Flexible longitudinal linear mixed models for multiple censored responses data

In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular int...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 38; no. 6; pp. 1074 - 1102
Main Authors Lachos, Victor H., A. Matos, Larissa, Castro, Luis M., Chen, Ming‐Hui
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum‐likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log‐likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study.
AbstractList In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study.
In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study.In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either left or right censored. A complication arises when more than one series of responses is repeatedly collected on each subject at irregular intervals over a period of time and the data exhibit tails heavier than the normal distribution. The multivariate censored linear mixed effect (MLMEC) model is a frequently used tool for a joint analysis of more than one series of longitudinal data. In this context, we develop a robust generalization of the MLMEC based on the scale mixtures of normal distributions. To take into account the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is considered. For this complex longitudinal structure, we propose an exact estimation procedure to obtain the maximum-likelihood estimates of the fixed effects and variance components using a stochastic approximation of the EM algorithm. This approach allows us to estimate the parameters of interest easily and quickly as well as to obtain the standard errors of the fixed effects, the predictions of unobservable values of the responses, and the log-likelihood function as a byproduct. The proposed method is applied to analyze a set of AIDS data and is examined via a simulation study.
Author Lachos, Victor H.
Castro, Luis M.
A. Matos, Larissa
Chen, Ming‐Hui
AuthorAffiliation 3 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile
2 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil
1 Department of Statistics, University of Connecticut, Storrs, Connecticut
AuthorAffiliation_xml – name: 3 Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile
– name: 2 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil
– name: 1 Department of Statistics, University of Connecticut, Storrs, Connecticut
Author_xml – sequence: 1
  givenname: Victor H.
  orcidid: 0000-0002-7239-2459
  surname: Lachos
  fullname: Lachos, Victor H.
  email: hlachos@uconn.edu
  organization: University of Connecticut
– sequence: 2
  givenname: Larissa
  surname: A. Matos
  fullname: A. Matos, Larissa
  organization: Universidade Estadual de Campinas
– sequence: 3
  givenname: Luis M.
  orcidid: 0000-0001-7249-5207
  surname: Castro
  fullname: Castro, Luis M.
  organization: Pontificia Universidad Católica de Chile
– sequence: 4
  givenname: Ming‐Hui
  orcidid: 0000-0003-1935-2447
  surname: Chen
  fullname: Chen, Ming‐Hui
  organization: University of Connecticut
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30421470$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vFSEUhompaW9rE3-BmcSNm7keYBhmNiamabVJ1YW6Jlw4U2kYuMJMP_69jLetH9EVhPPw5sl5D8leiAEJeU5hTQHY6-zGdQdUPiErCr2sgYluj6yASVm3kooDcpjzFQClgsl9csChYbSRsCIfzzzeuo3Hysdw6abZuqB95V1AnarR3aKtxmjR52qI5WH2k9sW2mDIMZVhwryNIWOurJ70M_J00D7j8f15RL6enX45eV9ffHp3fvL2ojYCGlmjaWy_sRw1HcodZMdpI0BIzbSwhrIeUOpmYD031nJAI_qmG4bWcLEZoONH5M0udztvRrTFZkraq21yo053Kmqn_pwE901dxmvVcik5yBLw6j4gxe8z5kmNLhv0XgeMc1aMciZ5y9sFffkXehXnVLa0UB2wrqcNLdSL340eVR5WXYD1DjAp5pxwUMZNenJxEXReUVBLl6p0qZYufyk-fnjI_Ada79Ab5_Huv5z6fP7hJ_8D_n2uSQ
CitedBy_id crossref_primary_10_1002_bimj_202100233
crossref_primary_10_1002_sim_10295
crossref_primary_10_1016_j_spl_2020_108729
crossref_primary_10_1177_09622802211046387
crossref_primary_10_1002_sim_8554
crossref_primary_10_1002_sim_8870
crossref_primary_10_1007_s11222_022_10200_4
crossref_primary_10_1007_s00357_022_09415_x
crossref_primary_10_1007_s00184_023_00929_x
crossref_primary_10_1016_j_ajp_2024_104007
crossref_primary_10_1007_s42081_025_00299_w
crossref_primary_10_1002_sim_9671
crossref_primary_10_51387_24_NEJSDS68
Cites_doi 10.1080/01621459.1990.10474930
10.1111/j.2517-6161.1974.tb00989.x
10.1080/01621459.1997.10474030
10.1016/j.csda.2006.05.007
10.1111/j.2517-6161.1977.tb01600.x
10.1198/jcgs.2009.07130
10.1002/sim.5799
10.1214/aos/1018031103
10.1016/j.csda.2004.07.002
10.4310/SII.2017.v10.n3.a10
10.1002/sim.6269
10.1002/bimj.201200001
10.1177/0962280215620229
10.1016/j.jspi.2011.06.006
10.1007/s11222-010-9212-1
10.1111/j.2517-6161.1982.tb01203.x
10.1002/bimj.201000173
10.1093/infdis/175.2.247
10.1177/0962280214551191
10.1201/b17203
10.1198/106186006X157469
10.2307/2532340
10.1051/ps:2004007
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1102
ExternalDocumentID PMC6377307
30421470
10_1002_sim_8017
SIM8017
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Iniciativa Científica Milenio ‐ Minecon Núcleo Milenio MiDaS
– fundername: National Institutes of Health
  funderid: GM 70335; P01 CA142538
– fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  funderid: 1170258
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2016/05420-6; 2018/05013-7
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM070335
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
LW6
ID FETCH-LOGICAL-c5047-ec4d9bd3ea1fec40783145057a2a5dc1290e7a4f293cdd30ec5948ff6c35bf083
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 14:36:09 EDT 2025
Fri Jul 11 03:35:19 EDT 2025
Mon Jul 21 01:54:27 EDT 2025
Thu Apr 03 06:58:52 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Tue Jul 01 03:28:14 EDT 2025
Wed Jan 22 16:25:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SAEM algorithm
censored data
outliers
multiple longitudinal responses
HIV viral load
Language English
License 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5047-ec4d9bd3ea1fec40783145057a2a5dc1290e7a4f293cdd30ec5948ff6c35bf083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7249-5207
0000-0002-7239-2459
0000-0003-1935-2447
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6377307
PMID 30421470
PQID 2180289141
PQPubID 48361
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377307
proquest_miscellaneous_2132736367
proquest_journals_2180289141
pubmed_primary_30421470
crossref_citationtrail_10_1002_sim_8017
crossref_primary_10_1002_sim_8017
wiley_primary_10_1002_sim_8017_SIM8017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2019
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 15 March 2019
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 142
2006; 51
2017; 26
2010
2013; 23
1997; 175
2004; 8
1999; 27
2006; 15
1974
2005; 49
2018; 27
2012; 54
2004; 112
1990; 85
1997; 92
2001
2013; 55
2013; 32
1977; 39
2017; 10
2016
2017; 18
1982
1992; 48
2014
2012; 22
2014; 33
2009; 18
e_1_2_9_30_1
Andrews D (e_1_2_9_13_1) 1974
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
Mortimer P (e_1_2_9_3_1) 2001
e_1_2_9_12_1
Matos L (e_1_2_9_8_1) 2013; 23
Wu L (e_1_2_9_5_1) 2010
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Alder M (e_1_2_9_2_1) 2001
e_1_2_9_19_1
e_1_2_9_18_1
Dempster A (e_1_2_9_20_1) 1977; 39
Lin T (e_1_2_9_16_1) 2017; 18
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_7_1
Barletta J (e_1_2_9_4_1) 2004; 112
Matos L (e_1_2_9_6_1) 2016
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
Louis T (e_1_2_9_29_1) 1982
e_1_2_9_27_1
References_xml – volume: 92
  start-page: 775
  issue: 438
  year: 1997
  end-page: 779
  article-title: A random‐effects model for multiple characteristics with possibly missing data
  publication-title: J Am Stat Assoc
– volume: 8
  start-page: 115
  year: 2004
  end-page: 131
  article-title: Coupling a stochastic approximation version of EM with an MCMC procedure
  publication-title: ESAIM Probab Stat
– volume: 10
  start-page: 471
  issue: 3
  year: 2017
  end-page: 482
  article-title: Quantile regression in linear mixed models: a stochastic approximation EM approach
  publication-title: Stat Interface
– start-page: 226
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  end-page: 704
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: J Am Stat Assoc
– start-page: 1
  year: 2016
  end-page: 27
  article-title: Censored mixed‐effects models for irregularly observed repeated measures with applications to HIV viral loads
  publication-title: TEST
– year: 2001
– volume: 27
  start-page: 48
  issue: 1
  year: 2018
  end-page: 64
  article-title: Extending multivariate‐ linear mixed models for multiple longitudinal data with censored responses and heavy tails
  publication-title: Stat Methods Med Res
– volume: 54
  start-page: 405
  issue: 3
  year: 2012
  end-page: 425
  article-title: Skew‐normal/independent linear mixed models for censored responses with applications to HIV viral loads
  publication-title: Biometrical Journal
– volume: 112
  issue: 20‐27
  year: 2004
  article-title: Lowering the detection limits of HIV‐1 viral load using real‐time immuno‐PCR for HIV‐1 p24 antigen
  publication-title: Am J Clin Pathol
– volume: 175
  start-page: 247
  issue: 2
  year: 1997
  end-page: 254
  article-title: Longitudinal analysis of quantitative virologic measures in human immunodeficiency virus‐infected subjects with ⩾ 400 CD4 lymphocytes: implications for applying measurements to individual patients
  publication-title: J Infect Dis
– volume: 26
  start-page: 542
  year: 2017
  end-page: 566
  article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate‐ distribution
  publication-title: Stat Methods Med Res
– year: 2014
– year: 2010
– volume: 32
  start-page: 3881
  issue: 22
  year: 2013
  end-page: 3898
  article-title: Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors
  publication-title: Stat Med
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
– volume: 33
  start-page: 4715
  issue: 27
  year: 2014
  end-page: 4733
  article-title: Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials
  publication-title: Statist Med
– volume: 55
  start-page: 554
  issue: 4
  year: 2013
  end-page: 571
  article-title: Multivariate linear mixed models for irregularly observed multiple repeated measures with missing outcomes
  publication-title: Biometrical Journal
– volume: 15
  start-page: 803
  issue: 4
  year: 2006
  end-page: 829
  article-title: Implementing and diagnosing the stochastic approximation EM algorithm
  publication-title: J Comput Graph Stat
– volume: 48
  start-page: 733
  year: 1992
  end-page: 742
  article-title: A parametric family of correlation structures for the analysis of longitudinal data
  publication-title: Biometrics
– start-page: 99
  year: 1974
  end-page: 102
  article-title: Scale mixtures of normal distributions
  publication-title: J R Stat Soc Ser B Methodol
– volume: 49
  start-page: 1020
  issue: 4
  year: 2005
  end-page: 1038
  article-title: Maximum likelihood estimation in nonlinear mixed effects models
  publication-title: Comput Stat Data Anal
– volume: 18
  start-page: 666
  issue: 4
  year: 2017
  end-page: 681
  article-title: Multivariate‐ nonlinear mixed models with application to censored multi‐outcome AIDS studies
  publication-title: Biostatistics
– volume: 51
  start-page: 1562
  issue: 3
  year: 2006
  end-page: 1574
  article-title: Extension of the SAEM algorithm to left‐censored data in nonlinear mixed‐effects model: application to HIV dynamics model
  publication-title: Comput Stat Data Anal
– volume: 142
  start-page: 25
  year: 2012
  end-page: 40
  article-title: Some results on the truncated multivariate distribution
  publication-title: J Stat Plan Infer
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  end-page: 128
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann Stat
– volume: 23
  start-page: 1323
  year: 2013
  end-page: 1345
  article-title: Likelihood based inference for linear and nonlinear mixed‐effects models with censored response using the multivariate‐t distribution
  publication-title: Statistica Sinica
– volume: 18
  start-page: 797
  issue: 4
  year: 2009
  end-page: 817
  article-title: Fast implementation for normal mixed effects models with censored response
  publication-title: J Comput Graph Stat
– volume: 22
  start-page: 121
  issue: 1
  year: 2012
  end-page: 139
  article-title: Estimation in nonlinear mixed‐effects models using heavy‐tailed distributions
  publication-title: Stat Comput
– ident: e_1_2_9_21_1
  doi: 10.1080/01621459.1990.10474930
– start-page: 1
  year: 2016
  ident: e_1_2_9_6_1
  article-title: Censored mixed‐effects models for irregularly observed repeated measures with applications to HIV viral loads
  publication-title: TEST
– start-page: 99
  year: 1974
  ident: e_1_2_9_13_1
  article-title: Scale mixtures of normal distributions
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– ident: e_1_2_9_9_1
  doi: 10.1080/01621459.1997.10474030
– volume: 23
  start-page: 1323
  year: 2013
  ident: e_1_2_9_8_1
  article-title: Likelihood based inference for linear and nonlinear mixed‐effects models with censored response using the multivariate‐t distribution
  publication-title: Statistica Sinica
– ident: e_1_2_9_27_1
  doi: 10.1016/j.csda.2006.05.007
– volume-title: Mixed Effects Models for Complex Data
  year: 2010
  ident: e_1_2_9_5_1
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_9_20_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_7_1
  doi: 10.1198/jcgs.2009.07130
– volume: 18
  start-page: 666
  issue: 4
  year: 2017
  ident: e_1_2_9_16_1
  article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies
  publication-title: Biostatistics
– volume-title: ABC of AIDS
  year: 2001
  ident: e_1_2_9_2_1
– ident: e_1_2_9_15_1
  doi: 10.1002/sim.5799
– ident: e_1_2_9_18_1
  doi: 10.1214/aos/1018031103
– ident: e_1_2_9_26_1
  doi: 10.1016/j.csda.2004.07.002
– ident: e_1_2_9_24_1
  doi: 10.4310/SII.2017.v10.n3.a10
– ident: e_1_2_9_28_1
  doi: 10.1002/sim.6269
– volume-title: ABC of AIDS
  year: 2001
  ident: e_1_2_9_3_1
– ident: e_1_2_9_10_1
  doi: 10.1002/bimj.201200001
– ident: e_1_2_9_11_1
  doi: 10.1177/0962280215620229
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jspi.2011.06.006
– ident: e_1_2_9_22_1
  doi: 10.1007/s11222-010-9212-1
– start-page: 226
  year: 1982
  ident: e_1_2_9_29_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_9_31_1
  doi: 10.1002/bimj.201000173
– ident: e_1_2_9_17_1
  doi: 10.1093/infdis/175.2.247
– ident: e_1_2_9_14_1
  doi: 10.1177/0962280214551191
– ident: e_1_2_9_30_1
  doi: 10.1201/b17203
– volume: 112
  issue: 20
  year: 2004
  ident: e_1_2_9_4_1
  article-title: Lowering the detection limits of HIV‐1 viral load using real‐time immuno‐PCR for HIV‐1 p24 antigen
  publication-title: Am J Clin Pathol
– ident: e_1_2_9_19_1
  doi: 10.1198/106186006X157469
– ident: e_1_2_9_25_1
  doi: 10.2307/2532340
– ident: e_1_2_9_23_1
  doi: 10.1051/ps:2004007
SSID ssj0011527
Score 2.3470945
Snippet In biomedical studies and clinical trials, repeated measures are often subject to some upper and/or lower limits of detection. Hence, the responses are either...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1074
SubjectTerms Algorithms
censored data
Economic models
HIV Infections - virology
HIV viral load
Humans
Likelihood Functions
Limit of Detection
Linear Models
Longitudinal Studies
multiple longitudinal responses
Multivariate Analysis
outliers
Polymerase Chain Reaction
SAEM algorithm
Time Factors
Viral Load - statistics & numerical data
Title Flexible longitudinal linear mixed models for multiple censored responses data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8017
https://www.ncbi.nlm.nih.gov/pubmed/30421470
https://www.proquest.com/docview/2180289141
https://www.proquest.com/docview/2132736367
https://pubmed.ncbi.nlm.nih.gov/PMC6377307
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9GHkqgdG3Wj_RjaFDap3zIlmznsZSGbpA8tCsE-mBkWaKhqTPiBMr--t1ZttcsHYw9OaCLLNt30k93p98BnEfWo3BYhJYmdUeYyHQSa1CXET7jFheXREOugdE4uH0Q3yZyUmZV0lkYxw9RO9zIMor5mgxcJXnvN2loPn3p4vRKB8kpVYvw0F3NHMWraq0UoQxCLive2b7Xq_64vhJtwMvNLMm36LVYfoYf4bEauMs6ee6ulklX__yD0_H_nmwXdkpUyq6cGu3BB5O1YGtUxt1bsO28e8wdWmpBkzCqo3j-BOMhkWomM8Nmc6p-tEqp0hajcagFe5m-mpQVBXdyhgiZVSmMDJ84ny-wceHydE3OKF91Hx6GN9-vbztlmYaOlsTzYLRIB0nqG8Ut_qa4IBe071GekqkmR5cJlbAILHSa-n2jiSLG2kD7MrEIAQ-gkc0zcwRMSxHKRHu2KGdvuIqEVbTF7KsI92WqDZfVJ4t1yWFOpTRmsWNf9mJ8dzG9uzZ8qSV_ON6Od2ROq68el5abxx5R4kUDLjh2UTejzVEgRWVmviIZH1Ff4AfYxaFTkvom5B7iIuy3IVxTn1qA-LzXW7LpU8HrHfghzrfY50WhHX8dd3z_dUTX438VPIEm4rwBpc5xeQqN5WJlzhBLLZPPhdX8ApX1HEI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIUElxEc3RtkGRkLbUz-c2EmqPSFE1UHbB-ikPSBFjmOLam2KmlZC--t3FyeBsiFNPLWSr66T3Nm_-8jvAN5H1qN0WISWJnVbmMi0E2tQlxE-o4uLR6Kh0MB4EgwvxOdLebkDZ9W7MI4fog64kWUU-zUZOAWku79ZQ_PZooP7a_gAHlJD78Kf-lpzR_GqXyvlKIOQy4p5tud1q19un0W3AObtOsk_8WtxAA2ewfdq6a7u5KqzWScdff0Xq-N_XttzeFoCU_bBadIL2DFZEx6Ny9R7E564AB9z7y01oUEw1bE878FkQLyaydyw-ZIaIG1SarbFaCFqxRazXyZlRc-dnCFIZlUVI8NLzpcrHFy5Ul2TMypZ3YeLwafpx2G77NTQ1pKoHowWaT9JfaO4xe-UGuSCXB_lKZlqinWZUAmL2EKnqd8zmlhirA20LxOLKPAl7GbLzLwCpqUIZaI9W3S0N1xFwiryMnsqQtdMteC0emaxLmnMqZvGPHYEzF6M9y6me9eCd7XkT0fdcYfMUfXY49J489gjVryozwXHKephNDvKpajMLDck4yPwC_wApzhwWlL_CUWIuAh7LQi39KcWIErv7ZFs9qOg9g78ELdcnPOkUI9_rjv-dj6mz9f3FXwLj4fT8SgenU--HEIDYV-fKum4PILd9WpjjhFarZM3hQndADeGIF0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tTEJI0xhlsA4GnjTBU0uc2En6OA0qfrWaNpCQeIgcxxbVSoqaVpr21-8uTgIdQ5p4SiRfHCe5sz_fXb4D-Bxbn8JhMVqa1B1hYtNJrUFdRviMW1xcEg25BgbD8PhSnF7Jqyqrkv6FcfwQjcONLKOcr8nA7zJ7cE8aWoxuuzi9Ri_hlQi9mDT68HtDHcXrcq0UogwjLmviWc8_qK9cXIoe4cvHaZIP4Wu5_vRX4boeuUs7-dmdz9Ku_v0XqePzHu0tvKlgKfvi9GgNXpi8BcuDKvDegtfOvcfcX0stWCGQ6jie12HYJ1bNdGzYeELlj-YZldpiNA41ZbejXyZjZcWdgiFEZnUOI8MnLiZTbJy6RF1TMEpYfQeX_aOLr8edqk5DR0siejBaZL00C4ziFs8pMMgFbXyUr2SmydNlIiUsIgudZYFnNHHEWBvqQKYWMeAGLOWT3LwHpqWIZKp9W9azN1zFwiraY3oqxo2ZasN-_ckSXZGYUy2NceLol_0E311C764NnxrJO0fc8Q-Z7fqrJ5XpFolPnHhxjwuOXTTNaHQUSVG5mcxJJkDYFwYhdrHplKS5CfmHuIi8NkQL6tMIEKH3Yks-uimJvcMgwgkX-9wrtePJcSc_TgZ0_PC_gruw_O2wn5yfDM-2YAUxX4_S6LjchqXZdG4-Iq6apTulAf0B5ksfFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+longitudinal+linear+mixed+models+for+multiple+censored+responses+data&rft.jtitle=Statistics+in+medicine&rft.au=Lachos%2C+Victor+H.&rft.au=A.+Matos%2C+Larissa&rft.au=Castro%2C+Luis+M.&rft.au=Chen%2C+Ming%E2%80%90Hui&rft.date=2019-03-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=38&rft.issue=6&rft.spage=1074&rft.epage=1102&rft_id=info:doi/10.1002%2Fsim.8017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_8017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon