The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression

Summary Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐r...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 19; no. 2; pp. 311 - 323
Main Authors Ma, Yue, Xue, Hao, Zhang, Feng, Jiang, Qiu, Yang, Shuang, Yue, Pengtao, Wang, Feng, Zhang, Yuanyan, Li, Linguang, He, Ping, Zhang, Zhihong
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.
AbstractList Summary Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple ( Malus domestica ) and select salt‐resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM‐5’ RACE and stable genetic transformation technology to verify that both mdm‐ MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA‐Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up‐regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt-resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM-5' RACE and stable genetic transformation technology to verify that both mdm-MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA-Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up-regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt-resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM-5' RACE and stable genetic transformation technology to verify that both mdm-MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA-Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up-regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.
Author Ma, Yue
Yang, Shuang
Yue, Pengtao
Jiang, Qiu
Zhang, Yuanyan
Zhang, Zhihong
Li, Linguang
He, Ping
Xue, Hao
Zhang, Feng
Wang, Feng
AuthorAffiliation 5 Shandong Institute of Pomology Taian Shandong China
3 College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang China
4 College of Plant Protection Shenyang Agricultural University Shenyang China
1 College of Horticulture Shenyang Agricultural University Shenyang China
2 College of Horticulture Anhui Agricultural University Hefei China
AuthorAffiliation_xml – name: 2 College of Horticulture Anhui Agricultural University Hefei China
– name: 5 Shandong Institute of Pomology Taian Shandong China
– name: 3 College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang China
– name: 1 College of Horticulture Shenyang Agricultural University Shenyang China
– name: 4 College of Plant Protection Shenyang Agricultural University Shenyang China
Author_xml – sequence: 1
  givenname: Yue
  surname: Ma
  fullname: Ma, Yue
  organization: Shenyang Agricultural University
– sequence: 2
  givenname: Hao
  surname: Xue
  fullname: Xue, Hao
  organization: Anhui Agricultural University
– sequence: 3
  givenname: Feng
  orcidid: 0000-0002-3200-5506
  surname: Zhang
  fullname: Zhang, Feng
  organization: Shenyang Agricultural University
– sequence: 4
  givenname: Qiu
  surname: Jiang
  fullname: Jiang, Qiu
  organization: Shenyang Agricultural University
– sequence: 5
  givenname: Shuang
  surname: Yang
  fullname: Yang, Shuang
  organization: Shenyang Agricultural University
– sequence: 6
  givenname: Pengtao
  surname: Yue
  fullname: Yue, Pengtao
  organization: Shenyang Agricultural University
– sequence: 7
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: Shenyang Agricultural University
– sequence: 8
  givenname: Yuanyan
  surname: Zhang
  fullname: Zhang, Yuanyan
  organization: Shenyang Agricultural University
– sequence: 9
  givenname: Linguang
  surname: Li
  fullname: Li, Linguang
  organization: Shandong Institute of Pomology
– sequence: 10
  givenname: Ping
  surname: He
  fullname: He, Ping
  organization: Shandong Institute of Pomology
– sequence: 11
  givenname: Zhihong
  orcidid: 0000-0001-5935-1567
  surname: Zhang
  fullname: Zhang, Zhihong
  email: zhangz@syau.edu.cn
  organization: Shenyang Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32885918$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9vFCEUxYmpsX_0wS9gSHyxD9sFBhh4MamN1cY1NrXG-CKB2TtbGnYYYaa6317WrRttYuUFbvjdk9x7zj7a6WIHCD2l5IiWM-2dP6IVl_wB2qNc1pNaCrazfXO-i_ZzviaEUSnkI7RbMaWEpmoPfb28Arz0F1TI6cfzGV7G-RgAJ1iMwQ6Qse37UmcbBpyHBDnjIQZItmsAuxW2zeBv7OC7BX4__3zx7gslBMOPfk362D1GD1sbMjy5vQ_Qp9PXlydvJ7MPb85OjmeTRhDOJw5ErR0XrbO15kwRxzgRTrccqtZSxrVtgOm2ap2YtxScAM0EFVwR1la1rQ7Qy41uP7olzBvohmSD6ZNf2rQy0Xrz90_nr8wi3phaSaVVVQRe3Aqk-G2EPJilzw2EYDuIYzZMMF5VvNbs_yjnpHjBiCro8zvodRxTVzZhmKSaSsa0vJfiqia6ppwX6tmfI25n--1lAQ43QJNizgnaLUKJWefElJyYXzkp7PQO2_ih2BjX2_Hhvo7vPsDq39Lm_NXZpuMn8nLMTQ
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_129913
crossref_primary_10_1007_s10528_021_10108_0
crossref_primary_10_1071_CP22086
crossref_primary_10_1007_s11816_022_00787_5
crossref_primary_10_1016_j_scienta_2022_111077
crossref_primary_10_3390_genes14081586
crossref_primary_10_1016_j_plantsci_2023_111832
crossref_primary_10_1186_s12864_022_08945_3
crossref_primary_10_1007_s00425_023_04308_8
crossref_primary_10_1007_s00425_024_04368_4
crossref_primary_10_1093_plphys_kiab498
crossref_primary_10_1111_nph_18317
crossref_primary_10_1016_j_plaphy_2023_107823
crossref_primary_10_3390_agronomy14102421
crossref_primary_10_1186_s12870_024_05899_4
crossref_primary_10_3390_ijms24098323
crossref_primary_10_1016_j_envint_2023_108144
crossref_primary_10_3389_fpls_2024_1412685
crossref_primary_10_3390_life12101632
crossref_primary_10_1016_j_scienta_2022_111363
crossref_primary_10_1016_j_ygeno_2023_110627
crossref_primary_10_3389_fpls_2023_1303667
crossref_primary_10_3389_fpls_2022_834027
crossref_primary_10_1007_s10142_022_00886_0
crossref_primary_10_3389_fpls_2021_663519
crossref_primary_10_3389_fpls_2022_847853
crossref_primary_10_3389_fpls_2022_879819
crossref_primary_10_1186_s12864_024_10262_w
crossref_primary_10_1111_ppl_14498
crossref_primary_10_1111_tpj_16584
crossref_primary_10_1111_nph_19503
crossref_primary_10_3390_ijms252111698
crossref_primary_10_1016_j_ijbiomac_2022_10_240
crossref_primary_10_1093_plphys_kiad099
crossref_primary_10_3389_fpls_2024_1336892
crossref_primary_10_3389_fpls_2021_703994
crossref_primary_10_7717_peerj_14241
crossref_primary_10_48130_opr_0024_0008
crossref_primary_10_3389_fpls_2021_767984
crossref_primary_10_1016_j_plaphy_2022_12_023
crossref_primary_10_1016_j_tplants_2022_01_009
crossref_primary_10_3390_horticulturae10090983
crossref_primary_10_1016_j_plaphy_2023_108137
crossref_primary_10_1186_s12864_024_10403_1
crossref_primary_10_3390_horticulturae10080825
crossref_primary_10_1007_s11033_025_10273_0
crossref_primary_10_3390_d15090983
crossref_primary_10_3390_ijms241310915
crossref_primary_10_3390_plants13131850
crossref_primary_10_1016_j_ijbiomac_2025_141572
crossref_primary_10_1186_s13068_023_02286_3
crossref_primary_10_1111_jipb_13828
crossref_primary_10_3390_horticulturae8070651
crossref_primary_10_1186_s12870_022_03838_9
crossref_primary_10_1007_s00299_021_02828_9
crossref_primary_10_1007_s00344_024_11363_2
crossref_primary_10_1111_tpj_17205
crossref_primary_10_1016_j_hpj_2023_05_005
crossref_primary_10_3390_antiox13010055
crossref_primary_10_1016_j_plantsci_2021_110958
crossref_primary_10_1186_s12870_023_04659_0
crossref_primary_10_1093_hr_uhad293
crossref_primary_10_1016_j_ijbiomac_2025_139547
crossref_primary_10_1080_21655979_2021_1997244
crossref_primary_10_3390_ijms23031141
crossref_primary_10_1016_j_envexpbot_2021_104549
crossref_primary_10_3389_fpls_2023_1238507
crossref_primary_10_1093_hr_uhae028
crossref_primary_10_3390_ijms25137437
crossref_primary_10_1007_s12192_023_01388_z
crossref_primary_10_1016_j_plaphy_2023_108150
crossref_primary_10_3390_genes13020331
crossref_primary_10_1016_j_indcrop_2022_115828
crossref_primary_10_1016_j_tig_2023_07_001
crossref_primary_10_1016_j_micres_2023_127398
crossref_primary_10_1007_s11104_023_06407_7
crossref_primary_10_1111_pce_15168
crossref_primary_10_3390_genes13081455
crossref_primary_10_3390_ijms22168918
crossref_primary_10_3390_ijms231810947
crossref_primary_10_3389_fpls_2025_1497064
crossref_primary_10_3389_fpls_2024_1447749
crossref_primary_10_1016_j_envexpbot_2023_105400
crossref_primary_10_1016_j_plaphy_2024_108435
crossref_primary_10_1016_j_hpj_2024_04_004
crossref_primary_10_1016_j_ecoenv_2023_114881
crossref_primary_10_1080_15592324_2024_2371694
crossref_primary_10_3390_ijms252212446
crossref_primary_10_3390_ijms23084124
crossref_primary_10_1016_j_ijbiomac_2024_135266
crossref_primary_10_1016_j_stress_2024_100526
crossref_primary_10_3389_fbioe_2022_1006386
crossref_primary_10_3390_plants11233389
crossref_primary_10_1016_j_plaphy_2023_107857
crossref_primary_10_1111_ppl_13923
crossref_primary_10_1093_plphys_kiad621
crossref_primary_10_1111_pbi_14056
crossref_primary_10_1007_s00299_024_03175_1
crossref_primary_10_1016_j_stress_2024_100409
crossref_primary_10_1016_j_indcrop_2023_116874
crossref_primary_10_1021_acs_jafc_4c10283
crossref_primary_10_1186_s12870_023_04332_6
crossref_primary_10_3389_fpls_2021_665439
crossref_primary_10_3390_f13111750
crossref_primary_10_3389_fpls_2024_1415209
crossref_primary_10_1016_j_jare_2022_11_005
crossref_primary_10_1007_s11033_022_07179_6
crossref_primary_10_1007_s12298_023_01345_1
crossref_primary_10_3390_plants11233299
crossref_primary_10_3390_plants13081057
crossref_primary_10_1093_hr_uhad144
crossref_primary_10_1016_j_scienta_2024_113907
crossref_primary_10_1111_ppl_13492
crossref_primary_10_3389_fpls_2022_965745
crossref_primary_10_3390_ijms23126365
crossref_primary_10_3390_ijms25052639
crossref_primary_10_3390_ijms24087290
crossref_primary_10_1007_s11103_024_01530_0
crossref_primary_10_1186_s12864_024_10777_2
crossref_primary_10_1016_j_ijbiomac_2025_141829
crossref_primary_10_1016_j_jplph_2024_154313
crossref_primary_10_3390_horticulturae9030294
crossref_primary_10_3389_fpls_2024_1484892
crossref_primary_10_1016_j_scienta_2023_112010
crossref_primary_10_1007_s12374_025_09456_w
crossref_primary_10_3390_plants9111515
crossref_primary_10_3389_fpls_2022_919243
crossref_primary_10_3390_genes13050761
crossref_primary_10_3390_ijms25168989
crossref_primary_10_1038_s41598_022_26911_7
crossref_primary_10_3389_fpls_2022_1068163
crossref_primary_10_3390_cells11182806
crossref_primary_10_1016_j_envexpbot_2022_105177
crossref_primary_10_3389_fpls_2021_667458
crossref_primary_10_1016_j_envexpbot_2024_105931
crossref_primary_10_1111_pbi_14351
crossref_primary_10_1111_jipb_13860
crossref_primary_10_3390_plants13020201
Cites_doi 10.1261/rna.895308
10.1016/S0168-9452(99)00197-1
10.21769/BioProtoc.1108
10.1007/s11103-009-9480-3
10.1105/tpc.18.00231
10.1016/j.plantsci.2018.12.025
10.1038/srep38784
10.1016/S0076-6879(07)28024-3
10.1007/s00299-007-0499-0
10.1016/j.molp.2015.01.008
10.1371/journal.pone.0143022
10.1105/tpc.110.081794
10.1111/tpj.12958
10.1111/nph.14920
10.1016/j.tplants.2010.02.006
10.1016/j.cell.2016.08.029
10.1016/j.plaphy.2015.08.016
10.1007/s00438-014-0901-x
10.1093/jxb/ery197
10.1111/ppl.12787
10.1016/j.bbagrm.2011.10.005
10.1016/j.plaphy.2013.04.016
10.3390/ijms19040940
10.3389/fpls.2015.00058
10.1111/pbi.13151
10.1111/pbi.13331
10.1111/nph.16500
10.1093/aob/mcn205
10.3390/ijms17101712
10.1111/tpj.13289
10.1016/j.plaphy.2013.05.021
10.1016/j.scienta.2013.09.033
10.1016/j.scienta.2010.10.012
10.15252/msb.20145470
10.1105/tpc.113.114447
10.1016/j.plantsci.2019.06.001
10.1007/s00299-017-2210-4
10.1105/tpc.111.084525
10.1371/journal.pone.0069955
10.1111/jipb.12513
10.1016/j.scienta.2015.04.009
10.1071/FP09269
10.1105/tpc.114.123851
10.1186/s12870-019-1977-6
10.1046/j.1365-313X.1997.12020367.x
10.1016/j.bbagrm.2011.09.002
10.1007/s11240-017-1226-3
10.3389/fpls.2017.02226
10.1038/s41598-017-14671-8
10.1111/tpj.12712
10.1111/j.1467-7652.2011.00677.x
10.1146/annurev.arplant.59.032607.092911
ContentType Journal Article
Copyright 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PRINS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13464
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
Publicly Available Content Database
CrossRef
MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate miR156/SPL module control apple salt resistance
EISSN 1467-7652
EndPage 323
ExternalDocumentID PMC7868983
32885918
10_1111_pbi_13464
PBI13464
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shenyang Young and Middle‐aged Science and Technology Innovation Talents Support Plan
  funderid: RC190446
– fundername: Nature Science Project of the Technology Department of Liaoning Province
  funderid: 20180550478; 2020‐MS‐198
– fundername: LiaoNing Revitalization Talents Program
  funderid: XLYC1902069
– fundername: Millions Talents Project Foundation of Liaoning Province
  funderid: 2017069
– fundername: National key R & D Program of China
  funderid: 2019YFD1000100
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1902069
– fundername: Nature Science Project of the Technology Department of Liaoning Province
  grantid: 20180550478; 2020‐MS‐198
– fundername: Millions Talents Project Foundation of Liaoning Province
  grantid: 2017069
– fundername: National key R & D Program of China
  grantid: 2019YFD1000100
– fundername: Shenyang Young and Middle‐aged Science and Technology Innovation Talents Support Plan
  grantid: RC190446
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5044-be579b45fba794280b2405b9f4e3fa1249ace29f3fb5df1eb5e925154802f37a3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 14:13:47 EDT 2025
Fri Jul 11 18:29:30 EDT 2025
Tue Aug 05 10:54:51 EDT 2025
Wed Aug 13 11:07:06 EDT 2025
Wed Aug 13 11:41:06 EDT 2025
Mon Jul 21 05:28:29 EDT 2025
Tue Jul 01 02:34:46 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Wed Jan 22 16:32:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords salt tolerance
apple
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13
WRKY100
microRNA156
Language English
License Attribution
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5044-be579b45fba794280b2405b9f4e3fa1249ace29f3fb5df1eb5e925154802f37a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5935-1567
0000-0002-3200-5506
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13464
PMID 32885918
PQID 2487097144
PQPubID 1096352
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868983
proquest_miscellaneous_2524334792
proquest_miscellaneous_2440464208
proquest_journals_2619162296
proquest_journals_2487097144
pubmed_primary_32885918
crossref_primary_10_1111_pbi_13464
crossref_citationtrail_10_1111_pbi_13464
wiley_primary_10_1111_pbi_13464_PBI13464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2013; 25
2013; 69
2010; 15
2019; 17
2014; 26
2013; 70
2013; 164
2013; 8
2007; 428
2019b; 280
2012; 10
2020; 18
2019; 165
2019; 286
2011; 127
2018; 8
2014; 4
2015; 290
2015; 84
2018; 217
2008; 27
1997; 12
2018; 30
2012; 1819
2011; 23
2019a; 19
2018; 37
2014; 10
2016; 88
2015; 6
2019; 4
2010; 37
2015; 96
2015; 10
2008; 14
2020; 226
2008; 59
2016; 167
2000; 151
2017; 130
2014; 41
2016; 17
2015; 8
2018; 69
2018; 19
2016; 6
2014; 80
2015; 190
2017; 59
2009; 70
2020; 71
2009; 103
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Khraiwesh B. (e_1_2_9_23_1) 2012; 1819
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Nutan K.K. (e_1_2_9_39_1) 2020; 71
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
Zhang X. (e_1_2_9_52_1) 2014; 41
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
Zheng Y. (e_1_2_9_55_1) 2019; 4
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  year: 2015
  article-title: The cotton WRKY gene positively regulates salt and drought stress tolerance in transgenic
  publication-title: PLoS One
– volume: 70
  start-page: 385
  year: 2009
  end-page: 401
  article-title: Conserved and novel miRNAs in the legume in response to stress
  publication-title: Plant Mol. Biol.
– volume: 88
  start-page: 735
  year: 2016
  end-page: 748
  article-title: Apple ( ) MdERF 2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription
  publication-title: Plant J.
– volume: 25
  start-page: 2699
  year: 2013
  end-page: 2713
  article-title: Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis
  publication-title: Plant Cell
– volume: 8
  start-page: 2226
  year: 2018
  article-title: miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS‐LIKE 79
  publication-title: Front. Plant Sci.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 190
  start-page: 24
  year: 2015
  end-page: 30
  article-title: Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress
  publication-title: Sci. Hortic.
– volume: 19
  start-page: 370
  year: 2019a
  article-title: Roles of the SPL gene family and miR156 in the salt stress responses of tamarisk ( )
  publication-title: BMC Plant Biol.
– volume: 30
  start-page: 1562
  year: 2018
  end-page: 1581
  article-title: Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple
  publication-title: Plant Cell
– volume: 217
  start-page: 523
  year: 2018
  end-page: 539
  article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses
  publication-title: New Phytol.
– volume: 286
  start-page: 68
  year: 2019
  end-page: 77
  article-title: MdWRKY100 encodes a group I WRKY transcription factor in that positively regulates resistance to infection
  publication-title: Plant Sci.
– volume: 103
  start-page: 29
  year: 2009
  end-page: 38
  article-title: Differential expression of miRNAs in response to salt stress in maize roots
  publication-title: Ann. Bot.
– volume: 8
  year: 2013
  article-title: Genome wide analysis of the apple MYB transcription factor family allows the identification of gene confering abiotic stress tolerance in plants
  publication-title: PLoS One
– volume: 70
  start-page: 100
  year: 2013
  end-page: 114
  article-title: Genome‐wide identification and analysis of the SBP‐box family genes in apple ( × )
  publication-title: Plant Physio. Biochem.
– volume: 37
  start-page: 604
  year: 2010
  end-page: 612
  article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants
  publication-title: Funct. Plant Biol.
– volume: 127
  start-page: 411
  year: 2011
  end-page: 419
  article-title: In vitro induced tetraploid of (Nakai) Tzvel. shows an improved level of abiotic stress tolerance
  publication-title: Sci. Hortic.
– volume: 1819
  start-page: 137
  year: 2012
  end-page: 148
  article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: BBA‐Gene Regul. Mech.
– volume: 23
  start-page: 1512
  year: 2011
  end-page: 1522
  article-title: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156‐targeted SPL transcription factor
  publication-title: Plant Cell
– volume: 226
  start-page: 1781
  year: 2020
  end-page: 1795
  article-title: Auxin‐activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening
  publication-title: New Phytol
– volume: 17
  start-page: 2341
  year: 2019
  end-page: 2355
  article-title: MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress‐responsive signals
  publication-title: Plant Biotechnol. J.
– volume: 4
  start-page: 598
  year: 2019
  end-page: 611
  article-title: Histone Deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response
  publication-title: Mol. Plant.
– volume: 290
  start-page: 115
  year: 2015
  end-page: 126
  article-title: Genomic organization, differential expression, and functional analysis of the SPL gene family in
  publication-title: Mol. Genet. Genom.
– volume: 37
  start-page: 61
  year: 2018
  end-page: 75
  article-title: Plant small RNAs: the essential epigenetic regulators of gene expression for salt‐stress responses and tolerance
  publication-title: Plant Cell Rep.
– volume: 280
  start-page: 258
  year: 2019b
  end-page: 268
  article-title: The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry
  publication-title: Plant Sci.
– volume: 7
  start-page: 14223
  year: 2017
  article-title: miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings
  publication-title: Sci. Rep.
– volume: 164
  start-page: 202
  year: 2013
  end-page: 208
  article-title: Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple
  publication-title: Sci. Hortic.
– volume: 69
  start-page: 27
  year: 2013
  end-page: 33
  article-title: Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress
  publication-title: Plant Physiol. Biochem.
– volume: 151
  start-page: 59
  year: 2000
  end-page: 66
  article-title: Oxidative stress and some antioxidant systems in acid rain‐treated bean plants: protective role of exogenous polyamines
  publication-title: Plant Sci.
– volume: 69
  start-page: 4141
  year: 2018
  article-title: Corrigendum: miR156‐SPL modules regulate induction of somatic embryogenesis in citrus callus
  publication-title: J. Exp. Bot.
– volume: 10
  start-page: 755
  year: 2014
  article-title: An organ boundary‐enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation
  publication-title: Mol. Syst. Biol.
– volume: 1819
  start-page: 97
  year: 2012
  end-page: 103
  article-title: NAC transcription factors in plant abiotic stress responses
  publication-title: Biochim. Biophys. Acta
– volume: 6
  start-page: 58
  year: 2015
  article-title: MicroRNAs and drought responses in sugarcane
  publication-title: Front. Plant Sci.
– volume: 59
  start-page: 86
  year: 2017
  end-page: 101
  article-title: WRKY transcription factors in plant responses to stresses
  publication-title: J. Integr. Plant Biol.
– volume: 17
  start-page: 1712
  year: 2016
  article-title: MicroRNA in control of gene expression: an overview of nuclear functions
  publication-title: Int. J. Mol. Sci.
– volume: 96
  start-page: 311
  year: 2015
  end-page: 320
  article-title: Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt‐tolerance of the transgenic plants
  publication-title: Plant Physiol. Biochem.
– volume: 10
  start-page: 443
  year: 2012
  end-page: 452
  article-title: Overexpression of miR156 in switchgrass ( L.) results in various morphological alterations and leads to improved biomass production
  publication-title: Plant Biotechnol. J.
– volume: 80
  start-page: 1108
  year: 2014
  end-page: 1117
  article-title: The miR156‐SPL9‐DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants
  publication-title: Plant J.
– volume: 84
  start-page: 56
  year: 2015
  end-page: 69
  article-title: Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis
  publication-title: Plant J.
– volume: 71
  start-page: 684
  year: 2020
  end-page: 698
  article-title: The Saltol QTL‐localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice
  publication-title: J. Exp. Bot.
– volume: 428
  start-page: 419
  year: 2007
  end-page: 438
  article-title: Mechanisms of high salinity tolerance in plants
  publication-title: Method. Enzymol.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 14
  article-title: Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple ( )
  publication-title: Sci. Rep.
– volume: 41
  start-page: 215
  year: 2014
  end-page: 226
  article-title: Genome‐wide analysis of SBP‐box gene family and molecular cloning of its typical members in ×
  publication-title: Acta Hortic. Sinica
– volume: 15
  start-page: 247
  year: 2010
  end-page: 258
  article-title: WRKY transcription factors
  publication-title: Trends Plant Sci.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 23
  start-page: 1153
  year: 2011
  end-page: 1170
  article-title: Phosphorylation of the Nictiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response
  publication-title: Plant Cell
– volume: 14
  start-page: 836
  year: 2008
  end-page: 843
  article-title: Microarray‐based analysis of stress‐regulated microRNAs in
  publication-title: RNA
– volume: 26
  start-page: 1792
  year: 2014
  end-page: 1807
  article-title: Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors
  publication-title: Plant Cell
– volume: 18
  start-page: 1670
  year: 2020
  end-page: 1682
  article-title: miR156a‐targeted SBP‐Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato
  publication-title: Plant Biotechnol. J.
– volume: 8
  start-page: 677
  year: 2015
  end-page: 688
  article-title: The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits
  publication-title: Mol. Plant.
– volume: 1819
  start-page: 120
  year: 2012
  end-page: 128
  article-title: The role of WRKY transcription factors in plant abiotic stresses
  publication-title: Biochim. Biophys. Acta
– volume: 27
  start-page: 795
  year: 2008
  end-page: 803
  article-title: A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco
  publication-title: Plant Cell Rep.
– volume: 12
  start-page: 367
  year: 1997
  end-page: 377
  article-title: Functional analysis of the Arabidopsis thaliana SBP‐box gene SPL3: a novel gene involved in the floral transition
  publication-title: Plant J.
– volume: 130
  start-page: 469
  year: 2017
  end-page: 481
  article-title: Molecular characterization and expression analysis of the spl gene family with bpspl9 transgenic lines found to confer tolerance to abiotic stress in betula platyphylla suk
  publication-title: Plant Cell Tissue Organ. Cult.
– volume: 19
  start-page: 940
  year: 2018
  article-title: Overexpression of a sbp‐box gene (vpsbp16) from Chinese wild vitis species in Arabidopsis improves salinity and drought stress tolerance
  publication-title: Int. J. Mol. Sci.
– volume: 165
  start-page: 830
  year: 2019
  end-page: 842
  article-title: Alfalfa response to heat stress is modulated by microRNA156
  publication-title: Physiol. Plant.
– volume: 4
  year: 2014
  article-title: Histochemical detection of superoxide and H O accumulation in seedlings
  publication-title: Bio‐protocol
– ident: e_1_2_9_28_1
  doi: 10.1261/rna.895308
– ident: e_1_2_9_44_1
  doi: 10.1016/S0168-9452(99)00197-1
– ident: e_1_2_9_24_1
  doi: 10.21769/BioProtoc.1108
– ident: e_1_2_9_37_1
  doi: 10.1007/s11103-009-9480-3
– ident: e_1_2_9_34_1
  doi: 10.1105/tpc.18.00231
– ident: e_1_2_9_47_1
  doi: 10.1016/j.plantsci.2018.12.025
– ident: e_1_2_9_32_1
  doi: 10.1038/srep38784
– ident: e_1_2_9_43_1
  doi: 10.1016/S0076-6879(07)28024-3
– ident: e_1_2_9_48_1
  doi: 10.1007/s00299-007-0499-0
– volume: 4
  start-page: 598
  year: 2019
  ident: e_1_2_9_55_1
  article-title: Histone Deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response
  publication-title: Mol. Plant.
– ident: e_1_2_9_45_1
  doi: 10.1016/j.molp.2015.01.008
– ident: e_1_2_9_7_1
  doi: 10.1371/journal.pone.0143022
– ident: e_1_2_9_20_1
  doi: 10.1105/tpc.110.081794
– ident: e_1_2_9_12_1
  doi: 10.1111/tpj.12958
– ident: e_1_2_9_50_1
  doi: 10.1111/nph.14920
– volume: 71
  start-page: 684
  year: 2020
  ident: e_1_2_9_39_1
  article-title: The Saltol QTL‐localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice
  publication-title: J. Exp. Bot.
– ident: e_1_2_9_40_1
  doi: 10.1016/j.tplants.2010.02.006
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_9_56_1
  doi: 10.1016/j.plaphy.2015.08.016
– ident: e_1_2_9_53_1
  doi: 10.1007/s00438-014-0901-x
– ident: e_1_2_9_31_1
  doi: 10.1093/jxb/ery197
– ident: e_1_2_9_33_1
  doi: 10.1111/ppl.12787
– ident: e_1_2_9_36_1
  doi: 10.1016/j.bbagrm.2011.10.005
– ident: e_1_2_9_30_1
  doi: 10.1016/j.plaphy.2013.04.016
– ident: e_1_2_9_18_1
  doi: 10.3390/ijms19040940
– ident: e_1_2_9_16_1
  doi: 10.3389/fpls.2015.00058
– ident: e_1_2_9_6_1
  doi: 10.1111/pbi.13151
– ident: e_1_2_9_9_1
  doi: 10.1111/pbi.13331
– ident: e_1_2_9_51_1
  doi: 10.1111/nph.16500
– ident: e_1_2_9_11_1
  doi: 10.1093/aob/mcn205
– ident: e_1_2_9_4_1
  doi: 10.3390/ijms17101712
– ident: e_1_2_9_27_1
  doi: 10.1111/tpj.13289
– ident: e_1_2_9_26_1
  doi: 10.1016/j.plaphy.2013.05.021
– ident: e_1_2_9_10_1
  doi: 10.1016/j.scienta.2013.09.033
– ident: e_1_2_9_29_1
  doi: 10.1016/j.scienta.2010.10.012
– ident: e_1_2_9_42_1
  doi: 10.15252/msb.20145470
– ident: e_1_2_9_19_1
  doi: 10.1105/tpc.113.114447
– ident: e_1_2_9_54_1
  doi: 10.1016/j.plantsci.2019.06.001
– ident: e_1_2_9_25_1
  doi: 10.1007/s00299-017-2210-4
– ident: e_1_2_9_17_1
  doi: 10.1105/tpc.111.084525
– ident: e_1_2_9_2_1
  doi: 10.1371/journal.pone.0069955
– ident: e_1_2_9_22_1
  doi: 10.1111/jipb.12513
– ident: e_1_2_9_49_1
  doi: 10.1016/j.scienta.2015.04.009
– volume: 41
  start-page: 215
  year: 2014
  ident: e_1_2_9_52_1
  article-title: Genome‐wide analysis of SBP‐box gene family and molecular cloning of its typical members in Malus × domestica
  publication-title: Acta Hortic. Sinica
– ident: e_1_2_9_13_1
  doi: 10.1071/FP09269
– ident: e_1_2_9_41_1
  doi: 10.1105/tpc.114.123851
– volume: 1819
  start-page: 137
  year: 2012
  ident: e_1_2_9_23_1
  article-title: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: BBA‐Gene Regul. Mech.
– ident: e_1_2_9_46_1
  doi: 10.1186/s12870-019-1977-6
– ident: e_1_2_9_3_1
  doi: 10.1046/j.1365-313X.1997.12020367.x
– ident: e_1_2_9_5_1
  doi: 10.1016/j.bbagrm.2011.09.002
– ident: e_1_2_9_38_1
  doi: 10.1007/s11240-017-1226-3
– ident: e_1_2_9_15_1
  doi: 10.3389/fpls.2017.02226
– ident: e_1_2_9_21_1
  doi: 10.1038/s41598-017-14671-8
– ident: e_1_2_9_8_1
  doi: 10.1111/tpj.12712
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1467-7652.2011.00677.x
– ident: e_1_2_9_35_1
  doi: 10.1146/annurev.arplant.59.032607.092911
SSID ssj0021656
Score 2.6377602
Snippet Summary Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of...
Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms Abiotic stress
apple
Apples
biotechnology
Crop yield
Cultivation
cultivation area
Developmental stages
Embryogenesis
Embryonic growth stage
Empirical analysis
Fertilization
flowering
Flowers & plants
Fruit cultivation
Fruits
Gene expression
gene expression regulation
Gene Expression Regulation, Plant - genetics
genes
Genetic resources
Genetic transformation
irrigation
Kinases
Life cycles
Malus - genetics
Malus - metabolism
Malus domestica
microRNA
microRNA156
MicroRNAs
MicroRNAs - genetics
miRNA
Modules
Morphogenesis
Phylogenetics
Plant growth
Plant Proteins - genetics
Plant Proteins - metabolism
Plant resistance
Proteins
Salinity tolerance
Salt Stress
Salt tolerance
Salt Tolerance - genetics
sequence analysis
Sorghum
SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 13
Standard deviation
stress tolerance
Transcription factors
Transcription Factors - genetics
WRKY100
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4s3SggziwCU08SOxT6hFrcqrWi1UlAtRnIzLSttkuw8J_j0ziTewaultJTtRdh6eGc_MN4y9srZQVVpUEQpLHCnhTWSQ7xFkTpaaypt8W-V7nB6dqA-n-jRcuC1CWeX6TGwP6qop6Y58V6BnTXhHSr2dXUQ0NYqyq2GExk22hUewMQO2tX9wPBr3IRdhy3T9RVmUoekP2EJUyzNzkzeJVKnatEiX3MzL1ZL_erGtGTq8y-4E_5HvdQy_x25AfZ_d3jubBwwNeMB-IOv5-WSMMdPul9Enft5UqynweTd1HhacktbAF8V0ybtWEb5spkATNoC735xaHeiitj7jn6tv44_fkzjm8CtUzNYP2cnhwdd3R1EYoxCVOlYqcqAz65T2rkDlEyZ2aMW1s16B9AUNny5KENZL73TlE3AaLHo9BAQnvMwK-YgN6qaGJ4yj9-jRpfRWxk4RVKHXaOGN1wkAlHE2ZK_XpMzLgDFOoy6m-TrWQKrnLdWH7GW_ddYBa1y1aWfNjzzo1iL_KwlXL2NImKRC2HTIXvTLqDSUCSlqaFb0CkUpXRGba_ZooST12Yohe9xJQP-hEmVN2wSfzjZko99AoN2bK_XkZwvenZnUWCORUq0U_f-_56P99-2Pp9cTYZvdElRn01aS77DBcr6CZ-goLd3zoA1_AJn6EVI
  priority: 102
  providerName: ProQuest
Title The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13464
https://www.ncbi.nlm.nih.gov/pubmed/32885918
https://www.proquest.com/docview/2487097144
https://www.proquest.com/docview/2619162296
https://www.proquest.com/docview/2440464208
https://www.proquest.com/docview/2524334792
https://pubmed.ncbi.nlm.nih.gov/PMC7868983
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcoED70egRAviwMXB3oe9FqcWNZRXFQUqilRhee3ZEpE6VeJIwK9nZu1YDaUIcbEi7diyd2ey3-5-8w1jT9M0V2WclwE6Sxgo4UxgcNwDSKwsNNGbnGf57sd7B-rNoT7cYC9WuTCNPkS34UaR4f-vKcBzuzgT5Kd2MoikikkLlLhaBIjGnXSUIFWZJrMoCRKc9FtVIWLxdHeuz0XnAOZ5nuRZ_OonoOF1drR69YZ38m2wrO2g-PmbquN_ftsNdq0Fpny78aSbbAOqW-zq9vG8FeeA2-wL-hQ_mYxxMfb8w-gdP5mVyynweVPOHhacTsOBL_JpzZscFF7PpkClO4DbH5xyKGgHuDrm78tP47efozDk8L2l4lZ32MFw9-PLvaCtzxAUOlQqsKCT1CrtbI5RLUxoER5omzoF0uVU1TovQKROOqtLF4HVkCKcIoU54WSSy7tss5pVcJ9xhKUOsapLZWgVaSA6jdDBOB0BQBEmPfZsNVJZ0YqXUw2NabZaxGCXZb7LeuxJZ3raKHb8yWhrNdxZG7SLTODijSS11AXNuNaMYiHSuMced80YjXTEklcwW9IjFJ0Vi9D8xUYLJSmBV_TYvcbBuheVwpCgIN6drLleZ0Bq4Ost1eSrVwVPTGxSI7GnvGdd_O3ZaOe1__Hg300fsiuCyDyerr7FNuv5Eh4hGqttn10SaoRXM3zVZ5d3dvdH477f2ej7gPwF3do0Mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxLsLBQwCiUto4kceB4TKY9llt1VVWrVcSONkXFbaJss-BP1T_EZm8oJVS2-9RbITJePP8Tf2zDeMvYiiRGV-kjkIFtdRwoZOiOPuQGBkqim8yZZRvtt-b199PtSHK-x3kwtDYZXNP7H8UWdFSnvkGwKZNekdKfV28sOhqlF0utqU0KhgMYDTn-iyzd70P-D4vhSi-3Hvfc-pqwo4qXaVcgzoIDJKW5MgFkXoGlzUtImsAmkTqsWcpCAiK63RmfXAaIiQBJAumrAySCQ-9wq7qiSu5JSZ3v3UOnikZFNlMwVOgESjVjKiyKGJGb32pPLV8vp3htSejc38lzOXi173FrtZs1W-WcHrNluB_A67sXk8rRU74C77hkDjJ6Nd9NA2vuwM-UmRLcbAp1WNe5hxOiIHPkvGc14lpvB5MQaq5wHcnHJKrKBt4fyYb2UHu4Ovnuty-FXH5-b32P6lmPc-W82LHNYYR65qkcDaSLpGkTCi1cgnQqs9AEjdoMNeNaaM01rRnAprjOPGs0Grx6XVO-x523VSyXic12m9GY-4nsmz-C_uzm9GB9TzhYj8DnvWNuMUpXOXJIdiQY9QdIAs3PCCPlogolQQiQ57UCGgfVEpQlIZxLuDJWy0HUgifLklH30vpcKD0A-jUKKlShT9_9vjnXf98uLhxUZ4yq719raG8bC_PXjErguK8Clj2NfZ6ny6gMdI0ebmSTkvODu67In4B9DmTHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQLwJFFgQSFxM7H34cUCopY0aUqIoUFEuGK89WyKldshD0L_Gr2PGj0DU0ltvlnZjxbMz3m-833zD2IsoSlTmJ5mDzuI6StjQCXHdHQiMTDXRm2zJ8h34-4fq_ZE-2mC_m1oYolU278TyRZ0VKX0j7whE1qR3pFTH1rSI4W737fSHQx2k6KS1aadRuUgfTn9i-jZ_09vFtX4pRHfv07t9p-4w4KTaVcoxoIPIKG1Ngn4pQtfgBqdNZBVIm1Bf5iQFEVlpjc6sB0ZDhICANNKElUEi8b5X2GZAWVGLbe7sDYajVbpHujZVbVPgBAg7al0j4hFNzfi1J5Wv1nfDMxD3LFPzXwRdboHdm-xGjV35duVst9gG5LfZ9e3jWa3fAXfYV3Q7fjIeYb7W-Tg84CdFtpwAn1Ud72HO6cAc-DyZLHhVpsIXxQSouwdwc8qpzII-EufH_EP2edT_4rkuh181Wze_yw4vxcD3WCsvcnjAOCJXi3DWRtI1imQSrUZ0EVrtAUDqBm32qjFlnNb65tRmYxI3eQ5aPS6t3mbPV1OnlajHeZO2mvWI67iex3-98PxhTEc9X4jIb7Nnq2EMWDqFSXIolnQLRcfJwg0vmKOFklTjK9rsfuUBqz8qRUiag_jrYM03VhNIMHx9JB9_L4XDg9APo1CipUov-v-zx8OdXnnx8GIjPGVXMQjjg96g_4hdE0T3KQntW6y1mC3hMeK1hXlSBwZn3y47Fv8A7nlSDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+miR156%2FSPL+module+regulates+apple+salt+stress+tolerance+by+activating+MdWRKY100+expression&rft.jtitle=Plant+biotechnology+journal&rft.au=Ma%2C+Yue&rft.au=Xue%2C+Hao&rft.au=Zhang%2C+Feng&rft.au=Jiang%2C+Qiu&rft.date=2021-02-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=19&rft.issue=2&rft.spage=311&rft.epage=323&rft_id=info:doi/10.1111%2Fpbi.13464&rft.externalDBID=10.1111%252Fpbi.13464&rft.externalDocID=PBI13464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon