Controlled Mesoporosity in SiOC via Chemically Bonded Polymeric "Spacers"

Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 96; no. 9; pp. 2785 - 2792
Main Authors Blum, Yigal, Sorarù, Gian Domenico, Ramaswamy, Aravind Parakkulam, Hui, David, Carturan, Sara Maria
Format Journal Article
LanguageEnglish
Published Columbus Blackwell Publishing Ltd 01.09.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl‐terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size‐controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl‐terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and “solidify.” Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis.
AbstractList Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and "solidify." Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis. [PUBLICATION ABSTRACT]
Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane ( PHMS ) and vinyl‐terminated polydimethylsiloxane ( PDMS ) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size‐controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl‐terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and “solidify.” Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N 2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOC s depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis.
Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and "solidify." Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis.
Micro-mesoporous ceramics are used in a wide range of applications, including catalyst supports, chemical reactors, electrodes for supercapacitors, gas storage and drug delivery. Silicon oxycarbides with controlled porosity in the mesopore range were obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels were synthesised via Pt catalysed hydrosilylation between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. The PDMS served the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS was chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and solidification. Accordingly, its removal during pyrolysis occurred through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers were investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results showed that the pore size distribution of the resulting SiOCs depended on the molecular weight of the PDMS and was directly related to the molecular volume, assuming that the PDMS chains were entangled into spheroidal shapes. The total pore volume was related to the initial amount of templating PDMS, assuming its complete decomposition during pyrolysis.
Author Ramaswamy, Aravind Parakkulam
Sorarù, Gian Domenico
Blum, Yigal
Carturan, Sara Maria
Hui, David
Author_xml – sequence: 1
  givenname: Yigal
  surname: Blum
  fullname: Blum, Yigal
  email: yigal.blum@sri.com
  organization: SRI International, California, Menlo Park
– sequence: 2
  givenname: Gian Domenico
  surname: Sorarù
  fullname: Sorarù, Gian Domenico
  organization: Dipartimento di Ingegneria Industriale, Università di Trento, Via Mesiano 77, 38123, Trento, Italy
– sequence: 3
  givenname: Aravind Parakkulam
  surname: Ramaswamy
  fullname: Ramaswamy, Aravind Parakkulam
  organization: Dipartimento di Ingegneria Industriale, Università di Trento, Via Mesiano 77, 38123, Trento, Italy
– sequence: 4
  givenname: David
  surname: Hui
  fullname: Hui, David
  organization: SRI International, California, Menlo Park
– sequence: 5
  givenname: Sara Maria
  surname: Carturan
  fullname: Carturan, Sara Maria
  organization: Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35121, Padova, Italy
BookMark eNqN0U9LHDEYBvBQLHTVXvoJBnuRwmje_J0cdVCrWC1oEXoJ2UwGs2Yn22TXdr59s67twYNtLiHwexLyPttoa4iDQ-gD4AMo63BmrDsAwhr-Bk2Ac6iJArGFJhhjUsuG4HdoO-dZOYJq2ASdt3FYphiC66ovLsdFTDH75Vj5obrx12316E3V3ru5tyaEsTqOQ1fo1xjGuUveVns3i_Jmynu76G1vQnbvn_cd9O305Lb9XF9en523R5e15ZjxWqpeSSMFo33fSauktRwaISnBhLlp11kxldwJiacNYCGcANUT1U2NEoZJQXfQ_ubeRYo_Vi4v9dxn60Iwg4urrEEoQhXnlP8HlcDKrBT-N2WKUaYavKYfX9BZXKWh_LkoyoBTILSoTxtly0Bzcr1eJD83adSA9borve5KP3VVMGzwTx_c-IrUF0ftyZ9Mvcn4vHS__mZMetBlmpLru6szja8w_X4Ld_qC_gZf06PZ
CODEN JACTAW
CitedBy_id crossref_primary_10_1002_adem_202300290
crossref_primary_10_1111_jace_13634
crossref_primary_10_1016_j_micromeso_2018_02_034
crossref_primary_10_1016_j_mser_2016_05_001
crossref_primary_10_1016_j_jeurceramsoc_2015_08_030
crossref_primary_10_1016_j_ceramint_2021_04_198
crossref_primary_10_1021_acsapm_0c00734
crossref_primary_10_1002_adem_201901036
crossref_primary_10_1016_j_micromeso_2019_109614
crossref_primary_10_1016_j_electacta_2015_01_088
crossref_primary_10_1039_C5TA06669G
crossref_primary_10_3390_nano12183117
crossref_primary_10_1038_srep41049
crossref_primary_10_1080_2374068X_2020_1728991
crossref_primary_10_1111_jace_17392
crossref_primary_10_1016_j_matdes_2017_11_047
crossref_primary_10_1016_j_ceramint_2019_01_116
crossref_primary_10_1016_j_jeurceramsoc_2014_09_028
crossref_primary_10_1016_j_jeurceramsoc_2019_03_032
crossref_primary_10_1039_D1QM00705J
crossref_primary_10_1080_17436753_2023_2192077
crossref_primary_10_1016_j_addma_2020_101366
crossref_primary_10_1002_ente_202300488
crossref_primary_10_1016_j_matchemphys_2018_01_078
crossref_primary_10_3390_membranes14030063
crossref_primary_10_1177_15280837231214723
crossref_primary_10_1016_j_ceramint_2021_06_118
crossref_primary_10_1111_jace_13541
crossref_primary_10_1016_j_ceramint_2019_11_003
crossref_primary_10_1016_j_jeurceramsoc_2017_06_036
crossref_primary_10_1016_j_matchemphys_2019_121844
crossref_primary_10_1007_s10904_020_01457_1
crossref_primary_10_1111_jace_18130
crossref_primary_10_1111_jace_16131
crossref_primary_10_1002_macp_201900380
crossref_primary_10_1016_j_jeurceramsoc_2015_10_038
crossref_primary_10_1039_C5TA05656J
crossref_primary_10_2109_jcersj2_16072
crossref_primary_10_1016_j_jeurceramsoc_2019_10_056
crossref_primary_10_1039_D0CP05520D
crossref_primary_10_1016_j_ceramint_2016_07_213
crossref_primary_10_1016_j_mser_2015_09_001
crossref_primary_10_1016_j_jallcom_2017_01_317
crossref_primary_10_1016_j_jeurceramsoc_2020_09_013
Cites_doi 10.1351/pac198557040603
10.1002/adem.200700330
10.1016/j.jeurceramsoc.2004.08.008
10.1111/j.1151-2916.1996.tb09035.x
10.1088/1468-6996/11/4/044303
10.1016/j.micromeso.2007.04.037
10.1038/nnano.2006.168
10.1007/BF00488115
10.1016/j.micromeso.2010.12.033
10.1021/cm200323e
10.4028/www.scientific.net/KEM.206-213.1927
10.1039/c2jm16840e
10.1016/S0032-3861(00)00652-2
10.1016/j.jeurceramsoc.2011.10.004
10.1039/b201424f
10.1111/j.1151-2916.2001.tb00997.x
10.2109/jcersj2.116.449
10.1111/j.1551-2916.2011.04810.x
10.1039/c2jm00020b
10.1021/cm903031d
10.1126/science.1162962
10.1016/S0021-9517(03)00034-4
10.1111/j.1151-2916.2001.tb00982.x
10.1016/S1387-1811(03)00339-1
10.1111/j.1551-2916.2010.03876.x
10.1111/j.1551-2916.2006.01117.x
10.1023/A:1020738829707
10.1016/j.jeurceramsoc.2004.07.019
ContentType Journal Article
Copyright 2013 The American Ceramic Society
Copyright Wiley Subscription Services, Inc. Sep 2013
Copyright_xml – notice: 2013 The American Ceramic Society
– notice: Copyright Wiley Subscription Services, Inc. Sep 2013
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.12485
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
Editor Riedel, R.
Editor_xml – sequence: 1
  givenname: R.
  surname: Riedel
  fullname: Riedel, R.
– sequence: 6
  givenname: R.
  surname: Riedel
  fullname: Riedel, R.
EndPage 2792
ExternalDocumentID 3077400671
10_1111_jace_12485
JACE12485
ark_67375_WNG_0N03ZT1W_J
Genre article
GrantInformation_xml – fundername: Provincia Autonoma di Trento
– fundername: University of Trento
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
02
08R
0R
1AW
31
3N
4S
6XO
8RP
ABDEX
ABFLS
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
G8K
GA
HZ
IA
IPNFZ
NF
P4A
PK8
PQEST
RIG
WT
Y3
AAYXX
CITATION
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c5045-79f97a7643ffd7c97cc5186732024ebddc6b75e670b81066e619f29dba96a4763
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Oct 25 23:24:24 EDT 2024
Fri Oct 25 04:23:17 EDT 2024
Fri Oct 25 06:43:35 EDT 2024
Thu Oct 10 15:26:35 EDT 2024
Fri Aug 23 02:33:09 EDT 2024
Fri Jun 04 19:44:37 EDT 2021
Wed Oct 30 09:52:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5045-79f97a7643ffd7c97cc5186732024ebddc6b75e670b81066e619f29dba96a4763
Notes ark:/67375/WNG-0N03ZT1W-J
ArticleID:JACE12485
University of Trento
istex:1DCA77865D6473FC32D59CFA2E29D64C87ADA369
Provincia Autonoma di Trento
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1434153123
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1692395535
proquest_miscellaneous_1671448590
proquest_miscellaneous_1494349800
proquest_journals_1434153123
crossref_primary_10_1111_jace_12485
wiley_primary_10_1111_jace_12485_JACE12485
istex_primary_ark_67375_WNG_0N03ZT1W_J
ProviderPackageCode 10A
RJQFR
A03
ADOZA
BFHJK
BROTX
AMBMR
DCZOG
K48
~IA
ACAHQ
LEEKS
AFGKR
50Y
50Z
AEUQT
XG1
AAEVG
MRSTM
.3N
MEWTI
H.T
Q11
LP7
H.X
LP6
51W
51X
ACXME
WBKPD
QB0
AJXKR
ADMGS
UB1
AEIMD
ATUGU
WOHZO
G-S
O66
AZBYB
52M
52N
52O
52P
ADEOM
LATKE
ZZTAW
52S
930
BAFTC
52T
MK4
SUPJJ
52U
52W
DRSTM
52X
AFPWT
ALAGY
DR2
G.N
ACPOU
AFZJQ
5LA
ADAWD
702
7PT
WFSAM
66C
ADIZJ
.GA
AAONW
LYRES
GODZA
LUTES
ALUQN
AAZKR
MSFUL
LC2
AIURR
LC3
AZVAB
PALCI
ABHUG
RX1
ACXQS
BMXJE
R.K
FOJGT
WQJ
MXFUL
P2W
W8V
W99
WYISQ
P2X
WIH
WIK
BDRZF
BY8
MSSTM
DPXWK
1OB
AUFTA
1OC
3SF
F01
F00
NF~
BRXPI
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
BNHUX
~WT
8-0
8-1
P4A
FZ0
8-3
AGJLS
8-4
8-5
P4D
IX1
BHBCM
BMNLL
LITHE
SAMSI
J0M
MXSTM
DRFUL
33P
Q.N
05W
5HH
AAESR
LOXES
MRFUL
D-F
D-E
PublicationCentury 2000
PublicationDate September 2013
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September 2013
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationTitleAlternate J. Am. Ceram. Soc
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References P. R. Aravind and G. D. Soraru, "Porous Silicon Oxycarbide Glasses from Hybrid Ambigels," Microp. Mesop. Mater., 142, 511-7 (2011).
P. Van Der Voort, P. I. Ravikovitch, K. P. De Jong, A. V. Neimark, A. H. Janssen, M. Benjelloun, E. Van Bavel, P. Cool, B. M. Weckhuysen, and E. F. Vansant, "Plugged Hexagonal Templated Silica: A Unique Micro- and Mesoporous Composite Material with Internal Silica Nanocapsules," Chem. Comm., 9, 1010-1 (2002).
M. Wilhelm, C. Soltmann, D. Koch, and G. Grathwohl, "Ceramers-Functional Materials for Adsorption Techniques," J. Eur. Ceram. Soc., 25, 271-6 (2005).
N. Leventis, C. Sotiriou-Leventis, D. P. Mohite, Z. J. Larimore, J. T. Mang, G. Churu, and H. Lu, "Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP)," Chem. Mater., 23, 2250-61 (2011).
P. Colombo, "In Praise of Pores," Science, 322, 381-3 (2008).
J. Wan, M. J. Gasch, and A. K. Mukherjee, "In Situ Densification Behavior in the Pyrolysis Consolidation of Amorphous Si-N-C Bulk Ceramics from Polymer Precursors," J. Am. Ceram. Soc., 84 [10] 2165-9 (2001).
T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, and S. Yoshikawa, "On the Formation of Nanocrystalline Bimodal Mesoporous In2O3 Prepared by Surfactant-Assisted Templating Sol-Gel Process," Microp. Mesop. Mater, 109, 84-90 (2008).
A. Pauletti, S. Handjani, C. Fernandez-Martin, C. Gervais, and F. Babonneau, "A New Example of Periodic Mesoporous SiCO Glasses with Cubic Symmetry Stable at 1000°C," J. Ceram. Soc. Japan, 116 [3] 449-53 (2008).
C. Liu, H. Z. Chen, S. Komarneni, and C. G. Pantano, "High Surface Area SiC/Silicon Oxycarbide Glasses Prepared from Phenyltrimethoxysilane-Tetramethoxysilane Gels," J. Porous Mater., 2, 245-52 (1996).
H. Schmidt, D. Koch, G. Grathwohl, and P. Colombo, "Micro-/Macroporous Ceramics from Preceramic Precursors," J. Am. Ceramic Soc., 84 [10] 2252-5 (2001).
R. Pena-Alonso, J. Rubio, F. Rubio, and J. L. Oteo, "FT-IR and Porosity Study of Si-B-C-O Materials Obtainedfrom TEOS-TEB-PDMS Derived Gel Precursors," J. Sol-Gel. Sci. Technol., 26, 195-9 (2003).
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-19 (1985).
J. C. Groen, L. A. A. Peffer, and J. Perez-Ramirez, "Pore Size Determination in Modified Micro- and Mesoporous Materials," Microp. Mesop. Mater., 60, 1-17 (2003).
G. D. Sorarù, A. Karakuscu, C. Boissiere, and F. Babonneau, "On the Shrinkage During Pyrolysis of Thin Films and Bulk Components: The Case of a Hybrid Silica Gel Precursor for SiOC Glasses," J. Europ. Ceram. Soc., 32, 627-32 (2012).
A. K. Singh and C. G. Pantano, "Porous Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 79 [10] 2696-704 (1996).
M. Weinberger, S. Puchegger, T. Froeschl, F. Babonneau, H. Peterlik, and N. Husing, "Sol-Gel Processing of a Glycolated Cyclic Organosilane and its Pyrolysis to Silicon Oxycarbide Monoliths with Multiscale Porosity and Large Surface Areas," Chem. Mater., 22, 1509-20 (2010).
G. Gregori, H. J. Kleebe, Y. D. Blum, and F. Babonneau, "Evolution of C-Rich SiOC Ceramics - Part II. Characterization by High Lateral Resolution Techniques: Electron Energy-Loss Spectroscopy, High-Resolution TEM and Energy-Filtered TEM," Int. J. Mat. Res., 97, 710-20 (2006).
J. Wu, Y. Li, L. Chen, Z. Zhang, D. Wanga, and C. Xu, "Simple Fabrication of Micro/Nano-Porous SiOC Foam from Polysiloxane," J. Mater. Chem., 22, 6542-5 (2012).
F. Berndt, P. Jahn, A. Rendtel, G. Motz, and G. Ziegler, "Mechanical Properties of Monolithic SiOC-Ceramics with Tailored Porosity," Key Eng. Mater., 206-213, 1927-30 (2002).
P. R. L. Malenfant, J. Wan, S. T. Taylor, and M. Manoharan, "Self-Assembly of an Organic-Inorganic Block Copolymer for Nano-Orderedceramics," Nat. Nanotech., 2, 43-6 (2007).
A. Tamayo, R. Pena-Alonso, J. Rubio, R. Raj, G. D. Sorarù, and J. L. Oteo, "Surface Energy of Sol Gel-Derived Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 94 [12] 4523-33 (2011).
C. Vakifahmetoglu and P. Colombo, "A Direct Method for the Fabrication of Macro-Porous SiOC Ceramics from Preceramic Polymers," Adv. Eng. Mater., 10, 256-9 (2008).
J. G. Yu, J. C. Yu, M. K. P. Leung, W. K. Ho, B. Cheng, X. J. Zhao, and J. C. Zhao, "Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania," J. Catalysis, 217, 69-78 (2003).
Y. D. Blum, D. B. MacQueen, and H.-J. Kleebe, "Synthesis and Characterization of Carbon Enriched Silicon Oxycarbides," J. Eur. Ceram. Soc., 25, 143-9 (2005).
H. J. Kleebe, G. Gregori, F. Babonneau, Y. D. Blum, D. B. MacQueen, and S. Masse, "Evolution of C-Rich SiOC Ceramics - Part I. Characterization by Integral Spectroscopic Techniques: Solid-State NMR and Raman Spectroscopy," Int J. Mat. Res., 97, 699-709 (2006).
R. Peña-Alonso, R. Raj, and G. D. Sorarù, "Preparation of Ultrathin Walled Carbon Based Structures by Etching Pseudo-Amorphous Silicon-Oxycarbide Ceramics," J. Am. Ceram. Soc., 89 [8] 2473-80 (2006).
P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," J. Am. Ceram. Soc., 93 [7] 1805-35 (2010).
G. D. Sorarù, F. Dalcanale, R. Campostrini, A. Gaston, Y. D. Blum, S. Carturan, and P. R. Aravind, "Novel Polysiloxane and Polycarbosilane Aerogels via Hydrosilylation of Preceramic Polymers," J. Mater. Chem., 22, 7676-80 (2012).
G. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects," Polymer, 42, 2395-402 (2001).
B. V. Manoj Kumar and Y.-W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11, 044303, 16pp (2010).
2010; 11
2006; 97
2003; 217
2012
2002; 206–213
2008; 109
2008; 10
1992
2008; 322
2002
1996; 79
2001; 84
2012; 32
2001; 42
2005; 25
2010; 22
2006; 89
2011; 94
2003; 26
2008; 116
2011; 23
2007; 2
2003; 60
1996; 2
2012; 22
1985; 57
2010; 93
2011; 142
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Yu J. G. (e_1_2_8_31_1) 2003; 217
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Gregori G. (e_1_2_8_23_1) 2006; 97
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Kleebe H. J. (e_1_2_8_22_1) 2006; 97
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 93
  start-page: 1805
  issue: 7
  year: 2010
  end-page: 35
  article-title: Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 22
  start-page: 6542
  year: 2012
  end-page: 5
  article-title: Simple Fabrication of Micro/Nano‐Porous SiOC Foam from Polysiloxane
  publication-title: J. Mater. Chem.
– volume: 217
  start-page: 69
  year: 2003
  end-page: 78
  article-title: Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania
  publication-title: J. Catalysis
– volume: 84
  start-page: 2252
  issue: 10
  year: 2001
  end-page: 5
  article-title: Micro‐/Macroporous Ceramics from Preceramic Precursors
  publication-title: J. Am. Ceramic Soc.
– volume: 25
  start-page: 271
  year: 2005
  end-page: 6
  article-title: Ceramers—Functional Materials for Adsorption Techniques
  publication-title: J. Eur. Ceram. Soc.
– volume: 22
  start-page: 1509
  year: 2010
  end-page: 20
  article-title: Sol‐Gel Processing of a Glycolated Cyclic Organosilane and its Pyrolysis to Silicon Oxycarbide Monoliths with Multiscale Porosity and Large Surface Areas
  publication-title: Chem. Mater.
– volume: 94
  start-page: 4523
  issue: 12
  year: 2011
  end-page: 33
  article-title: Surface Energy of Sol Gel‐Derived Silicon Oxycarbide Glasses
  publication-title: J. Am. Ceram. Soc.
– volume: 2
  start-page: 43
  year: 2007
  end-page: 6
  article-title: Self‐Assembly of an Organic–Inorganic Block Copolymer for Nano‐Orderedceramics
  publication-title: Nat. Nanotech.
– volume: 116
  start-page: 449
  issue: 3
  year: 2008
  end-page: 53
  article-title: A New Example of Periodic Mesoporous SiCO Glasses with Cubic Symmetry Stable at 1000°C
  publication-title: J. Ceram. Soc. Japan
– volume: 10
  start-page: 256
  year: 2008
  end-page: 9
  article-title: A Direct Method for the Fabrication of Macro‐Porous SiOC Ceramics from Preceramic Polymers
  publication-title: Adv. Eng. Mater.
– volume: 11
  start-page: 044303
  year: 2010
  article-title: Processing of Polysiloxane‐Derived Porous Ceramics: A Review
  publication-title: Sci. Technol. Adv. Mater.
– volume: 42
  start-page: 2395
  year: 2001
  end-page: 402
  article-title: Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects
  publication-title: Polymer
– volume: 84
  start-page: 2165
  issue: 10
  year: 2001
  end-page: 9
  article-title: In Situ Densification Behavior in the Pyrolysis Consolidation of Amorphous Si‐N‐C Bulk Ceramics from Polymer Precursors
  publication-title: J. Am. Ceram. Soc.
– volume: 97
  start-page: 710
  year: 2006
  end-page: 20
  article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part II. Characterization by High Lateral Resolution Techniques: Electron Energy‐Loss Spectroscopy, High‐Resolution TEM and Energy‐Filtered TEM
  publication-title: Int. J. Mat. Res.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 19
  article-title: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity
  publication-title: Pure Appl. Chem.
– volume: 79
  start-page: 2696
  issue: 10
  year: 1996
  end-page: 704
  article-title: Porous Silicon Oxycarbide Glasses
  publication-title: J. Am. Ceram. Soc.
– year: 1992
– volume: 26
  start-page: 195
  year: 2003
  end-page: 9
  article-title: FT‐IR and Porosity Study of Si‐B‐C‐O Materials Obtainedfrom TEOS‐TEB‐PDMS Derived Gel Precursors
  publication-title: J. Sol‐Gel. Sci. Technol.
– volume: 206–213
  start-page: 1927
  year: 2002
  end-page: 30
  article-title: Mechanical Properties of Monolithic SiOC‐Ceramics with Tailored Porosity
  publication-title: Key Eng. Mater.
– year: 2012
– volume: 22
  start-page: 7676
  year: 2012
  end-page: 80
  article-title: Novel Polysiloxane and Polycarbosilane Aerogels via Hydrosilylation of Preceramic Polymers
  publication-title: J. Mater. Chem.
– volume: 89
  start-page: 2473
  issue: 8
  year: 2006
  end-page: 80
  article-title: Preparation of Ultrathin Walled Carbon Based Structures by Etching Pseudo‐Amorphous Silicon‐Oxycarbide Ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 32
  start-page: 627
  year: 2012
  end-page: 32
  article-title: On the Shrinkage During Pyrolysis of Thin Films and Bulk Components: The Case of a Hybrid Silica Gel Precursor for SiOC Glasses
  publication-title: J. Europ. Ceram. Soc.
– start-page: 1010
  year: 2002
  end-page: 1
  article-title: Plugged Hexagonal Templated Silica: A Unique Micro‐ and Mesoporous Composite Material with Internal Silica Nanocapsules
  publication-title: Chem. Comm.
– volume: 25
  start-page: 143
  year: 2005
  end-page: 9
  article-title: Synthesis and Characterization of Carbon Enriched Silicon Oxycarbides
  publication-title: J. Eur. Ceram. Soc.
– volume: 142
  start-page: 511
  year: 2011
  end-page: 7
  article-title: Porous Silicon Oxycarbide Glasses from Hybrid Ambigels
  publication-title: Microp. Mesop. Mater.
– volume: 60
  start-page: 1
  year: 2003
  end-page: 17
  article-title: Pore Size Determination in Modified Micro‐ and Mesoporous Materials
  publication-title: Microp. Mesop. Mater.
– volume: 2
  start-page: 245
  year: 1996
  end-page: 52
  article-title: High Surface Area SiC/Silicon Oxycarbide Glasses Prepared from Phenyltrimethoxysilane‐Tetramethoxysilane Gels
  publication-title: J. Porous Mater.
– volume: 109
  start-page: 84
  year: 2008
  end-page: 90
  article-title: On the Formation of Nanocrystalline Bimodal Mesoporous In O Prepared by Surfactant‐Assisted Templating Sol‐Gel Process
  publication-title: Microp. Mesop. Mater
– volume: 97
  start-page: 699
  year: 2006
  end-page: 709
  article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part I. Characterization by Integral Spectroscopic Techniques: Solid‐State NMR and Raman Spectroscopy
  publication-title: Int J. Mat. Res.
– volume: 322
  start-page: 381
  year: 2008
  end-page: 3
  article-title: In Praise of Pores
  publication-title: Science
– volume: 23
  start-page: 2250
  year: 2011
  end-page: 61
  article-title: Polyimide Aerogels by Ring‐Opening Metathesis Polymerization (ROMP)
  publication-title: Chem. Mater.
– ident: e_1_2_8_27_1
  doi: 10.1351/pac198557040603
– ident: e_1_2_8_17_1
  doi: 10.1002/adem.200700330
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jeurceramsoc.2004.08.008
– ident: e_1_2_8_20_1
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1151-2916.1996.tb09035.x
– ident: e_1_2_8_4_1
  doi: 10.1088/1468-6996/11/4/044303
– ident: e_1_2_8_32_1
  doi: 10.1016/j.micromeso.2007.04.037
– ident: e_1_2_8_8_1
  doi: 10.1038/nnano.2006.168
– ident: e_1_2_8_13_1
  doi: 10.1007/BF00488115
– ident: e_1_2_8_12_1
  doi: 10.1016/j.micromeso.2010.12.033
– ident: e_1_2_8_29_1
  doi: 10.1021/cm200323e
– ident: e_1_2_8_16_1
  doi: 10.4028/www.scientific.net/KEM.206-213.1927
– ident: e_1_2_8_18_1
  doi: 10.1039/c2jm16840e
– ident: e_1_2_8_24_1
  doi: 10.1016/S0032-3861(00)00652-2
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jeurceramsoc.2011.10.004
– ident: e_1_2_8_30_1
  doi: 10.1039/b201424f
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1151-2916.2001.tb00997.x
– ident: e_1_2_8_9_1
  doi: 10.2109/jcersj2.116.449
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1551-2916.2011.04810.x
– ident: e_1_2_8_14_1
  doi: 10.1039/c2jm00020b
– ident: e_1_2_8_28_1
  doi: 10.1021/cm903031d
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1162962
– ident: e_1_2_8_19_1
– volume: 97
  start-page: 699
  year: 2006
  ident: e_1_2_8_22_1
  article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part I. Characterization by Integral Spectroscopic Techniques: Solid‐State NMR and Raman Spectroscopy
  publication-title: Int J. Mat. Res.
  contributor:
    fullname: Kleebe H. J.
– volume: 217
  start-page: 69
  year: 2003
  ident: e_1_2_8_31_1
  article-title: Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania
  publication-title: J. Catalysis
  doi: 10.1016/S0021-9517(03)00034-4
  contributor:
    fullname: Yu J. G.
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1151-2916.2001.tb00982.x
– volume: 97
  start-page: 710
  year: 2006
  ident: e_1_2_8_23_1
  article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part II. Characterization by High Lateral Resolution Techniques: Electron Energy‐Loss Spectroscopy, High‐Resolution TEM and Energy‐Filtered TEM
  publication-title: Int. J. Mat. Res.
  contributor:
    fullname: Gregori G.
– ident: e_1_2_8_26_1
  doi: 10.1016/S1387-1811(03)00339-1
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1551-2916.2010.03876.x
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1551-2916.2006.01117.x
– ident: e_1_2_8_15_1
  doi: 10.1023/A:1020738829707
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jeurceramsoc.2004.07.019
SSID ssj0001984
Score 2.3432953
Snippet Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane...
Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane...
Micro-mesoporous ceramics are used in a wide range of applications, including catalyst supports, chemical reactors, electrodes for supercapacitors, gas storage...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2785
SubjectTerms Chemical bonds
Chemically bonded
Gels
High temperature
Hydrosilylation
Molecular weight
Porosity
Pyrolysis
Silicon
Silicone resins
Spacers
Thermogravimetric analysis
Title Controlled Mesoporosity in SiOC via Chemically Bonded Polymeric "Spacers"
URI https://api.istex.fr/ark:/67375/WNG-0N03ZT1W-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.12485
https://www.proquest.com/docview/1434153123
https://search.proquest.com/docview/1494349800
https://search.proquest.com/docview/1671448590
https://search.proquest.com/docview/1692395535
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTttAFB0huqELSmkr0oZqEFUXlZzasceTWUbhpUhJqwIFwcKal6WIyKlwghpWfEj7c3wJ944fEBaR2p0tX0vzunfOmblzhpBPqTGBryLhRSYyHsqfeCqIYy-UDPlG2jEWF_QHw_joNOqfs_MyqxLPwhT6EPWCG3qGi9fo4FLlX-tMHKltK0A9Lgi_Qcgxm2vvx6NyFHDpqEK-KAlXKpMu_rowF73AZv29ADSfwlU33xy8IpdVSYs0k6vWbKpa-vaZiOP_VWWDrJcwlHaLcfOarNhsk7x8Ik4Ibz9H-aywyd-QQa_IaR9bQwc2nwBsx3SvOR1l9Hj0rUdvRpJW6gPjOcXrisH0-2Q8d3tC9P7uzzHwc0Cb93d_35LTg_2T3pFXXsXgaQagz-MiFVxygC9pargWXGuGUnh4-3pklTE6VpzZmPuqAyQztsDL0rYwSopYRhDD3pHVbJLZLUIFa_vacMsDA9inkyo8qqt8oFVpGEaaN8hu1SnJr0JxI6mZChQzcU3VIJ9df9Um8voKc9Q4S86Gh4k_9MOLk-As6TdIs-rQpHTPHPgOTN4Qfdphg-zUn8GxcLdEZnYyQxuUzhMAqJfYxBwIaYeJpTaAoQVjIZT5ixsFS6qV9Lu9fff0_l-MP5C1trumA3PfmmR1ej2z2wCWpuqjc4sH5bAPCQ
link.rule.ids 315,783,787,1378,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Mesoporosity+in+SiOC+via+Chemically+Bonded+Polymeric+%22Spacers%22&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Blum%2C+Yigal&rft.au=Sorar%C3%B9%2C+Gian+Domenico&rft.au=Ramaswamy%2C+Aravind+Parakkulam&rft.au=Hui%2C+David&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=96&rft.issue=9&rft.spage=2785&rft.epage=2792&rft_id=info:doi/10.1111%2Fjace.12485&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0N03ZT1W_J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon