSBzarir_XXdcZ5tAuoN46RH7Hn4Rl77PkAPpKFDVUWROS5RaktvRDtMMmUnasg1xxo0wbOZ_8g2DmWP8b-eAl-d29h-FpltyaahTovMz4jH3AaTcdVynMHur0Wcbg9-lJd2owgxZHWDk6jEZE9vP5F27fZ591t4vWm646-H33bsVuEATvzh7K2nSiVOW1okLygyEeZoqRJBUh2Ujmoh6hDHEqtkAwjZtrHVCZJrv3QSwNHkytD_T6Ah8rzHdYxNVb9-Q65QtxJl8zICwc1p8d05Kdo0QTe8mtvX8-8EaM1pm_0BB63Pqv42gjZU1jC4hms7LdR-edwYgyeWX7KCxQNDDj1JEotDAagOJ9UFRnNi2o-E7l57YTi7PqKvs6o6XyKggMIMzEpRAM2ICbTKS_CL-D4Xii6CstFWeBLENnQSaiTxEdGb1dJSsLj5oGbJb5GGUoLtjoyxlmb0JxxNaaxCax7YVxXMVM8jix431etmiwed1Xa6HgRt4o8i_-KnQXv-mJSQSZLUmA5pzo0cyV592rBWsO6_i8k7pFUSlmgFpjaV-D03oslxeTcpPn2OHGqDCz40LH_n2HdHPyr_w_-LayQtsQ_dw_21uERNzH36OQGLNdXc3xNjlWdvjESLOD0vlXmDybtPEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+profiling+of+human+hippocampus+dentate+gyrus+granule+cells+in+mental+illness&rft.jtitle=Translational+psychiatry&rft.au=Kohen%2C+R&rft.au=Dobra%2C+A&rft.au=Tracy%2C+J+H&rft.au=Haugen%2C+E&rft.date=2014-03-04&rft.pub=Nature+Publishing+Group&rft.eissn=2158-3188&rft.volume=4&rft.issue=3&rft.spage=e366&rft_id=info:doi/10.1038%2Ftp.2014.9&rft_id=info%3Apmid%2F24594777&rft.externalDocID=PMC3966046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon |