Controlled Mesoporosity in SiOC via Chemically Bonded Polymeric "Spacers"
Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vin...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 96; no. 9; pp. 2785 - 2792 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Blackwell Publishing Ltd
01.09.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl‐terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size‐controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl‐terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and “solidify.” Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis. |
---|---|
AbstractList | Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and "solidify." Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis. [PUBLICATION ABSTRACT] Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane ( PHMS ) and vinyl‐terminated polydimethylsiloxane ( PDMS ) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size‐controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl‐terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and “solidify.” Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N 2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOC s depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis. Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and "solidify." Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis. Micro-mesoporous ceramics are used in a wide range of applications, including catalyst supports, chemical reactors, electrodes for supercapacitors, gas storage and drug delivery. Silicon oxycarbides with controlled porosity in the mesopore range were obtained through high-temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels were synthesised via Pt catalysed hydrosilylation between polyhydromethylsiloxane (PHMS) and vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. The PDMS served the double purpose of size-controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl-terminated PDMS was chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and solidification. Accordingly, its removal during pyrolysis occurred through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers were investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results showed that the pore size distribution of the resulting SiOCs depended on the molecular weight of the PDMS and was directly related to the molecular volume, assuming that the PDMS chains were entangled into spheroidal shapes. The total pore volume was related to the initial amount of templating PDMS, assuming its complete decomposition during pyrolysis. |
Author | Ramaswamy, Aravind Parakkulam Sorarù, Gian Domenico Blum, Yigal Carturan, Sara Maria Hui, David |
Author_xml | – sequence: 1 givenname: Yigal surname: Blum fullname: Blum, Yigal email: yigal.blum@sri.com organization: SRI International, California, Menlo Park – sequence: 2 givenname: Gian Domenico surname: Sorarù fullname: Sorarù, Gian Domenico organization: Dipartimento di Ingegneria Industriale, Università di Trento, Via Mesiano 77, 38123, Trento, Italy – sequence: 3 givenname: Aravind Parakkulam surname: Ramaswamy fullname: Ramaswamy, Aravind Parakkulam organization: Dipartimento di Ingegneria Industriale, Università di Trento, Via Mesiano 77, 38123, Trento, Italy – sequence: 4 givenname: David surname: Hui fullname: Hui, David organization: SRI International, California, Menlo Park – sequence: 5 givenname: Sara Maria surname: Carturan fullname: Carturan, Sara Maria organization: Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35121, Padova, Italy |
BookMark | eNqN0U9LHDEYBvBQLHTVXvoJBnuRwmje_J0cdVCrWC1oEXoJ2UwGs2Yn22TXdr59s67twYNtLiHwexLyPttoa4iDQ-gD4AMo63BmrDsAwhr-Bk2Ac6iJArGFJhhjUsuG4HdoO-dZOYJq2ASdt3FYphiC66ovLsdFTDH75Vj5obrx12316E3V3ru5tyaEsTqOQ1fo1xjGuUveVns3i_Jmynu76G1vQnbvn_cd9O305Lb9XF9en523R5e15ZjxWqpeSSMFo33fSauktRwaISnBhLlp11kxldwJiacNYCGcANUT1U2NEoZJQXfQ_ubeRYo_Vi4v9dxn60Iwg4urrEEoQhXnlP8HlcDKrBT-N2WKUaYavKYfX9BZXKWh_LkoyoBTILSoTxtly0Bzcr1eJD83adSA9borve5KP3VVMGzwTx_c-IrUF0ftyZ9Mvcn4vHS__mZMetBlmpLru6szja8w_X4Ld_qC_gZf06PZ |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1002_adem_202300290 crossref_primary_10_1111_jace_13634 crossref_primary_10_1016_j_micromeso_2018_02_034 crossref_primary_10_1016_j_mser_2016_05_001 crossref_primary_10_1016_j_jeurceramsoc_2015_08_030 crossref_primary_10_1016_j_ceramint_2021_04_198 crossref_primary_10_1021_acsapm_0c00734 crossref_primary_10_1002_adem_201901036 crossref_primary_10_1016_j_micromeso_2019_109614 crossref_primary_10_1016_j_electacta_2015_01_088 crossref_primary_10_1039_C5TA06669G crossref_primary_10_3390_nano12183117 crossref_primary_10_1038_srep41049 crossref_primary_10_1080_2374068X_2020_1728991 crossref_primary_10_1111_jace_17392 crossref_primary_10_1016_j_matdes_2017_11_047 crossref_primary_10_1016_j_ceramint_2019_01_116 crossref_primary_10_1016_j_jeurceramsoc_2014_09_028 crossref_primary_10_1016_j_jeurceramsoc_2019_03_032 crossref_primary_10_1039_D1QM00705J crossref_primary_10_1080_17436753_2023_2192077 crossref_primary_10_1016_j_addma_2020_101366 crossref_primary_10_1002_ente_202300488 crossref_primary_10_1016_j_matchemphys_2018_01_078 crossref_primary_10_3390_membranes14030063 crossref_primary_10_1177_15280837231214723 crossref_primary_10_1016_j_ceramint_2021_06_118 crossref_primary_10_1111_jace_13541 crossref_primary_10_1016_j_ceramint_2019_11_003 crossref_primary_10_1016_j_jeurceramsoc_2017_06_036 crossref_primary_10_1016_j_matchemphys_2019_121844 crossref_primary_10_1007_s10904_020_01457_1 crossref_primary_10_1111_jace_18130 crossref_primary_10_1111_jace_16131 crossref_primary_10_1002_macp_201900380 crossref_primary_10_1016_j_jeurceramsoc_2015_10_038 crossref_primary_10_1039_C5TA05656J crossref_primary_10_2109_jcersj2_16072 crossref_primary_10_1016_j_jeurceramsoc_2019_10_056 crossref_primary_10_1039_D0CP05520D crossref_primary_10_1016_j_ceramint_2016_07_213 crossref_primary_10_1016_j_mser_2015_09_001 crossref_primary_10_1016_j_jallcom_2017_01_317 crossref_primary_10_1016_j_jeurceramsoc_2020_09_013 |
Cites_doi | 10.1351/pac198557040603 10.1002/adem.200700330 10.1016/j.jeurceramsoc.2004.08.008 10.1111/j.1151-2916.1996.tb09035.x 10.1088/1468-6996/11/4/044303 10.1016/j.micromeso.2007.04.037 10.1038/nnano.2006.168 10.1007/BF00488115 10.1016/j.micromeso.2010.12.033 10.1021/cm200323e 10.4028/www.scientific.net/KEM.206-213.1927 10.1039/c2jm16840e 10.1016/S0032-3861(00)00652-2 10.1016/j.jeurceramsoc.2011.10.004 10.1039/b201424f 10.1111/j.1151-2916.2001.tb00997.x 10.2109/jcersj2.116.449 10.1111/j.1551-2916.2011.04810.x 10.1039/c2jm00020b 10.1021/cm903031d 10.1126/science.1162962 10.1016/S0021-9517(03)00034-4 10.1111/j.1151-2916.2001.tb00982.x 10.1016/S1387-1811(03)00339-1 10.1111/j.1551-2916.2010.03876.x 10.1111/j.1551-2916.2006.01117.x 10.1023/A:1020738829707 10.1016/j.jeurceramsoc.2004.07.019 |
ContentType | Journal Article |
Copyright | 2013 The American Ceramic Society Copyright Wiley Subscription Services, Inc. Sep 2013 |
Copyright_xml | – notice: 2013 The American Ceramic Society – notice: Copyright Wiley Subscription Services, Inc. Sep 2013 |
DBID | BSCLL AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/jace.12485 |
DatabaseName | Istex CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
Editor | Riedel, R. |
Editor_xml | – sequence: 1 givenname: R. surname: Riedel fullname: Riedel, R. – sequence: 6 givenname: R. surname: Riedel fullname: Riedel, R. |
EndPage | 2792 |
ExternalDocumentID | 3077400671 10_1111_jace_12485 JACE12485 ark_67375_WNG_0N03ZT1W_J |
Genre | article |
GrantInformation_xml | – fundername: Provincia Autonoma di Trento – fundername: University of Trento |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT 02 08R 0R 1AW 31 3N 4S 6XO 8RP ABDEX ABFLS ABHUG ABPTK ACSMX ACXME ADAWD ADDAD AFVGU AGJLS G8K GA HZ IA IPNFZ NF P4A PK8 PQEST RIG WT Y3 AAYXX CITATION 7QQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c5045-79f97a7643ffd7c97cc5186732024ebddc6b75e670b81066e619f29dba96a4763 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Oct 25 23:24:24 EDT 2024 Fri Oct 25 04:23:17 EDT 2024 Fri Oct 25 06:43:35 EDT 2024 Thu Oct 10 15:26:35 EDT 2024 Fri Aug 23 02:33:09 EDT 2024 Fri Jun 04 19:44:37 EDT 2021 Wed Oct 30 09:52:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5045-79f97a7643ffd7c97cc5186732024ebddc6b75e670b81066e619f29dba96a4763 |
Notes | ark:/67375/WNG-0N03ZT1W-J ArticleID:JACE12485 University of Trento istex:1DCA77865D6473FC32D59CFA2E29D64C87ADA369 Provincia Autonoma di Trento ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1434153123 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1692395535 proquest_miscellaneous_1671448590 proquest_miscellaneous_1494349800 proquest_journals_1434153123 crossref_primary_10_1111_jace_12485 wiley_primary_10_1111_jace_12485_JACE12485 istex_primary_ark_67375_WNG_0N03ZT1W_J |
ProviderPackageCode | 10A RJQFR A03 ADOZA BFHJK BROTX AMBMR DCZOG K48 ~IA ACAHQ LEEKS AFGKR 50Y 50Z AEUQT XG1 AAEVG MRSTM .3N MEWTI H.T Q11 LP7 H.X LP6 51W 51X ACXME WBKPD QB0 AJXKR ADMGS UB1 AEIMD ATUGU WOHZO G-S O66 AZBYB 52M 52N 52O 52P ADEOM LATKE ZZTAW 52S 930 BAFTC 52T MK4 SUPJJ 52U 52W DRSTM 52X AFPWT ALAGY DR2 G.N ACPOU AFZJQ 5LA ADAWD 702 7PT WFSAM 66C ADIZJ .GA AAONW LYRES GODZA LUTES ALUQN AAZKR MSFUL LC2 AIURR LC3 AZVAB PALCI ABHUG RX1 ACXQS BMXJE R.K FOJGT WQJ MXFUL P2W W8V W99 WYISQ P2X WIH WIK BDRZF BY8 MSSTM DPXWK 1OB AUFTA 1OC 3SF F01 F00 NF~ BRXPI WRC AFVGU F04 ADZMN 8UM ABCUV N05 N04 ADDAD BNHUX ~WT 8-0 8-1 P4A FZ0 8-3 AGJLS 8-4 8-5 P4D IX1 BHBCM BMNLL LITHE SAMSI J0M MXSTM DRFUL 33P Q.N 05W 5HH AAESR LOXES MRFUL D-F D-E |
PublicationCentury | 2000 |
PublicationDate | September 2013 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationTitleAlternate | J. Am. Ceram. Soc |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | P. R. Aravind and G. D. Soraru, "Porous Silicon Oxycarbide Glasses from Hybrid Ambigels," Microp. Mesop. Mater., 142, 511-7 (2011). P. Van Der Voort, P. I. Ravikovitch, K. P. De Jong, A. V. Neimark, A. H. Janssen, M. Benjelloun, E. Van Bavel, P. Cool, B. M. Weckhuysen, and E. F. Vansant, "Plugged Hexagonal Templated Silica: A Unique Micro- and Mesoporous Composite Material with Internal Silica Nanocapsules," Chem. Comm., 9, 1010-1 (2002). M. Wilhelm, C. Soltmann, D. Koch, and G. Grathwohl, "Ceramers-Functional Materials for Adsorption Techniques," J. Eur. Ceram. Soc., 25, 271-6 (2005). N. Leventis, C. Sotiriou-Leventis, D. P. Mohite, Z. J. Larimore, J. T. Mang, G. Churu, and H. Lu, "Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP)," Chem. Mater., 23, 2250-61 (2011). P. Colombo, "In Praise of Pores," Science, 322, 381-3 (2008). J. Wan, M. J. Gasch, and A. K. Mukherjee, "In Situ Densification Behavior in the Pyrolysis Consolidation of Amorphous Si-N-C Bulk Ceramics from Polymer Precursors," J. Am. Ceram. Soc., 84 [10] 2165-9 (2001). T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, and S. Yoshikawa, "On the Formation of Nanocrystalline Bimodal Mesoporous In2O3 Prepared by Surfactant-Assisted Templating Sol-Gel Process," Microp. Mesop. Mater, 109, 84-90 (2008). A. Pauletti, S. Handjani, C. Fernandez-Martin, C. Gervais, and F. Babonneau, "A New Example of Periodic Mesoporous SiCO Glasses with Cubic Symmetry Stable at 1000°C," J. Ceram. Soc. Japan, 116 [3] 449-53 (2008). C. Liu, H. Z. Chen, S. Komarneni, and C. G. Pantano, "High Surface Area SiC/Silicon Oxycarbide Glasses Prepared from Phenyltrimethoxysilane-Tetramethoxysilane Gels," J. Porous Mater., 2, 245-52 (1996). H. Schmidt, D. Koch, G. Grathwohl, and P. Colombo, "Micro-/Macroporous Ceramics from Preceramic Precursors," J. Am. Ceramic Soc., 84 [10] 2252-5 (2001). R. Pena-Alonso, J. Rubio, F. Rubio, and J. L. Oteo, "FT-IR and Porosity Study of Si-B-C-O Materials Obtainedfrom TEOS-TEB-PDMS Derived Gel Precursors," J. Sol-Gel. Sci. Technol., 26, 195-9 (2003). K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-19 (1985). J. C. Groen, L. A. A. Peffer, and J. Perez-Ramirez, "Pore Size Determination in Modified Micro- and Mesoporous Materials," Microp. Mesop. Mater., 60, 1-17 (2003). G. D. Sorarù, A. Karakuscu, C. Boissiere, and F. Babonneau, "On the Shrinkage During Pyrolysis of Thin Films and Bulk Components: The Case of a Hybrid Silica Gel Precursor for SiOC Glasses," J. Europ. Ceram. Soc., 32, 627-32 (2012). A. K. Singh and C. G. Pantano, "Porous Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 79 [10] 2696-704 (1996). M. Weinberger, S. Puchegger, T. Froeschl, F. Babonneau, H. Peterlik, and N. Husing, "Sol-Gel Processing of a Glycolated Cyclic Organosilane and its Pyrolysis to Silicon Oxycarbide Monoliths with Multiscale Porosity and Large Surface Areas," Chem. Mater., 22, 1509-20 (2010). G. Gregori, H. J. Kleebe, Y. D. Blum, and F. Babonneau, "Evolution of C-Rich SiOC Ceramics - Part II. Characterization by High Lateral Resolution Techniques: Electron Energy-Loss Spectroscopy, High-Resolution TEM and Energy-Filtered TEM," Int. J. Mat. Res., 97, 710-20 (2006). J. Wu, Y. Li, L. Chen, Z. Zhang, D. Wanga, and C. Xu, "Simple Fabrication of Micro/Nano-Porous SiOC Foam from Polysiloxane," J. Mater. Chem., 22, 6542-5 (2012). F. Berndt, P. Jahn, A. Rendtel, G. Motz, and G. Ziegler, "Mechanical Properties of Monolithic SiOC-Ceramics with Tailored Porosity," Key Eng. Mater., 206-213, 1927-30 (2002). P. R. L. Malenfant, J. Wan, S. T. Taylor, and M. Manoharan, "Self-Assembly of an Organic-Inorganic Block Copolymer for Nano-Orderedceramics," Nat. Nanotech., 2, 43-6 (2007). A. Tamayo, R. Pena-Alonso, J. Rubio, R. Raj, G. D. Sorarù, and J. L. Oteo, "Surface Energy of Sol Gel-Derived Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 94 [12] 4523-33 (2011). C. Vakifahmetoglu and P. Colombo, "A Direct Method for the Fabrication of Macro-Porous SiOC Ceramics from Preceramic Polymers," Adv. Eng. Mater., 10, 256-9 (2008). J. G. Yu, J. C. Yu, M. K. P. Leung, W. K. Ho, B. Cheng, X. J. Zhao, and J. C. Zhao, "Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania," J. Catalysis, 217, 69-78 (2003). Y. D. Blum, D. B. MacQueen, and H.-J. Kleebe, "Synthesis and Characterization of Carbon Enriched Silicon Oxycarbides," J. Eur. Ceram. Soc., 25, 143-9 (2005). H. J. Kleebe, G. Gregori, F. Babonneau, Y. D. Blum, D. B. MacQueen, and S. Masse, "Evolution of C-Rich SiOC Ceramics - Part I. Characterization by Integral Spectroscopic Techniques: Solid-State NMR and Raman Spectroscopy," Int J. Mat. Res., 97, 699-709 (2006). R. Peña-Alonso, R. Raj, and G. D. Sorarù, "Preparation of Ultrathin Walled Carbon Based Structures by Etching Pseudo-Amorphous Silicon-Oxycarbide Ceramics," J. Am. Ceram. Soc., 89 [8] 2473-80 (2006). P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," J. Am. Ceram. Soc., 93 [7] 1805-35 (2010). G. D. Sorarù, F. Dalcanale, R. Campostrini, A. Gaston, Y. D. Blum, S. Carturan, and P. R. Aravind, "Novel Polysiloxane and Polycarbosilane Aerogels via Hydrosilylation of Preceramic Polymers," J. Mater. Chem., 22, 7676-80 (2012). G. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects," Polymer, 42, 2395-402 (2001). B. V. Manoj Kumar and Y.-W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11, 044303, 16pp (2010). 2010; 11 2006; 97 2003; 217 2012 2002; 206–213 2008; 109 2008; 10 1992 2008; 322 2002 1996; 79 2001; 84 2012; 32 2001; 42 2005; 25 2010; 22 2006; 89 2011; 94 2003; 26 2008; 116 2011; 23 2007; 2 2003; 60 1996; 2 2012; 22 1985; 57 2010; 93 2011; 142 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Yu J. G. (e_1_2_8_31_1) 2003; 217 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Gregori G. (e_1_2_8_23_1) 2006; 97 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Kleebe H. J. (e_1_2_8_22_1) 2006; 97 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 93 start-page: 1805 issue: 7 year: 2010 end-page: 35 article-title: Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics publication-title: J. Am. Ceram. Soc. – volume: 22 start-page: 6542 year: 2012 end-page: 5 article-title: Simple Fabrication of Micro/Nano‐Porous SiOC Foam from Polysiloxane publication-title: J. Mater. Chem. – volume: 217 start-page: 69 year: 2003 end-page: 78 article-title: Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania publication-title: J. Catalysis – volume: 84 start-page: 2252 issue: 10 year: 2001 end-page: 5 article-title: Micro‐/Macroporous Ceramics from Preceramic Precursors publication-title: J. Am. Ceramic Soc. – volume: 25 start-page: 271 year: 2005 end-page: 6 article-title: Ceramers—Functional Materials for Adsorption Techniques publication-title: J. Eur. Ceram. Soc. – volume: 22 start-page: 1509 year: 2010 end-page: 20 article-title: Sol‐Gel Processing of a Glycolated Cyclic Organosilane and its Pyrolysis to Silicon Oxycarbide Monoliths with Multiscale Porosity and Large Surface Areas publication-title: Chem. Mater. – volume: 94 start-page: 4523 issue: 12 year: 2011 end-page: 33 article-title: Surface Energy of Sol Gel‐Derived Silicon Oxycarbide Glasses publication-title: J. Am. Ceram. Soc. – volume: 2 start-page: 43 year: 2007 end-page: 6 article-title: Self‐Assembly of an Organic–Inorganic Block Copolymer for Nano‐Orderedceramics publication-title: Nat. Nanotech. – volume: 116 start-page: 449 issue: 3 year: 2008 end-page: 53 article-title: A New Example of Periodic Mesoporous SiCO Glasses with Cubic Symmetry Stable at 1000°C publication-title: J. Ceram. Soc. Japan – volume: 10 start-page: 256 year: 2008 end-page: 9 article-title: A Direct Method for the Fabrication of Macro‐Porous SiOC Ceramics from Preceramic Polymers publication-title: Adv. Eng. Mater. – volume: 11 start-page: 044303 year: 2010 article-title: Processing of Polysiloxane‐Derived Porous Ceramics: A Review publication-title: Sci. Technol. Adv. Mater. – volume: 42 start-page: 2395 year: 2001 end-page: 402 article-title: Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects publication-title: Polymer – volume: 84 start-page: 2165 issue: 10 year: 2001 end-page: 9 article-title: In Situ Densification Behavior in the Pyrolysis Consolidation of Amorphous Si‐N‐C Bulk Ceramics from Polymer Precursors publication-title: J. Am. Ceram. Soc. – volume: 97 start-page: 710 year: 2006 end-page: 20 article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part II. Characterization by High Lateral Resolution Techniques: Electron Energy‐Loss Spectroscopy, High‐Resolution TEM and Energy‐Filtered TEM publication-title: Int. J. Mat. Res. – volume: 57 start-page: 603 year: 1985 end-page: 19 article-title: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity publication-title: Pure Appl. Chem. – volume: 79 start-page: 2696 issue: 10 year: 1996 end-page: 704 article-title: Porous Silicon Oxycarbide Glasses publication-title: J. Am. Ceram. Soc. – year: 1992 – volume: 26 start-page: 195 year: 2003 end-page: 9 article-title: FT‐IR and Porosity Study of Si‐B‐C‐O Materials Obtainedfrom TEOS‐TEB‐PDMS Derived Gel Precursors publication-title: J. Sol‐Gel. Sci. Technol. – volume: 206–213 start-page: 1927 year: 2002 end-page: 30 article-title: Mechanical Properties of Monolithic SiOC‐Ceramics with Tailored Porosity publication-title: Key Eng. Mater. – year: 2012 – volume: 22 start-page: 7676 year: 2012 end-page: 80 article-title: Novel Polysiloxane and Polycarbosilane Aerogels via Hydrosilylation of Preceramic Polymers publication-title: J. Mater. Chem. – volume: 89 start-page: 2473 issue: 8 year: 2006 end-page: 80 article-title: Preparation of Ultrathin Walled Carbon Based Structures by Etching Pseudo‐Amorphous Silicon‐Oxycarbide Ceramics publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 627 year: 2012 end-page: 32 article-title: On the Shrinkage During Pyrolysis of Thin Films and Bulk Components: The Case of a Hybrid Silica Gel Precursor for SiOC Glasses publication-title: J. Europ. Ceram. Soc. – start-page: 1010 year: 2002 end-page: 1 article-title: Plugged Hexagonal Templated Silica: A Unique Micro‐ and Mesoporous Composite Material with Internal Silica Nanocapsules publication-title: Chem. Comm. – volume: 25 start-page: 143 year: 2005 end-page: 9 article-title: Synthesis and Characterization of Carbon Enriched Silicon Oxycarbides publication-title: J. Eur. Ceram. Soc. – volume: 142 start-page: 511 year: 2011 end-page: 7 article-title: Porous Silicon Oxycarbide Glasses from Hybrid Ambigels publication-title: Microp. Mesop. Mater. – volume: 60 start-page: 1 year: 2003 end-page: 17 article-title: Pore Size Determination in Modified Micro‐ and Mesoporous Materials publication-title: Microp. Mesop. Mater. – volume: 2 start-page: 245 year: 1996 end-page: 52 article-title: High Surface Area SiC/Silicon Oxycarbide Glasses Prepared from Phenyltrimethoxysilane‐Tetramethoxysilane Gels publication-title: J. Porous Mater. – volume: 109 start-page: 84 year: 2008 end-page: 90 article-title: On the Formation of Nanocrystalline Bimodal Mesoporous In O Prepared by Surfactant‐Assisted Templating Sol‐Gel Process publication-title: Microp. Mesop. Mater – volume: 97 start-page: 699 year: 2006 end-page: 709 article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part I. Characterization by Integral Spectroscopic Techniques: Solid‐State NMR and Raman Spectroscopy publication-title: Int J. Mat. Res. – volume: 322 start-page: 381 year: 2008 end-page: 3 article-title: In Praise of Pores publication-title: Science – volume: 23 start-page: 2250 year: 2011 end-page: 61 article-title: Polyimide Aerogels by Ring‐Opening Metathesis Polymerization (ROMP) publication-title: Chem. Mater. – ident: e_1_2_8_27_1 doi: 10.1351/pac198557040603 – ident: e_1_2_8_17_1 doi: 10.1002/adem.200700330 – ident: e_1_2_8_7_1 doi: 10.1016/j.jeurceramsoc.2004.08.008 – ident: e_1_2_8_20_1 – ident: e_1_2_8_10_1 doi: 10.1111/j.1151-2916.1996.tb09035.x – ident: e_1_2_8_4_1 doi: 10.1088/1468-6996/11/4/044303 – ident: e_1_2_8_32_1 doi: 10.1016/j.micromeso.2007.04.037 – ident: e_1_2_8_8_1 doi: 10.1038/nnano.2006.168 – ident: e_1_2_8_13_1 doi: 10.1007/BF00488115 – ident: e_1_2_8_12_1 doi: 10.1016/j.micromeso.2010.12.033 – ident: e_1_2_8_29_1 doi: 10.1021/cm200323e – ident: e_1_2_8_16_1 doi: 10.4028/www.scientific.net/KEM.206-213.1927 – ident: e_1_2_8_18_1 doi: 10.1039/c2jm16840e – ident: e_1_2_8_24_1 doi: 10.1016/S0032-3861(00)00652-2 – ident: e_1_2_8_25_1 doi: 10.1016/j.jeurceramsoc.2011.10.004 – ident: e_1_2_8_30_1 doi: 10.1039/b201424f – ident: e_1_2_8_6_1 doi: 10.1111/j.1151-2916.2001.tb00997.x – ident: e_1_2_8_9_1 doi: 10.2109/jcersj2.116.449 – ident: e_1_2_8_11_1 doi: 10.1111/j.1551-2916.2011.04810.x – ident: e_1_2_8_14_1 doi: 10.1039/c2jm00020b – ident: e_1_2_8_28_1 doi: 10.1021/cm903031d – ident: e_1_2_8_2_1 doi: 10.1126/science.1162962 – ident: e_1_2_8_19_1 – volume: 97 start-page: 699 year: 2006 ident: e_1_2_8_22_1 article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part I. Characterization by Integral Spectroscopic Techniques: Solid‐State NMR and Raman Spectroscopy publication-title: Int J. Mat. Res. contributor: fullname: Kleebe H. J. – volume: 217 start-page: 69 year: 2003 ident: e_1_2_8_31_1 article-title: Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania publication-title: J. Catalysis doi: 10.1016/S0021-9517(03)00034-4 contributor: fullname: Yu J. G. – ident: e_1_2_8_5_1 doi: 10.1111/j.1151-2916.2001.tb00982.x – volume: 97 start-page: 710 year: 2006 ident: e_1_2_8_23_1 article-title: Evolution of C‐Rich SiOC Ceramics ‐ Part II. Characterization by High Lateral Resolution Techniques: Electron Energy‐Loss Spectroscopy, High‐Resolution TEM and Energy‐Filtered TEM publication-title: Int. J. Mat. Res. contributor: fullname: Gregori G. – ident: e_1_2_8_26_1 doi: 10.1016/S1387-1811(03)00339-1 – ident: e_1_2_8_3_1 doi: 10.1111/j.1551-2916.2010.03876.x – ident: e_1_2_8_33_1 doi: 10.1111/j.1551-2916.2006.01117.x – ident: e_1_2_8_15_1 doi: 10.1023/A:1020738829707 – ident: e_1_2_8_21_1 doi: 10.1016/j.jeurceramsoc.2004.07.019 |
SSID | ssj0001984 |
Score | 2.3432953 |
Snippet | Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane... Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high-temperature pyrolysis of newly developed reactive siloxane... Micro-mesoporous ceramics are used in a wide range of applications, including catalyst supports, chemical reactors, electrodes for supercapacitors, gas storage... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 2785 |
SubjectTerms | Chemical bonds Chemically bonded Gels High temperature Hydrosilylation Molecular weight Porosity Pyrolysis Silicon Silicone resins Spacers Thermogravimetric analysis |
Title | Controlled Mesoporosity in SiOC via Chemically Bonded Polymeric "Spacers" |
URI | https://api.istex.fr/ark:/67375/WNG-0N03ZT1W-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.12485 https://www.proquest.com/docview/1434153123 https://search.proquest.com/docview/1494349800 https://search.proquest.com/docview/1671448590 https://search.proquest.com/docview/1692395535 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTttAFB0huqELSmkr0oZqEFUXlZzasceTWUbhpUhJqwIFwcKal6WIyKlwghpWfEj7c3wJ944fEBaR2p0tX0vzunfOmblzhpBPqTGBryLhRSYyHsqfeCqIYy-UDPlG2jEWF_QHw_joNOqfs_MyqxLPwhT6EPWCG3qGi9fo4FLlX-tMHKltK0A9Lgi_Qcgxm2vvx6NyFHDpqEK-KAlXKpMu_rowF73AZv29ADSfwlU33xy8IpdVSYs0k6vWbKpa-vaZiOP_VWWDrJcwlHaLcfOarNhsk7x8Ik4Ibz9H-aywyd-QQa_IaR9bQwc2nwBsx3SvOR1l9Hj0rUdvRpJW6gPjOcXrisH0-2Q8d3tC9P7uzzHwc0Cb93d_35LTg_2T3pFXXsXgaQagz-MiFVxygC9pargWXGuGUnh4-3pklTE6VpzZmPuqAyQztsDL0rYwSopYRhDD3pHVbJLZLUIFa_vacMsDA9inkyo8qqt8oFVpGEaaN8hu1SnJr0JxI6mZChQzcU3VIJ9df9Um8voKc9Q4S86Gh4k_9MOLk-As6TdIs-rQpHTPHPgOTN4Qfdphg-zUn8GxcLdEZnYyQxuUzhMAqJfYxBwIaYeJpTaAoQVjIZT5ixsFS6qV9Lu9fff0_l-MP5C1trumA3PfmmR1ej2z2wCWpuqjc4sH5bAPCQ |
link.rule.ids | 315,783,787,1378,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Mesoporosity+in+SiOC+via+Chemically+Bonded+Polymeric+%22Spacers%22&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Blum%2C+Yigal&rft.au=Sorar%C3%B9%2C+Gian+Domenico&rft.au=Ramaswamy%2C+Aravind+Parakkulam&rft.au=Hui%2C+David&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=96&rft.issue=9&rft.spage=2785&rft.epage=2792&rft_id=info:doi/10.1111%2Fjace.12485&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0N03ZT1W_J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |