The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression
Summary Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐r...
Saved in:
Published in | Plant biotechnology journal Vol. 19; no. 2; pp. 311 - 323 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.02.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple. |
---|---|
AbstractList | Summary
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple. Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple. Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple ( Malus domestica ) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐ MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple. Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt-resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM-5' RACE and stable genetic transformation technology to verify that both mdm-MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA-Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up-regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt-resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM-5' RACE and stable genetic transformation technology to verify that both mdm-MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA-Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up-regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple. |
Author | Ma, Yue Yang, Shuang Yue, Pengtao Jiang, Qiu Zhang, Yuanyan Zhang, Zhihong Li, Linguang He, Ping Xue, Hao Zhang, Feng Wang, Feng |
AuthorAffiliation | 5 Shandong Institute of Pomology Taian Shandong China 3 College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang China 4 College of Plant Protection Shenyang Agricultural University Shenyang China 1 College of Horticulture Shenyang Agricultural University Shenyang China 2 College of Horticulture Anhui Agricultural University Hefei China |
AuthorAffiliation_xml | – name: 2 College of Horticulture Anhui Agricultural University Hefei China – name: 5 Shandong Institute of Pomology Taian Shandong China – name: 3 College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang China – name: 1 College of Horticulture Shenyang Agricultural University Shenyang China – name: 4 College of Plant Protection Shenyang Agricultural University Shenyang China |
Author_xml | – sequence: 1 givenname: Yue surname: Ma fullname: Ma, Yue organization: Shenyang Agricultural University – sequence: 2 givenname: Hao surname: Xue fullname: Xue, Hao organization: Anhui Agricultural University – sequence: 3 givenname: Feng orcidid: 0000-0002-3200-5506 surname: Zhang fullname: Zhang, Feng organization: Shenyang Agricultural University – sequence: 4 givenname: Qiu surname: Jiang fullname: Jiang, Qiu organization: Shenyang Agricultural University – sequence: 5 givenname: Shuang surname: Yang fullname: Yang, Shuang organization: Shenyang Agricultural University – sequence: 6 givenname: Pengtao surname: Yue fullname: Yue, Pengtao organization: Shenyang Agricultural University – sequence: 7 givenname: Feng surname: Wang fullname: Wang, Feng organization: Shenyang Agricultural University – sequence: 8 givenname: Yuanyan surname: Zhang fullname: Zhang, Yuanyan organization: Shenyang Agricultural University – sequence: 9 givenname: Linguang surname: Li fullname: Li, Linguang organization: Shandong Institute of Pomology – sequence: 10 givenname: Ping surname: He fullname: He, Ping organization: Shandong Institute of Pomology – sequence: 11 givenname: Zhihong orcidid: 0000-0001-5935-1567 surname: Zhang fullname: Zhang, Zhihong email: zhangz@syau.edu.cn organization: Shenyang Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32885918$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9vFCEUxYmpsX_0wS9gSHyxD9sFBhh4MamN1cY1NrXG-CKB2TtbGnYYYaa6317WrRttYuUFbvjdk9x7zj7a6WIHCD2l5IiWM-2dP6IVl_wB2qNc1pNaCrazfXO-i_ZzviaEUSnkI7RbMaWEpmoPfb28Arz0F1TI6cfzGV7G-RgAJ1iMwQ6Qse37UmcbBpyHBDnjIQZItmsAuxW2zeBv7OC7BX4__3zx7gslBMOPfk362D1GD1sbMjy5vQ_Qp9PXlydvJ7MPb85OjmeTRhDOJw5ErR0XrbO15kwRxzgRTrccqtZSxrVtgOm2ap2YtxScAM0EFVwR1la1rQ7Qy41uP7olzBvohmSD6ZNf2rQy0Xrz90_nr8wi3phaSaVVVQRe3Aqk-G2EPJilzw2EYDuIYzZMMF5VvNbs_yjnpHjBiCro8zvodRxTVzZhmKSaSsa0vJfiqia6ppwX6tmfI25n--1lAQ43QJNizgnaLUKJWefElJyYXzkp7PQO2_ih2BjX2_Hhvo7vPsDq39Lm_NXZpuMn8nLMTQ |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_129913 crossref_primary_10_1007_s10528_021_10108_0 crossref_primary_10_1071_CP22086 crossref_primary_10_1007_s11816_022_00787_5 crossref_primary_10_1016_j_scienta_2022_111077 crossref_primary_10_3390_genes14081586 crossref_primary_10_1016_j_plantsci_2023_111832 crossref_primary_10_1186_s12864_022_08945_3 crossref_primary_10_1007_s00425_023_04308_8 crossref_primary_10_1007_s00425_024_04368_4 crossref_primary_10_1093_plphys_kiab498 crossref_primary_10_1111_nph_18317 crossref_primary_10_1016_j_plaphy_2023_107823 crossref_primary_10_3390_agronomy14102421 crossref_primary_10_1186_s12870_024_05899_4 crossref_primary_10_3390_ijms24098323 crossref_primary_10_1016_j_envint_2023_108144 crossref_primary_10_3389_fpls_2024_1412685 crossref_primary_10_3390_life12101632 crossref_primary_10_1016_j_scienta_2022_111363 crossref_primary_10_1016_j_ygeno_2023_110627 crossref_primary_10_3389_fpls_2023_1303667 crossref_primary_10_3389_fpls_2022_834027 crossref_primary_10_1007_s10142_022_00886_0 crossref_primary_10_3389_fpls_2021_663519 crossref_primary_10_3389_fpls_2022_847853 crossref_primary_10_3389_fpls_2022_879819 crossref_primary_10_1186_s12864_024_10262_w crossref_primary_10_1111_ppl_14498 crossref_primary_10_1111_tpj_16584 crossref_primary_10_1111_nph_19503 crossref_primary_10_3390_ijms252111698 crossref_primary_10_1016_j_ijbiomac_2022_10_240 crossref_primary_10_1093_plphys_kiad099 crossref_primary_10_3389_fpls_2024_1336892 crossref_primary_10_3389_fpls_2021_703994 crossref_primary_10_7717_peerj_14241 crossref_primary_10_48130_opr_0024_0008 crossref_primary_10_3389_fpls_2021_767984 crossref_primary_10_1016_j_plaphy_2022_12_023 crossref_primary_10_1016_j_tplants_2022_01_009 crossref_primary_10_3390_horticulturae10090983 crossref_primary_10_1016_j_plaphy_2023_108137 crossref_primary_10_1186_s12864_024_10403_1 crossref_primary_10_3390_horticulturae10080825 crossref_primary_10_1007_s11033_025_10273_0 crossref_primary_10_3390_d15090983 crossref_primary_10_3390_ijms241310915 crossref_primary_10_3390_plants13131850 crossref_primary_10_1016_j_ijbiomac_2025_141572 crossref_primary_10_1186_s13068_023_02286_3 crossref_primary_10_1111_jipb_13828 crossref_primary_10_3390_horticulturae8070651 crossref_primary_10_1186_s12870_022_03838_9 crossref_primary_10_1007_s00299_021_02828_9 crossref_primary_10_1007_s00344_024_11363_2 crossref_primary_10_1111_tpj_17205 crossref_primary_10_1016_j_hpj_2023_05_005 crossref_primary_10_3390_antiox13010055 crossref_primary_10_1016_j_plantsci_2021_110958 crossref_primary_10_1186_s12870_023_04659_0 crossref_primary_10_1093_hr_uhad293 crossref_primary_10_1016_j_ijbiomac_2025_139547 crossref_primary_10_1080_21655979_2021_1997244 crossref_primary_10_3390_ijms23031141 crossref_primary_10_1016_j_envexpbot_2021_104549 crossref_primary_10_3389_fpls_2023_1238507 crossref_primary_10_1093_hr_uhae028 crossref_primary_10_3390_ijms25137437 crossref_primary_10_1007_s12192_023_01388_z crossref_primary_10_1016_j_plaphy_2023_108150 crossref_primary_10_3390_genes13020331 crossref_primary_10_1016_j_indcrop_2022_115828 crossref_primary_10_1016_j_tig_2023_07_001 crossref_primary_10_1016_j_micres_2023_127398 crossref_primary_10_1007_s11104_023_06407_7 crossref_primary_10_1111_pce_15168 crossref_primary_10_3390_genes13081455 crossref_primary_10_3390_ijms22168918 crossref_primary_10_3390_ijms231810947 crossref_primary_10_3389_fpls_2025_1497064 crossref_primary_10_3389_fpls_2024_1447749 crossref_primary_10_1016_j_envexpbot_2023_105400 crossref_primary_10_1016_j_plaphy_2024_108435 crossref_primary_10_1016_j_hpj_2024_04_004 crossref_primary_10_1016_j_ecoenv_2023_114881 crossref_primary_10_1080_15592324_2024_2371694 crossref_primary_10_3390_ijms252212446 crossref_primary_10_3390_ijms23084124 crossref_primary_10_1016_j_ijbiomac_2024_135266 crossref_primary_10_1016_j_stress_2024_100526 crossref_primary_10_3389_fbioe_2022_1006386 crossref_primary_10_3390_plants11233389 crossref_primary_10_1016_j_plaphy_2023_107857 crossref_primary_10_1111_ppl_13923 crossref_primary_10_1093_plphys_kiad621 crossref_primary_10_1111_pbi_14056 crossref_primary_10_1007_s00299_024_03175_1 crossref_primary_10_1016_j_stress_2024_100409 crossref_primary_10_1016_j_indcrop_2023_116874 crossref_primary_10_1021_acs_jafc_4c10283 crossref_primary_10_1186_s12870_023_04332_6 crossref_primary_10_3389_fpls_2021_665439 crossref_primary_10_3390_f13111750 crossref_primary_10_3389_fpls_2024_1415209 crossref_primary_10_1016_j_jare_2022_11_005 crossref_primary_10_1007_s11033_022_07179_6 crossref_primary_10_1007_s12298_023_01345_1 crossref_primary_10_3390_plants11233299 crossref_primary_10_3390_plants13081057 crossref_primary_10_1093_hr_uhad144 crossref_primary_10_1016_j_scienta_2024_113907 crossref_primary_10_1111_ppl_13492 crossref_primary_10_3389_fpls_2022_965745 crossref_primary_10_3390_ijms23126365 crossref_primary_10_3390_ijms25052639 crossref_primary_10_3390_ijms24087290 crossref_primary_10_1007_s11103_024_01530_0 crossref_primary_10_1186_s12864_024_10777_2 crossref_primary_10_1016_j_ijbiomac_2025_141829 crossref_primary_10_1016_j_jplph_2024_154313 crossref_primary_10_3390_horticulturae9030294 crossref_primary_10_3389_fpls_2024_1484892 crossref_primary_10_1016_j_scienta_2023_112010 crossref_primary_10_1007_s12374_025_09456_w crossref_primary_10_3390_plants9111515 crossref_primary_10_3389_fpls_2022_919243 crossref_primary_10_3390_genes13050761 crossref_primary_10_3390_ijms25168989 crossref_primary_10_1038_s41598_022_26911_7 crossref_primary_10_3389_fpls_2022_1068163 crossref_primary_10_3390_cells11182806 crossref_primary_10_1016_j_envexpbot_2022_105177 crossref_primary_10_3389_fpls_2021_667458 crossref_primary_10_1016_j_envexpbot_2024_105931 crossref_primary_10_1111_pbi_14351 crossref_primary_10_1111_jipb_13860 crossref_primary_10_3390_plants13020201 |
Cites_doi | 10.1261/rna.895308 10.1016/S0168-9452(99)00197-1 10.21769/BioProtoc.1108 10.1007/s11103-009-9480-3 10.1105/tpc.18.00231 10.1016/j.plantsci.2018.12.025 10.1038/srep38784 10.1016/S0076-6879(07)28024-3 10.1007/s00299-007-0499-0 10.1016/j.molp.2015.01.008 10.1371/journal.pone.0143022 10.1105/tpc.110.081794 10.1111/tpj.12958 10.1111/nph.14920 10.1016/j.tplants.2010.02.006 10.1016/j.cell.2016.08.029 10.1016/j.plaphy.2015.08.016 10.1007/s00438-014-0901-x 10.1093/jxb/ery197 10.1111/ppl.12787 10.1016/j.bbagrm.2011.10.005 10.1016/j.plaphy.2013.04.016 10.3390/ijms19040940 10.3389/fpls.2015.00058 10.1111/pbi.13151 10.1111/pbi.13331 10.1111/nph.16500 10.1093/aob/mcn205 10.3390/ijms17101712 10.1111/tpj.13289 10.1016/j.plaphy.2013.05.021 10.1016/j.scienta.2013.09.033 10.1016/j.scienta.2010.10.012 10.15252/msb.20145470 10.1105/tpc.113.114447 10.1016/j.plantsci.2019.06.001 10.1007/s00299-017-2210-4 10.1105/tpc.111.084525 10.1371/journal.pone.0069955 10.1111/jipb.12513 10.1016/j.scienta.2015.04.009 10.1071/FP09269 10.1105/tpc.114.123851 10.1186/s12870-019-1977-6 10.1046/j.1365-313X.1997.12020367.x 10.1016/j.bbagrm.2011.09.002 10.1007/s11240-017-1226-3 10.3389/fpls.2017.02226 10.1038/s41598-017-14671-8 10.1111/tpj.12712 10.1111/j.1467-7652.2011.00677.x 10.1146/annurev.arplant.59.032607.092911 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PRINS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13464 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | miR156/SPL module control apple salt resistance |
EISSN | 1467-7652 |
EndPage | 323 |
ExternalDocumentID | PMC7868983 32885918 10_1111_pbi_13464 PBI13464 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shenyang Young and Middle‐aged Science and Technology Innovation Talents Support Plan funderid: RC190446 – fundername: Nature Science Project of the Technology Department of Liaoning Province funderid: 20180550478; 2020‐MS‐198 – fundername: LiaoNing Revitalization Talents Program funderid: XLYC1902069 – fundername: Millions Talents Project Foundation of Liaoning Province funderid: 2017069 – fundername: National key R & D Program of China funderid: 2019YFD1000100 – fundername: LiaoNing Revitalization Talents Program grantid: XLYC1902069 – fundername: Nature Science Project of the Technology Department of Liaoning Province grantid: 20180550478; 2020‐MS‐198 – fundername: Millions Talents Project Foundation of Liaoning Province grantid: 2017069 – fundername: National key R & D Program of China grantid: 2019YFD1000100 – fundername: Shenyang Young and Middle‐aged Science and Technology Innovation Talents Support Plan grantid: RC190446 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5044-be579b45fba794280b2405b9f4e3fa1249ace29f3fb5df1eb5e925154802f37a3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 14:13:47 EDT 2025 Fri Jul 11 18:29:30 EDT 2025 Tue Aug 05 10:54:51 EDT 2025 Wed Aug 13 11:07:06 EDT 2025 Wed Aug 13 11:41:06 EDT 2025 Mon Jul 21 05:28:29 EDT 2025 Tue Jul 01 02:34:46 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Wed Jan 22 16:32:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | salt tolerance apple SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13 WRKY100 microRNA156 |
Language | English |
License | Attribution 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5044-be579b45fba794280b2405b9f4e3fa1249ace29f3fb5df1eb5e925154802f37a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5935-1567 0000-0002-3200-5506 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13464 |
PMID | 32885918 |
PQID | 2487097144 |
PQPubID | 1096352 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868983 proquest_miscellaneous_2524334792 proquest_miscellaneous_2440464208 proquest_journals_2619162296 proquest_journals_2487097144 pubmed_primary_32885918 crossref_primary_10_1111_pbi_13464 crossref_citationtrail_10_1111_pbi_13464 wiley_primary_10_1111_pbi_13464_PBI13464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 7 2013; 25 2013; 69 2010; 15 2019; 17 2014; 26 2013; 70 2013; 164 2013; 8 2007; 428 2019b; 280 2012; 10 2020; 18 2019; 165 2019; 286 2011; 127 2018; 8 2014; 4 2015; 290 2015; 84 2018; 217 2008; 27 1997; 12 2018; 30 2012; 1819 2011; 23 2019a; 19 2018; 37 2014; 10 2016; 88 2015; 6 2019; 4 2010; 37 2015; 96 2015; 10 2008; 14 2020; 226 2008; 59 2016; 167 2000; 151 2017; 130 2014; 41 2016; 17 2015; 8 2018; 69 2018; 19 2016; 6 2014; 80 2015; 190 2017; 59 2009; 70 2020; 71 2009; 103 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Khraiwesh B. (e_1_2_9_23_1) 2012; 1819 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Nutan K.K. (e_1_2_9_39_1) 2020; 71 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 Zhang X. (e_1_2_9_52_1) 2014; 41 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 Zheng Y. (e_1_2_9_55_1) 2019; 4 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 10 year: 2015 article-title: The cotton WRKY gene positively regulates salt and drought stress tolerance in transgenic publication-title: PLoS One – volume: 70 start-page: 385 year: 2009 end-page: 401 article-title: Conserved and novel miRNAs in the legume in response to stress publication-title: Plant Mol. Biol. – volume: 88 start-page: 735 year: 2016 end-page: 748 article-title: Apple ( ) MdERF 2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription publication-title: Plant J. – volume: 25 start-page: 2699 year: 2013 end-page: 2713 article-title: Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis publication-title: Plant Cell – volume: 8 start-page: 2226 year: 2018 article-title: miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS‐LIKE 79 publication-title: Front. Plant Sci. – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. – volume: 190 start-page: 24 year: 2015 end-page: 30 article-title: Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress publication-title: Sci. Hortic. – volume: 19 start-page: 370 year: 2019a article-title: Roles of the SPL gene family and miR156 in the salt stress responses of tamarisk ( ) publication-title: BMC Plant Biol. – volume: 30 start-page: 1562 year: 2018 end-page: 1581 article-title: Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple publication-title: Plant Cell – volume: 217 start-page: 523 year: 2018 end-page: 539 article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses publication-title: New Phytol. – volume: 286 start-page: 68 year: 2019 end-page: 77 article-title: MdWRKY100 encodes a group I WRKY transcription factor in that positively regulates resistance to infection publication-title: Plant Sci. – volume: 103 start-page: 29 year: 2009 end-page: 38 article-title: Differential expression of miRNAs in response to salt stress in maize roots publication-title: Ann. Bot. – volume: 8 year: 2013 article-title: Genome wide analysis of the apple MYB transcription factor family allows the identification of gene confering abiotic stress tolerance in plants publication-title: PLoS One – volume: 70 start-page: 100 year: 2013 end-page: 114 article-title: Genome‐wide identification and analysis of the SBP‐box family genes in apple ( × ) publication-title: Plant Physio. Biochem. – volume: 37 start-page: 604 year: 2010 end-page: 612 article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants publication-title: Funct. Plant Biol. – volume: 127 start-page: 411 year: 2011 end-page: 419 article-title: In vitro induced tetraploid of (Nakai) Tzvel. shows an improved level of abiotic stress tolerance publication-title: Sci. Hortic. – volume: 1819 start-page: 137 year: 2012 end-page: 148 article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: BBA‐Gene Regul. Mech. – volume: 23 start-page: 1512 year: 2011 end-page: 1522 article-title: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156‐targeted SPL transcription factor publication-title: Plant Cell – volume: 226 start-page: 1781 year: 2020 end-page: 1795 article-title: Auxin‐activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening publication-title: New Phytol – volume: 17 start-page: 2341 year: 2019 end-page: 2355 article-title: MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress‐responsive signals publication-title: Plant Biotechnol. J. – volume: 4 start-page: 598 year: 2019 end-page: 611 article-title: Histone Deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant. – volume: 290 start-page: 115 year: 2015 end-page: 126 article-title: Genomic organization, differential expression, and functional analysis of the SPL gene family in publication-title: Mol. Genet. Genom. – volume: 37 start-page: 61 year: 2018 end-page: 75 article-title: Plant small RNAs: the essential epigenetic regulators of gene expression for salt‐stress responses and tolerance publication-title: Plant Cell Rep. – volume: 280 start-page: 258 year: 2019b end-page: 268 article-title: The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry publication-title: Plant Sci. – volume: 7 start-page: 14223 year: 2017 article-title: miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings publication-title: Sci. Rep. – volume: 164 start-page: 202 year: 2013 end-page: 208 article-title: Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple publication-title: Sci. Hortic. – volume: 69 start-page: 27 year: 2013 end-page: 33 article-title: Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress publication-title: Plant Physiol. Biochem. – volume: 151 start-page: 59 year: 2000 end-page: 66 article-title: Oxidative stress and some antioxidant systems in acid rain‐treated bean plants: protective role of exogenous polyamines publication-title: Plant Sci. – volume: 69 start-page: 4141 year: 2018 article-title: Corrigendum: miR156‐SPL modules regulate induction of somatic embryogenesis in citrus callus publication-title: J. Exp. Bot. – volume: 10 start-page: 755 year: 2014 article-title: An organ boundary‐enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation publication-title: Mol. Syst. Biol. – volume: 1819 start-page: 97 year: 2012 end-page: 103 article-title: NAC transcription factors in plant abiotic stress responses publication-title: Biochim. Biophys. Acta – volume: 6 start-page: 58 year: 2015 article-title: MicroRNAs and drought responses in sugarcane publication-title: Front. Plant Sci. – volume: 59 start-page: 86 year: 2017 end-page: 101 article-title: WRKY transcription factors in plant responses to stresses publication-title: J. Integr. Plant Biol. – volume: 17 start-page: 1712 year: 2016 article-title: MicroRNA in control of gene expression: an overview of nuclear functions publication-title: Int. J. Mol. Sci. – volume: 96 start-page: 311 year: 2015 end-page: 320 article-title: Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt‐tolerance of the transgenic plants publication-title: Plant Physiol. Biochem. – volume: 10 start-page: 443 year: 2012 end-page: 452 article-title: Overexpression of miR156 in switchgrass ( L.) results in various morphological alterations and leads to improved biomass production publication-title: Plant Biotechnol. J. – volume: 80 start-page: 1108 year: 2014 end-page: 1117 article-title: The miR156‐SPL9‐DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants publication-title: Plant J. – volume: 84 start-page: 56 year: 2015 end-page: 69 article-title: Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis publication-title: Plant J. – volume: 71 start-page: 684 year: 2020 end-page: 698 article-title: The Saltol QTL‐localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice publication-title: J. Exp. Bot. – volume: 428 start-page: 419 year: 2007 end-page: 438 article-title: Mechanisms of high salinity tolerance in plants publication-title: Method. Enzymol. – volume: 6 start-page: 1 year: 2016 end-page: 14 article-title: Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple ( ) publication-title: Sci. Rep. – volume: 41 start-page: 215 year: 2014 end-page: 226 article-title: Genome‐wide analysis of SBP‐box gene family and molecular cloning of its typical members in × publication-title: Acta Hortic. Sinica – volume: 15 start-page: 247 year: 2010 end-page: 258 article-title: WRKY transcription factors publication-title: Trends Plant Sci. – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 23 start-page: 1153 year: 2011 end-page: 1170 article-title: Phosphorylation of the Nictiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response publication-title: Plant Cell – volume: 14 start-page: 836 year: 2008 end-page: 843 article-title: Microarray‐based analysis of stress‐regulated microRNAs in publication-title: RNA – volume: 26 start-page: 1792 year: 2014 end-page: 1807 article-title: Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors publication-title: Plant Cell – volume: 18 start-page: 1670 year: 2020 end-page: 1682 article-title: miR156a‐targeted SBP‐Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato publication-title: Plant Biotechnol. J. – volume: 8 start-page: 677 year: 2015 end-page: 688 article-title: The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits publication-title: Mol. Plant. – volume: 1819 start-page: 120 year: 2012 end-page: 128 article-title: The role of WRKY transcription factors in plant abiotic stresses publication-title: Biochim. Biophys. Acta – volume: 27 start-page: 795 year: 2008 end-page: 803 article-title: A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco publication-title: Plant Cell Rep. – volume: 12 start-page: 367 year: 1997 end-page: 377 article-title: Functional analysis of the Arabidopsis thaliana SBP‐box gene SPL3: a novel gene involved in the floral transition publication-title: Plant J. – volume: 130 start-page: 469 year: 2017 end-page: 481 article-title: Molecular characterization and expression analysis of the spl gene family with bpspl9 transgenic lines found to confer tolerance to abiotic stress in betula platyphylla suk publication-title: Plant Cell Tissue Organ. Cult. – volume: 19 start-page: 940 year: 2018 article-title: Overexpression of a sbp‐box gene (vpsbp16) from Chinese wild vitis species in Arabidopsis improves salinity and drought stress tolerance publication-title: Int. J. Mol. Sci. – volume: 165 start-page: 830 year: 2019 end-page: 842 article-title: Alfalfa response to heat stress is modulated by microRNA156 publication-title: Physiol. Plant. – volume: 4 year: 2014 article-title: Histochemical detection of superoxide and H O accumulation in seedlings publication-title: Bio‐protocol – ident: e_1_2_9_28_1 doi: 10.1261/rna.895308 – ident: e_1_2_9_44_1 doi: 10.1016/S0168-9452(99)00197-1 – ident: e_1_2_9_24_1 doi: 10.21769/BioProtoc.1108 – ident: e_1_2_9_37_1 doi: 10.1007/s11103-009-9480-3 – ident: e_1_2_9_34_1 doi: 10.1105/tpc.18.00231 – ident: e_1_2_9_47_1 doi: 10.1016/j.plantsci.2018.12.025 – ident: e_1_2_9_32_1 doi: 10.1038/srep38784 – ident: e_1_2_9_43_1 doi: 10.1016/S0076-6879(07)28024-3 – ident: e_1_2_9_48_1 doi: 10.1007/s00299-007-0499-0 – volume: 4 start-page: 598 year: 2019 ident: e_1_2_9_55_1 article-title: Histone Deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant. – ident: e_1_2_9_45_1 doi: 10.1016/j.molp.2015.01.008 – ident: e_1_2_9_7_1 doi: 10.1371/journal.pone.0143022 – ident: e_1_2_9_20_1 doi: 10.1105/tpc.110.081794 – ident: e_1_2_9_12_1 doi: 10.1111/tpj.12958 – ident: e_1_2_9_50_1 doi: 10.1111/nph.14920 – volume: 71 start-page: 684 year: 2020 ident: e_1_2_9_39_1 article-title: The Saltol QTL‐localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice publication-title: J. Exp. Bot. – ident: e_1_2_9_40_1 doi: 10.1016/j.tplants.2010.02.006 – ident: e_1_2_9_57_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_9_56_1 doi: 10.1016/j.plaphy.2015.08.016 – ident: e_1_2_9_53_1 doi: 10.1007/s00438-014-0901-x – ident: e_1_2_9_31_1 doi: 10.1093/jxb/ery197 – ident: e_1_2_9_33_1 doi: 10.1111/ppl.12787 – ident: e_1_2_9_36_1 doi: 10.1016/j.bbagrm.2011.10.005 – ident: e_1_2_9_30_1 doi: 10.1016/j.plaphy.2013.04.016 – ident: e_1_2_9_18_1 doi: 10.3390/ijms19040940 – ident: e_1_2_9_16_1 doi: 10.3389/fpls.2015.00058 – ident: e_1_2_9_6_1 doi: 10.1111/pbi.13151 – ident: e_1_2_9_9_1 doi: 10.1111/pbi.13331 – ident: e_1_2_9_51_1 doi: 10.1111/nph.16500 – ident: e_1_2_9_11_1 doi: 10.1093/aob/mcn205 – ident: e_1_2_9_4_1 doi: 10.3390/ijms17101712 – ident: e_1_2_9_27_1 doi: 10.1111/tpj.13289 – ident: e_1_2_9_26_1 doi: 10.1016/j.plaphy.2013.05.021 – ident: e_1_2_9_10_1 doi: 10.1016/j.scienta.2013.09.033 – ident: e_1_2_9_29_1 doi: 10.1016/j.scienta.2010.10.012 – ident: e_1_2_9_42_1 doi: 10.15252/msb.20145470 – ident: e_1_2_9_19_1 doi: 10.1105/tpc.113.114447 – ident: e_1_2_9_54_1 doi: 10.1016/j.plantsci.2019.06.001 – ident: e_1_2_9_25_1 doi: 10.1007/s00299-017-2210-4 – ident: e_1_2_9_17_1 doi: 10.1105/tpc.111.084525 – ident: e_1_2_9_2_1 doi: 10.1371/journal.pone.0069955 – ident: e_1_2_9_22_1 doi: 10.1111/jipb.12513 – ident: e_1_2_9_49_1 doi: 10.1016/j.scienta.2015.04.009 – volume: 41 start-page: 215 year: 2014 ident: e_1_2_9_52_1 article-title: Genome‐wide analysis of SBP‐box gene family and molecular cloning of its typical members in Malus × domestica publication-title: Acta Hortic. Sinica – ident: e_1_2_9_13_1 doi: 10.1071/FP09269 – ident: e_1_2_9_41_1 doi: 10.1105/tpc.114.123851 – volume: 1819 start-page: 137 year: 2012 ident: e_1_2_9_23_1 article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: BBA‐Gene Regul. Mech. – ident: e_1_2_9_46_1 doi: 10.1186/s12870-019-1977-6 – ident: e_1_2_9_3_1 doi: 10.1046/j.1365-313X.1997.12020367.x – ident: e_1_2_9_5_1 doi: 10.1016/j.bbagrm.2011.09.002 – ident: e_1_2_9_38_1 doi: 10.1007/s11240-017-1226-3 – ident: e_1_2_9_15_1 doi: 10.3389/fpls.2017.02226 – ident: e_1_2_9_21_1 doi: 10.1038/s41598-017-14671-8 – ident: e_1_2_9_8_1 doi: 10.1111/tpj.12712 – ident: e_1_2_9_14_1 doi: 10.1111/j.1467-7652.2011.00677.x – ident: e_1_2_9_35_1 doi: 10.1146/annurev.arplant.59.032607.092911 |
SSID | ssj0021656 |
Score | 2.6377602 |
Snippet | Summary
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of... Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 311 |
SubjectTerms | Abiotic stress apple Apples biotechnology Crop yield Cultivation cultivation area Developmental stages Embryogenesis Embryonic growth stage Empirical analysis Fertilization flowering Flowers & plants Fruit cultivation Fruits Gene expression gene expression regulation Gene Expression Regulation, Plant - genetics genes Genetic resources Genetic transformation irrigation Kinases Life cycles Malus - genetics Malus - metabolism Malus domestica microRNA microRNA156 MicroRNAs MicroRNAs - genetics miRNA Modules Morphogenesis Phylogenetics Plant growth Plant Proteins - genetics Plant Proteins - metabolism Plant resistance Proteins Salinity tolerance Salt Stress Salt tolerance Salt Tolerance - genetics sequence analysis Sorghum SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 13 Standard deviation stress tolerance Transcription factors Transcription Factors - genetics WRKY100 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4s3SggziwCU08SOxT6hFrcqrWi1UlAtRnIzLSttkuw8J_j0ziTewaultJTtRdh6eGc_MN4y9srZQVVpUEQpLHCnhTWSQ7xFkTpaaypt8W-V7nB6dqA-n-jRcuC1CWeX6TGwP6qop6Y58V6BnTXhHSr2dXUQ0NYqyq2GExk22hUewMQO2tX9wPBr3IRdhy3T9RVmUoekP2EJUyzNzkzeJVKnatEiX3MzL1ZL_erGtGTq8y-4E_5HvdQy_x25AfZ_d3jubBwwNeMB-IOv5-WSMMdPul9Enft5UqynweTd1HhacktbAF8V0ybtWEb5spkATNoC735xaHeiitj7jn6tv44_fkzjm8CtUzNYP2cnhwdd3R1EYoxCVOlYqcqAz65T2rkDlEyZ2aMW1s16B9AUNny5KENZL73TlE3AaLHo9BAQnvMwK-YgN6qaGJ4yj9-jRpfRWxk4RVKHXaOGN1wkAlHE2ZK_XpMzLgDFOoy6m-TrWQKrnLdWH7GW_ddYBa1y1aWfNjzzo1iL_KwlXL2NImKRC2HTIXvTLqDSUCSlqaFb0CkUpXRGba_ZooST12Yohe9xJQP-hEmVN2wSfzjZko99AoN2bK_XkZwvenZnUWCORUq0U_f-_56P99-2Pp9cTYZvdElRn01aS77DBcr6CZ-goLd3zoA1_AJn6EVI priority: 102 providerName: ProQuest |
Title | The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13464 https://www.ncbi.nlm.nih.gov/pubmed/32885918 https://www.proquest.com/docview/2487097144 https://www.proquest.com/docview/2619162296 https://www.proquest.com/docview/2440464208 https://www.proquest.com/docview/2524334792 https://pubmed.ncbi.nlm.nih.gov/PMC7868983 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcoED70egRAviwMXB3oe9FqcWNZRXFQUqilRhee3ZEpE6VeJIwK9nZu1YDaUIcbEi7diyd2ey3-5-8w1jT9M0V2WclwE6Sxgo4UxgcNwDSKwsNNGbnGf57sd7B-rNoT7cYC9WuTCNPkS34UaR4f-vKcBzuzgT5Kd2MoikikkLlLhaBIjGnXSUIFWZJrMoCRKc9FtVIWLxdHeuz0XnAOZ5nuRZ_OonoOF1drR69YZ38m2wrO2g-PmbquN_ftsNdq0Fpny78aSbbAOqW-zq9vG8FeeA2-wL-hQ_mYxxMfb8w-gdP5mVyynweVPOHhacTsOBL_JpzZscFF7PpkClO4DbH5xyKGgHuDrm78tP47efozDk8L2l4lZ32MFw9-PLvaCtzxAUOlQqsKCT1CrtbI5RLUxoER5omzoF0uVU1TovQKROOqtLF4HVkCKcIoU54WSSy7tss5pVcJ9xhKUOsapLZWgVaSA6jdDBOB0BQBEmPfZsNVJZ0YqXUw2NabZaxGCXZb7LeuxJZ3raKHb8yWhrNdxZG7SLTODijSS11AXNuNaMYiHSuMced80YjXTEklcwW9IjFJ0Vi9D8xUYLJSmBV_TYvcbBuheVwpCgIN6drLleZ0Bq4Ost1eSrVwVPTGxSI7GnvGdd_O3ZaOe1__Hg300fsiuCyDyerr7FNuv5Eh4hGqttn10SaoRXM3zVZ5d3dvdH477f2ej7gPwF3do0Mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxLsLBQwCiUto4kceB4TKY9llt1VVWrVcSONkXFbaJss-BP1T_EZm8oJVS2-9RbITJePP8Tf2zDeMvYiiRGV-kjkIFtdRwoZOiOPuQGBkqim8yZZRvtt-b199PtSHK-x3kwtDYZXNP7H8UWdFSnvkGwKZNekdKfV28sOhqlF0utqU0KhgMYDTn-iyzd70P-D4vhSi-3Hvfc-pqwo4qXaVcgzoIDJKW5MgFkXoGlzUtImsAmkTqsWcpCAiK63RmfXAaIiQBJAumrAySCQ-9wq7qiSu5JSZ3v3UOnikZFNlMwVOgESjVjKiyKGJGb32pPLV8vp3htSejc38lzOXi173FrtZs1W-WcHrNluB_A67sXk8rRU74C77hkDjJ6Nd9NA2vuwM-UmRLcbAp1WNe5hxOiIHPkvGc14lpvB5MQaq5wHcnHJKrKBt4fyYb2UHu4Ovnuty-FXH5-b32P6lmPc-W82LHNYYR65qkcDaSLpGkTCi1cgnQqs9AEjdoMNeNaaM01rRnAprjOPGs0Grx6XVO-x523VSyXic12m9GY-4nsmz-C_uzm9GB9TzhYj8DnvWNuMUpXOXJIdiQY9QdIAs3PCCPlogolQQiQ57UCGgfVEpQlIZxLuDJWy0HUgifLklH30vpcKD0A-jUKKlShT9_9vjnXf98uLhxUZ4yq719raG8bC_PXjErguK8Clj2NfZ6ny6gMdI0ebmSTkvODu67In4B9DmTHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQLwJFFgQSFxM7H34cUCopY0aUqIoUFEuGK89WyKldshD0L_Gr2PGj0DU0ltvlnZjxbMz3m-833zD2IsoSlTmJ5mDzuI6StjQCXHdHQiMTDXRm2zJ8h34-4fq_ZE-2mC_m1oYolU278TyRZ0VKX0j7whE1qR3pFTH1rSI4W737fSHQx2k6KS1aadRuUgfTn9i-jZ_09vFtX4pRHfv07t9p-4w4KTaVcoxoIPIKG1Ngn4pQtfgBqdNZBVIm1Bf5iQFEVlpjc6sB0ZDhICANNKElUEi8b5X2GZAWVGLbe7sDYajVbpHujZVbVPgBAg7al0j4hFNzfi1J5Wv1nfDMxD3LFPzXwRdboHdm-xGjV35duVst9gG5LfZ9e3jWa3fAXfYV3Q7fjIeYb7W-Tg84CdFtpwAn1Ud72HO6cAc-DyZLHhVpsIXxQSouwdwc8qpzII-EufH_EP2edT_4rkuh181Wze_yw4vxcD3WCsvcnjAOCJXi3DWRtI1imQSrUZ0EVrtAUDqBm32qjFlnNb65tRmYxI3eQ5aPS6t3mbPV1OnlajHeZO2mvWI67iex3-98PxhTEc9X4jIb7Nnq2EMWDqFSXIolnQLRcfJwg0vmKOFklTjK9rsfuUBqz8qRUiag_jrYM03VhNIMHx9JB9_L4XDg9APo1CipUov-v-zx8OdXnnx8GIjPGVXMQjjg96g_4hdE0T3KQntW6y1mC3hMeK1hXlSBwZn3y47Fv8A7nlSDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+miR156%2FSPL+module+regulates+apple+salt+stress+tolerance+by+activating+MdWRKY100+expression&rft.jtitle=Plant+biotechnology+journal&rft.au=Ma%2C+Yue&rft.au=Xue%2C+Hao&rft.au=Zhang%2C+Feng&rft.au=Jiang%2C+Qiu&rft.date=2021-02-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=19&rft.issue=2&rft.spage=311&rft.epage=323&rft_id=info:doi/10.1111%2Fpbi.13464&rft.externalDBID=10.1111%252Fpbi.13464&rft.externalDocID=PBI13464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |