New covalent bonding ability for proteins
To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity‐enabled bioreactivity. The resultant new covalent bonds can be selectively cre...
Saved in:
Published in | Protein science Vol. 31; no. 2; pp. 312 - 322 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity‐enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand–receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics. |
---|---|
AbstractList | To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity‐enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand–receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics. To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity-enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand-receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics.To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity-enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand-receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics. |
Author | Wang, Lei Cao, Li |
AuthorAffiliation | 1 Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute University of California San Francisco San Francisco California USA |
AuthorAffiliation_xml | – name: 1 Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute University of California San Francisco San Francisco California USA |
Author_xml | – sequence: 1 givenname: Li surname: Cao fullname: Cao, Li organization: University of California San Francisco – sequence: 2 givenname: Lei orcidid: 0000-0002-5859-2526 surname: Wang fullname: Wang, Lei email: lei.wang2@ucsf.edu organization: University of California San Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34761448$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKAzEUhoNUtF7AJ5ABN7qYmmSSTLIRpHgDUREFdyEzk6kp06Qm00rf3ozVekFXWZzv_PnOOVugZ53VAOwhOEAQ4uOpdwOCMV8DfUSYSLlgTz3Qh4KhlGeMb4KtEMYQQoJwtgE2M5IzRAjvg6Mb_ZqUbq4abdukcLYydpSowjSmXSS180nMbrWxYQes16oJevfj3QaP52cPw8v0-vbianh6nZYUEp5yWIhCaIYgy7OaC4EozLmuIUcEVqogXOgIxCKuWCYorTNNM16IuhK0qGi2DU6WudNZMdFVGb28auTUm4nyC-mUkT8r1jzLkZtLzpHgJI8Bhx8B3r3MdGjlxIRSN42y2s2CxFQwQnNMur8OfqFjN_M2jicxi5xAgvFI7X83Wql8bjECgyVQeheC17UsTata4zpB00gEZXem2Ohkd6YvxVXDZ-YfaLpEX02jF_9y8u7-9p1_A8CJn0Y |
CitedBy_id | crossref_primary_10_1016_j_fochx_2024_101378 crossref_primary_10_1002_bio_70023 crossref_primary_10_1038_s41557_022_01059_z crossref_primary_10_1002_anie_202412843 crossref_primary_10_1002_pro_4637 crossref_primary_10_1016_j_cbpa_2023_102285 crossref_primary_10_1021_acscentsci_3c00288 crossref_primary_10_1021_acs_chemrev_4c00243 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1021_acs_chemrev_4c00066 crossref_primary_10_1016_j_bse_2025_104977 crossref_primary_10_1016_j_chembiol_2023_09_004 crossref_primary_10_1038_s41557_022_01038_4 crossref_primary_10_1039_D3SC01921G crossref_primary_10_1007_s42535_024_01034_8 crossref_primary_10_1002_ange_202412843 crossref_primary_10_3390_ijms24043525 crossref_primary_10_1021_acs_chemrev_4c00031 crossref_primary_10_1039_D2CC01902G crossref_primary_10_1016_j_indcrop_2024_119524 crossref_primary_10_1016_j_pmpp_2023_102200 crossref_primary_10_1002_advs_202412273 crossref_primary_10_1016_j_chempr_2024_02_010 |
Cites_doi | 10.1021/acs.accounts.7b00376 10.1038/nmeth.2595 10.1002/pro.4149 10.1021/jacs.6b08656 10.1002/anie.201309399 10.1021/jacs.1c04259 10.1038/s41586-021-03513-3 10.1038/nrm954 10.1002/anie.201400001 10.1021/jacs.8b06922 10.1002/ange.201604891 10.1002/adbi.202000308 10.1126/science.abj8754 10.1038/s41467-017-02409-z 10.1126/science.1060077 10.1038/s41586-021-03819-2 10.1021/jacs.7b02615 10.1002/wdev.188 10.7554/eLife.25808 10.1016/j.nbt.2016.10.003 10.1021/jacs.5b06234 10.1021/jacs.9b01738 10.1002/anie.201611841 10.1016/j.cell.2013.11.008 10.1021/cb300515u 10.1021/acs.bioconjchem.8b00680 10.1002/anie.201102646 10.1039/C6CC01226D 10.1002/anie.201706927 10.1021/jacs.9b02611 10.1021/cb500453a 10.1016/j.chempr.2019.08.020 10.1016/j.cell.2020.05.028 10.1021/jacs.8b01087 10.1021/jacs.0c06820 10.1016/j.tibs.2010.09.007 10.1002/anie.201308794 10.1038/nrd3410 10.1021/ja502851h 10.1021/jacs.6b02960 |
ContentType | Journal Article |
Copyright | 2021 The Protein Society. 2022 The Protein Society |
Copyright_xml | – notice: 2021 The Protein Society. – notice: 2022 The Protein Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pro.4228 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Cao and Wang |
EISSN | 1469-896X |
EndPage | 322 |
ExternalDocumentID | PMC8819847 34761448 10_1002_pro_4228 PRO4228 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences funderid: R01GM118384 – fundername: NIGMS NIH HHS grantid: R01 GM118384 – fundername: ; grantid: R01GM118384 |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5048-80b9b9e610673f89915078ef08140dab489e9b96732d63955f3e538b9fd95bd53 |
ISSN | 0961-8368 1469-896X |
IngestDate | Thu Aug 21 18:38:17 EDT 2025 Fri Jul 11 02:14:58 EDT 2025 Fri Jul 25 12:19:41 EDT 2025 Mon Jul 21 05:59:02 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 00:33:40 EDT 2025 Wed Jan 22 16:27:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | latent bioreactive unnatural amino acid genetic code expansion protein-protein interaction protein therapeutics proximity-enabled bioreactivity covalent drug |
Language | English |
License | 2021 The Protein Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5048-80b9b9e610673f89915078ef08140dab489e9b96732d63955f3e538b9fd95bd53 |
Notes | Funding information National Institute of General Medical Sciences, Grant/Award Number: R01GM118384 Lei Wang is the winner of the 2021 Emil Thomas Kaiser Award. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Funding information National Institute of General Medical Sciences, Grant/Award Number: R01GM118384 |
ORCID | 0000-0002-5859-2526 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4228 |
PMID | 34761448 |
PQID | 2625991968 |
PQPubID | 1016442 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8819847 proquest_miscellaneous_2596457245 proquest_journals_2625991968 pubmed_primary_34761448 crossref_citationtrail_10_1002_pro_4228 crossref_primary_10_1002_pro_4228 wiley_primary_10_1002_pro_4228_PRO4228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Bethesda |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 6 2018; 29 2017; 8 2021; 5 2018; 140 2015; 4 2019; 5 2020; 142 2020; 182 2002; 3 2016; 52 2011; 10 2016; 128 2011; 36 2021; 143 2019; 141 2013; 8 2021; 30 2014; 136 2017; 139 2017; 50 2015; 137 2013; 10 2021; 596 2001; 292 2017; 38 2017; 56 2011; 50 2013; 155 2021; 593 2021; 373 2016; 138 2014; 9 2014; 53 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 53 start-page: 9430 year: 2014 end-page: 9448 article-title: Sulfur(VI) fluoride exchange (SuFEx): Another good reaction for click chemistry publication-title: Angew Chem Int Ed – volume: 4 start-page: 545 year: 2015 end-page: 554 article-title: Optical control of biological processes by light‐switchable proteins publication-title: Wiley Interdiscip Rev Dev Biol – volume: 8 start-page: 2240 year: 2017 article-title: Spontaneous and specific chemical cross‐linking in live cells to capture and identify protein interactions publication-title: Nat Commun – volume: 128 start-page: 10219 year: 2016 end-page: 10222 article-title: Genetic incorporation of a reactive isothiocyanate group into proteins publication-title: Angew Chem Int Ed – volume: 138 start-page: 7353 year: 2016 end-page: 7364 article-title: Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective SuFEx reaction with a binding site Tyr residue publication-title: J Am Chem Soc – volume: 3 start-page: 836 year: 2002 end-page: 847 article-title: Formation and transfer of disulphide bonds in living cells publication-title: Nat Rev Mol Cell Biol – volume: 373 start-page: 871 year: 2021 end-page: 876 article-title: Accurate prediction of protein structures and interactions using a three‐track neural network publication-title: Science – volume: 56 start-page: 15737 year: 2017 end-page: 15741 article-title: Proximity‐triggered covalent stabilization of low‐affinity protein complexes in vitro and in vivo publication-title: Angew Chem Int Ed – volume: 38 start-page: 16 year: 2017 end-page: 25 article-title: Genetically encoding new bioreactivity publication-title: N Biotechnol – volume: 50 start-page: 2767 year: 2017 end-page: 2775 article-title: Engineering the genetic code in cells and animals: Biological considerations and impacts publication-title: Acc Chem Res – volume: 5 start-page: 2955 year: 2019 end-page: 2968 article-title: Genetically encoded residue‐selective photo‐crosslinker to capture protein‐protein interactions in living cells publication-title: Chem – volume: 596 start-page: 583 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 30 start-page: 1491 year: 2021 end-page: 1492 article-title: Recognizing lysine‐cysteine crosslinks in proteins publication-title: Protein Sci – volume: 6 start-page: 2617 year: 2017 article-title: Optocontrol of glutamate receptor activity by single side‐chain photoisomerization publication-title: Elife – volume: 10 start-page: 307 year: 2011 end-page: 317 article-title: The resurgence of covalent drugs publication-title: Nat Rev Drug Discov – volume: 53 start-page: 2190 year: 2014 end-page: 2193 article-title: Proximity‐enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids publication-title: Angew Chem Int Ed – volume: 9 start-page: 1956 year: 2014 end-page: 1961 article-title: Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors publication-title: ACS Chem Biol – volume: 29 start-page: 3522 year: 2018 end-page: 3526 article-title: Proximity‐induced site‐specific antibody conjugation publication-title: Bioconjug Chem – volume: 10 start-page: 885 year: 2013 end-page: 888 article-title: Adding an unnatural covalent bond to proteins through proximity‐enhanced bioreactivity publication-title: Nat Methods – volume: 5 year: 2021 article-title: Identification of protein direct interactome with genetic code expansion and search engine OpenUaa publication-title: Adv Biol – volume: 143 start-page: 10341 year: 2021 end-page: 10351 article-title: A genetically encoded fluorosulfonyloxybenzoyl‐L‐lysine for expansive covalent bonding of proteins via SuFEx chemistry publication-title: J Am Chem Soc – volume: 8 start-page: 488 year: 2013 end-page: 499 article-title: Getting in shape: Controlling peptide bioactivity and bioavailability using conformational constraints publication-title: ACS Chem Biol – volume: 155 start-page: 1258 year: 2013 end-page: 1269 article-title: Genetically encoded chemical probes in cells reveal the binding path of Urocortin‐I to CRF class B GPCR publication-title: Cell – volume: 141 start-page: 9458 year: 2019 end-page: 9462 article-title: Genetically encoding photocaged quinone methide to multitarget protein residues covalently in vivo publication-title: J Am Chem Soc – volume: 53 start-page: 3932 year: 2014 end-page: 3936 article-title: Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells publication-title: Angew Chem Int Ed – volume: 56 start-page: 5096 year: 2017 end-page: 5100 article-title: Protein crosslinking by genetically encoded noncanonical amino acids with reactive aryl carbamate side chains publication-title: Angew Chem Int Ed – volume: 137 start-page: 11218 year: 2015 end-page: 11221 article-title: In situ formation of an azo bridge on proteins controllable by visible light publication-title: J Am Chem Soc – volume: 593 start-page: 460 year: 2021 end-page: 464 article-title: A lysine‐cysteine redox switch with an NOS bridge regulates enzyme function publication-title: Nature – volume: 292 start-page: 498 year: 2001 end-page: 500 article-title: Expanding the genetic code of publication-title: Science – volume: 50 start-page: 8077 year: 2011 end-page: 8081 article-title: Photo‐cross‐linkers incorporated into G‐protein‐coupled receptors in mammalian cells: A ligand comparison publication-title: Angew Chem Int Ed – volume: 140 start-page: 4995 year: 2018 end-page: 4999 article-title: Genetically encoding fluorosulfate‐L‐tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo publication-title: J Am Chem Soc – volume: 141 start-page: 7698 year: 2019 end-page: 7703 article-title: Genetically introducing biochemically reactive amino acids dehydroalanine and dehydrobutyrine in proteins publication-title: J Am Chem Soc – volume: 142 start-page: 17057 year: 2020 end-page: 17068 article-title: Genetically encoded quinone methides enabling rapid, site‐specific, and photocontrolled protein modification with amine reagents publication-title: J Am Chem Soc – volume: 182 start-page: 85 year: 2020 end-page: 97 article-title: Developing covalent protein drugs via proximity‐enabled reactive therapeutics publication-title: Cell – volume: 138 start-page: 14832 year: 2016 end-page: 14835 article-title: Using protein‐confined proximity to determine chemical reactivity publication-title: J Am Chem Soc – volume: 139 start-page: 6078 year: 2017 end-page: 6081 article-title: Genetically encoded 2‐aryl‐5‐carboxytetrazoles for site‐selective protein photo‐cross‐linking publication-title: J Am Chem Soc – volume: 52 start-page: 5140 year: 2016 end-page: 5143 article-title: Proximity‐enabled bioreactivity to generate covalent peptide inhibitors of p53‐Mdm4 publication-title: Chem Commun – volume: 136 start-page: 8411 year: 2014 end-page: 8417 article-title: A genetically encoded aza‐Michael acceptor for covalent cross‐linking of protein‐receptor complexes publication-title: J Am Chem Soc – volume: 140 start-page: 13253 year: 2018 end-page: 13259 article-title: Proteomic identification of protein tyrosine phosphatase and substrate interactions in living mammalian cells by genetic encoding of irreversible enzyme inhibitors publication-title: J Am Chem Soc – volume: 36 start-page: 229 year: 2011 end-page: 237 article-title: Intramolecular isopeptide bonds: Protein crosslinks built for stress? publication-title: Trends Biochem Sci – ident: e_1_2_9_9_1 doi: 10.1021/acs.accounts.7b00376 – ident: e_1_2_9_6_1 doi: 10.1038/nmeth.2595 – ident: e_1_2_9_5_1 doi: 10.1002/pro.4149 – ident: e_1_2_9_38_1 doi: 10.1021/jacs.6b08656 – ident: e_1_2_9_20_1 doi: 10.1002/anie.201309399 – ident: e_1_2_9_24_1 doi: 10.1021/jacs.1c04259 – ident: e_1_2_9_4_1 doi: 10.1038/s41586-021-03513-3 – ident: e_1_2_9_2_1 doi: 10.1038/nrm954 – ident: e_1_2_9_12_1 doi: 10.1002/anie.201400001 – ident: e_1_2_9_36_1 doi: 10.1021/jacs.8b06922 – ident: e_1_2_9_16_1 doi: 10.1002/ange.201604891 – ident: e_1_2_9_37_1 doi: 10.1002/adbi.202000308 – ident: e_1_2_9_32_1 doi: 10.1126/science.abj8754 – ident: e_1_2_9_35_1 doi: 10.1038/s41467-017-02409-z – ident: e_1_2_9_8_1 doi: 10.1126/science.1060077 – ident: e_1_2_9_31_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_9_25_1 doi: 10.1021/jacs.7b02615 – ident: e_1_2_9_30_1 doi: 10.1002/wdev.188 – ident: e_1_2_9_33_1 doi: 10.7554/eLife.25808 – ident: e_1_2_9_7_1 doi: 10.1016/j.nbt.2016.10.003 – ident: e_1_2_9_13_1 doi: 10.1021/jacs.5b06234 – ident: e_1_2_9_27_1 doi: 10.1021/jacs.9b01738 – ident: e_1_2_9_18_1 doi: 10.1002/anie.201611841 – ident: e_1_2_9_10_1 doi: 10.1016/j.cell.2013.11.008 – ident: e_1_2_9_29_1 doi: 10.1021/cb300515u – ident: e_1_2_9_19_1 doi: 10.1021/acs.bioconjchem.8b00680 – ident: e_1_2_9_34_1 doi: 10.1002/anie.201102646 – ident: e_1_2_9_40_1 doi: 10.1039/C6CC01226D – ident: e_1_2_9_17_1 doi: 10.1002/anie.201706927 – ident: e_1_2_9_23_1 doi: 10.1021/jacs.9b02611 – ident: e_1_2_9_14_1 doi: 10.1021/cb500453a – ident: e_1_2_9_26_1 doi: 10.1016/j.chempr.2019.08.020 – ident: e_1_2_9_41_1 doi: 10.1016/j.cell.2020.05.028 – ident: e_1_2_9_22_1 doi: 10.1021/jacs.8b01087 – ident: e_1_2_9_28_1 doi: 10.1021/jacs.0c06820 – ident: e_1_2_9_3_1 doi: 10.1016/j.tibs.2010.09.007 – ident: e_1_2_9_11_1 doi: 10.1002/anie.201308794 – ident: e_1_2_9_39_1 doi: 10.1038/nrd3410 – ident: e_1_2_9_15_1 doi: 10.1021/ja502851h – ident: e_1_2_9_21_1 doi: 10.1021/jacs.6b02960 |
SSID | ssj0004123 |
Score | 2.4825902 |
SecondaryResourceType | review_article |
Snippet | To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 312 |
SubjectTerms | Amino acids Amino Acids - chemistry Bonding Chemical bonds Covalence Covalent bonds covalent drug Genetic code genetic code expansion latent bioreactive unnatural amino acid Ligands Protein Binding Protein Engineering Protein interaction protein therapeutics Proteins Proteins - chemistry protein–protein interaction proximity‐enabled bioreactivity Review |
Title | New covalent bonding ability for proteins |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.4228 https://www.ncbi.nlm.nih.gov/pubmed/34761448 https://www.proquest.com/docview/2625991968 https://www.proquest.com/docview/2596457245 https://pubmed.ncbi.nlm.nih.gov/PMC8819847 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOBSQctjS0FGqooQypL4kcTHqgJVCEqFWqm3KH5ErESTqt0e4Nczfma3W6S2l-zKdpy1v814Zjz-BqEdXYlaaJZnSgEMrJU6q4XMMyGpUCZnlXYOt--H5cEJ-3rKT8d8mu50yVxO1d8bz5XcB1UoA1ztKdk7IJs6hQL4DvjCFRCG660wtsGJaoAe7Ya-HPwBFU-87eMwHQvDLDjkggp65Ms-hrVv3IQYvI0-uti9GPhmZouuAbAq8xRmEXx8ZZHV1OetmRov4cAeBjhc-sAkAmmxADVZkGc0xDj7pZH6I8QrUtezuMKQppZQbFxZ4m76tQUnhQF6ymTSwJ2NvfMhekRA26fR6RKPtxYuS18aTeQQzsmn-MxlrWLFVFiNeF20RJwqcfwUrQcbAO95QJ-hB6bfQJt7fTsfzv7gXeyict12xwZ6vB8z8m2iD4A3jnjjgDcOeGPAG0e8n6OTL5-P9w-ykOoiUxxkKOgJUkhhSkvoRzuwga2eXpsut4RkupWsFgYaQCXRoFNy3lEDS5UUnRZcak5foLV-6M0rhAnJlZBaS0YUy7uq1dJ0pdZdAZZhZYoJeh-nqlGBB96mI_ndXIdjgt6lluee--SGNttxtpvwZlw2xBrVAmS77SJVw2TZzai2N8MVtOGiZLwijE_QSw9OeghllfVTwN3VEmypgeVEX67pZ78cN3oNGi4oXBO06wD-7-9ujn7-sJ9btxjja_RkfLu20dr84sq8AVV0Lt-6P-o_kqCIcA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+covalent+bonding+ability+for+proteins&rft.jtitle=Protein+science&rft.au=Cao%2C+Li&rft.au=Wang%2C+Lei&rft.date=2022-02-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=31&rft.issue=2&rft.spage=312&rft.epage=322&rft_id=info:doi/10.1002%2Fpro.4228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pro_4228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |