The PROTAC technology in drug development

Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 37; no. 1; pp. 21 - 30
Main Authors Zou, Yutian, Ma, Danhui, Wang, Yinyin
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. Significance of the study This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
AbstractList Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC.Significance of the studyThis review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. Significance of the study This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Author Zou, Yutian
Wang, Yinyin
Ma, Danhui
AuthorAffiliation 1 The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine Tsinghua University Beijing China
2 Department of Science Brookwood High School Snellville Georgia
AuthorAffiliation_xml – name: 1 The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine Tsinghua University Beijing China
– name: 2 Department of Science Brookwood High School Snellville Georgia
Author_xml – sequence: 1
  givenname: Yutian
  surname: Zou
  fullname: Zou, Yutian
  organization: Brookwood High School
– sequence: 2
  givenname: Danhui
  surname: Ma
  fullname: Ma, Danhui
  organization: Tsinghua University
– sequence: 3
  givenname: Yinyin
  orcidid: 0000-0003-1285-0507
  surname: Wang
  fullname: Wang, Yinyin
  email: wangyinyin@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30604499$$D View this record in MEDLINE/PubMed
BookMark eNp1kVtLw0AQhRepaL2Av0ACvuhD6mRvzb4ItXgDQZH6vGw2k3ZLmq25VPrvTbwr-jQP882ZOXN2SK_wBRJyEMEgAqCnNskGjEm1QfoRKBVCzHmP9IFKFkoe822yU1VzAFCSwRbZZiCBc6X65GQyw-D-4W4yGgc12lnhcz9dB64I0rKZBimuMPfLBRb1HtnMTF7h_nvdJY-XF5PxdXh7d3UzHt2GVgBXYWy4REyMYFRgTKmxwxQyam0SS1BWYRZRwUUiuFGCqixOEqZaHqlMpQVgu-TsTXfZJAtMbbu6NLlelm5hyrX2xumfncLN9NSvtBQKJFOtwPG7QOmfGqxqvXCVxTw3Bfqm0jRqnwCKM9miR7_QuW_KorXXUcNIiHjYUYffL_o85eOLXxtt6auqxOwTiUB3Aek2IN0F1KKDX6h1tamd77y4_K-B8G3g2eW4_ldYj88vX_kXT0Ke2g
CitedBy_id crossref_primary_10_1021_acs_biochem_4c00577
crossref_primary_10_1039_D4MD00962B
crossref_primary_10_1111_cbdd_14123
crossref_primary_10_1016_j_jare_2024_08_008
crossref_primary_10_1039_D0OB02120B
crossref_primary_10_1158_0008_5472_CAN_19_0695
crossref_primary_10_3389_fchem_2021_672267
crossref_primary_10_1021_acsptsci_1c00032
crossref_primary_10_1177_15353702211067718
crossref_primary_10_1038_s41523_020_00190_9
crossref_primary_10_3390_cancers13010119
crossref_primary_10_1021_acs_jmedchem_1c00882
crossref_primary_10_3390_biomedicines9080895
crossref_primary_10_1016_j_ejmech_2023_115982
crossref_primary_10_1111_mmi_14706
crossref_primary_10_1051_jbio_2021007
crossref_primary_10_4155_fmc_2020_0210
crossref_primary_10_1002_cmdc_202300117
crossref_primary_10_1016_j_ejmech_2021_113386
crossref_primary_10_1038_s41392_019_0101_6
crossref_primary_10_1186_s40779_023_00446_y
crossref_primary_10_3389_fchem_2022_860985
crossref_primary_10_1002_advs_202104850
crossref_primary_10_1002_mco2_290
crossref_primary_10_1016_j_bmc_2019_02_048
crossref_primary_10_1016_j_ejmech_2022_114373
crossref_primary_10_1016_j_drudis_2022_103395
crossref_primary_10_3390_cells14020065
crossref_primary_10_1002_cbdv_202401797
crossref_primary_10_1016_j_ejmech_2025_117370
crossref_primary_10_3390_biom11081101
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1111_bph_15014
crossref_primary_10_1002_wcms_70013
crossref_primary_10_1002_ange_202107347
crossref_primary_10_1016_j_omtn_2022_09_008
crossref_primary_10_1002_mco2_575
crossref_primary_10_1016_j_bbrc_2023_149125
crossref_primary_10_1016_j_bioorg_2023_106649
crossref_primary_10_3390_cancers14194865
crossref_primary_10_1016_j_ejmech_2022_114301
crossref_primary_10_2174_0929867329666220211091806
crossref_primary_10_3389_fcell_2021_805336
crossref_primary_10_1016_j_ejmech_2022_114142
crossref_primary_10_3390_cancers13174363
crossref_primary_10_1021_acs_jmedchem_2c02132
crossref_primary_10_1039_D0RA07971E
crossref_primary_10_1242_jcs_228072
crossref_primary_10_1016_j_tim_2022_01_006
crossref_primary_10_3390_ph16121649
crossref_primary_10_1016_j_chembiol_2019_11_006
crossref_primary_10_1016_j_ijbiomac_2024_133680
crossref_primary_10_3390_molecules26216682
crossref_primary_10_1007_s10616_025_00716_8
crossref_primary_10_4155_fmc_2020_0279
crossref_primary_10_1002_anie_202107347
crossref_primary_10_1016_j_tim_2023_09_002
crossref_primary_10_1002_adtp_202000148
crossref_primary_10_1007_s40259_020_00419_w
crossref_primary_10_1016_j_ejmech_2025_117347
crossref_primary_10_1016_j_bioorg_2021_105447
crossref_primary_10_1016_j_apsb_2019_08_001
crossref_primary_10_1016_j_isci_2024_110712
crossref_primary_10_15212_AMM_2022_0041
crossref_primary_10_5937_arhfarm71_30785
crossref_primary_10_2174_1570163820666221031124612
crossref_primary_10_1039_D0CC03243C
crossref_primary_10_2174_0929867330666230130121822
crossref_primary_10_1016_j_ejps_2020_105274
crossref_primary_10_3389_fcell_2021_685106
crossref_primary_10_1002_cmdc_202400377
crossref_primary_10_1021_acs_jmedchem_1c00895
crossref_primary_10_1016_j_ejpb_2025_114699
crossref_primary_10_1002_jcb_29941
crossref_primary_10_1186_s12943_024_02024_9
crossref_primary_10_1002_adhm_202300871
crossref_primary_10_1016_j_apsb_2020_05_004
crossref_primary_10_1016_j_apsb_2022_02_022
crossref_primary_10_1016_j_apsb_2020_05_001
crossref_primary_10_1016_j_ejmech_2024_117212
crossref_primary_10_3390_molecules28020690
crossref_primary_10_1021_acschembio_1c00751
crossref_primary_10_3390_ph16091283
crossref_primary_10_1016_j_xcrp_2022_101062
crossref_primary_10_1021_acschembio_9b00525
crossref_primary_10_1186_s12929_023_00921_7
crossref_primary_10_1016_j_ejmech_2024_116488
crossref_primary_10_1016_j_chembiol_2020_04_003
crossref_primary_10_1186_s43556_022_00112_0
crossref_primary_10_1016_j_ejmech_2024_116645
crossref_primary_10_1021_acs_jmedchem_2c01859
crossref_primary_10_3389_fphar_2021_692574
crossref_primary_10_1021_acs_jmedchem_1c01496
crossref_primary_10_1038_s41392_022_01076_x
crossref_primary_10_1016_j_slasd_2023_01_006
crossref_primary_10_4155_fmc_2022_0147
crossref_primary_10_3389_fchem_2020_00485
crossref_primary_10_1039_D4MD00522H
crossref_primary_10_1097_FJC_0000000000001441
crossref_primary_10_1021_acs_jmedchem_1c01532
crossref_primary_10_1021_acsnano_3c01408
crossref_primary_10_2174_1871520621666210308100327
crossref_primary_10_4155_fdd_2020_0023
crossref_primary_10_1016_j_cmpb_2025_108687
crossref_primary_10_1016_j_jmb_2025_169050
crossref_primary_10_3389_fonc_2020_621294
crossref_primary_10_1016_j_ejmech_2023_115384
crossref_primary_10_1016_j_ejmech_2025_117560
crossref_primary_10_3390_antib12030043
crossref_primary_10_3390_nano13152225
crossref_primary_10_1016_j_ejmech_2021_113749
crossref_primary_10_1021_acschembio_9b00972
crossref_primary_10_2174_1871520619666190313161009
crossref_primary_10_1021_jacsau_4c00040
crossref_primary_10_1080_17460441_2023_2264187
crossref_primary_10_7759_cureus_28496
crossref_primary_10_1002_chem_202301194
crossref_primary_10_1002_ijch_201900007
crossref_primary_10_1016_j_ejmech_2020_112397
crossref_primary_10_1039_C9RA03423D
crossref_primary_10_2174_1568009621666210203110857
crossref_primary_10_3390_cancers17020211
crossref_primary_10_1039_D2CS00193D
crossref_primary_10_1021_acs_jmedchem_4c00723
crossref_primary_10_1016_j_biopha_2022_114112
crossref_primary_10_3390_ijms231911068
crossref_primary_10_1002_adhm_202400109
crossref_primary_10_1016_j_biopha_2023_115667
crossref_primary_10_1016_j_bioorg_2023_106720
crossref_primary_10_1021_acs_jmedchem_9b00446
crossref_primary_10_1051_bioconf_20248601038
crossref_primary_10_3389_fimmu_2023_1332626
crossref_primary_10_1016_j_phrs_2022_106529
crossref_primary_10_3390_molecules27248828
crossref_primary_10_1021_acs_jmedchem_4c02068
crossref_primary_10_1021_acs_jmedchem_0c00929
crossref_primary_10_1016_j_canlet_2023_216065
crossref_primary_10_1007_s12033_024_01254_y
crossref_primary_10_1016_j_bmc_2023_117237
crossref_primary_10_1016_j_bmcl_2019_04_030
crossref_primary_10_1021_acs_jmedchem_3c01144
crossref_primary_10_1016_j_ejmech_2024_116504
crossref_primary_10_1016_j_phrs_2024_107217
crossref_primary_10_1016_j_ejmech_2022_114603
crossref_primary_10_1016_j_jddst_2024_106596
crossref_primary_10_3390_cells10123309
crossref_primary_10_1177_24725552211036056
crossref_primary_10_1016_j_ejmech_2023_115839
crossref_primary_10_1016_j_bcp_2020_114211
crossref_primary_10_1038_s41573_022_00521_4
crossref_primary_10_1016_j_ejmech_2021_114062
crossref_primary_10_4155_fmc_2019_0159
crossref_primary_10_1016_j_ejmech_2023_116096
crossref_primary_10_1016_j_bioorg_2024_107943
crossref_primary_10_1021_acs_jmedchem_4c00015
crossref_primary_10_1016_j_mrfmmm_2020_111694
crossref_primary_10_1016_j_ejmech_2024_116212
crossref_primary_10_4155_fmc_2020_0073
crossref_primary_10_1016_j_ejmech_2023_115567
crossref_primary_10_1016_j_ejmech_2023_115447
crossref_primary_10_1016_j_ejmech_2021_113645
crossref_primary_10_1021_acs_biochem_9b00848
crossref_primary_10_1016_j_apsb_2021_12_017
crossref_primary_10_4155_fmc_2021_0229
crossref_primary_10_2174_1568026619666190618130008
crossref_primary_10_3390_pharmaceutics14122829
crossref_primary_10_1002_aic_17087
crossref_primary_10_1016_j_semcancer_2020_12_022
crossref_primary_10_1007_s40259_022_00551_9
crossref_primary_10_1016_j_biopha_2020_110009
crossref_primary_10_1016_j_jsbmb_2021_105848
crossref_primary_10_1007_s11172_022_3659_z
crossref_primary_10_1021_acs_jmedchem_0c00744
crossref_primary_10_1111_bph_15242
crossref_primary_10_1021_acs_biochem_1c00330
crossref_primary_10_1021_acs_jmedchem_9b01393
crossref_primary_10_1038_s41392_023_01647_6
crossref_primary_10_1039_D2CS00624C
crossref_primary_10_2174_1574892815666200630102344
crossref_primary_10_1016_j_ejmech_2023_115690
crossref_primary_10_2174_0929867327666200312112412
crossref_primary_10_3390_cancers14215354
crossref_primary_10_4103_1673_5374_308075
crossref_primary_10_1021_acschembio_3c00017
crossref_primary_10_3390_cells13030218
crossref_primary_10_1007_s11427_024_2661_3
crossref_primary_10_15212_AMM_2022_0010
Cites_doi 10.1126/science.aab1433
10.1016/j.ejmech.2018.01.063
10.1016/j.bioorg.2018.09.005
10.2174/1568009616666151112122502
10.1111/cas.13198
10.1016/j.chembiol.2015.05.009
10.1016/S1097-2765(00)00074-5
10.1021/acs.jmedchem.6b01781
10.1016/j.bmc.2011.03.057
10.1021/acs.jmedchem.6b01816
10.1016/j.chembiol.2017.10.011
10.1038/nrd.2016.211
10.1021/acscentsci.6b00280
10.1007/s10555-017-9698-5
10.1016/j.bmcl.2016.09.041
10.1021/acschembio.7b00985
10.1074/mcp.T300009-MCP200
10.1021/acschembio.5b00442
10.1126/science.aam7340
10.1038/leu.2016.393
10.1038/onc.2008.320
10.1038/s41375-018-0044-x
10.1016/j.febslet.2011.03.019
10.1016/j.ejmech.2018.03.071
10.1038/nn.3637
10.1021/acs.jmedchem.7b01333
10.1021/acs.jmedchem.6b01872
10.1007/978-1-4939-3127-9_42
10.1158/2159-8290.CD-NB2018-015
10.1038/s41589-018-0010-y
10.1016/j.ejmech.2018.03.066
10.1016/S0076-6879(05)99054-X
10.1021/acs.jmedchem.8b00506
10.1073/pnas.1803662115
10.1016/j.bmcl.2005.04.008
10.1203/PDR.0b013e3181d35017
10.1016/j.bmcl.2008.07.114
10.1124/mol.116.105569
10.1016/j.bbrc.2018.02.096
10.1016/j.bbrc.2014.10.006
10.1111/cas.12272
10.3390/molecules23081958
10.1038/leu.2017.207
10.2174/1386207043328364
10.1016/j.bmcl.2003.11.042
10.1124/mol.107.040840
10.1016/j.cellsig.2007.11.010
10.1002/anie.201507634
10.1073/pnas.1521738113
10.1021/cb8001792
10.1016/j.cbpa.2016.06.031
10.1016/S0960-894X(00)00208-0
10.1038/nchembio.597
10.1016/S0960-894X(99)00185-7
10.1038/s41422-018-0055-1
10.1021/ja100691p
10.1016/j.cbpa.2017.05.016
10.1002/bies.201700247
10.1021/ja039025z
10.1002/anie.201507978
10.1002/cbic.200700438
10.1039/C7CC03879H
10.1038/nbt.1608
10.1038/aja.2008.26
10.1021/jacs.8b05807
10.1038/nchembio.1858
10.1074/jbc.M116.768853
10.1021/acs.jmedchem.7b00635
10.1021/acsmedchemlett.8b00106
10.1016/j.chembiol.2016.02.016
10.1038/s42003-018-0105-8
10.1021/acschembio.5b00216
10.1016/j.biocel.2018.06.001
10.1021/acs.jmedchem.7b01655
10.1016/j.bmcl.2018.05.057
10.1002/tcr.201800032
10.1016/j.ebiom.2018.09.005
10.1042/EBC20170030
10.1016/j.bcp.2016.07.017
10.1016/j.bone.2018.03.027
10.1038/nchembio.2538
10.1002/psc.2858
10.1016/j.cell.2018.02.030
10.1146/annurev-pharmtox-010715-103507
10.1016/j.chembiol.2017.05.024
10.1016/j.pharmthera.2017.02.027
10.1016/j.bmc.2011.09.041
10.1016/j.bbrc.2018.09.169
10.1016/j.chembiol.2017.10.005
10.1186/s13045-016-0362-2
10.1073/pnas.141230798
10.1002/j.1460-2075.1992.tb05307.x
10.1016/j.bioorg.2018.08.028
10.1016/j.chembiol.2017.09.009
10.1016/S1097-2765(00)80156-2
10.1038/cddis.2014.471
10.1021/acschembio.6b01068
ContentType Journal Article
Copyright 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd
2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd
– notice: 2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
5PM
DOI 10.1002/cbf.3369
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate The PROTAC technology in drug development
EISSN 1099-0844
EndPage 30
ExternalDocumentID PMC6590639
30604499
10_1002_cbf_3369
CBF3369
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Chinese National Major Scientific Research Program
  funderid: 2016YFA0500301
– fundername: National Natural Science Foundation of China
  funderid: 81572729; 81830092; 81872244
– fundername: National Natural Science Foundation of China
  grantid: 81872244
– fundername: Chinese National Major Scientific Research Program
  grantid: 2016YFA0500301
– fundername: National Natural Science Foundation of China
  grantid: 81572729
– fundername: National Natural Science Foundation of China
  grantid: 81830092
– fundername: National Natural Science Foundation of China
  grantid: 81572729; 81830092; 81872244
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5049-8a46eeba5325e822ac7d0f2ccb8609c9ef12545b54a9529f8bb39ebae26d6c003
IEDL.DBID DR2
ISSN 0263-6484
1099-0844
IngestDate Thu Aug 21 13:56:21 EDT 2025
Fri Jul 11 00:19:52 EDT 2025
Fri Jul 25 09:41:05 EDT 2025
Mon Jul 21 06:02:43 EDT 2025
Tue Jul 01 02:49:14 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Wed Jan 22 17:07:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords drug development
small molecule
cancer
PROTAC
protein degradation
Language English
License Attribution
2019 The Authors Cell Biochemistry and Function Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5049-8a46eeba5325e822ac7d0f2ccb8609c9ef12545b54a9529f8bb39ebae26d6c003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1285-0507
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3369
PMID 30604499
PQID 2167155876
PQPubID 2029981
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590639
proquest_miscellaneous_2163009436
proquest_journals_2167155876
pubmed_primary_30604499
crossref_primary_10_1002_cbf_3369
crossref_citationtrail_10_1002_cbf_3369
wiley_primary_10_1002_cbf_3369_CBF3369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 126
2000; 6
2004; 7
2018; 81
2016; 1366
2018; 40
2008; 3
2015; 348
2008; 73
2017; 355
1992; 11
2011; 19
2014; 453
2016; 33
2010; 67
2009; 11
2017; 31
2018; 9
2018; 8
2014; 5
2018; 173
2017; 36
2017; 39
2018; 1
2010; 28
2000; 10
2018; 497
2008; 27
2003; 2
2007; 8
2016; 113
2016; 116
2014; 17
2008; 20
2018; 32
2001; 98
2017; 61
2018; 28
2018; 140
2005; 399
2018; 146
2008; 18
2018; 101
2013; 104
2017; 24
2015; 11
2015; 10
2017; 292
2005
2017; 174
2018; 505
2018; 61
2016; 16
2011; 7
2018; 25
1999; 9
2016; 55
2017; 108
2017; 53
2017; 91
2018; 151
2016; 2
2017; 16
2004; 14
2018; 112
2015; 22
2017; 57
2018; 115
2017; 12
2010; 132
2018
1998; 2
2005; 15
2016; 26
2011; 585
2016; 9
2016; 23
2018; 14
2018; 13
2016; 22
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Caruso C (e_1_2_9_97_1) 2018; 8
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 355
  start-page: 1163
  issue: 6330
  year: 2017
  end-page: 1167
  article-title: Waste disposal—an attractive strategy for cancer therapy
  publication-title: Science
– volume: 505
  start-page: 542
  issue: 2
  year: 2018
  end-page: 547
  article-title: Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC)
  publication-title: Biochem Biophys Res Commun
– volume: 61
  start-page: 6685
  issue: 15
  year: 2018
  end-page: 6704
  article-title: Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the Bromodomain and extra‐terminal (BET) proteins capable of inducing complete and durable tumor regression
  publication-title: J Med Chem
– volume: 10
  start-page: 1770
  issue: 8
  year: 2015
  end-page: 1777
  article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4
  publication-title: ACS Chem Biol
– year: 2005
– volume: 33
  start-page: 186
  year: 2016
  end-page: 194
  article-title: Chemical genetics approaches for selective intervention in epigenetics
  publication-title: Curr Opin Chem Biol
– volume: 23
  start-page: 453
  issue: 4
  year: 2016
  end-page: 461
  article-title: Specific knockdown of endogenous tau protein by peptide‐directed ubiquitin‐proteasome degradation
  publication-title: Cell Chem Biol
– volume: 115
  start-page: E7285
  issue: 31
  year: 2018
  end-page: E7292
  article-title: Delineating the role of cooperativity in the design of potent PROTACs for BTK
  publication-title: Proc Natl Acad Sci U S a
– volume: 1
  start-page: 100
  issue: 1
  year: 2018
  article-title: Androgen receptor degradation by the proteolysis‐targeting chimera ARCC‐4 outperforms enzalutamide in cellular models of prostate cancer drug resistance
  publication-title: Commun Biol
– volume: 6
  start-page: 751
  issue: 3
  year: 2000
  end-page: 756
  article-title: Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins
  publication-title: Mol Cell
– volume: 7
  start-page: 538
  issue: 8
  year: 2011
  end-page: 543
  article-title: Small‐molecule hydrophobic tagging‐induced degradation of HaloTag fusion proteins
  publication-title: Nat Chem Biol
– volume: 10
  start-page: 1303
  issue: 11
  year: 2000
  end-page: 1306
  article-title: Synthesis and evaluation of geldanamycin‐testosterone hybrids
  publication-title: Bioorg Med Chem Lett
– volume: 14
  start-page: 645
  issue: 3
  year: 2004
  end-page: 648
  article-title: Degradation of target protein in living cells by small‐molecule proteolysis inducer
  publication-title: Bioorg Med Chem Lett
– volume: 116
  start-page: 200
  year: 2016
  end-page: 209
  article-title: New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation
  publication-title: Biochem Pharmacol
– volume: 292
  start-page: 4556
  issue: 11
  year: 2017
  end-page: 4570
  article-title: In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)‐dependent protein erasers (SNIPERs)
  publication-title: J Biol Chem
– volume: 585
  start-page: 1147
  issue: 8
  year: 2011
  end-page: 1152
  article-title: Specific degradation of CRABP‐II via cIAP1‐mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein
  publication-title: FEBS Lett
– volume: 14
  start-page: 163
  issue: 2
  year: 2018
  end-page: 170
  article-title: Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation
  publication-title: Nat Chem Biol
– volume: 399
  start-page: 833
  year: 2005
  end-page: 847
  article-title: Chimeric molecules to target proteins for ubiquitination and degradation
  publication-title: Methods Enzymol
– volume: 81
  start-page: 373
  year: 2018
  end-page: 381
  article-title: Discovery of Wogonin‐based PROTACs against CDK9 and capable of achieving antitumor activity
  publication-title: Bioorg Chem
– volume: 40
  issue: 4
  year: 2018
  article-title: PROTACs: an emerging targeting technique for protein degradation in drug discovery
  publication-title: Bioessays
– volume: 11
  start-page: 119
  issue: 1
  year: 2009
  end-page: 126
  article-title: Chimeric molecules facilitate the degradation of androgen receptors and repress the growth of LNCaP cells
  publication-title: Asian J Androl
– volume: 25
  start-page: 67
  issue: 1
  year: 2018
  end-page: 77
  article-title: The advantages of targeted protein degradation over inhibition: an RTK case study
  publication-title: Cell Chem Biol
– volume: 1366
  start-page: 549
  year: 2016
  end-page: 560
  article-title: Molecular design, synthesis, and evaluation of SNIPER (ER) that induces proteasomal degradation of ERα
  publication-title: Methods Mol Biol
– volume: 61
  start-page: 583
  issue: 2
  year: 2018
  end-page: 598
  article-title: Identification and characterization of Von Hippel‐Lindau‐recruiting proteolysis targeting chimeras (PROTACs) of TANK‐binding kinase 1
  publication-title: J Med Chem
– volume: 19
  start-page: 6768
  issue: 22
  year: 2011
  end-page: 6778
  article-title: Design, synthesis and biological evaluation of nuclear receptor‐degradation inducers
  publication-title: Bioorg Med Chem
– volume: 24
  start-page: 1181
  issue: 9
  year: 2017
  end-page: 1190
  article-title: Targeted protein degradation: from chemical biology to drug discovery
  publication-title: Cell Chem Biol
– volume: 17
  start-page: 471
  issue: 3
  year: 2014
  end-page: 480
  article-title: Rapid and reversible knockdown of endogenous proteins by peptide‐directed lysosomal degradation
  publication-title: Nat Neurosci
– volume: 53
  start-page: 7577
  issue: 54
  year: 2017
  end-page: 7580
  article-title: Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC)
  publication-title: Chem Commun (Camb)
– volume: 2
  start-page: 571
  issue: 5
  year: 1998
  end-page: 580
  article-title: Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin‐protein ligases
  publication-title: Mol Cell
– volume: 22
  start-page: 755
  issue: 6
  year: 2015
  end-page: 763
  article-title: Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
  publication-title: Chem Biol
– volume: 22
  start-page: 196
  issue: 4
  year: 2016
  end-page: 200
  article-title: Degradation of Akt using protein‐catalyzed capture agents
  publication-title: J Pept Sci
– volume: 140
  start-page: 9299
  issue: 29
  year: 2018
  end-page: 9313
  article-title: 3‐Fluoro‐4‐hydroxyprolines: synthesis, conformational analysis, and Stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation
  publication-title: J Am Chem Soc
– volume: 11
  start-page: 611
  issue: 8
  year: 2015
  end-page: 617
  article-title: Catalytic in vivo protein knockdown by small‐molecule PROTACs
  publication-title: Nat Chem Biol
– volume: 61
  start-page: 453
  issue: 2
  year: 2018
  end-page: 461
  article-title: A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation
  publication-title: J Med Chem
– volume: 12
  start-page: 892
  issue: 4
  year: 2017
  end-page: 898
  article-title: Proteolysis‐targeting chimeras: induced protein degradation as a therapeutic strategy
  publication-title: ACS Chem Biol
– volume: 61
  start-page: 462
  issue: 2
  year: 2018
  end-page: 481
  article-title: Discovery of a small‐molecule degrader of bromodomain and extra‐terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression
  publication-title: J Med Chem
– volume: 39
  start-page: 46
  year: 2017
  end-page: 53
  article-title: Targeted protein knockdown using small molecule degraders
  publication-title: Curr Opin Chem Biol
– volume: 81
  start-page: 536
  year: 2018
  end-page: 544
  article-title: Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin‐proteasome pathway
  publication-title: Bioorg Chem
– volume: 151
  start-page: 237
  year: 2018
  end-page: 247
  article-title: Phthalimide conjugations for the degradation of oncogenic PI3K
  publication-title: Eur J Med Chem
– volume: 25
  start-page: 30
  issue: 1
  year: 2018
  end-page: 35
  article-title: Small‐molecule kinase downregulators
  publication-title: Cell Chem Biol
– volume: 16
  start-page: 101
  issue: 2
  year: 2017
  end-page: 114
  article-title: Induced protein degradation: an emerging drug discovery paradigm
  publication-title: Nat Rev Drug Discov
– volume: 13
  start-page: 628
  issue: 3
  year: 2018
  end-page: 635
  article-title: Development of stabilized peptide‐based PROTACs against estrogen receptor alpha
  publication-title: ACS Chem Biol
– volume: 3
  start-page: 677
  issue: 11
  year: 2008
  end-page: 692
  article-title: Design and applications of bifunctional small molecules: why two heads are better than one
  publication-title: ACS Chem Biol
– volume: 10
  start-page: 1831
  issue: 8
  year: 2015
  end-page: 1837
  article-title: HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins
  publication-title: ACS Chem Biol
– volume: 497
  start-page: 410
  issue: 1
  year: 2018
  end-page: 415
  article-title: Selective degradation of BET proteins with dBET1, a proteolysis‐targeting chimera, potently reduces pro‐inflammatory responses in lipopolysaccharide‐activated microglia
  publication-title: Biochem Biophys Res Commun
– volume: 67
  start-page: 505
  issue: 5
  year: 2010
  end-page: 508
  article-title: Protacs for treatment of cancer
  publication-title: Pediatr Res
– volume: 61
  start-page: 517
  issue: 5
  year: 2017
  end-page: 527
  article-title: Protein degradation: a validated therapeutic strategy with exciting prospects
  publication-title: Essays Biochem
– volume: 113
  start-page: 7124
  issue: 26
  year: 2016
  end-page: 7129
  article-title: PROTAC‐induced BET protein degradation as a therapy for castration‐resistant prostate cancer
  publication-title: Proc Natl Acad Sci U S a
– volume: 36
  start-page: 585
  issue: 4
  year: 2017
  end-page: 598
  article-title: Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors
  publication-title: Cancer Metastasis Rev
– volume: 104
  start-page: 1492
  issue: 11
  year: 2013
  end-page: 1498
  article-title: Development of hybrid small molecules that induce degradation of estrogen receptor‐alpha and necrotic cell death in breast cancer cells
  publication-title: Cancer Sci
– volume: 9
  start-page: 134
  issue: 1
  year: 2016
  article-title: Inhibition of bromodomain and extra‐terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell‐mediated cytotoxicity in multiple myeloma cells: role of cMYC‐IRF4‐miR‐125b interplay
  publication-title: J Hematol Oncol
– volume: 18
  start-page: 5904
  issue: 22
  year: 2008
  end-page: 5908
  article-title: Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics
  publication-title: Bioorg Med Chem Lett
– volume: 146
  start-page: 251
  year: 2018
  end-page: 259
  article-title: Discovery of a Keap1‐dependent peptide PROTAC to knockdown tau by ubiquitination‐proteasome degradation pathway
  publication-title: Eur J Med Chem
– volume: 5
  issue: 11
  year: 2014
  article-title: Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin‐proteasome pathway
  publication-title: Cell Death Dis
– year: 2018
– volume: 112
  start-page: 71
  year: 2018
  end-page: 89
  article-title: Hypoxia‐selective allosteric destabilization of activin receptor‐like kinases: a potential therapeutic avenue for prophylaxis of heterotopic ossification
  publication-title: Bone
– volume: 101
  start-page: 80
  year: 2018
  end-page: 93
  article-title: Ubiquitination: friend and foe in cancer
  publication-title: Int J Biochem Cell Biol
– year: 2018
  article-title: Chemical protein degradation approach and its application to epigenetic targets
  publication-title: Chem Rec
– volume: 9
  start-page: 803
  issue: 8
  year: 2018
  end-page: 808
  article-title: New class of selective estrogen receptor degraders (SERDs): expanding the toolbox of PROTAC Degrons
  publication-title: ACS Med Chem Lett
– volume: 31
  start-page: 1951
  issue: 9
  year: 2017
  end-page: 1961
  article-title: Novel BET protein proteolysis‐targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post‐myeloproliferative neoplasm secondary (s) AML cells
  publication-title: Leukemia
– volume: 8
  start-page: 377
  issue: 4
  year: 2018
  end-page: 378
  article-title: Arvinas, Pfizer team up on PROTACs
  publication-title: Cancer Discov
– volume: 7
  start-page: 689
  issue: 7
  year: 2004
  end-page: 697
  article-title: Targeted degradation of proteins by small molecules: a novel tool for functional proteomics
  publication-title: Comb Chem High Throughput Screen
– volume: 73
  start-page: 1064
  issue: 4
  year: 2008
  end-page: 1071
  article-title: Development of an aryl hydrocarbon receptor antagonist using the proteolysis‐targeting chimeric molecules approach: a potential tool for chemoprevention
  publication-title: Mol Pharmacol
– volume: 98
  start-page: 8554
  issue: 15
  year: 2001
  end-page: 8559
  article-title: Protacs: chimeric molecules that target proteins to the Skp1‐Cullin‐F box complex for ubiquitination and degradation
  publication-title: Proc Natl Acad Sci U S a
– volume: 20
  start-page: 518
  issue: 3
  year: 2008
  end-page: 533
  article-title: hSef potentiates EGF‐mediated MAPK signaling through affecting EGFR trafficking and degradation
  publication-title: Cell Signal
– volume: 2
  start-page: 1350
  issue: 12
  year: 2003
  end-page: 1358
  article-title: Development of Protacs to target cancer‐promoting proteins for ubiquitination and degradation
  publication-title: Mol Cell Proteomics
– volume: 8
  start-page: 2058
  issue: 17
  year: 2007
  end-page: 2062
  article-title: Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool
  publication-title: Chembiochem
– volume: 108
  start-page: 1032
  issue: 5
  year: 2017
  end-page: 1041
  article-title: SNIPER (TACC3) induces cytoplasmic vacuolization and sensitizes cancer cells to Bortezomib
  publication-title: Cancer Sci
– volume: 55
  start-page: 1966
  issue: 6
  year: 2016
  end-page: 1973
  article-title: Small‐molecule PROTACS: new approaches to protein degradation
  publication-title: Angew Chem Int Ed Engl
– volume: 28
  start-page: 256
  issue: 3
  year: 2010
  end-page: 263
  article-title: Harnessing chaperone‐mediated autophagy for the selective degradation of mutant huntingtin protein
  publication-title: Nat Biotechnol
– volume: 14
  start-page: 405
  issue: 4
  year: 2018
  end-page: 412
  article-title: Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands
  publication-title: Nat Chem Biol
– volume: 61
  start-page: 4249
  issue: 9
  year: 2018
  end-page: 4255
  article-title: Chemically induced degradation of anaplastic lymphoma kinase (ALK)
  publication-title: J Med Chem
– volume: 174
  start-page: 138
  year: 2017
  end-page: 144
  article-title: Targeted protein degradation by PROTACs
  publication-title: Pharmacol Ther
– volume: 25
  start-page: 88
  issue: 1
  year: 2018
  end-page: 99
  article-title: A chemoproteomic approach to query the degradable kinome using a multi‐kinase degrader
  publication-title: Cell Chem Biol
– volume: 2
  start-page: 927
  issue: 12
  year: 2016
  end-page: 934
  article-title: Protein degradation by in‐cell self‐assembly of proteolysis targeting chimeras
  publication-title: ACS Cent Sci
– volume: 32
  start-page: 343
  issue: 2
  year: 2018
  end-page: 352
  article-title: BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells
  publication-title: Leukemia
– volume: 132
  start-page: 5820
  issue: 16
  year: 2010
  end-page: 5826
  article-title: Protein knockdown using methyl bestatin‐ligand hybrid molecules: design and synthesis of inducers of ubiquitination‐mediated degradation of cellular retinoic acid‐binding proteins
  publication-title: J Am Chem Soc
– volume: 151
  start-page: 304
  year: 2018
  end-page: 314
  article-title: Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK)
  publication-title: Eur J Med Chem
– volume: 173
  start-page: 260
  issue: 1
  year: 2018
  end-page: 274
  article-title: Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis
  publication-title: Cell
– volume: 91
  start-page: 159
  issue: 3
  year: 2017
  end-page: 166
  article-title: Targeted degradation of proteins localized in subcellular compartments by hybrid small molecules
  publication-title: Mol Pharmacol
– volume: 453
  start-page: 735
  issue: 4
  year: 2014
  end-page: 740
  article-title: Design of a PROTAC that antagonizes and destroys the cancer‐forming X‐protein of the hepatitis B virus
  publication-title: Biochem Biophys Res Commun
– volume: 11
  start-page: 2425
  issue: 7
  year: 1992
  end-page: 2431
  article-title: Targeted degradation of the retinoblastoma protein by human papillomavirus E7‐E6 fusion proteins
  publication-title: EMBO J
– volume: 15
  start-page: 2724
  issue: 11
  year: 2005
  end-page: 2727
  article-title: Use of PROTACS as molecular probes of angiogenesis
  publication-title: Bioorg Med Chem Lett
– volume: 9
  start-page: 1233
  issue: 9
  year: 1999
  end-page: 1238
  article-title: Synthesis and evaluation of geldanamycin‐estradiol hybrids
  publication-title: Bioorg Med Chem Lett
– volume: 126
  start-page: 3748
  issue: 12
  year: 2004
  end-page: 3754
  article-title: Chemical genetic control of protein levels: selective in vivo targeted degradation
  publication-title: J Am Chem Soc
– volume: 61
  start-page: 482
  issue: 2
  year: 2018
  end-page: 491
  article-title: Chemically induced degradation of Sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on Sirtuin rearranging ligands (SirReals)
  publication-title: J Med Chem
– volume: 32
  start-page: 2224
  issue: 10
  year: 2018
  end-page: 2239
  article-title: Protein targeting chimeric molecules specific for bromodomain and extra‐terminal motif family proteins are active against pre‐clinical models of multiple myeloma
  publication-title: Leukemia
– volume: 57
  start-page: 107
  issue: 1
  year: 2017
  end-page: 123
  article-title: Targeted protein degradation by small molecules
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 27
  start-page: 7201
  issue: 57
  year: 2008
  end-page: 7211
  article-title: Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer
  publication-title: Oncogene
– volume: 28
  start-page: 779
  issue: 7
  year: 2018
  end-page: 781
  article-title: PROTAC‐induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib‐resistant B‐cell malignancies
  publication-title: Cell Res
– volume: 16
  start-page: 136
  issue: 2
  year: 2016
  end-page: 146
  article-title: Protein knockdown technology: application of ubiquitin ligase to cancer therapy
  publication-title: Curr Cancer Drug Targets
– volume: 19
  start-page: 3229
  issue: 10
  year: 2011
  end-page: 3241
  article-title: Development of target protein‐selective degradation inducer for protein knockdown
  publication-title: Bioorg Med Chem
– volume: 26
  start-page: 4865
  issue: 20
  year: 2016
  end-page: 4869
  article-title: Development of BCR‐ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand
  publication-title: Bioorg Med Chem Lett
– volume: 348
  start-page: 1376
  issue: 6241
  year: 2015
  end-page: 1381
  article-title: DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation
  publication-title: Science
– volume: 28
  start-page: 2493
  issue: 14
  year: 2018
  end-page: 2497
  article-title: Development of the first small molecule histone deacetylase 6 (HDAC6) degraders
  publication-title: Bioorg Med Chem Lett
– volume: 61
  start-page: 403
  issue: 2
  year: 2018
  end-page: 404
  article-title: Inducing protein degradation as a therapeutic strategy
  publication-title: J Med Chem
– volume: 55
  start-page: 807
  issue: 2
  year: 2016
  end-page: 810
  article-title: Modular PROTAC design for the degradation of oncogenic BCR‐ABL
  publication-title: Angew Chem Int Ed Engl
– ident: e_1_2_9_49_1
  doi: 10.1126/science.aab1433
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ejmech.2018.01.063
– ident: e_1_2_9_92_1
  doi: 10.1016/j.bioorg.2018.09.005
– ident: e_1_2_9_62_1
  doi: 10.2174/1568009616666151112122502
– ident: e_1_2_9_64_1
  doi: 10.1111/cas.13198
– ident: e_1_2_9_2_1
  doi: 10.1016/j.chembiol.2015.05.009
– ident: e_1_2_9_5_1
  doi: 10.1016/S1097-2765(00)00074-5
– ident: e_1_2_9_99_1
  doi: 10.1021/acs.jmedchem.6b01781
– ident: e_1_2_9_58_1
  doi: 10.1016/j.bmc.2011.03.057
– ident: e_1_2_9_73_1
  doi: 10.1021/acs.jmedchem.6b01816
– ident: e_1_2_9_10_1
  doi: 10.1016/j.chembiol.2017.10.011
– ident: e_1_2_9_94_1
  doi: 10.1038/nrd.2016.211
– ident: e_1_2_9_98_1
  doi: 10.1021/acscentsci.6b00280
– ident: e_1_2_9_14_1
  doi: 10.1007/s10555-017-9698-5
– ident: e_1_2_9_61_1
  doi: 10.1016/j.bmcl.2016.09.041
– ident: e_1_2_9_40_1
  doi: 10.1021/acschembio.7b00985
– ident: e_1_2_9_26_1
  doi: 10.1074/mcp.T300009-MCP200
– ident: e_1_2_9_45_1
  doi: 10.1021/acschembio.5b00442
– ident: e_1_2_9_19_1
  doi: 10.1126/science.aam7340
– ident: e_1_2_9_48_1
  doi: 10.1038/leu.2016.393
– ident: e_1_2_9_38_1
  doi: 10.1038/onc.2008.320
– ident: e_1_2_9_74_1
  doi: 10.1038/s41375-018-0044-x
– ident: e_1_2_9_56_1
  doi: 10.1016/j.febslet.2011.03.019
– ident: e_1_2_9_80_1
  doi: 10.1016/j.ejmech.2018.03.071
– ident: e_1_2_9_35_1
  doi: 10.1038/nn.3637
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.jmedchem.7b01333
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.jmedchem.6b01872
– ident: e_1_2_9_63_1
  doi: 10.1007/978-1-4939-3127-9_42
– volume: 8
  start-page: 377
  issue: 4
  year: 2018
  ident: e_1_2_9_97_1
  article-title: Arvinas, Pfizer team up on PROTACs
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-NB2018-015
– ident: e_1_2_9_77_1
  doi: 10.1038/s41589-018-0010-y
– ident: e_1_2_9_83_1
  doi: 10.1016/j.ejmech.2018.03.066
– ident: e_1_2_9_6_1
  doi: 10.1016/S0076-6879(05)99054-X
– ident: e_1_2_9_72_1
  doi: 10.1021/acs.jmedchem.8b00506
– ident: e_1_2_9_90_1
  doi: 10.1073/pnas.1803662115
– ident: e_1_2_9_31_1
  doi: 10.1016/j.bmcl.2005.04.008
– ident: e_1_2_9_18_1
  doi: 10.1203/PDR.0b013e3181d35017
– ident: e_1_2_9_42_1
  doi: 10.1016/j.bmcl.2008.07.114
– ident: e_1_2_9_66_1
  doi: 10.1124/mol.116.105569
– ident: e_1_2_9_70_1
  doi: 10.1016/j.bbrc.2018.02.096
– ident: e_1_2_9_27_1
  doi: 10.1016/j.bbrc.2014.10.006
– ident: e_1_2_9_59_1
  doi: 10.1111/cas.12272
– ident: e_1_2_9_11_1
  doi: 10.3390/molecules23081958
– ident: e_1_2_9_71_1
  doi: 10.1038/leu.2017.207
– ident: e_1_2_9_29_1
  doi: 10.2174/1386207043328364
– ident: e_1_2_9_30_1
  doi: 10.1016/j.bmcl.2003.11.042
– ident: e_1_2_9_32_1
  doi: 10.1124/mol.107.040840
– ident: e_1_2_9_96_1
  doi: 10.1016/j.cellsig.2007.11.010
– ident: e_1_2_9_50_1
  doi: 10.1002/anie.201507634
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.1521738113
– ident: e_1_2_9_21_1
  doi: 10.1021/cb8001792
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cbpa.2016.06.031
– ident: e_1_2_9_23_1
  doi: 10.1016/S0960-894X(00)00208-0
– ident: e_1_2_9_43_1
  doi: 10.1038/nchembio.597
– ident: e_1_2_9_22_1
  doi: 10.1016/S0960-894X(99)00185-7
– ident: e_1_2_9_89_1
  doi: 10.1038/s41422-018-0055-1
– ident: e_1_2_9_54_1
  doi: 10.1021/ja100691p
– ident: e_1_2_9_53_1
  doi: 10.1016/j.cbpa.2017.05.016
– ident: e_1_2_9_57_1
  doi: 10.1002/bies.201700247
– ident: e_1_2_9_28_1
  doi: 10.1021/ja039025z
– ident: e_1_2_9_52_1
  doi: 10.1002/anie.201507978
– ident: e_1_2_9_33_1
  doi: 10.1002/cbic.200700438
– ident: e_1_2_9_51_1
  doi: 10.1039/C7CC03879H
– ident: e_1_2_9_34_1
  doi: 10.1038/nbt.1608
– ident: e_1_2_9_39_1
  doi: 10.1038/aja.2008.26
– ident: e_1_2_9_75_1
  doi: 10.1021/jacs.8b05807
– ident: e_1_2_9_44_1
  doi: 10.1038/nchembio.1858
– ident: e_1_2_9_65_1
  doi: 10.1074/jbc.M116.768853
– ident: e_1_2_9_93_1
  doi: 10.1021/acs.jmedchem.7b00635
– ident: e_1_2_9_67_1
  doi: 10.1021/acsmedchemlett.8b00106
– ident: e_1_2_9_37_1
  doi: 10.1016/j.chembiol.2016.02.016
– ident: e_1_2_9_68_1
  doi: 10.1038/s42003-018-0105-8
– ident: e_1_2_9_46_1
  doi: 10.1021/acschembio.5b00216
– ident: e_1_2_9_4_1
  doi: 10.1016/j.biocel.2018.06.001
– ident: e_1_2_9_81_1
  doi: 10.1021/acs.jmedchem.7b01655
– ident: e_1_2_9_87_1
  doi: 10.1016/j.bmcl.2018.05.057
– ident: e_1_2_9_36_1
  doi: 10.1002/tcr.201800032
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ebiom.2018.09.005
– ident: e_1_2_9_13_1
  doi: 10.1042/EBC20170030
– ident: e_1_2_9_85_1
  doi: 10.1016/j.bcp.2016.07.017
– ident: e_1_2_9_84_1
  doi: 10.1016/j.bone.2018.03.027
– ident: e_1_2_9_86_1
  doi: 10.1038/nchembio.2538
– ident: e_1_2_9_78_1
  doi: 10.1002/psc.2858
– ident: e_1_2_9_76_1
  doi: 10.1016/j.cell.2018.02.030
– ident: e_1_2_9_16_1
  doi: 10.1146/annurev-pharmtox-010715-103507
– ident: e_1_2_9_15_1
  doi: 10.1016/j.chembiol.2017.05.024
– ident: e_1_2_9_9_1
  doi: 10.1016/j.pharmthera.2017.02.027
– ident: e_1_2_9_55_1
  doi: 10.1016/j.bmc.2011.09.041
– ident: e_1_2_9_82_1
  doi: 10.1016/j.bbrc.2018.09.169
– ident: e_1_2_9_91_1
  doi: 10.1016/j.chembiol.2017.10.005
– ident: e_1_2_9_47_1
  doi: 10.1186/s13045-016-0362-2
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.141230798
– ident: e_1_2_9_24_1
  doi: 10.1002/j.1460-2075.1992.tb05307.x
– ident: e_1_2_9_79_1
  doi: 10.1016/j.bioorg.2018.08.028
– ident: e_1_2_9_95_1
  doi: 10.1016/j.chembiol.2017.09.009
– ident: e_1_2_9_25_1
  doi: 10.1016/S1097-2765(00)80156-2
– ident: e_1_2_9_60_1
  doi: 10.1038/cddis.2014.471
– ident: e_1_2_9_7_1
  doi: 10.1021/acschembio.6b01068
– ident: e_1_2_9_20_1
  doi: 10.1016/S0076-6879(05)99054-X
SSID ssj0009630
Score 2.5912154
SecondaryResourceType review_article
Snippet Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Biodegradation
cancer
Drug development
Drug Development - methods
Humans
New technology
PROTAC
Proteasome Endopeptidase Complex - metabolism
protein degradation
Proteins
Proteolysis
Recombinant Fusion Proteins - metabolism
Review
small molecule
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title The PROTAC technology in drug development
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3369
https://www.ncbi.nlm.nih.gov/pubmed/30604499
https://www.proquest.com/docview/2167155876
https://www.proquest.com/docview/2163009436
https://pubmed.ncbi.nlm.nih.gov/PMC6590639
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7ogOjFfRk3KojioWMnW5ujDg4iuCAKgoeSpKmKUsWZOeiv96XbOC4gnnrIa5u-Jfny-vIFYFvRQFERaN9IY30WCeZHKkj8yFWNt5M0EcxtTj49E8fX7OSG35RVlW4vTMEPUSfcXGTk47ULcKV7-0PSUKPTFqXC7d1zpVoOD10OmaPQr8r0CvUFi1jFOxuQ_erG0ZnoG7z8XiX5Gb3m0093Bm6rjhdVJ4-tQV-3zPsXTsf_fdksTJeo1Dso3GgOxmw2DxPFOZVv8zDZqY6FW4A9dCzv4vL86qDj9eu8vPeQecnr4M5LhkVIi3DdPbrqHPvleQu-4bhQQCMxYa1WnBJuETgoEyZBSozRkQikkTZFNMS45kxJTmQaaU0lylsiEmFweFiCRvac2RXwQmNSbpUiJkkZLkk0J6F2tdltGVpibBN2K93HpiQjd2diPMUFjTKJUQmxU0ITtmrJl4KA4weZ9cp8cRmCvZi0RYhgCUd7fETdjMpyf0RUZp8HuQzNaytRZrmwdv0S6miFcD3YhHDED2oBR8w92pI93OcE3YJLh_yasJOb-dd-x53Drruu_lVwDaYQsMkiBbQOjf7rwG4gKOrrTRgn7GIzD4IPQOoJkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BVQUXSimFpUBTibbikCXrV-JDD3Tpanm2QovELbUdBxAoINhVRf8Sf4Uf1XFeywKVeuHQUw4eOaPxjGc8Hn8DsKpooKgItG-ksT6LBPMjFSR-5KrGW0maCOYeJ-_ti-4h2z7iR2NwW72FKfAh6oSbs4x8v3YG7hLS60PUUKPTJqVClhWVO_bmF57Xrr9sbeLifiSk863X7vplSwHfcIyFkQ8mrNWKU8It-kZlwiRIiTE6EoE00qbo8BnXnCnJiUwjralEektEIgxaAM47Di9cA3EH1L95MMSqQk0uEzrUFyxiFdJtQNYrTkd936OA9nFd5v14OXd4nVdwV4mqqHM5aw76uml-P0CR_E9kOQPTZeDtbRSW8hrGbDYLL4tWnDezMNmuOt-9gTW0He_HwffeRtvr11cP3mnmJVeDYy8Z1lnNweGz8PwWJrKLzC6AFxqTcqsUMUnK8NSlOQm1Kz9vydASYxvwuVrs2JR4667tx3lcIEWTGIUeO6E34ENNeVlgjDxBs1TpS1zuMtcxaYkQ40F0aDhFPYzCcpc-KrMXg5yG5uWjSDNfqFf9E-qQk_DI24BwRPFqAoc9PjqSnZ7kGOSCSxfcNuBTrld_5Ttuf-247-K_Er6HyW5vbzfe3drfeQdTGJ_KIuO1BBP9q4Fdxhiwr1dy2_Pg53Mr6B-7Smem
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5REKWXikeBLRRSqbTiEMj6lfjQAyysoLxWFStxC34FkKqAYFcVf4lf2XFe2xVF6oVTDhk51own83k8_gbgi6KRoiLSoZHGhSwRLExUZMPEV423bWYF85eTT07FQZ_9uOAXE_BU34Up-SGahJv3jOJ_7R38zmbbI9JQo7MtSoWsCiqP3ONv3K49fD_cQ9tuENLdP-8chFVHgdBwhMI4DSac04pTwh2GRmViG2XEGJ2ISBrpMoz3jGvOlOREZonWVKK8I8IKgw6A476BKX-26MvHCOuNCH4FrfI5NBQsYTXRbUS265mOh75nePZ5WebfcLmId91ZeF8B1WCnXFlzMOHyeZguW1c-zsNMp-4UtwCbuNaC3s-z851OMGhS9cFNHtj74VVgR3VJH6D_KgpbhMn8NnfLEMTGZNwpRYzNGO5SNCex9uXabRk7YlwLvtXaSU3FT-7bZPxKS2ZlkqIeU6_HFnxuJO9KTo5_yKzWCk4rr3xISVvEiJ8wAOAQzWtUlj8kUbm7HRYytCi3RJml0h7NR6hnGsItYgviMUs1Ap6re_xNfnNdcHYLLj0YbMHXwqYvzjvt7Hb98-P_Cq7D295eNz0-PD1agXcI52SZIFqFycH90H1CyDTQa8VaDeDytZ3jDxaqJgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PROTAC+technology+in+drug+development&rft.jtitle=Cell+biochemistry+and+function&rft.au=Zou%2C+Yutian&rft.au=Ma%2C+Danhui&rft.au=Wang%2C+Yinyin&rft.date=2019-01-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=37&rft.issue=1&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1002%2Fcbf.3369&rft.externalDBID=10.1002%252Fcbf.3369&rft.externalDocID=CBF3369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon