The PROTAC technology in drug development
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to...
Saved in:
Published in | Cell biochemistry and function Vol. 37; no. 1; pp. 21 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC.
Significance of the study
This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy. |
---|---|
AbstractList | Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy. Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC.Significance of the studyThis review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy. Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy. Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. Significance of the study This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy. |
Author | Zou, Yutian Wang, Yinyin Ma, Danhui |
AuthorAffiliation | 1 The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine Tsinghua University Beijing China 2 Department of Science Brookwood High School Snellville Georgia |
AuthorAffiliation_xml | – name: 1 The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine Tsinghua University Beijing China – name: 2 Department of Science Brookwood High School Snellville Georgia |
Author_xml | – sequence: 1 givenname: Yutian surname: Zou fullname: Zou, Yutian organization: Brookwood High School – sequence: 2 givenname: Danhui surname: Ma fullname: Ma, Danhui organization: Tsinghua University – sequence: 3 givenname: Yinyin orcidid: 0000-0003-1285-0507 surname: Wang fullname: Wang, Yinyin email: wangyinyin@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30604499$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVtLw0AQhRepaL2Av0ACvuhD6mRvzb4ItXgDQZH6vGw2k3ZLmq25VPrvTbwr-jQP882ZOXN2SK_wBRJyEMEgAqCnNskGjEm1QfoRKBVCzHmP9IFKFkoe822yU1VzAFCSwRbZZiCBc6X65GQyw-D-4W4yGgc12lnhcz9dB64I0rKZBimuMPfLBRb1HtnMTF7h_nvdJY-XF5PxdXh7d3UzHt2GVgBXYWy4REyMYFRgTKmxwxQyam0SS1BWYRZRwUUiuFGCqixOEqZaHqlMpQVgu-TsTXfZJAtMbbu6NLlelm5hyrX2xumfncLN9NSvtBQKJFOtwPG7QOmfGqxqvXCVxTw3Bfqm0jRqnwCKM9miR7_QuW_KorXXUcNIiHjYUYffL_o85eOLXxtt6auqxOwTiUB3Aek2IN0F1KKDX6h1tamd77y4_K-B8G3g2eW4_ldYj88vX_kXT0Ke2g |
CitedBy_id | crossref_primary_10_1021_acs_biochem_4c00577 crossref_primary_10_1039_D4MD00962B crossref_primary_10_1111_cbdd_14123 crossref_primary_10_1016_j_jare_2024_08_008 crossref_primary_10_1039_D0OB02120B crossref_primary_10_1158_0008_5472_CAN_19_0695 crossref_primary_10_3389_fchem_2021_672267 crossref_primary_10_1021_acsptsci_1c00032 crossref_primary_10_1177_15353702211067718 crossref_primary_10_1038_s41523_020_00190_9 crossref_primary_10_3390_cancers13010119 crossref_primary_10_1021_acs_jmedchem_1c00882 crossref_primary_10_3390_biomedicines9080895 crossref_primary_10_1016_j_ejmech_2023_115982 crossref_primary_10_1111_mmi_14706 crossref_primary_10_1051_jbio_2021007 crossref_primary_10_4155_fmc_2020_0210 crossref_primary_10_1002_cmdc_202300117 crossref_primary_10_1016_j_ejmech_2021_113386 crossref_primary_10_1038_s41392_019_0101_6 crossref_primary_10_1186_s40779_023_00446_y crossref_primary_10_3389_fchem_2022_860985 crossref_primary_10_1002_advs_202104850 crossref_primary_10_1002_mco2_290 crossref_primary_10_1016_j_bmc_2019_02_048 crossref_primary_10_1016_j_ejmech_2022_114373 crossref_primary_10_1016_j_drudis_2022_103395 crossref_primary_10_3390_cells14020065 crossref_primary_10_1002_cbdv_202401797 crossref_primary_10_1016_j_ejmech_2025_117370 crossref_primary_10_3390_biom11081101 crossref_primary_10_1080_17460441_2021_1909567 crossref_primary_10_1111_bph_15014 crossref_primary_10_1002_wcms_70013 crossref_primary_10_1002_ange_202107347 crossref_primary_10_1016_j_omtn_2022_09_008 crossref_primary_10_1002_mco2_575 crossref_primary_10_1016_j_bbrc_2023_149125 crossref_primary_10_1016_j_bioorg_2023_106649 crossref_primary_10_3390_cancers14194865 crossref_primary_10_1016_j_ejmech_2022_114301 crossref_primary_10_2174_0929867329666220211091806 crossref_primary_10_3389_fcell_2021_805336 crossref_primary_10_1016_j_ejmech_2022_114142 crossref_primary_10_3390_cancers13174363 crossref_primary_10_1021_acs_jmedchem_2c02132 crossref_primary_10_1039_D0RA07971E crossref_primary_10_1242_jcs_228072 crossref_primary_10_1016_j_tim_2022_01_006 crossref_primary_10_3390_ph16121649 crossref_primary_10_1016_j_chembiol_2019_11_006 crossref_primary_10_1016_j_ijbiomac_2024_133680 crossref_primary_10_3390_molecules26216682 crossref_primary_10_1007_s10616_025_00716_8 crossref_primary_10_4155_fmc_2020_0279 crossref_primary_10_1002_anie_202107347 crossref_primary_10_1016_j_tim_2023_09_002 crossref_primary_10_1002_adtp_202000148 crossref_primary_10_1007_s40259_020_00419_w crossref_primary_10_1016_j_ejmech_2025_117347 crossref_primary_10_1016_j_bioorg_2021_105447 crossref_primary_10_1016_j_apsb_2019_08_001 crossref_primary_10_1016_j_isci_2024_110712 crossref_primary_10_15212_AMM_2022_0041 crossref_primary_10_5937_arhfarm71_30785 crossref_primary_10_2174_1570163820666221031124612 crossref_primary_10_1039_D0CC03243C crossref_primary_10_2174_0929867330666230130121822 crossref_primary_10_1016_j_ejps_2020_105274 crossref_primary_10_3389_fcell_2021_685106 crossref_primary_10_1002_cmdc_202400377 crossref_primary_10_1021_acs_jmedchem_1c00895 crossref_primary_10_1016_j_ejpb_2025_114699 crossref_primary_10_1002_jcb_29941 crossref_primary_10_1186_s12943_024_02024_9 crossref_primary_10_1002_adhm_202300871 crossref_primary_10_1016_j_apsb_2020_05_004 crossref_primary_10_1016_j_apsb_2022_02_022 crossref_primary_10_1016_j_apsb_2020_05_001 crossref_primary_10_1016_j_ejmech_2024_117212 crossref_primary_10_3390_molecules28020690 crossref_primary_10_1021_acschembio_1c00751 crossref_primary_10_3390_ph16091283 crossref_primary_10_1016_j_xcrp_2022_101062 crossref_primary_10_1021_acschembio_9b00525 crossref_primary_10_1186_s12929_023_00921_7 crossref_primary_10_1016_j_ejmech_2024_116488 crossref_primary_10_1016_j_chembiol_2020_04_003 crossref_primary_10_1186_s43556_022_00112_0 crossref_primary_10_1016_j_ejmech_2024_116645 crossref_primary_10_1021_acs_jmedchem_2c01859 crossref_primary_10_3389_fphar_2021_692574 crossref_primary_10_1021_acs_jmedchem_1c01496 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1016_j_slasd_2023_01_006 crossref_primary_10_4155_fmc_2022_0147 crossref_primary_10_3389_fchem_2020_00485 crossref_primary_10_1039_D4MD00522H crossref_primary_10_1097_FJC_0000000000001441 crossref_primary_10_1021_acs_jmedchem_1c01532 crossref_primary_10_1021_acsnano_3c01408 crossref_primary_10_2174_1871520621666210308100327 crossref_primary_10_4155_fdd_2020_0023 crossref_primary_10_1016_j_cmpb_2025_108687 crossref_primary_10_1016_j_jmb_2025_169050 crossref_primary_10_3389_fonc_2020_621294 crossref_primary_10_1016_j_ejmech_2023_115384 crossref_primary_10_1016_j_ejmech_2025_117560 crossref_primary_10_3390_antib12030043 crossref_primary_10_3390_nano13152225 crossref_primary_10_1016_j_ejmech_2021_113749 crossref_primary_10_1021_acschembio_9b00972 crossref_primary_10_2174_1871520619666190313161009 crossref_primary_10_1021_jacsau_4c00040 crossref_primary_10_1080_17460441_2023_2264187 crossref_primary_10_7759_cureus_28496 crossref_primary_10_1002_chem_202301194 crossref_primary_10_1002_ijch_201900007 crossref_primary_10_1016_j_ejmech_2020_112397 crossref_primary_10_1039_C9RA03423D crossref_primary_10_2174_1568009621666210203110857 crossref_primary_10_3390_cancers17020211 crossref_primary_10_1039_D2CS00193D crossref_primary_10_1021_acs_jmedchem_4c00723 crossref_primary_10_1016_j_biopha_2022_114112 crossref_primary_10_3390_ijms231911068 crossref_primary_10_1002_adhm_202400109 crossref_primary_10_1016_j_biopha_2023_115667 crossref_primary_10_1016_j_bioorg_2023_106720 crossref_primary_10_1021_acs_jmedchem_9b00446 crossref_primary_10_1051_bioconf_20248601038 crossref_primary_10_3389_fimmu_2023_1332626 crossref_primary_10_1016_j_phrs_2022_106529 crossref_primary_10_3390_molecules27248828 crossref_primary_10_1021_acs_jmedchem_4c02068 crossref_primary_10_1021_acs_jmedchem_0c00929 crossref_primary_10_1016_j_canlet_2023_216065 crossref_primary_10_1007_s12033_024_01254_y crossref_primary_10_1016_j_bmc_2023_117237 crossref_primary_10_1016_j_bmcl_2019_04_030 crossref_primary_10_1021_acs_jmedchem_3c01144 crossref_primary_10_1016_j_ejmech_2024_116504 crossref_primary_10_1016_j_phrs_2024_107217 crossref_primary_10_1016_j_ejmech_2022_114603 crossref_primary_10_1016_j_jddst_2024_106596 crossref_primary_10_3390_cells10123309 crossref_primary_10_1177_24725552211036056 crossref_primary_10_1016_j_ejmech_2023_115839 crossref_primary_10_1016_j_bcp_2020_114211 crossref_primary_10_1038_s41573_022_00521_4 crossref_primary_10_1016_j_ejmech_2021_114062 crossref_primary_10_4155_fmc_2019_0159 crossref_primary_10_1016_j_ejmech_2023_116096 crossref_primary_10_1016_j_bioorg_2024_107943 crossref_primary_10_1021_acs_jmedchem_4c00015 crossref_primary_10_1016_j_mrfmmm_2020_111694 crossref_primary_10_1016_j_ejmech_2024_116212 crossref_primary_10_4155_fmc_2020_0073 crossref_primary_10_1016_j_ejmech_2023_115567 crossref_primary_10_1016_j_ejmech_2023_115447 crossref_primary_10_1016_j_ejmech_2021_113645 crossref_primary_10_1021_acs_biochem_9b00848 crossref_primary_10_1016_j_apsb_2021_12_017 crossref_primary_10_4155_fmc_2021_0229 crossref_primary_10_2174_1568026619666190618130008 crossref_primary_10_3390_pharmaceutics14122829 crossref_primary_10_1002_aic_17087 crossref_primary_10_1016_j_semcancer_2020_12_022 crossref_primary_10_1007_s40259_022_00551_9 crossref_primary_10_1016_j_biopha_2020_110009 crossref_primary_10_1016_j_jsbmb_2021_105848 crossref_primary_10_1007_s11172_022_3659_z crossref_primary_10_1021_acs_jmedchem_0c00744 crossref_primary_10_1111_bph_15242 crossref_primary_10_1021_acs_biochem_1c00330 crossref_primary_10_1021_acs_jmedchem_9b01393 crossref_primary_10_1038_s41392_023_01647_6 crossref_primary_10_1039_D2CS00624C crossref_primary_10_2174_1574892815666200630102344 crossref_primary_10_1016_j_ejmech_2023_115690 crossref_primary_10_2174_0929867327666200312112412 crossref_primary_10_3390_cancers14215354 crossref_primary_10_4103_1673_5374_308075 crossref_primary_10_1021_acschembio_3c00017 crossref_primary_10_3390_cells13030218 crossref_primary_10_1007_s11427_024_2661_3 crossref_primary_10_15212_AMM_2022_0010 |
Cites_doi | 10.1126/science.aab1433 10.1016/j.ejmech.2018.01.063 10.1016/j.bioorg.2018.09.005 10.2174/1568009616666151112122502 10.1111/cas.13198 10.1016/j.chembiol.2015.05.009 10.1016/S1097-2765(00)00074-5 10.1021/acs.jmedchem.6b01781 10.1016/j.bmc.2011.03.057 10.1021/acs.jmedchem.6b01816 10.1016/j.chembiol.2017.10.011 10.1038/nrd.2016.211 10.1021/acscentsci.6b00280 10.1007/s10555-017-9698-5 10.1016/j.bmcl.2016.09.041 10.1021/acschembio.7b00985 10.1074/mcp.T300009-MCP200 10.1021/acschembio.5b00442 10.1126/science.aam7340 10.1038/leu.2016.393 10.1038/onc.2008.320 10.1038/s41375-018-0044-x 10.1016/j.febslet.2011.03.019 10.1016/j.ejmech.2018.03.071 10.1038/nn.3637 10.1021/acs.jmedchem.7b01333 10.1021/acs.jmedchem.6b01872 10.1007/978-1-4939-3127-9_42 10.1158/2159-8290.CD-NB2018-015 10.1038/s41589-018-0010-y 10.1016/j.ejmech.2018.03.066 10.1016/S0076-6879(05)99054-X 10.1021/acs.jmedchem.8b00506 10.1073/pnas.1803662115 10.1016/j.bmcl.2005.04.008 10.1203/PDR.0b013e3181d35017 10.1016/j.bmcl.2008.07.114 10.1124/mol.116.105569 10.1016/j.bbrc.2018.02.096 10.1016/j.bbrc.2014.10.006 10.1111/cas.12272 10.3390/molecules23081958 10.1038/leu.2017.207 10.2174/1386207043328364 10.1016/j.bmcl.2003.11.042 10.1124/mol.107.040840 10.1016/j.cellsig.2007.11.010 10.1002/anie.201507634 10.1073/pnas.1521738113 10.1021/cb8001792 10.1016/j.cbpa.2016.06.031 10.1016/S0960-894X(00)00208-0 10.1038/nchembio.597 10.1016/S0960-894X(99)00185-7 10.1038/s41422-018-0055-1 10.1021/ja100691p 10.1016/j.cbpa.2017.05.016 10.1002/bies.201700247 10.1021/ja039025z 10.1002/anie.201507978 10.1002/cbic.200700438 10.1039/C7CC03879H 10.1038/nbt.1608 10.1038/aja.2008.26 10.1021/jacs.8b05807 10.1038/nchembio.1858 10.1074/jbc.M116.768853 10.1021/acs.jmedchem.7b00635 10.1021/acsmedchemlett.8b00106 10.1016/j.chembiol.2016.02.016 10.1038/s42003-018-0105-8 10.1021/acschembio.5b00216 10.1016/j.biocel.2018.06.001 10.1021/acs.jmedchem.7b01655 10.1016/j.bmcl.2018.05.057 10.1002/tcr.201800032 10.1016/j.ebiom.2018.09.005 10.1042/EBC20170030 10.1016/j.bcp.2016.07.017 10.1016/j.bone.2018.03.027 10.1038/nchembio.2538 10.1002/psc.2858 10.1016/j.cell.2018.02.030 10.1146/annurev-pharmtox-010715-103507 10.1016/j.chembiol.2017.05.024 10.1016/j.pharmthera.2017.02.027 10.1016/j.bmc.2011.09.041 10.1016/j.bbrc.2018.09.169 10.1016/j.chembiol.2017.10.005 10.1186/s13045-016-0362-2 10.1073/pnas.141230798 10.1002/j.1460-2075.1992.tb05307.x 10.1016/j.bioorg.2018.08.028 10.1016/j.chembiol.2017.09.009 10.1016/S1097-2765(00)80156-2 10.1038/cddis.2014.471 10.1021/acschembio.6b01068 |
ContentType | Journal Article |
Copyright | 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd. 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd – notice: 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd. – notice: 2019 John Wiley & Sons, Ltd. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 5PM |
DOI | 10.1002/cbf.3369 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | The PROTAC technology in drug development |
EISSN | 1099-0844 |
EndPage | 30 |
ExternalDocumentID | PMC6590639 30604499 10_1002_cbf_3369 CBF3369 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Chinese National Major Scientific Research Program funderid: 2016YFA0500301 – fundername: National Natural Science Foundation of China funderid: 81572729; 81830092; 81872244 – fundername: National Natural Science Foundation of China grantid: 81872244 – fundername: Chinese National Major Scientific Research Program grantid: 2016YFA0500301 – fundername: National Natural Science Foundation of China grantid: 81572729 – fundername: National Natural Science Foundation of China grantid: 81830092 – fundername: National Natural Science Foundation of China grantid: 81572729; 81830092; 81872244 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WSB WXI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5049-8a46eeba5325e822ac7d0f2ccb8609c9ef12545b54a9529f8bb39ebae26d6c003 |
IEDL.DBID | DR2 |
ISSN | 0263-6484 1099-0844 |
IngestDate | Thu Aug 21 13:56:21 EDT 2025 Fri Jul 11 00:19:52 EDT 2025 Fri Jul 25 09:41:05 EDT 2025 Mon Jul 21 06:02:43 EDT 2025 Tue Jul 01 02:49:14 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Wed Jan 22 17:07:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | drug development small molecule cancer PROTAC protein degradation |
Language | English |
License | Attribution 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5049-8a46eeba5325e822ac7d0f2ccb8609c9ef12545b54a9529f8bb39ebae26d6c003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1285-0507 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3369 |
PMID | 30604499 |
PQID | 2167155876 |
PQPubID | 2029981 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590639 proquest_miscellaneous_2163009436 proquest_journals_2167155876 pubmed_primary_30604499 crossref_primary_10_1002_cbf_3369 crossref_citationtrail_10_1002_cbf_3369 wiley_primary_10_1002_cbf_3369_CBF3369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis – name: Hoboken |
PublicationTitle | Cell biochemistry and function |
PublicationTitleAlternate | Cell Biochem Funct |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 126 2000; 6 2004; 7 2018; 81 2016; 1366 2018; 40 2008; 3 2015; 348 2008; 73 2017; 355 1992; 11 2011; 19 2014; 453 2016; 33 2010; 67 2009; 11 2017; 31 2018; 9 2018; 8 2014; 5 2018; 173 2017; 36 2017; 39 2018; 1 2010; 28 2000; 10 2018; 497 2008; 27 2003; 2 2007; 8 2016; 113 2016; 116 2014; 17 2008; 20 2018; 32 2001; 98 2017; 61 2018; 28 2018; 140 2005; 399 2018; 146 2008; 18 2018; 101 2013; 104 2017; 24 2015; 11 2015; 10 2017; 292 2005 2017; 174 2018; 505 2018; 61 2016; 16 2011; 7 2018; 25 1999; 9 2016; 55 2017; 108 2017; 53 2017; 91 2018; 151 2016; 2 2017; 16 2004; 14 2018; 112 2015; 22 2017; 57 2018; 115 2017; 12 2010; 132 2018 1998; 2 2005; 15 2016; 26 2011; 585 2016; 9 2016; 23 2018; 14 2018; 13 2016; 22 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Caruso C (e_1_2_9_97_1) 2018; 8 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 355 start-page: 1163 issue: 6330 year: 2017 end-page: 1167 article-title: Waste disposal—an attractive strategy for cancer therapy publication-title: Science – volume: 505 start-page: 542 issue: 2 year: 2018 end-page: 547 article-title: Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC) publication-title: Biochem Biophys Res Commun – volume: 61 start-page: 6685 issue: 15 year: 2018 end-page: 6704 article-title: Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the Bromodomain and extra‐terminal (BET) proteins capable of inducing complete and durable tumor regression publication-title: J Med Chem – volume: 10 start-page: 1770 issue: 8 year: 2015 end-page: 1777 article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4 publication-title: ACS Chem Biol – year: 2005 – volume: 33 start-page: 186 year: 2016 end-page: 194 article-title: Chemical genetics approaches for selective intervention in epigenetics publication-title: Curr Opin Chem Biol – volume: 23 start-page: 453 issue: 4 year: 2016 end-page: 461 article-title: Specific knockdown of endogenous tau protein by peptide‐directed ubiquitin‐proteasome degradation publication-title: Cell Chem Biol – volume: 115 start-page: E7285 issue: 31 year: 2018 end-page: E7292 article-title: Delineating the role of cooperativity in the design of potent PROTACs for BTK publication-title: Proc Natl Acad Sci U S a – volume: 1 start-page: 100 issue: 1 year: 2018 article-title: Androgen receptor degradation by the proteolysis‐targeting chimera ARCC‐4 outperforms enzalutamide in cellular models of prostate cancer drug resistance publication-title: Commun Biol – volume: 6 start-page: 751 issue: 3 year: 2000 end-page: 756 article-title: Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins publication-title: Mol Cell – volume: 7 start-page: 538 issue: 8 year: 2011 end-page: 543 article-title: Small‐molecule hydrophobic tagging‐induced degradation of HaloTag fusion proteins publication-title: Nat Chem Biol – volume: 10 start-page: 1303 issue: 11 year: 2000 end-page: 1306 article-title: Synthesis and evaluation of geldanamycin‐testosterone hybrids publication-title: Bioorg Med Chem Lett – volume: 14 start-page: 645 issue: 3 year: 2004 end-page: 648 article-title: Degradation of target protein in living cells by small‐molecule proteolysis inducer publication-title: Bioorg Med Chem Lett – volume: 116 start-page: 200 year: 2016 end-page: 209 article-title: New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation publication-title: Biochem Pharmacol – volume: 292 start-page: 4556 issue: 11 year: 2017 end-page: 4570 article-title: In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)‐dependent protein erasers (SNIPERs) publication-title: J Biol Chem – volume: 585 start-page: 1147 issue: 8 year: 2011 end-page: 1152 article-title: Specific degradation of CRABP‐II via cIAP1‐mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein publication-title: FEBS Lett – volume: 14 start-page: 163 issue: 2 year: 2018 end-page: 170 article-title: Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation publication-title: Nat Chem Biol – volume: 399 start-page: 833 year: 2005 end-page: 847 article-title: Chimeric molecules to target proteins for ubiquitination and degradation publication-title: Methods Enzymol – volume: 81 start-page: 373 year: 2018 end-page: 381 article-title: Discovery of Wogonin‐based PROTACs against CDK9 and capable of achieving antitumor activity publication-title: Bioorg Chem – volume: 40 issue: 4 year: 2018 article-title: PROTACs: an emerging targeting technique for protein degradation in drug discovery publication-title: Bioessays – volume: 11 start-page: 119 issue: 1 year: 2009 end-page: 126 article-title: Chimeric molecules facilitate the degradation of androgen receptors and repress the growth of LNCaP cells publication-title: Asian J Androl – volume: 25 start-page: 67 issue: 1 year: 2018 end-page: 77 article-title: The advantages of targeted protein degradation over inhibition: an RTK case study publication-title: Cell Chem Biol – volume: 1366 start-page: 549 year: 2016 end-page: 560 article-title: Molecular design, synthesis, and evaluation of SNIPER (ER) that induces proteasomal degradation of ERα publication-title: Methods Mol Biol – volume: 61 start-page: 583 issue: 2 year: 2018 end-page: 598 article-title: Identification and characterization of Von Hippel‐Lindau‐recruiting proteolysis targeting chimeras (PROTACs) of TANK‐binding kinase 1 publication-title: J Med Chem – volume: 19 start-page: 6768 issue: 22 year: 2011 end-page: 6778 article-title: Design, synthesis and biological evaluation of nuclear receptor‐degradation inducers publication-title: Bioorg Med Chem – volume: 24 start-page: 1181 issue: 9 year: 2017 end-page: 1190 article-title: Targeted protein degradation: from chemical biology to drug discovery publication-title: Cell Chem Biol – volume: 17 start-page: 471 issue: 3 year: 2014 end-page: 480 article-title: Rapid and reversible knockdown of endogenous proteins by peptide‐directed lysosomal degradation publication-title: Nat Neurosci – volume: 53 start-page: 7577 issue: 54 year: 2017 end-page: 7580 article-title: Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC) publication-title: Chem Commun (Camb) – volume: 2 start-page: 571 issue: 5 year: 1998 end-page: 580 article-title: Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin‐protein ligases publication-title: Mol Cell – volume: 22 start-page: 755 issue: 6 year: 2015 end-page: 763 article-title: Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4 publication-title: Chem Biol – volume: 22 start-page: 196 issue: 4 year: 2016 end-page: 200 article-title: Degradation of Akt using protein‐catalyzed capture agents publication-title: J Pept Sci – volume: 140 start-page: 9299 issue: 29 year: 2018 end-page: 9313 article-title: 3‐Fluoro‐4‐hydroxyprolines: synthesis, conformational analysis, and Stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation publication-title: J Am Chem Soc – volume: 11 start-page: 611 issue: 8 year: 2015 end-page: 617 article-title: Catalytic in vivo protein knockdown by small‐molecule PROTACs publication-title: Nat Chem Biol – volume: 61 start-page: 453 issue: 2 year: 2018 end-page: 461 article-title: A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation publication-title: J Med Chem – volume: 12 start-page: 892 issue: 4 year: 2017 end-page: 898 article-title: Proteolysis‐targeting chimeras: induced protein degradation as a therapeutic strategy publication-title: ACS Chem Biol – volume: 61 start-page: 462 issue: 2 year: 2018 end-page: 481 article-title: Discovery of a small‐molecule degrader of bromodomain and extra‐terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression publication-title: J Med Chem – volume: 39 start-page: 46 year: 2017 end-page: 53 article-title: Targeted protein knockdown using small molecule degraders publication-title: Curr Opin Chem Biol – volume: 81 start-page: 536 year: 2018 end-page: 544 article-title: Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin‐proteasome pathway publication-title: Bioorg Chem – volume: 151 start-page: 237 year: 2018 end-page: 247 article-title: Phthalimide conjugations for the degradation of oncogenic PI3K publication-title: Eur J Med Chem – volume: 25 start-page: 30 issue: 1 year: 2018 end-page: 35 article-title: Small‐molecule kinase downregulators publication-title: Cell Chem Biol – volume: 16 start-page: 101 issue: 2 year: 2017 end-page: 114 article-title: Induced protein degradation: an emerging drug discovery paradigm publication-title: Nat Rev Drug Discov – volume: 13 start-page: 628 issue: 3 year: 2018 end-page: 635 article-title: Development of stabilized peptide‐based PROTACs against estrogen receptor alpha publication-title: ACS Chem Biol – volume: 3 start-page: 677 issue: 11 year: 2008 end-page: 692 article-title: Design and applications of bifunctional small molecules: why two heads are better than one publication-title: ACS Chem Biol – volume: 10 start-page: 1831 issue: 8 year: 2015 end-page: 1837 article-title: HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins publication-title: ACS Chem Biol – volume: 497 start-page: 410 issue: 1 year: 2018 end-page: 415 article-title: Selective degradation of BET proteins with dBET1, a proteolysis‐targeting chimera, potently reduces pro‐inflammatory responses in lipopolysaccharide‐activated microglia publication-title: Biochem Biophys Res Commun – volume: 67 start-page: 505 issue: 5 year: 2010 end-page: 508 article-title: Protacs for treatment of cancer publication-title: Pediatr Res – volume: 61 start-page: 517 issue: 5 year: 2017 end-page: 527 article-title: Protein degradation: a validated therapeutic strategy with exciting prospects publication-title: Essays Biochem – volume: 113 start-page: 7124 issue: 26 year: 2016 end-page: 7129 article-title: PROTAC‐induced BET protein degradation as a therapy for castration‐resistant prostate cancer publication-title: Proc Natl Acad Sci U S a – volume: 36 start-page: 585 issue: 4 year: 2017 end-page: 598 article-title: Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors publication-title: Cancer Metastasis Rev – volume: 104 start-page: 1492 issue: 11 year: 2013 end-page: 1498 article-title: Development of hybrid small molecules that induce degradation of estrogen receptor‐alpha and necrotic cell death in breast cancer cells publication-title: Cancer Sci – volume: 9 start-page: 134 issue: 1 year: 2016 article-title: Inhibition of bromodomain and extra‐terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell‐mediated cytotoxicity in multiple myeloma cells: role of cMYC‐IRF4‐miR‐125b interplay publication-title: J Hematol Oncol – volume: 18 start-page: 5904 issue: 22 year: 2008 end-page: 5908 article-title: Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics publication-title: Bioorg Med Chem Lett – volume: 146 start-page: 251 year: 2018 end-page: 259 article-title: Discovery of a Keap1‐dependent peptide PROTAC to knockdown tau by ubiquitination‐proteasome degradation pathway publication-title: Eur J Med Chem – volume: 5 issue: 11 year: 2014 article-title: Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin‐proteasome pathway publication-title: Cell Death Dis – year: 2018 – volume: 112 start-page: 71 year: 2018 end-page: 89 article-title: Hypoxia‐selective allosteric destabilization of activin receptor‐like kinases: a potential therapeutic avenue for prophylaxis of heterotopic ossification publication-title: Bone – volume: 101 start-page: 80 year: 2018 end-page: 93 article-title: Ubiquitination: friend and foe in cancer publication-title: Int J Biochem Cell Biol – year: 2018 article-title: Chemical protein degradation approach and its application to epigenetic targets publication-title: Chem Rec – volume: 9 start-page: 803 issue: 8 year: 2018 end-page: 808 article-title: New class of selective estrogen receptor degraders (SERDs): expanding the toolbox of PROTAC Degrons publication-title: ACS Med Chem Lett – volume: 31 start-page: 1951 issue: 9 year: 2017 end-page: 1961 article-title: Novel BET protein proteolysis‐targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post‐myeloproliferative neoplasm secondary (s) AML cells publication-title: Leukemia – volume: 8 start-page: 377 issue: 4 year: 2018 end-page: 378 article-title: Arvinas, Pfizer team up on PROTACs publication-title: Cancer Discov – volume: 7 start-page: 689 issue: 7 year: 2004 end-page: 697 article-title: Targeted degradation of proteins by small molecules: a novel tool for functional proteomics publication-title: Comb Chem High Throughput Screen – volume: 73 start-page: 1064 issue: 4 year: 2008 end-page: 1071 article-title: Development of an aryl hydrocarbon receptor antagonist using the proteolysis‐targeting chimeric molecules approach: a potential tool for chemoprevention publication-title: Mol Pharmacol – volume: 98 start-page: 8554 issue: 15 year: 2001 end-page: 8559 article-title: Protacs: chimeric molecules that target proteins to the Skp1‐Cullin‐F box complex for ubiquitination and degradation publication-title: Proc Natl Acad Sci U S a – volume: 20 start-page: 518 issue: 3 year: 2008 end-page: 533 article-title: hSef potentiates EGF‐mediated MAPK signaling through affecting EGFR trafficking and degradation publication-title: Cell Signal – volume: 2 start-page: 1350 issue: 12 year: 2003 end-page: 1358 article-title: Development of Protacs to target cancer‐promoting proteins for ubiquitination and degradation publication-title: Mol Cell Proteomics – volume: 8 start-page: 2058 issue: 17 year: 2007 end-page: 2062 article-title: Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool publication-title: Chembiochem – volume: 108 start-page: 1032 issue: 5 year: 2017 end-page: 1041 article-title: SNIPER (TACC3) induces cytoplasmic vacuolization and sensitizes cancer cells to Bortezomib publication-title: Cancer Sci – volume: 55 start-page: 1966 issue: 6 year: 2016 end-page: 1973 article-title: Small‐molecule PROTACS: new approaches to protein degradation publication-title: Angew Chem Int Ed Engl – volume: 28 start-page: 256 issue: 3 year: 2010 end-page: 263 article-title: Harnessing chaperone‐mediated autophagy for the selective degradation of mutant huntingtin protein publication-title: Nat Biotechnol – volume: 14 start-page: 405 issue: 4 year: 2018 end-page: 412 article-title: Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands publication-title: Nat Chem Biol – volume: 61 start-page: 4249 issue: 9 year: 2018 end-page: 4255 article-title: Chemically induced degradation of anaplastic lymphoma kinase (ALK) publication-title: J Med Chem – volume: 174 start-page: 138 year: 2017 end-page: 144 article-title: Targeted protein degradation by PROTACs publication-title: Pharmacol Ther – volume: 25 start-page: 88 issue: 1 year: 2018 end-page: 99 article-title: A chemoproteomic approach to query the degradable kinome using a multi‐kinase degrader publication-title: Cell Chem Biol – volume: 2 start-page: 927 issue: 12 year: 2016 end-page: 934 article-title: Protein degradation by in‐cell self‐assembly of proteolysis targeting chimeras publication-title: ACS Cent Sci – volume: 32 start-page: 343 issue: 2 year: 2018 end-page: 352 article-title: BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells publication-title: Leukemia – volume: 132 start-page: 5820 issue: 16 year: 2010 end-page: 5826 article-title: Protein knockdown using methyl bestatin‐ligand hybrid molecules: design and synthesis of inducers of ubiquitination‐mediated degradation of cellular retinoic acid‐binding proteins publication-title: J Am Chem Soc – volume: 151 start-page: 304 year: 2018 end-page: 314 article-title: Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK) publication-title: Eur J Med Chem – volume: 173 start-page: 260 issue: 1 year: 2018 end-page: 274 article-title: Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis publication-title: Cell – volume: 91 start-page: 159 issue: 3 year: 2017 end-page: 166 article-title: Targeted degradation of proteins localized in subcellular compartments by hybrid small molecules publication-title: Mol Pharmacol – volume: 453 start-page: 735 issue: 4 year: 2014 end-page: 740 article-title: Design of a PROTAC that antagonizes and destroys the cancer‐forming X‐protein of the hepatitis B virus publication-title: Biochem Biophys Res Commun – volume: 11 start-page: 2425 issue: 7 year: 1992 end-page: 2431 article-title: Targeted degradation of the retinoblastoma protein by human papillomavirus E7‐E6 fusion proteins publication-title: EMBO J – volume: 15 start-page: 2724 issue: 11 year: 2005 end-page: 2727 article-title: Use of PROTACS as molecular probes of angiogenesis publication-title: Bioorg Med Chem Lett – volume: 9 start-page: 1233 issue: 9 year: 1999 end-page: 1238 article-title: Synthesis and evaluation of geldanamycin‐estradiol hybrids publication-title: Bioorg Med Chem Lett – volume: 126 start-page: 3748 issue: 12 year: 2004 end-page: 3754 article-title: Chemical genetic control of protein levels: selective in vivo targeted degradation publication-title: J Am Chem Soc – volume: 61 start-page: 482 issue: 2 year: 2018 end-page: 491 article-title: Chemically induced degradation of Sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on Sirtuin rearranging ligands (SirReals) publication-title: J Med Chem – volume: 32 start-page: 2224 issue: 10 year: 2018 end-page: 2239 article-title: Protein targeting chimeric molecules specific for bromodomain and extra‐terminal motif family proteins are active against pre‐clinical models of multiple myeloma publication-title: Leukemia – volume: 57 start-page: 107 issue: 1 year: 2017 end-page: 123 article-title: Targeted protein degradation by small molecules publication-title: Annu Rev Pharmacol Toxicol – volume: 27 start-page: 7201 issue: 57 year: 2008 end-page: 7211 article-title: Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer publication-title: Oncogene – volume: 28 start-page: 779 issue: 7 year: 2018 end-page: 781 article-title: PROTAC‐induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib‐resistant B‐cell malignancies publication-title: Cell Res – volume: 16 start-page: 136 issue: 2 year: 2016 end-page: 146 article-title: Protein knockdown technology: application of ubiquitin ligase to cancer therapy publication-title: Curr Cancer Drug Targets – volume: 19 start-page: 3229 issue: 10 year: 2011 end-page: 3241 article-title: Development of target protein‐selective degradation inducer for protein knockdown publication-title: Bioorg Med Chem – volume: 26 start-page: 4865 issue: 20 year: 2016 end-page: 4869 article-title: Development of BCR‐ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand publication-title: Bioorg Med Chem Lett – volume: 348 start-page: 1376 issue: 6241 year: 2015 end-page: 1381 article-title: DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation publication-title: Science – volume: 28 start-page: 2493 issue: 14 year: 2018 end-page: 2497 article-title: Development of the first small molecule histone deacetylase 6 (HDAC6) degraders publication-title: Bioorg Med Chem Lett – volume: 61 start-page: 403 issue: 2 year: 2018 end-page: 404 article-title: Inducing protein degradation as a therapeutic strategy publication-title: J Med Chem – volume: 55 start-page: 807 issue: 2 year: 2016 end-page: 810 article-title: Modular PROTAC design for the degradation of oncogenic BCR‐ABL publication-title: Angew Chem Int Ed Engl – ident: e_1_2_9_49_1 doi: 10.1126/science.aab1433 – ident: e_1_2_9_41_1 doi: 10.1016/j.ejmech.2018.01.063 – ident: e_1_2_9_92_1 doi: 10.1016/j.bioorg.2018.09.005 – ident: e_1_2_9_62_1 doi: 10.2174/1568009616666151112122502 – ident: e_1_2_9_64_1 doi: 10.1111/cas.13198 – ident: e_1_2_9_2_1 doi: 10.1016/j.chembiol.2015.05.009 – ident: e_1_2_9_5_1 doi: 10.1016/S1097-2765(00)00074-5 – ident: e_1_2_9_99_1 doi: 10.1021/acs.jmedchem.6b01781 – ident: e_1_2_9_58_1 doi: 10.1016/j.bmc.2011.03.057 – ident: e_1_2_9_73_1 doi: 10.1021/acs.jmedchem.6b01816 – ident: e_1_2_9_10_1 doi: 10.1016/j.chembiol.2017.10.011 – ident: e_1_2_9_94_1 doi: 10.1038/nrd.2016.211 – ident: e_1_2_9_98_1 doi: 10.1021/acscentsci.6b00280 – ident: e_1_2_9_14_1 doi: 10.1007/s10555-017-9698-5 – ident: e_1_2_9_61_1 doi: 10.1016/j.bmcl.2016.09.041 – ident: e_1_2_9_40_1 doi: 10.1021/acschembio.7b00985 – ident: e_1_2_9_26_1 doi: 10.1074/mcp.T300009-MCP200 – ident: e_1_2_9_45_1 doi: 10.1021/acschembio.5b00442 – ident: e_1_2_9_19_1 doi: 10.1126/science.aam7340 – ident: e_1_2_9_48_1 doi: 10.1038/leu.2016.393 – ident: e_1_2_9_38_1 doi: 10.1038/onc.2008.320 – ident: e_1_2_9_74_1 doi: 10.1038/s41375-018-0044-x – ident: e_1_2_9_56_1 doi: 10.1016/j.febslet.2011.03.019 – ident: e_1_2_9_80_1 doi: 10.1016/j.ejmech.2018.03.071 – ident: e_1_2_9_35_1 doi: 10.1038/nn.3637 – ident: e_1_2_9_8_1 doi: 10.1021/acs.jmedchem.7b01333 – ident: e_1_2_9_88_1 doi: 10.1021/acs.jmedchem.6b01872 – ident: e_1_2_9_63_1 doi: 10.1007/978-1-4939-3127-9_42 – volume: 8 start-page: 377 issue: 4 year: 2018 ident: e_1_2_9_97_1 article-title: Arvinas, Pfizer team up on PROTACs publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-NB2018-015 – ident: e_1_2_9_77_1 doi: 10.1038/s41589-018-0010-y – ident: e_1_2_9_83_1 doi: 10.1016/j.ejmech.2018.03.066 – ident: e_1_2_9_6_1 doi: 10.1016/S0076-6879(05)99054-X – ident: e_1_2_9_72_1 doi: 10.1021/acs.jmedchem.8b00506 – ident: e_1_2_9_90_1 doi: 10.1073/pnas.1803662115 – ident: e_1_2_9_31_1 doi: 10.1016/j.bmcl.2005.04.008 – ident: e_1_2_9_18_1 doi: 10.1203/PDR.0b013e3181d35017 – ident: e_1_2_9_42_1 doi: 10.1016/j.bmcl.2008.07.114 – ident: e_1_2_9_66_1 doi: 10.1124/mol.116.105569 – ident: e_1_2_9_70_1 doi: 10.1016/j.bbrc.2018.02.096 – ident: e_1_2_9_27_1 doi: 10.1016/j.bbrc.2014.10.006 – ident: e_1_2_9_59_1 doi: 10.1111/cas.12272 – ident: e_1_2_9_11_1 doi: 10.3390/molecules23081958 – ident: e_1_2_9_71_1 doi: 10.1038/leu.2017.207 – ident: e_1_2_9_29_1 doi: 10.2174/1386207043328364 – ident: e_1_2_9_30_1 doi: 10.1016/j.bmcl.2003.11.042 – ident: e_1_2_9_32_1 doi: 10.1124/mol.107.040840 – ident: e_1_2_9_96_1 doi: 10.1016/j.cellsig.2007.11.010 – ident: e_1_2_9_50_1 doi: 10.1002/anie.201507634 – ident: e_1_2_9_69_1 doi: 10.1073/pnas.1521738113 – ident: e_1_2_9_21_1 doi: 10.1021/cb8001792 – ident: e_1_2_9_17_1 doi: 10.1016/j.cbpa.2016.06.031 – ident: e_1_2_9_23_1 doi: 10.1016/S0960-894X(00)00208-0 – ident: e_1_2_9_43_1 doi: 10.1038/nchembio.597 – ident: e_1_2_9_22_1 doi: 10.1016/S0960-894X(99)00185-7 – ident: e_1_2_9_89_1 doi: 10.1038/s41422-018-0055-1 – ident: e_1_2_9_54_1 doi: 10.1021/ja100691p – ident: e_1_2_9_53_1 doi: 10.1016/j.cbpa.2017.05.016 – ident: e_1_2_9_57_1 doi: 10.1002/bies.201700247 – ident: e_1_2_9_28_1 doi: 10.1021/ja039025z – ident: e_1_2_9_52_1 doi: 10.1002/anie.201507978 – ident: e_1_2_9_33_1 doi: 10.1002/cbic.200700438 – ident: e_1_2_9_51_1 doi: 10.1039/C7CC03879H – ident: e_1_2_9_34_1 doi: 10.1038/nbt.1608 – ident: e_1_2_9_39_1 doi: 10.1038/aja.2008.26 – ident: e_1_2_9_75_1 doi: 10.1021/jacs.8b05807 – ident: e_1_2_9_44_1 doi: 10.1038/nchembio.1858 – ident: e_1_2_9_65_1 doi: 10.1074/jbc.M116.768853 – ident: e_1_2_9_93_1 doi: 10.1021/acs.jmedchem.7b00635 – ident: e_1_2_9_67_1 doi: 10.1021/acsmedchemlett.8b00106 – ident: e_1_2_9_37_1 doi: 10.1016/j.chembiol.2016.02.016 – ident: e_1_2_9_68_1 doi: 10.1038/s42003-018-0105-8 – ident: e_1_2_9_46_1 doi: 10.1021/acschembio.5b00216 – ident: e_1_2_9_4_1 doi: 10.1016/j.biocel.2018.06.001 – ident: e_1_2_9_81_1 doi: 10.1021/acs.jmedchem.7b01655 – ident: e_1_2_9_87_1 doi: 10.1016/j.bmcl.2018.05.057 – ident: e_1_2_9_36_1 doi: 10.1002/tcr.201800032 – ident: e_1_2_9_12_1 doi: 10.1016/j.ebiom.2018.09.005 – ident: e_1_2_9_13_1 doi: 10.1042/EBC20170030 – ident: e_1_2_9_85_1 doi: 10.1016/j.bcp.2016.07.017 – ident: e_1_2_9_84_1 doi: 10.1016/j.bone.2018.03.027 – ident: e_1_2_9_86_1 doi: 10.1038/nchembio.2538 – ident: e_1_2_9_78_1 doi: 10.1002/psc.2858 – ident: e_1_2_9_76_1 doi: 10.1016/j.cell.2018.02.030 – ident: e_1_2_9_16_1 doi: 10.1146/annurev-pharmtox-010715-103507 – ident: e_1_2_9_15_1 doi: 10.1016/j.chembiol.2017.05.024 – ident: e_1_2_9_9_1 doi: 10.1016/j.pharmthera.2017.02.027 – ident: e_1_2_9_55_1 doi: 10.1016/j.bmc.2011.09.041 – ident: e_1_2_9_82_1 doi: 10.1016/j.bbrc.2018.09.169 – ident: e_1_2_9_91_1 doi: 10.1016/j.chembiol.2017.10.005 – ident: e_1_2_9_47_1 doi: 10.1186/s13045-016-0362-2 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.141230798 – ident: e_1_2_9_24_1 doi: 10.1002/j.1460-2075.1992.tb05307.x – ident: e_1_2_9_79_1 doi: 10.1016/j.bioorg.2018.08.028 – ident: e_1_2_9_95_1 doi: 10.1016/j.chembiol.2017.09.009 – ident: e_1_2_9_25_1 doi: 10.1016/S1097-2765(00)80156-2 – ident: e_1_2_9_60_1 doi: 10.1038/cddis.2014.471 – ident: e_1_2_9_7_1 doi: 10.1021/acschembio.6b01068 – ident: e_1_2_9_20_1 doi: 10.1016/S0076-6879(05)99054-X |
SSID | ssj0009630 |
Score | 2.5912154 |
SecondaryResourceType | review_article |
Snippet | Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | Biodegradation cancer Drug development Drug Development - methods Humans New technology PROTAC Proteasome Endopeptidase Complex - metabolism protein degradation Proteins Proteolysis Recombinant Fusion Proteins - metabolism Review small molecule Ubiquitin Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | The PROTAC technology in drug development |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3369 https://www.ncbi.nlm.nih.gov/pubmed/30604499 https://www.proquest.com/docview/2167155876 https://www.proquest.com/docview/2163009436 https://pubmed.ncbi.nlm.nih.gov/PMC6590639 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7ogOjFfRk3KojioWMnW5ujDg4iuCAKgoeSpKmKUsWZOeiv96XbOC4gnnrIa5u-Jfny-vIFYFvRQFERaN9IY30WCeZHKkj8yFWNt5M0EcxtTj49E8fX7OSG35RVlW4vTMEPUSfcXGTk47ULcKV7-0PSUKPTFqXC7d1zpVoOD10OmaPQr8r0CvUFi1jFOxuQ_erG0ZnoG7z8XiX5Gb3m0093Bm6rjhdVJ4-tQV-3zPsXTsf_fdksTJeo1Dso3GgOxmw2DxPFOZVv8zDZqY6FW4A9dCzv4vL86qDj9eu8vPeQecnr4M5LhkVIi3DdPbrqHPvleQu-4bhQQCMxYa1WnBJuETgoEyZBSozRkQikkTZFNMS45kxJTmQaaU0lylsiEmFweFiCRvac2RXwQmNSbpUiJkkZLkk0J6F2tdltGVpibBN2K93HpiQjd2diPMUFjTKJUQmxU0ITtmrJl4KA4weZ9cp8cRmCvZi0RYhgCUd7fETdjMpyf0RUZp8HuQzNaytRZrmwdv0S6miFcD3YhHDED2oBR8w92pI93OcE3YJLh_yasJOb-dd-x53Drruu_lVwDaYQsMkiBbQOjf7rwG4gKOrrTRgn7GIzD4IPQOoJkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BVQUXSimFpUBTibbikCXrV-JDD3Tpanm2QovELbUdBxAoINhVRf8Sf4Uf1XFeywKVeuHQUw4eOaPxjGc8Hn8DsKpooKgItG-ksT6LBPMjFSR-5KrGW0maCOYeJ-_ti-4h2z7iR2NwW72FKfAh6oSbs4x8v3YG7hLS60PUUKPTJqVClhWVO_bmF57Xrr9sbeLifiSk863X7vplSwHfcIyFkQ8mrNWKU8It-kZlwiRIiTE6EoE00qbo8BnXnCnJiUwjralEektEIgxaAM47Di9cA3EH1L95MMSqQk0uEzrUFyxiFdJtQNYrTkd936OA9nFd5v14OXd4nVdwV4mqqHM5aw76uml-P0CR_E9kOQPTZeDtbRSW8hrGbDYLL4tWnDezMNmuOt-9gTW0He_HwffeRtvr11cP3mnmJVeDYy8Z1lnNweGz8PwWJrKLzC6AFxqTcqsUMUnK8NSlOQm1Kz9vydASYxvwuVrs2JR4667tx3lcIEWTGIUeO6E34ENNeVlgjDxBs1TpS1zuMtcxaYkQ40F0aDhFPYzCcpc-KrMXg5yG5uWjSDNfqFf9E-qQk_DI24BwRPFqAoc9PjqSnZ7kGOSCSxfcNuBTrld_5Ttuf-247-K_Er6HyW5vbzfe3drfeQdTGJ_KIuO1BBP9q4Fdxhiwr1dy2_Pg53Mr6B-7Smem |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5REKWXikeBLRRSqbTiEMj6lfjQAyysoLxWFStxC34FkKqAYFcVf4lf2XFe2xVF6oVTDhk51own83k8_gbgi6KRoiLSoZHGhSwRLExUZMPEV423bWYF85eTT07FQZ_9uOAXE_BU34Up-SGahJv3jOJ_7R38zmbbI9JQo7MtSoWsCiqP3ONv3K49fD_cQ9tuENLdP-8chFVHgdBwhMI4DSac04pTwh2GRmViG2XEGJ2ISBrpMoz3jGvOlOREZonWVKK8I8IKgw6A476BKX-26MvHCOuNCH4FrfI5NBQsYTXRbUS265mOh75nePZ5WebfcLmId91ZeF8B1WCnXFlzMOHyeZguW1c-zsNMp-4UtwCbuNaC3s-z851OMGhS9cFNHtj74VVgR3VJH6D_KgpbhMn8NnfLEMTGZNwpRYzNGO5SNCex9uXabRk7YlwLvtXaSU3FT-7bZPxKS2ZlkqIeU6_HFnxuJO9KTo5_yKzWCk4rr3xISVvEiJ8wAOAQzWtUlj8kUbm7HRYytCi3RJml0h7NR6hnGsItYgviMUs1Ap6re_xNfnNdcHYLLj0YbMHXwqYvzjvt7Hb98-P_Cq7D295eNz0-PD1agXcI52SZIFqFycH90H1CyDTQa8VaDeDytZ3jDxaqJgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PROTAC+technology+in+drug+development&rft.jtitle=Cell+biochemistry+and+function&rft.au=Zou%2C+Yutian&rft.au=Ma%2C+Danhui&rft.au=Wang%2C+Yinyin&rft.date=2019-01-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=37&rft.issue=1&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1002%2Fcbf.3369&rft.externalDBID=10.1002%252Fcbf.3369&rft.externalDocID=CBF3369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon |