Flexible longitudinal linear mixed models for multiple censored responses data
In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular int...
Saved in:
Published in | Statistics in medicine Vol. 38; no. 6; pp. 1074 - 1102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
15.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum‐likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log‐likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study. |
---|---|
AbstractList | In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study. In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study.In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study. |
Author | Lachos, Victor H. Castro, Luis M. A. Matos, Larissa Chen, Ming‐Hui |
AuthorAffiliation | 3 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile 2 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil 1 Department of Statistics, University of Connecticut, Storrs, Connecticut |
AuthorAffiliation_xml | – name: 3 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile – name: 2 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil – name: 1 Department of Statistics, University of Connecticut, Storrs, Connecticut |
Author_xml | – sequence: 1 givenname: Victor H. orcidid: 0000-0002-7239-2459 surname: Lachos fullname: Lachos, Victor H. email: hlachos@uconn.edu organization: University of Connecticut – sequence: 2 givenname: Larissa surname: A. Matos fullname: A. Matos, Larissa organization: Universidade Estadual de Campinas – sequence: 3 givenname: Luis M. orcidid: 0000-0001-7249-5207 surname: Castro fullname: Castro, Luis M. organization: Pontificia Universidad Católica de Chile – sequence: 4 givenname: Ming‐Hui orcidid: 0000-0003-1935-2447 surname: Chen fullname: Chen, Ming‐Hui organization: University of Connecticut |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30421470$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vFSEUhompaW9rE3-BmcSNm7keYBhmNiamabVJ1YW6Jlw4U2kYuMJMP_69jLetH9EVhPPw5sl5D8leiAEJeU5hTQHY6-zGdQdUPiErCr2sgYluj6yASVm3kooDcpjzFQClgsl9csChYbSRsCIfzzzeuo3Hysdw6abZuqB95V1AnarR3aKtxmjR52qI5WH2k9sW2mDIMZVhwryNIWOurJ70M_J00D7j8f15RL6enX45eV9ffHp3fvL2ojYCGlmjaWy_sRw1HcodZMdpI0BIzbSwhrIeUOpmYD031nJAI_qmG4bWcLEZoONH5M0udztvRrTFZkraq21yo053Kmqn_pwE901dxmvVcik5yBLw6j4gxe8z5kmNLhv0XgeMc1aMciZ5y9sFffkXehXnVLa0UB2wrqcNLdSL340eVR5WXYD1DjAp5pxwUMZNenJxEXReUVBLl6p0qZYufyk-fnjI_Ada79Ab5_Huv5z6fP7hJ_8D_n2uSQ |
CitedBy_id | crossref_primary_10_1002_bimj_202100233 crossref_primary_10_1002_sim_10295 crossref_primary_10_1016_j_spl_2020_108729 crossref_primary_10_1177_09622802211046387 crossref_primary_10_1002_sim_8554 crossref_primary_10_1002_sim_8870 crossref_primary_10_1007_s11222_022_10200_4 crossref_primary_10_1007_s00357_022_09415_x crossref_primary_10_1007_s00184_023_00929_x crossref_primary_10_1016_j_ajp_2024_104007 crossref_primary_10_1007_s42081_025_00299_w crossref_primary_10_1002_sim_9671 crossref_primary_10_51387_24_NEJSDS68 |
Cites_doi | 10.1080/01621459.1990.10474930 10.1111/j.2517-6161.1974.tb00989.x 10.1080/01621459.1997.10474030 10.1016/j.csda.2006.05.007 10.1111/j.2517-6161.1977.tb01600.x 10.1198/jcgs.2009.07130 10.1002/sim.5799 10.1214/aos/1018031103 10.1016/j.csda.2004.07.002 10.4310/SII.2017.v10.n3.a10 10.1002/sim.6269 10.1002/bimj.201200001 10.1177/0962280215620229 10.1016/j.jspi.2011.06.006 10.1007/s11222-010-9212-1 10.1111/j.2517-6161.1982.tb01203.x 10.1002/bimj.201000173 10.1093/infdis/175.2.247 10.1177/0962280214551191 10.1201/b17203 10.1198/106186006X157469 10.2307/2532340 10.1051/ps:2004007 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.8017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1102 |
ExternalDocumentID | PMC6377307 30421470 10_1002_sim_8017 SIM8017 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Iniciativa Científica Milenio ‐ Minecon Núcleo Milenio MiDaS – fundername: National Institutes of Health funderid: GM 70335; P01 CA142538 – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico funderid: 1170258 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2016/05420-6; 2018/05013-7 – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM070335 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM LW6 |
ID | FETCH-LOGICAL-c5047-ec4d9bd3ea1fec40783145057a2a5dc1290e7a4f293cdd30ec5948ff6c35bf083 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 14:36:09 EDT 2025 Fri Jul 11 03:35:19 EDT 2025 Mon Jul 21 01:54:27 EDT 2025 Thu Apr 03 06:58:52 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 03:28:14 EDT 2025 Wed Jan 22 16:25:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | SAEM algorithm censored data outliers multiple longitudinal responses HIV viral load |
Language | English |
License | 2018 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5047-ec4d9bd3ea1fec40783145057a2a5dc1290e7a4f293cdd30ec5948ff6c35bf083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7249-5207 0000-0002-7239-2459 0000-0003-1935-2447 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6377307 |
PMID | 30421470 |
PQID | 2180289141 |
PQPubID | 48361 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377307 proquest_miscellaneous_2132736367 proquest_journals_2180289141 pubmed_primary_30421470 crossref_citationtrail_10_1002_sim_8017 crossref_primary_10_1002_sim_8017 wiley_primary_10_1002_sim_8017_SIM8017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 March 2019 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 15 March 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 142 2006; 51 2017; 26 2010 2013; 23 1997; 175 2004; 8 1999; 27 2006; 15 1974 2005; 49 2018; 27 2012; 54 2004; 112 1990; 85 1997; 92 2001 2013; 55 2013; 32 1977; 39 2017; 10 2016 2017; 18 1982 1992; 48 2014 2012; 22 2014; 33 2009; 18 e_1_2_9_30_1 Andrews D (e_1_2_9_13_1) 1974 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 Mortimer P (e_1_2_9_3_1) 2001 e_1_2_9_12_1 Matos L (e_1_2_9_8_1) 2013; 23 Wu L (e_1_2_9_5_1) 2010 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 Alder M (e_1_2_9_2_1) 2001 e_1_2_9_19_1 e_1_2_9_18_1 Dempster A (e_1_2_9_20_1) 1977; 39 Lin T (e_1_2_9_16_1) 2017; 18 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_7_1 Barletta J (e_1_2_9_4_1) 2004; 112 Matos L (e_1_2_9_6_1) 2016 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 Louis T (e_1_2_9_29_1) 1982 e_1_2_9_27_1 |
References_xml | – volume: 92 start-page: 775 issue: 438 year: 1997 end-page: 779 article-title: A random‐effects model for multiple characteristics with possibly missing data publication-title: J Am Stat Assoc – volume: 8 start-page: 115 year: 2004 end-page: 131 article-title: Coupling a stochastic approximation version of EM with an MCMC procedure publication-title: ESAIM Probab Stat – volume: 10 start-page: 471 issue: 3 year: 2017 end-page: 482 article-title: Quantile regression in linear mixed models: a stochastic approximation EM approach publication-title: Stat Interface – start-page: 226 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B Methodol – volume: 85 start-page: 699 issue: 411 year: 1990 end-page: 704 article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: J Am Stat Assoc – start-page: 1 year: 2016 end-page: 27 article-title: Censored mixed‐effects models for irregularly observed repeated measures with applications to HIV viral loads publication-title: TEST – year: 2001 – volume: 27 start-page: 48 issue: 1 year: 2018 end-page: 64 article-title: Extending multivariate‐ linear mixed models for multiple longitudinal data with censored responses and heavy tails publication-title: Stat Methods Med Res – volume: 54 start-page: 405 issue: 3 year: 2012 end-page: 425 article-title: Skew‐normal/independent linear mixed models for censored responses with applications to HIV viral loads publication-title: Biometrical Journal – volume: 112 issue: 20‐27 year: 2004 article-title: Lowering the detection limits of HIV‐1 viral load using real‐time immuno‐PCR for HIV‐1 p24 antigen publication-title: Am J Clin Pathol – volume: 175 start-page: 247 issue: 2 year: 1997 end-page: 254 article-title: Longitudinal analysis of quantitative virologic measures in human immunodeficiency virus‐infected subjects with ⩾ 400 CD4 lymphocytes: implications for applying measurements to individual patients publication-title: J Infect Dis – volume: 26 start-page: 542 year: 2017 end-page: 566 article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate‐ distribution publication-title: Stat Methods Med Res – year: 2014 – year: 2010 – volume: 32 start-page: 3881 issue: 22 year: 2013 end-page: 3898 article-title: Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors publication-title: Stat Med – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B Methodol – volume: 33 start-page: 4715 issue: 27 year: 2014 end-page: 4733 article-title: Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials publication-title: Statist Med – volume: 55 start-page: 554 issue: 4 year: 2013 end-page: 571 article-title: Multivariate linear mixed models for irregularly observed multiple repeated measures with missing outcomes publication-title: Biometrical Journal – volume: 15 start-page: 803 issue: 4 year: 2006 end-page: 829 article-title: Implementing and diagnosing the stochastic approximation EM algorithm publication-title: J Comput Graph Stat – volume: 48 start-page: 733 year: 1992 end-page: 742 article-title: A parametric family of correlation structures for the analysis of longitudinal data publication-title: Biometrics – start-page: 99 year: 1974 end-page: 102 article-title: Scale mixtures of normal distributions publication-title: J R Stat Soc Ser B Methodol – volume: 49 start-page: 1020 issue: 4 year: 2005 end-page: 1038 article-title: Maximum likelihood estimation in nonlinear mixed effects models publication-title: Comput Stat Data Anal – volume: 18 start-page: 666 issue: 4 year: 2017 end-page: 681 article-title: Multivariate‐ nonlinear mixed models with application to censored multi‐outcome AIDS studies publication-title: Biostatistics – volume: 51 start-page: 1562 issue: 3 year: 2006 end-page: 1574 article-title: Extension of the SAEM algorithm to left‐censored data in nonlinear mixed‐effects model: application to HIV dynamics model publication-title: Comput Stat Data Anal – volume: 142 start-page: 25 year: 2012 end-page: 40 article-title: Some results on the truncated multivariate distribution publication-title: J Stat Plan Infer – volume: 27 start-page: 94 issue: 1 year: 1999 end-page: 128 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann Stat – volume: 23 start-page: 1323 year: 2013 end-page: 1345 article-title: Likelihood based inference for linear and nonlinear mixed‐effects models with censored response using the multivariate‐t distribution publication-title: Statistica Sinica – volume: 18 start-page: 797 issue: 4 year: 2009 end-page: 817 article-title: Fast implementation for normal mixed effects models with censored response publication-title: J Comput Graph Stat – volume: 22 start-page: 121 issue: 1 year: 2012 end-page: 139 article-title: Estimation in nonlinear mixed‐effects models using heavy‐tailed distributions publication-title: Stat Comput – ident: e_1_2_9_21_1 doi: 10.1080/01621459.1990.10474930 – start-page: 1 year: 2016 ident: e_1_2_9_6_1 article-title: Censored mixed‐effects models for irregularly observed repeated measures with applications to HIV viral loads publication-title: TEST – start-page: 99 year: 1974 ident: e_1_2_9_13_1 article-title: Scale mixtures of normal distributions publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1974.tb00989.x – ident: e_1_2_9_9_1 doi: 10.1080/01621459.1997.10474030 – volume: 23 start-page: 1323 year: 2013 ident: e_1_2_9_8_1 article-title: Likelihood based inference for linear and nonlinear mixed‐effects models with censored response using the multivariate‐t distribution publication-title: Statistica Sinica – ident: e_1_2_9_27_1 doi: 10.1016/j.csda.2006.05.007 – volume-title: Mixed Effects Models for Complex Data year: 2010 ident: e_1_2_9_5_1 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_9_20_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_9_7_1 doi: 10.1198/jcgs.2009.07130 – volume: 18 start-page: 666 issue: 4 year: 2017 ident: e_1_2_9_16_1 article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies publication-title: Biostatistics – volume-title: ABC of AIDS year: 2001 ident: e_1_2_9_2_1 – ident: e_1_2_9_15_1 doi: 10.1002/sim.5799 – ident: e_1_2_9_18_1 doi: 10.1214/aos/1018031103 – ident: e_1_2_9_26_1 doi: 10.1016/j.csda.2004.07.002 – ident: e_1_2_9_24_1 doi: 10.4310/SII.2017.v10.n3.a10 – ident: e_1_2_9_28_1 doi: 10.1002/sim.6269 – volume-title: ABC of AIDS year: 2001 ident: e_1_2_9_3_1 – ident: e_1_2_9_10_1 doi: 10.1002/bimj.201200001 – ident: e_1_2_9_11_1 doi: 10.1177/0962280215620229 – ident: e_1_2_9_12_1 doi: 10.1016/j.jspi.2011.06.006 – ident: e_1_2_9_22_1 doi: 10.1007/s11222-010-9212-1 – start-page: 226 year: 1982 ident: e_1_2_9_29_1 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_9_31_1 doi: 10.1002/bimj.201000173 – ident: e_1_2_9_17_1 doi: 10.1093/infdis/175.2.247 – ident: e_1_2_9_14_1 doi: 10.1177/0962280214551191 – ident: e_1_2_9_30_1 doi: 10.1201/b17203 – volume: 112 issue: 20 year: 2004 ident: e_1_2_9_4_1 article-title: Lowering the detection limits of HIV‐1 viral load using real‐time immuno‐PCR for HIV‐1 p24 antigen publication-title: Am J Clin Pathol – ident: e_1_2_9_19_1 doi: 10.1198/106186006X157469 – ident: e_1_2_9_25_1 doi: 10.2307/2532340 – ident: e_1_2_9_23_1 doi: 10.1051/ps:2004007 |
SSID | ssj0011527 |
Score | 2.3470945 |
Snippet | In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1074 |
SubjectTerms | Algorithms censored data Economic models HIV Infections - virology HIV viral load Humans Likelihood Functions Limit of Detection Linear Models Longitudinal Studies multiple longitudinal responses Multivariate Analysis outliers Polymerase Chain Reaction SAEM algorithm Time Factors Viral Load - statistics & numerical data |
Title | Flexible longitudinal linear mixed models for multiple censored responses data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8017 https://www.ncbi.nlm.nih.gov/pubmed/30421470 https://www.proquest.com/docview/2180289141 https://www.proquest.com/docview/2132736367 https://pubmed.ncbi.nlm.nih.gov/PMC6377307 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9GHkqgdG3Wj_RjaFDap3zIlmznsZSGbpA8tCsE-mBkWaKhqTPiBMr--t1ZttcsHYw9OaCLLNt30k93p98BnEfWo3BYhJYmdUeYyHQSa1CXET7jFheXREOugdE4uH0Q3yZyUmZV0lkYxw9RO9zIMor5mgxcJXnvN2loPn3p4vRKB8kpVYvw0F3NHMWraq0UoQxCLive2b7Xq_64vhJtwMvNLMm36LVYfoYf4bEauMs6ee6ulklX__yD0_H_nmwXdkpUyq6cGu3BB5O1YGtUxt1bsO28e8wdWmpBkzCqo3j-BOMhkWomM8Nmc6p-tEqp0hajcagFe5m-mpQVBXdyhgiZVSmMDJ84ny-wceHydE3OKF91Hx6GN9-vbztlmYaOlsTzYLRIB0nqG8Ut_qa4IBe071GekqkmR5cJlbAILHSa-n2jiSLG2kD7MrEIAQ-gkc0zcwRMSxHKRHu2KGdvuIqEVbTF7KsI92WqDZfVJ4t1yWFOpTRmsWNf9mJ8dzG9uzZ8qSV_ON6Od2ROq68el5abxx5R4kUDLjh2UTejzVEgRWVmviIZH1Ff4AfYxaFTkvom5B7iIuy3IVxTn1qA-LzXW7LpU8HrHfghzrfY50WhHX8dd3z_dUTX438VPIEm4rwBpc5xeQqN5WJlzhBLLZPPhdX8ApX1HEI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIUElxEc3RtkGRkLbUz-c2EmqPSFE1UHbB-ikPSBFjmOLam2KmlZC--t3FyeBsiFNPLWSr66T3Nm_-8jvAN5H1qN0WISWJnVbmMi0E2tQlxE-o4uLR6Kh0MB4EgwvxOdLebkDZ9W7MI4fog64kWUU-zUZOAWku79ZQ_PZooP7a_gAHlJD78Kf-lpzR_GqXyvlKIOQy4p5tud1q19un0W3AObtOsk_8WtxAA2ewfdq6a7u5KqzWScdff0Xq-N_XttzeFoCU_bBadIL2DFZEx6Ny9R7E564AB9z7y01oUEw1bE878FkQLyaydyw-ZIaIG1SarbFaCFqxRazXyZlRc-dnCFIZlUVI8NLzpcrHFy5Ul2TMypZ3YeLwafpx2G77NTQ1pKoHowWaT9JfaO4xe-UGuSCXB_lKZlqinWZUAmL2EKnqd8zmlhirA20LxOLKPAl7GbLzLwCpqUIZaI9W3S0N1xFwiryMnsqQtdMteC0emaxLmnMqZvGPHYEzF6M9y6me9eCd7XkT0fdcYfMUfXY49J489gjVryozwXHKephNDvKpajMLDck4yPwC_wApzhwWlL_CUWIuAh7LQi39KcWIErv7ZFs9qOg9g78ELdcnPOkUI9_rjv-dj6mz9f3FXwLj4fT8SgenU--HEIDYV-fKum4PILd9WpjjhFarZM3hQndADeGIF0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tTEJI0xhlsA4GnjTBU0uc2En6OA0qfrWaNpCQeIgcxxbVSoqaVpr21-8uTgIdQ5p4SiRfHCe5sz_fXb4D-Bxbn8JhMVqa1B1hYtNJrUFdRviMW1xcEg25BgbD8PhSnF7Jqyqrkv6FcfwQjcONLKOcr8nA7zJ7cE8aWoxuuzi9Ri_hlQi9mDT68HtDHcXrcq0UogwjLmviWc8_qK9cXIoe4cvHaZIP4Wu5_vRX4boeuUs7-dmdz9Ku_v0XqePzHu0tvKlgKfvi9GgNXpi8BcuDKvDegtfOvcfcX0stWCGQ6jie12HYJ1bNdGzYeELlj-YZldpiNA41ZbejXyZjZcWdgiFEZnUOI8MnLiZTbJy6RF1TMEpYfQeX_aOLr8edqk5DR0siejBaZL00C4ziFs8pMMgFbXyUr2SmydNlIiUsIgudZYFnNHHEWBvqQKYWMeAGLOWT3LwHpqWIZKp9W9azN1zFwiraY3oqxo2ZasN-_ckSXZGYUy2NceLol_0E311C764NnxrJO0fc8Q-Z7fqrJ5XpFolPnHhxjwuOXTTNaHQUSVG5mcxJJkDYFwYhdrHplKS5CfmHuIi8NkQL6tMIEKH3Yks-uimJvcMgwgkX-9wrtePJcSc_TgZ0_PC_gruw_O2wn5yfDM-2YAUxX4_S6LjchqXZdG4-Iq6apTulAf0B5ksfFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+longitudinal+linear+mixed+models+for+multiple+censored+responses+data&rft.jtitle=Statistics+in+medicine&rft.au=Lachos%2C+Victor+H.&rft.au=A.+Matos%2C+Larissa&rft.au=Castro%2C+Luis+M.&rft.au=Chen%2C+Ming%E2%80%90Hui&rft.date=2019-03-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=38&rft.issue=6&rft.spage=1074&rft.epage=1102&rft_id=info:doi/10.1002%2Fsim.8017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_8017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |