Epithelial cells and airway diseases

The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 242; no. 1; pp. 186 - 204
Main Authors Proud, David, Leigh, Richard
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2011
Subjects
Online AccessGet full text
ISSN0105-2896
1600-065X
1600-065X
DOI10.1111/j.1600-065X.2011.01033.x

Cover

Loading…
Abstract The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
AbstractList The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
Author Proud, David
Leigh, Richard
Author_xml – sequence: 1
  givenname: David
  surname: Proud
  fullname: Proud, David
  organization: Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada
– sequence: 2
  givenname: Richard
  surname: Leigh
  fullname: Leigh, Richard
  organization: Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21682746$$D View this record in MEDLINE/PubMed
BookMark eNqNkM1O3DAURi0EgmHoK1RZVOoqwf92FlRqKR2QoJUQFeyuHOdG9ZBJhjgjZt6-CQMs2IA3tuzvfL46h2S3aRskJGE0Y8M6nmdMU5pSre4yThnLKKNCZOsdMnl92CWT4Val3Ob6gBzGOKeUGcHlPjngTFtupJ6QL2fL0P_DOrg68VjXMXFNmbjQPbpNUoaILmI8InuVqyN-et6n5O-vs5vT8_Tyz-zi9Ptl6hWVIi3LwiuDlSopLx1qqiqfFyUW2qOSXlZ57qyVwhrrhbeFrwxTUgurvJXovZiSr9veZdc-rDD2sAhxnMo12K4iWCuo5Jzy95NGMM7tMNWUfH5OrooFlrDswsJ1G3hRMAS-bQO-a2PssAIfeteHtuk7F2pgFEbnMIdRLYxqYXQOT85hPRTYNwUvf3wAPdmij6HGzYc5uLi6Hk8Dn275EHtcv_KuuwdthFFw-3sGP_PbH-Z6dgV34j8fuKaS
CitedBy_id crossref_primary_10_1111_all_13390
crossref_primary_10_1155_2012_794970
crossref_primary_10_1097_TP_0000000000001215
crossref_primary_10_1016_j_scitotenv_2019_136300
crossref_primary_10_1152_ajplung_00145_2024
crossref_primary_10_1016_j_imbio_2020_151937
crossref_primary_10_3390_cells11091416
crossref_primary_10_1002_ar_24506
crossref_primary_10_1038_srep42214
crossref_primary_10_1111_1440_1681_12068
crossref_primary_10_1177_20417314241309183
crossref_primary_10_1016_j_coi_2012_08_012
crossref_primary_10_1111_j_1600_065X_2011_01036_x
crossref_primary_10_1016_j_tiv_2023_105718
crossref_primary_10_1242_jcs_137802
crossref_primary_10_1371_journal_ppat_1005797
crossref_primary_10_1371_journal_pone_0144840
crossref_primary_10_3390_nu12103163
crossref_primary_10_1111_j_1365_2567_2012_03618_x
crossref_primary_10_1124_jpet_124_002226
crossref_primary_10_1155_2012_910520
crossref_primary_10_18632_oncotarget_24348
crossref_primary_10_1165_rcmb_2020_0424OC
crossref_primary_10_1017_S0029665112000109
crossref_primary_10_1038_srep34445
crossref_primary_10_1088_1752_7155_8_4_046006
crossref_primary_10_1016_j_jhazmat_2024_134011
crossref_primary_10_1016_j_smim_2013_04_009
crossref_primary_10_1186_s12940_015_0046_3
crossref_primary_10_2478_s11658_013_0107_y
crossref_primary_10_1371_journal_pone_0080257
crossref_primary_10_1096_fj_202200150RR
crossref_primary_10_1186_s12931_023_02529_9
crossref_primary_10_1016_j_ajpath_2013_07_007
crossref_primary_10_1093_femspd_ftv045
crossref_primary_10_1016_j_celrep_2021_108956
crossref_primary_10_1007_s11882_016_0661_2
crossref_primary_10_1016_j_addr_2021_114038
crossref_primary_10_1097_JOM_0000000000000841
crossref_primary_10_3389_fimmu_2023_1271342
crossref_primary_10_3390_v12111328
crossref_primary_10_1155_2019_7281462
crossref_primary_10_4049_jimmunol_1800547
crossref_primary_10_1152_ajpcell_00257_2014
crossref_primary_10_1189_jlb_3HI0816_368RR
crossref_primary_10_1016_j_micinf_2012_05_016
crossref_primary_10_3389_fimmu_2023_1310098
crossref_primary_10_1186_1710_1492_10_S1_A71
crossref_primary_10_1186_s12931_016_0479_4
crossref_primary_10_1042_CS20191309
crossref_primary_10_1016_j_intimp_2024_112624
crossref_primary_10_1111_imm_13195
crossref_primary_10_3389_fphys_2018_01168
crossref_primary_10_1016_j_micinf_2015_09_003
crossref_primary_10_4168_aair_2013_5_6_402
crossref_primary_10_1111_sji_12263
crossref_primary_10_1016_j_ejphar_2013_02_056
crossref_primary_10_1177_0748233720947214
crossref_primary_10_3389_fimmu_2020_534501
crossref_primary_10_1016_j_envpol_2023_121798
crossref_primary_10_1016_j_ijpharm_2021_121054
crossref_primary_10_1016_j_jaci_2015_12_1308
crossref_primary_10_1016_j_coviro_2012_03_008
crossref_primary_10_3389_fcimb_2021_643913
crossref_primary_10_1016_j_intimp_2021_108489
crossref_primary_10_1016_j_tiv_2016_11_009
crossref_primary_10_1073_pnas_1208092109
crossref_primary_10_1007_s10456_024_09910_2
crossref_primary_10_1016_j_yexcr_2019_02_013
crossref_primary_10_3201_eid2201_151384
crossref_primary_10_1074_jbc_M113_511527
crossref_primary_10_1016_S2213_2600_13_70165_6
crossref_primary_10_1038_s41467_017_00101_w
crossref_primary_10_1002_adma_202210807
crossref_primary_10_1016_j_biopha_2017_07_001
crossref_primary_10_1038_s41385_020_00370_7
crossref_primary_10_1371_journal_pone_0084679
crossref_primary_10_15252_embr_201949666
crossref_primary_10_1111_bph_13014
crossref_primary_10_1016_j_pharmthera_2013_10_008
crossref_primary_10_1039_C5FO01037C
crossref_primary_10_1038_cmi_2012_77
crossref_primary_10_1080_21688370_2021_2020706
crossref_primary_10_1016_j_scitotenv_2017_09_276
crossref_primary_10_3390_ani13233711
crossref_primary_10_1002_jbt_70203
crossref_primary_10_4141_cjas2013_145
crossref_primary_10_1093_toxsci_kft071
crossref_primary_10_1189_jlb_0813452
crossref_primary_10_1371_journal_pone_0100537
crossref_primary_10_3109_02770903_2013_794239
crossref_primary_10_3389_fendo_2014_00236
crossref_primary_10_33086_iimj_v4i1_3817
crossref_primary_10_1165_rcmb_2014_0035OC
crossref_primary_10_1152_ajpcell_00117_2017
crossref_primary_10_1186_1710_1492_10_S1_A44
crossref_primary_10_1016_j_jaci_2015_05_007
crossref_primary_10_1111_resp_12316
crossref_primary_10_1016_j_aogh_2016_01_007
crossref_primary_10_1002_alr_21237
crossref_primary_10_1016_j_ajpath_2021_10_007
crossref_primary_10_1371_journal_pone_0095533
crossref_primary_10_2147_COPD_S495306
crossref_primary_10_3389_fmicb_2016_00580
crossref_primary_10_4049_immunohorizons_2000052
crossref_primary_10_1155_2013_735031
crossref_primary_10_1016_j_aller_2017_04_003
crossref_primary_10_1016_j_aller_2015_04_004
crossref_primary_10_1186_s12989_018_0256_2
crossref_primary_10_1016_j_semcdb_2022_12_006
crossref_primary_10_1080_24745332_2020_1855607
crossref_primary_10_1093_toxsci_kfv122
crossref_primary_10_1371_journal_pone_0115486
crossref_primary_10_1016_j_prostaglandins_2013_05_001
crossref_primary_10_1083_jcb_201506014
crossref_primary_10_1186_1465_9921_14_35
crossref_primary_10_4168_aair_2014_6_6_548
crossref_primary_10_1371_journal_pone_0086554
crossref_primary_10_1016_j_intimp_2015_04_017
crossref_primary_10_12688_f1000research_14581_1
crossref_primary_10_1093_abbs_gmu035
crossref_primary_10_1016_j_mbplus_2021_100058
crossref_primary_10_1016_j_alit_2014_10_006
crossref_primary_10_1080_21688370_2017_1367458
crossref_primary_10_1016_j_mam_2021_100969
crossref_primary_10_1124_jpet_113_206284
crossref_primary_10_1124_jpet_120_000196
crossref_primary_10_1111_imm_12077
crossref_primary_10_1378_chest_15_1335
crossref_primary_10_1152_physrev_00039_2014
crossref_primary_10_1016_j_jaci_2012_04_019
crossref_primary_10_1038_aps_2013_191
crossref_primary_10_1016_j_autneu_2013_12_008
crossref_primary_10_1186_1710_1492_10_S1_A69
crossref_primary_10_3389_fimmu_2016_00095
crossref_primary_10_1038_s41598_018_32008_x
crossref_primary_10_1007_s12026_012_8296_4
crossref_primary_10_1016_S2225_4110_16_30069_4
crossref_primary_10_3389_fcimb_2020_00487
crossref_primary_10_4049_jimmunol_1900165
crossref_primary_10_1111_cea_12309
crossref_primary_10_1124_jpet_114_212795
crossref_primary_10_1371_journal_pone_0122753
crossref_primary_10_1038_s41467_017_01201_3
crossref_primary_10_3390_plants10050951
crossref_primary_10_1016_j_toxlet_2014_05_023
crossref_primary_10_3109_15376516_2016_1170251
crossref_primary_10_1002_dvdy_23773
crossref_primary_10_1111_cei_12082
crossref_primary_10_1186_1476_9255_10_15
crossref_primary_10_1111_cea_12383
crossref_primary_10_3892_mmr_2017_7636
crossref_primary_10_2500_ajra_2014_28_4018
crossref_primary_10_1016_j_pharmthera_2013_07_008
crossref_primary_10_1152_ajplung_00362_2016
crossref_primary_10_1002_stem_1150
crossref_primary_10_1007_s42770_019_00183_2
crossref_primary_10_1016_j_anai_2013_07_029
crossref_primary_10_1016_j_bpj_2021_11_2887
crossref_primary_10_1186_s13567_014_0126_3
crossref_primary_10_1371_journal_pone_0160779
crossref_primary_10_1089_ten_teb_2012_0603
crossref_primary_10_3389_fcell_2024_1490315
crossref_primary_10_1016_j_ydbio_2015_03_013
crossref_primary_10_1016_j_psj_2022_102028
crossref_primary_10_1164_rccm_201611_2248ST
crossref_primary_10_1016_j_jaci_2016_02_038
crossref_primary_10_1002_lary_30040
crossref_primary_10_1097_ACI_0000000000000135
crossref_primary_10_1177_0960327118802628
Cites_doi 10.1165/rcmb.2006-0235OC
10.1034/j.1399-3003.1999.14b07.x
10.1165/ajrcmb.10.2.8110469
10.1165/rcmb.2009-0216OC
10.1016/j.jaci.2009.02.032
10.1183/09031936.93.06060903
10.4161/viru.2.1.13807
10.1111/j.1365-2222.2009.03307.x
10.1002/path.2163
10.1164/rccm.200911-1673OC
10.1016/S0076-6879(96)69044-2
10.1016/S0091-6749(96)70265-8
10.1164/rccm.200410-1404OC
10.1074/jbc.M101522200
10.1016/j.jaci.2006.01.045
10.1067/mai.2003.33
10.1164/rccm.200805-670OC
10.2105/AJPH.83.9.1277
10.1152/ajplung.00069.2005
10.1165/rcmb.2002-0095OC
10.1165/ajrcmb.23.3.4068
10.1007/s11882-996-0006-7
10.1164/ajrccm/148.1.87
10.4049/jimmunol.0802401
10.1016/j.jaci.2003.08.012
10.1007/s11882-006-0015-6
10.1172/JCI118067
10.1164/ajrccm/148.3.689
10.1056/NEJM199501193320301
10.1016/S0140-6736(06)69284-2
10.1016/S0091-6749(95)70260-1
10.1164/rccm.200701-042OC
10.1038/sj.bjp.0701185
10.1152/ajplung.00066.2007
10.1128/JVI.72.2.934-942.1998
10.1189/jlb.0804452
10.1016/S0024-3205(98)00614-6
10.1183/09031936.00128809
10.1152/ajplung.00036.2008
10.1111/j.1365-2222.2008.03172.x
10.1136/thorax.55.7.603
10.1016/j.immuni.2009.02.005
10.1164/rccm.200401-033OC
10.1126/science.1411569
10.3109/02770900903556413
10.1016/j.jaci.2007.05.028
10.1016/S0091-6749(00)90070-8
10.1165/rcmb.2009-0244OC
10.1074/jbc.M502449200
10.1128/JVI.72.5.4534-4536.1998
10.4049/jimmunol.174.12.8183
10.1152/ajplung.00453.2003
10.1067/mai.2001.112028
10.1378/chest.129.1.15
10.1152/ajplung.00397.2004
10.1165/rcmb.2004-0129OC
10.1067/mai.2003.1464
10.1023/A:1012850630351
10.1038/mi.2009.109
10.4049/jimmunol.161.10.5138
10.1165/ajrcmb.17.2.2750
10.1183/09031936.95.08020295
10.1124/mol.107.038794
10.1152/ajplung.2000.278.5.L1101
10.4049/jimmunol.0902264
10.1016/S0955-0674(03)00103-0
10.1111/j.1432-1033.2004.04342.x
10.1165/rcmb.2006-0160OC
10.1038/nature06664
10.1371/journal.ppat.1001178
10.1128/JVI.72.6.4756-4764.1998
10.1046/j.1365-2222.2002.01477.x
10.1016/j.virol.2004.01.033
10.1172/JCI115994
10.1016/j.cellimm.2006.02.003
10.1016/S0140-6736(89)90814-3
10.1016/j.jaci.2006.12.669
10.1152/ajplung.1995.268.1.L41
10.1074/jbc.M110.165936
10.1203/PDR.0b013e318175dd2d
10.1016/j.immuni.2005.04.010
10.1016/j.prostaglandins.2008.12.003
10.1016/j.bbrc.2009.12.070
10.1016/j.molimm.2006.04.008
10.1152/ajpheart.2001.280.1.H1
10.4049/jimmunol.169.8.4572
10.1128/JVI.02309-06
10.4049/jimmunol.179.9.6237
10.1084/jem.185.3.461
10.1164/ajrccm.152.3.7545059
10.4049/jimmunol.180.2.870
10.4049/jimmunol.173.5.3482
10.1164/ajrccm/144.1.51
10.1016/j.jaci.2005.11.005
10.1164/ajrccm.152.6.8520734
10.4049/jimmunol.177.5.3344
10.1016/j.jaci.2009.03.010
10.1016/j.jaci.2004.01.755
10.1016/S0091-6749(96)70126-4
10.1136/thx.2003.014894
10.1164/ajrccm/143.1.138
10.1165/ajrcmb.25.2.4275
10.1124/mol.107.040121
10.1038/sj.bjp.0707627
10.1172/JCI117556
10.1210/er.2002-0006
10.1159/000318743
10.1056/NEJM200008033430504
10.1016/j.resp.2005.11.006
10.1183/09031936.02.00226302
10.1091/mbc.E04-04-0317
10.1183/09031936.03.00098803
10.1164/ajrccm.161.5.9906076
10.1056/NEJMra050541
10.1172/JCI12655
10.1097/00130832-200502000-00008
10.1046/j.1365-2222.2001.00970.x
10.2174/138945006776818647
10.1152/physrev.00010.2005
10.1016/j.jaci.2010.04.021
10.1183/09031936.00161907
10.1165/rcmb.2005-0385OC
10.1164/ajrccm.162.2.9901080
10.4049/jimmunol.161.7.3645
10.1016/j.jaci.2007.10.025
10.1164/ajrccm.153.5.8630619
10.1164/rccm.200809-1471OC
10.1016/j.semcdb.2007.07.003
10.1183/09031936.00026910
10.4049/jimmunol.0901386
10.1096/fj.06-5806fje
10.1165/rcmb.2009-0203OC
10.4049/jimmunol.169.11.6445
10.1126/stke.3032005pe47
10.1086/517272
10.1126/science.1165557
10.1016/j.jaci.2009.04.041
10.1016/j.jaci.2006.08.027
10.1016/j.coph.2010.02.005
10.1111/j.1398-9995.2005.00958.x
10.1172/JCI5844
10.1016/j.chom.2007.06.009
10.1084/jem.20041901
10.1016/j.jaci.2008.01.067
10.1164/rccm.200607-1029OC
10.1016/j.molimm.2005.08.004
10.4049/jimmunol.177.10.6859
10.1165/rcmb.2008-0223OC
10.4049/jimmunol.156.2.772
10.1164/ajrccm/140.2.449
10.1111/j.1365-2222.2006.02566.x
10.1378/chest.10-0100
10.1016/S0140-6736(94)90931-8
10.1165/rcmb.2008-0105OC
10.1016/j.jaci.2010.07.015
10.1203/01.PDR.0000127431.11750.D9
10.1164/rccm.200802-309OC
10.1016/j.jaci.2008.02.009
10.1172/JCI118514
10.1016/j.jaci.2003.09.041
10.1016/S0891-5849(97)00375-4
10.1038/nm1462
10.4049/jimmunol.172.7.4637
10.1111/j.1399-3038.2005.00239.x
10.1016/S0140-6736(94)92996-3
10.1016/j.jaci.2009.08.044
10.1165/ajrcmb.24.3.4131
10.1016/j.freeradbiomed.2006.05.011
10.1183/09031936.06.00112605
10.1097/INF.0b013e318168b718
10.1136/thorax.56.5.351
10.1086/315463
10.1165/ajrcmb.21.3.3529
10.1038/nature04734
10.1074/jbc.M007703200
10.1165/ajrcmb.11.1.7517143
10.1016/j.jaci.2008.09.041
ContentType Journal Article
Copyright 2011 John Wiley & Sons A/S
2011 John Wiley & Sons A/S.
Copyright_xml – notice: 2011 John Wiley & Sons A/S
– notice: 2011 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
DOI 10.1111/j.1600-065X.2011.01033.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 204
ExternalDocumentID 21682746
10_1111_j_1600_065X_2011_01033_x
IMR1033
ark_67375_WNG_D9WB7RGM_X
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7T5
H94
ID FETCH-LOGICAL-c5043-ddbc57ef5d02dae605fc9bdeb6ce54c4f99a8843878c3c8bcf71546385c84ecc3
IEDL.DBID DR2
ISSN 0105-2896
1600-065X
IngestDate Thu Jul 10 22:18:55 EDT 2025
Fri Jul 11 04:54:50 EDT 2025
Thu Apr 03 06:52:50 EDT 2025
Tue Jul 01 00:20:57 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Wed Jan 22 16:45:39 EST 2025
Wed Oct 30 09:50:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-ddbc57ef5d02dae605fc9bdeb6ce54c4f99a8843878c3c8bcf71546385c84ecc3
Notes ark:/67375/WNG-D9WB7RGM-X
istex:611990D098C4EBF042BE7E133CBC10E140C929D9
ArticleID:IMR1033
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21682746
PQID 873122804
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_883042202
proquest_miscellaneous_873122804
pubmed_primary_21682746
crossref_citationtrail_10_1111_j_1600_065X_2011_01033_x
crossref_primary_10_1111_j_1600_065X_2011_01033_x
wiley_primary_10_1111_j_1600_065X_2011_01033_x_IMR1033
istex_primary_ark_67375_WNG_D9WB7RGM_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Tai HY, et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006;61:382-388.
Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol 2007;120:1233-1244.
Saetta M, Di Stefano A, Rosina C, Thiene G, Fabbri LM. Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 1991;143:138-143.
Lane C, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004;59:757-760.
Leigh R, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol 2008;121:1238-1245.
King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998;161:3645-3651.
Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008;19:34-41.
Roberts JA, et al. The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J 1999;14:275-282.
Mak JC, Nishikawa M, Barnes PJ. Glucocorticoids increase β2-adrenergic receptor transcription in human lung. Am J Physiol Lung Cell Mol Physiol 1995;268:L41-L46.
Ackerman V, Carpi S, Bellini A, Vassalli G, Marini M, Mattoli S. Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. J Allergy Clin Immunol 1995;91:618-627.
Sanders SP, Kim J, Connolly KR, Porter JD, Siekierski ES, Proud D. Nitric oxide inhibits rhinovirus-induced GM-CSF production in bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;24:317-325.
Osterlund C, Grönlund H, Gafvelin G, Bucht A. Non-proteolytic aeroallegens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol 2010;155:111-118.
Shibata Y, Nakamura H, Kato S, Tomoike H. Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 1996;156:772-777.
Panina-Bordignon P, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics. J Clin Invest 2001;107:1357-1364.
McLeish AC, Zvolensky MJ. Asthma and cigarette smoking: a review of the empirical literature. J Asthma 2010;47:345-361.
Redington AE, et al. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 2001;56:351-357.
Wark PAB, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002;19:68-75.
Kelsen SG, et al. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004;287:L584-L591.
Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol 2001;107:235-243.
Busse WW. The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010;138:4S-10S.
Sahl H-G, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 2005;77:466-475.
Granger DN, Kubes P. Nitric oxide as an antiinflammatory agent. Methods Enzymol 1996;269:434-442.
Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112:930-934.
Proud D, Subauste MC, Ward PE. Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line. Am J Respir Cell Mol Biol 1994;11:57-65.
Sanders SP, Proud D, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 2004;113:697-702.
Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005;289:L85-L95.
Thomsen SF, et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med 2009;179:1091-1097.
Slater L, et al. Co-ordinated role of TLR-3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010;6:e1001178.
Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J Clin Invest 1996;97:915-924.
O'Gorman MT, Jatoi NA, Lane SJ, Mahon BP. IL-1β and TNF-α induce increased expression of CCL28 by airway epithelial cells via an NFκB-dependent pathway. Cell Immunol 2005;238:87-96.
Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids - new mechanisms for old drugs. N Engl J Med 2005;353:1711-1723.
Eddleston J, Herschbach J, Wagelie-Steffen AL, Christiansen SC, Zuraw BL. The anti-inflammatory effects of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J Allergy Clin Immunol 2007;119:115-122.
Minshall E, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol 2000;105:232-238.
Wan H, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279-294.
Nguyen HH, et al. Influenza virus-infected epithelial cells present viral antigens to antigen-specific CD8+ cytotoxic T lymphocytes. J Virol 1998;72:4534-4536.
Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection of airway epithelial cells upregulates MMP-9 production via NF-κB. Am J Respir Cell Mol Biol 2010;43:201-209.
Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 2003;28:648-654.
Enomoto Y, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 2009;124:913-920.
Triantafilou K, Vakakis E, Richer EAJ, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors amd MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-29.
Ying S, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174:8183-8190.
Salik E, et al. Antigen trafficking and accessory cell function in respiratory epithelial cells. Am J Respir Cell Mol Biol 1999;21:365-379.
DiCosmo BF, et al. Airway epithelial cell expression of interleukin-6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity. J Clin Invest 1994;94:2028-2035.
Bals R, Hiemstra PS. Innate immunity in the lung; how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327-333.
Chong LK, Drury DEJ, Dummer JF, Ghahramani P, Schleimer RP, Peachell PT. Protection by dexamethasone of the functional desensitization to β2-adrenoreceptor-mediated responses in human lung mast cells. Br J Pharmacol 1997;121:717-722.
Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105.
Nomura A, Uchida Y, Kameyama M, Saotome M, Oki K, Hasegawa S. Endothelin and bronchial asthma. Lancet 1989;1:747-748.
Cohen S, Tyrrell DA, Russell MA, Jarvis MJ, Smith AP. Smoking, alcohol consumption, and susceptibility to the common cold. Am J Public Health 1993;83:1277-1283.
Vignola AM, et al. HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 1993;148:689-694.
Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000;55:603-613.
Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting β2-adrenoreceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008;73:203-214.
Wang X, et al. Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 2006;177:6859-6870.
Jartti T, Lee W-M, Pappas T, Evans M, Lemanske RFJ, Gern JE. Serial viral infections in infants with recurrent respiratory illnesses. Eur Respir J 2008;32:314-320.
Newcomb DC, et al. Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem 2005;280:36952-36961.
Hament JM, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 2004;55:972-978.
Beck LA, et al. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 2006;177:3344-3354.
Upham JW, Stick SM. Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets 2006;7:541-545.
Ratner AJ, et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001;276:19267-19275.
Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13 induced mucous metaplasia incre
2009; 89
2004; 287
2010; 10
2005; 171
2005; 174
2004; 322
2002; 19
2006; 34
2004; 23
2006; 36
2008; 32
2010; 184
2007; 72
2010; 182
1996; 269
2006; 177
2007; 179
2007; 212
2006; 20
2007; 293
2004; 170
2007; 176
2006; 27
2004; 173
2004; 172
2008; 27
2007; 175
2009; 123
2009; 124
2007; 2
2010; 3
2001; 56
2005; 77
1998; 161
2010; 6
1989; 1
2011; 2
2010; 36
2010; 35
2005; 353
2001; 280
2009; 182
1997; 176
2005; 238
2009; 297
1989; 140
2010; 285
1999; 21
2009; 179
1999; 104
2001; 24
2008; 121
1995; 152
2001; 25
2006; 117
1996; 98
1996; 97
1995; 8
2001; 276
2004; 55
2010; 43
2006; 41
2010; 47
2006; 43
2000; 105
2004; 59
2004; 271
1992; 258
2005; 5
2003; 24
1994; 11
2007; 81
2003; 28
2009; 183
1995; 268
1998; 72
2000; 343
2005; 16
1994; 94
1994; 10
2001; 31
2000; 181
2009; 40
2003; 15
1995; 332
2001; 107
2008; 73
2003; 112
2006; 414
2003; 111
2007; 36
2005; 23
2007; 37
1993; 6
1994; 343
1991; 143
1992; 90
1994; 344
2006; 61
1991; 144
1997; 185
2000; 55
2005; 303
1999; 14
2010; 155
2000; 161
1997; 17
2000; 162
2010; 391
2008; 64
2006; 368
2006; 129
2008; 153
2005; 33
2009; 324
1995; 96
1995; 91
2006; 12
2000; 278
1993; 83
2000; 23
2010; 125
2010; 126
2008; 19
2002; 32
2007; 120
2006; 7
2006; 154
2006; 6
1999; 65
2005
1992; 75
1992; 77
1993; 148
1998; 24
2008; 180
2005; 280
2009; 30
2006; 86
2007; 119
2004; 113
2010; 138
2005; 289
2005; 201
2002; 169
2004; 15
1997; 121
1996; 153
2008; 178
2008; 452
2007; 44
1996; 156
2009; 39
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_151_2
e_1_2_8_5_2
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_170_2
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_155_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_143_2
e_1_2_8_95_2
e_1_2_8_120_2
e_1_2_8_162_2
e_1_2_8_99_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_181_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_124_2
e_1_2_8_166_2
e_1_2_8_29_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_110_2
e_1_2_8_152_2
e_1_2_8_179_2
Plotkowski MC (e_1_2_8_70_2) 1993; 6
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_137_2
e_1_2_8_171_2
e_1_2_8_40_2
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_133_2
e_1_2_8_156_2
e_1_2_8_175_2
Salomon B (e_1_2_8_127_2) 1998; 161
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_90_2
e_1_2_8_94_2
e_1_2_8_121_2
e_1_2_8_140_2
e_1_2_8_163_2
e_1_2_8_98_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_148_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_144_2
e_1_2_8_167_2
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_119_2
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_153_2
Adams NP (e_1_2_8_159_2) 2005
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_7_2
King C (e_1_2_8_6_2) 1998; 161
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_172_2
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_157_2
e_1_2_8_81_2
e_1_2_8_134_2
e_1_2_8_176_2
e_1_2_8_17_2
e_1_2_8_13_2
e_1_2_8_59_2
Mak JC (e_1_2_8_174_2) 1995; 268
e_1_2_8_36_2
e_1_2_8_78_2
Olszewska‐Pazdrak B (e_1_2_8_30_2) 1998; 72
Cromwell O (e_1_2_8_4_2) 1992; 77
e_1_2_8_164_2
e_1_2_8_141_2
e_1_2_8_97_2
e_1_2_8_160_2
e_1_2_8_55_2
e_1_2_8_126_2
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_149_2
e_1_2_8_51_2
e_1_2_8_122_2
e_1_2_8_168_2
e_1_2_8_93_2
e_1_2_8_103_2
e_1_2_8_145_2
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
Churchill L (e_1_2_8_16_2) 1992; 75
e_1_2_8_80_2
e_1_2_8_131_2
e_1_2_8_154_2
e_1_2_8_177_2
e_1_2_8_150_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_39_2
Nguyen HH (e_1_2_8_129_2) 1998; 72
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_108_2
Shibata Y (e_1_2_8_18_2) 1996; 156
e_1_2_8_142_2
e_1_2_8_165_2
e_1_2_8_96_2
e_1_2_8_161_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_104_2
e_1_2_8_180_2
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_146_2
e_1_2_8_169_2
e_1_2_8_92_2
References_xml – reference: Rabe KF, Atienza T, Magyar P, Larsson P, Jorup C, Lalloo UG. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomized controlled, double-blind study. Lancet 2006;368:744-753.
– reference: Wark PAB, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002;19:68-75.
– reference: Kao C-Y, et al. IL-17 markedly up-regulates β-Defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J Immunol 2004;173:3482-3491.
– reference: Beck LA, et al. Detection of the chemokine RANTES and endothelial cell adhesion molecules in nasal polyps. J Allergy Clin Immunol 1996;98:766-780.
– reference: Proud D. Nitric oxide and the common cold. Curr Opin Allergy Clin Immunol 2005;5:37-42.
– reference: Ratner AJ, et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001;276:19267-19275.
– reference: O'Byrne PM, Gauvreau GM, Brannan JD. Provoked models of asthma: what have we learnt? Clin Exp Allergy 2009;39:181-192.
– reference: Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA. Interleukin (IL)-6 directs the differentiation of IL-4 producing CD4+ T cells. J Exp Med 1997;185:461-469.
– reference: Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 1995;8:295-297.
– reference: Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112:930-934.
– reference: Kidney JC, Proud D. Neutrophil transmigration across human airway epithelial monolayers; mechanisms and dependence on electrical resistance. Am J Respir Cell Mol Biol 2000;23:389-395.
– reference: Lamkhioued B, et al. Monocyte chemoattractant protein (MCP)-4 expression in the airway of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory peptides. Am J Respir Crit Care Med 2000;162:723-732.
– reference: Upham JW, Stick SM. Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets 2006;7:541-545.
– reference: Zhu L, Lee P, Lee W-M, Zhao Y, Yu D, Chen Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol 2009;40:610-619.
– reference: Skevaki CL, et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy 2009;39:1700-1710.
– reference: Hament JM, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 2004;55:972-978.
– reference: Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol 2001;107:235-243.
– reference: Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol 2007;120:1233-1244.
– reference: Sajjan US, et al. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J 2006;20:2121-2123.
– reference: Busse WW. The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010;138:4S-10S.
– reference: Cohen S, Tyrrell DA, Russell MA, Jarvis MJ, Smith AP. Smoking, alcohol consumption, and susceptibility to the common cold. Am J Public Health 1993;83:1277-1283.
– reference: Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation and wound repair. J Allergy Clin Immunol 2003;111:1345-1352.
– reference: Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science 1992;258:593-597.
– reference: Proud D, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008;178:962-968.
– reference: Regamey N, et al. Airway epithelial IL-15 transforms monocytes into dendritic cells. Am J Respir Cell Mol Biol 2007;37:75-84.
– reference: Sim TC, Reece LM, Hilsmeier KA, Grant JA, Alam R. Secretion of chemokines and other cytokines in allergen-induced nasal responses: inhibition by topical steroid treatment. Am J Respir Crit Care Med 1995;152:927-933.
– reference: Plotkowski MC, Bajolet-Laudinet O, Puchelle E. Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa. Eur Respir J 1993;6:903-916.
– reference: Salik E, et al. Antigen trafficking and accessory cell function in respiratory epithelial cells. Am J Respir Cell Mol Biol 1999;21:365-379.
– reference: Huston DP, Liu YJ. Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma. Curr Allergy Asthma Rep 2006;6:372-376.
– reference: Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:2006.
– reference: Lau C, et al. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol 2008;180:870-880.
– reference: Gern JE. Viral respiratory infection and the link to asthma. Pediatr Infect Dis J 2008;27:S97-S103.
– reference: Bove PF, van der Vliet A. Nitric oxide and reactive nitrogen species in airway epithelial cell signaling and inflammation. Free Radic Biol Med 2006;41:515-527.
– reference: Zaheer RS, Koetzler R, Holden NS, Wiehler S, Proud D. Selective transcriptional downregulation of human rhinovirus-induced production of CXCL10 from airway epithelial cells via the MEK1 pathway. J Immunol 2009;182:4854-4864.
– reference: Shibata Y, Nakamura H, Kato S, Tomoike H. Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 1996;156:772-777.
– reference: Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection of airway epithelial cells upregulates MMP-9 production via NF-κB. Am J Respir Cell Mol Biol 2010;43:201-209.
– reference: Claesson H-E. On the biosynthesis and biological role of eoxins and 15-lipoxygenase-1 in airway inflammation and Hodgkin lymphoma. Prostaglandins Other Lipid Mediat 2009;89:120-125.
– reference: Rimaniol AC, et al. The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 2003;112:1139-1146.
– reference: Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000;55:603-613.
– reference: Leigh R, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol 2008;121:1238-1245.
– reference: Imhof BA, et al. Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice. J Pathol 2007;212:198-202.
– reference: Bentley JK, Newcomb DC, Goldsmith AM, Jia Y, Sajjan US, Hershenson MB. Rhinovirus activates interleukin-8 expression via a Src/p110β phosphatylinositol 3-kinase pathway in human airway epithelial cells. J Virol 2007;81:1186-1194.
– reference: Zhao Y, et al. Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am J Respir Cell Mol Biol 2009;40:19-30.
– reference: Granger DN, Kubes P. Nitric oxide as an antiinflammatory agent. Methods Enzymol 1996;269:434-442.
– reference: King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998;161:3645-3651.
– reference: Zen K, Babbin BA, Liu Y, Whelan JB, Nusrat A, Parkos CA. JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol Biol Cell 2004;15:3926-3937.
– reference: Wan H, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279-294.
– reference: Ryan A, Godson C. Lipoxins: regulators of resolution. Curr Opin Pharmacol 2010;10:166-172.
– reference: Psarras S, et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinovirus. J Allergy Clin Immunol 2006;117:291-297.
– reference: Giembycz MA, Kaur M, Leigh R, Newton R. A Holy Grail of asthma management: towards understanding how long-actingβ2-adrenoreceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br J Pharmacol 2008;153:1090-1104.
– reference: Churchill L, Friedman B, Schleimer RP, Proud D. Production of granulocyte-macrophage colony-stimulating factor by cultured human tracheal epithelial cells. Immunology 1992;75:189-195.
– reference: Wark PAB, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-947.
– reference: Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell production of human β-defensin-2 both in vitro and in vivo. J Immunol 2004;172:4637-4645.
– reference: Ackerman V, Carpi S, Bellini A, Vassalli G, Marini M, Mattoli S. Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. J Allergy Clin Immunol 1995;91:618-627.
– reference: McElvaney NG, et al. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 1992;90:1296-1301.
– reference: Edwards MR, Johnson MW, Johnston SL. Combination therapy. Synergistic suppression of virus-induced chemokines in airway epithelial cells. Am J Respir Cell Mol Biol 2006;34:616-624.
– reference: Tai HY, et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006;61:382-388.
– reference: Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J Clin Invest 1996;97:915-924.
– reference: Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MBA. Does Toll-like receptor 3 play a biological role in virus infections? Virology 2004;322:231-238.
– reference: Vignola AM, et al. HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 1993;148:689-694.
– reference: Riccio MM, Reynolds CJ, Hay DW, Proud D. Effects of intranasal administration of endothelin-1 to allergic and nonallergic individuals. Am J Respir Crit Care Med 1995;152:1757-1764.
– reference: Lopez-Souza N, et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009;123:1384-1390.
– reference: Hewson CA, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways. Eur Respir J 2010;36:1425-1435.
– reference: McLeish AC, Zvolensky MJ. Asthma and cigarette smoking: a review of the empirical literature. J Asthma 2010;47:345-361.
– reference: Kelly MM, Leigh R, L J, Goldsmith CH, Parameswaran K, Hargreave FE. Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol 2006;117:989-994.
– reference: Greening AP, Ind PW, Northfield M, Shaw G. Added salmeterol versus higher-dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid. Lancet 1994;344:219-224.
– reference: Goldie RG, Henry PJ. Endothelins and asthma. Life Sci 1999;65:1-15.
– reference: Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13 induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol 2010;43:652-661.
– reference: Cromwell O, et al. Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1ß and tumour necrosis factor-α. Immunology 1992;77:330-337.
– reference: Wan H, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104:123-133.
– reference: Panina-Bordignon P, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics. J Clin Invest 2001;107:1357-1364.
– reference: Papi A, Stanciu LA, Papadopoulos NG, Teran LM, Holgate ST, Johnston SL. Rhinovirus infection induces major histocompatability complex class I and costimulatory molecule upregulation on respiratory epithelial cells. J Infect Dis 2000;181:1780-1784.
– reference: Martinez FD, et al. Asthma and wheezing in the first six years of life. N Engl J Med 1995;332:133-138.
– reference: Slater L, et al. Co-ordinated role of TLR-3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010;6:e1001178.
– reference: Triantafilou K, Vakakis E, Richer EAJ, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors amd MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-29.
– reference: Koetzler R, Zaheer RS, Newton R, Proud D. Nitric oxide inhibits IFN regulatory factor 1 and nuclear factor-κB pathways in rhinovirus-infected epithelial cells. J Allergy Clin Immunol 2009;124:551-557.
– reference: Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med 2000;343:332-336.
– reference: Heijink IH, Kies M, van Oosterhout AJM, Postma DS, Kauffman HF, Vellebga E. Der p, IL-4, and TGF-β cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 2007;36:351-359.
– reference: DiCosmo BF, et al. Airway epithelial cell expression of interleukin-6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity. J Clin Invest 1994;94:2028-2035.
– reference: Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne E, Barnes PJ. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994;343:133-135.
– reference: Stirnweiss A, et al. IFN regulatory factor-1 bypassess IFN-mediated antiviral effects through viperin gene induction. J Immunol 2010;184:5179-5185.
– reference: Hudy MH, Traves SL, Wiehler S, Proud D. Cigarette smoke modulates rhinovirus-induced airway epithelial chemokine production. Eur Respir J 2010;35:1256-1263.
– reference: Koetzler R, Zaheer RS, Wiehler S, Holden NS, Giembycz MA, Proud D. Nitric oxide inhibits human rhinovirus-induced transcriptional activation of CXCL10 in airway epithelial cells. J Allergy Clin Immunol 2009;123:201-208.
– reference: Bateman ED, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. Am J Respir Crit Care Med 2004;170:836-844.
– reference: Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010;125:1178-1187.
– reference: Nguyen HH, et al. Influenza virus-infected epithelial cells present viral antigens to antigen-specific CD8+ cytotoxic T lymphocytes. J Virol 1998;72:4534-4536.
– reference: Kishore U, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 2006;43:1293-1315.
– reference: Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008;19:34-41.
– reference: Jartti T, Lee W-M, Pappas T, Evans M, Lemanske RFJ, Gern JE. Serial viral infections in infants with recurrent respiratory illnesses. Eur Respir J 2008;32:314-320.
– reference: Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, Hirst SJ. Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma. Am J Respir Crit Care Med 2007;176:146-153.
– reference: Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105.
– reference: Schmid S, Mordstein M, Kochs G, García-Sastre A, tenOever BR. Transcription factor redundancy ensures induction of the antiviral state. J Biol Chem 2010;285:42013-42022.
– reference: Kusel MM, et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol 2007;119:1105-1110.
– reference: Giembycz MA, Newton R. Beyond the dogma: novel β2-adrenoreceptor signalling in the airways. Eur Respir J 2006;27:1286-1306.
– reference: Redington AE, et al. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 2001;56:351-357.
– reference: Sousa AR, Lane SJ, Nakhosteen JA, Yoshimura T, Lee TH, Poston RN. Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am J Respir Cell Mol Biol 1994;10:142-147.
– reference: Palmenberg AC, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009;324:55-59.
– reference: Pohunek P, Warner JO, Turzíková J, Kudrmann J, Roche WR. Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr Allergy Immunol 2005;16:43-51.
– reference: Churchill L, Chilton FH, Resau JH, Bascom R, Hubbard WC, Proud D. Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells. Am Rev Respir Dis 1989;140:449-459.
– reference: Jackson DJ, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008;178:667-672.
– reference: Kelsen SG, et al. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004;287:L584-L591.
– reference: Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010;3:69-80.
– reference: Wang Q, et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol 2009;183:6989-6997.
– reference: Siddiqui S, et al. Vascular remodeling is a feature of asthma and nonasthmatic eosinophil bronchitis. J Allergy Clin Immunol 2007;120:813-819.
– reference: Beck LA, et al. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 2006;177:3344-3354.
– reference: De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003;24:488-522.
– reference: Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Reseach Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 2006;129:15-26.
– reference: Pavord ID, Wong CS, Williams J, Tattersfield AE. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis 1993;148:87-90.
– reference: Liu MC, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: Cellular, mediator, and permeability changes. Am Rev Respir Dis 1991;144:51-58.
– reference: Wiehler S, Proud D. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am J Physiol Cell Mol Physiol 2007;293:L505-L515.
– reference: Nonaka M, Nonake R, Jordana M, Dolovich J. GM-CSF, IL-8, IL-1R, TNF-αR, and HLA-DR in nasal epithelial cells in allergic rhinitis. Am J Respir Crit Care Med 1996;153:1675-1681.
– reference: Liu C, et al. 15-lipoxygenase-1 induces expression and release of chemokines in cultured human lung epithelial cells. Am J Physiol Lung Cell Mol Biol 2009;297:L196-L203.
– reference: Sanders SP, Kim J, Connolly KR, Porter JD, Siekierski ES, Proud D. Nitric oxide inhibits rhinovirus-induced GM-CSF production in bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;24:317-325.
– reference: Wang X, et al. Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 2006;177:6859-6870.
– reference: van Wetering S, Zuyderduyn S, Ninaber DK, van Sterkenburg MAJA, Rabe KF, Hiemstra PS. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol Immunol 2007;44:803-811.
– reference: Heinecke L, Proud D, Sanders S, Schleimer RP, Kim J. Induction of B7-H1 and B7-DC expression on airway epithelial cells by the Toll-like receptor 3 agonist double-stranded RNA and human rhinovirus infection: In vivo and in vitro studies. J Allergy Clin Immunol 2008;121:1155-1160.
– reference: Eddleston J, Herschbach J, Wagelie-Steffen AL, Christiansen SC, Zuraw BL. The anti-inflammatory effects of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J Allergy Clin Immunol 2007;119:115-122.
– reference: Eddleston J, Christiansen SC, Zuraw BL. Functional expression of the C-X-C chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators. J Immunol 2002;169:6445-6451.
– reference: Adams NP, Bestall JC, Malouf R, Lasserson TJ, Jones P. Beclomethasone versus placebo for chronic asthma. Cochrane Database Syst Rev 2005; Issue 1. Art. No.: CD002738.
– reference: Salomon B, Bluestone JA. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol 1998;161:5138-5142.
– reference: Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids - new mechanisms for old drugs. N Engl J Med 2005;353:1711-1723.
– reference: Subauste MC, Jacoby DB, Richards SM, Proud D. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest 1995;96:549-557.
– reference: Olszewska-Pazdrak B, et al. Cell-specific expression of RANTES, MCP-1, and MIP-1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol 1998;72:4756-4764.
– reference: Proud D, Subauste MC, Ward PE. Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line. Am J Respir Cell Mol Biol 1994;11:57-65.
– reference: Contoli M, et al. Role of deficient type-III interferon-l production in asthma exacerbations. Nat Med 2006;12:1023-1026.
– reference: Sahl H-G, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 2005;77:466-475.
– reference: Shaveta G, Shi J, Chow VTK, Song J. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem Biophys Res Commun 2010;391:1390-1395.
– reference: Roberts JA, et al. The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J 1999;14:275-282.
– reference: Enomoto Y, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 2009;124:913-920.
– reference: Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 1998;72:934-942.
– reference: Fujimoto K, Imaizumi T, Yoshida H, Takanashi S, Okumura K, Satoh K. Interferon-γ stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence. Am J Respir Cell Mol Biol 2001;25:233-238.
– reference: Sachs-Olsen C, et al. Eoxins: A new inflammatory pathway in childhood asthma. J Allergy Clin Immunol 2010;126:859-867.
– reference: Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005;289:L834-L841.
– reference: Chivers JE, et al. Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E release. Eur J Biochem 2004;271:4042-4052.
– reference: Chong LK, Drury DEJ, Dummer JF, Ghahramani P, Schleimer RP, Peachell PT. Protection by dexamethasone of the functional desensitization to β2-adrenoreceptor-mediated responses in human lung mast cells. Br J Pharmacol 1997;121:717-722.
– reference: Asokananthan N, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 2002;169:4572-4578.
– reference: Proud D. The role of defensins in virus-induced asthma. Curr Allergy Asthma Rep 2006;6:81-85.
– reference: Lane C, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004;59:757-760.
– reference: Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 2000;161:1501-1507.
– reference: Mak JC, Nishikawa M, Barnes PJ. Glucocorticoids increase β2-adrenergic receptor transcription in human lung. Am J Physiol Lung Cell Mol Physiol 1995;268:L41-L46.
– reference: Saetta M, Di Stefano A, Rosina C, Thiene G, Fabbri LM. Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 1991;143:138-143.
– reference: Muruve DA, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008;452:103-107.
– reference: Bals R, Hiemstra PS. Innate immunity in the lung; how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327-333.
– reference: Rochelle LG, Fischer BM, Adler KB. Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro. Free Radic Biol Med 1998;24:863-868.
– reference: Laberge S, et al. Increased expression of interleukin-16 in bronchial mucosa of subjects with atopic asthma. Am J Respir Cell Mol Biol 1997;17:193-202.
– reference: Newcomb DC, et al. Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem 2005;280:36952-36961.
– reference: Kato H, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005;23:19-28.
– reference: Saglani S, et al. Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am J Respir Crit Care Med 2005;171:722-727.
– reference: Osterlund C, Grönlund H, Gafvelin G, Bucht A. Non-proteolytic aeroallegens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol 2010;155:111-118.
– reference: Zaheer RS, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol 2010;43:413-421.
– reference: Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor. Mol Pharmacol 2007;72:799-809.
– reference: Chu HW, et al. Expression and activation of 15-lipoxygenase pathway in severe asthma: relationship to eosinophilic phenotype and collagen depostion. Clin Exp Allergy 2002;32:1558-1565.
– reference: Volonaki E, Psarras S, Xepapadaki P, Psomali D, Gourgiotis D, Papadopoulos NG. Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors. Clin Exp Allergy 2006;36:1268-1273.
– reference: Erlwyn-Lajeunesse MD, et al. Bronchoalveolar lavage MMP-9 and TIMP-1 in preschool wheezers and their relationship to persitent wheeze. Pediatr Res 2008;64:194-199.
– reference: Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 2001;276:29603-29610.
– reference: Zen K, Parkos CA. Leukocyte-epithelial interactions. Curr Opin Cell Biol 2003;15:557-564.
– reference: Tomee JF, Wierenga ATJ, Hiemstra PS, Kaufman HK. Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis 1997;176:300-303.
– reference: Nomura A, Uchida Y, Kameyama M, Saotome M, Oki K, Hasegawa S. Endothelin and bronchial asthma. Lancet 1989;1:747-748.
– reference: Kim J, et al. Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells. Am J Respir Cell Mol Biol 2005;33:280-289.
– reference: Inoue D, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir Physiol Neurobiol 2006;154:484-499.
– reference: Kalavantavanich K, Schramm CM. Dexamethasone potentiates high-affinity β-agonist binding and Gsα protein expression in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2000;278:L1101-L1106.
– reference: Jacobs ER, Zeldin DC. The lung HETEs (and EETs) up. Am J Physiol Heart Circ Physiol 2001;280:H1-H10.
– reference: Thomsen SF, et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med 2009;179:1091-1097.
– reference: Dolhnikoff M, et al. The outer wall of small airways is a major site of remodeling in fatal asthma. J Allergy Clin Immunol 2009;123:1090-1097.
– reference: Chung KF. Evaluation of selective prostaglandin E2 (PGE2) receptor agonists as therapeutic agents for the treatment of asthma. Sci STKE 2005;303:pe47.
– reference: Sanders SP, Proud D, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 2004;113:697-702.
– reference: Kato H, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006;414:101-105.
– reference: Tuthope SJ, et al. The role of IκB kinase 2, but not activation of NF-κB, in the release of CXCR3 ligands from IFN-γ-stimulated human bronchial epithelial cells. J Immunol 2007;179:6237-6245.
– reference: Venge J, Lampinen M, Hakansson L, Rak S, Venge P. Identification of IL-5 and RANTES as the major eosinophilic chemoattractants in the human lung. J Allergy Clin Immunol 1996;97:1110-1115.
– reference: Moskwa P, et al. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 2007;175:174-183.
– reference: Kotaniemi-Syrjänen A, Vainionpää R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus-induced wheezing in infancy-the first sign of childhood asthma? J Allergy Clin Immunol 2003;111:66-71.
– reference: Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005;289:L85-L95.
– reference: Subauste MC, Choi D-C, Proud D. Transient exposure of human bronchial epithelial cells to cytokines leads to persistent increased expression of ICAM-1. Inflammation 2001;25:373-380.
– reference: Minshall E, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol 2000;105:232-238.
– reference: Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting β2-adrenoreceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008;73:203-214.
– reference: Allen IC, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza virus through recognition of viral RNA. Immunity 2009;30:556-565.
– reference: Schneider D, et al. Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;182:332-340.
– reference: Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 2003;28:648-654.
– reference: Ying S, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174:8183-8190.
– reference: O'Gorman MT, Jatoi NA, Lane SJ, Mahon BP. IL-1β and TNF-α induce increased expression of CCL28 by airway epithelial cells via an NFκB-dependent pathway. Cell Immunol 2005;238:87-96.
– volume: 276
  start-page: 19267
  year: 2001
  end-page: 19275
  article-title: Cystic fibrosis pathogens activate Ca ‐dependent mitogen‐activated protein kinase signaling pathways in airway epithelial cells
  publication-title: J Biol Chem
– volume: 97
  start-page: 915
  year: 1996
  end-page: 924
  article-title: Interleukin‐11: stimulation and by respiratory viruses and induction of airways hyperresponsiveness
  publication-title: J Clin Invest
– volume: 37
  start-page: 75
  year: 2007
  end-page: 84
  article-title: Airway epithelial IL‐15 transforms monocytes into dendritic cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 111
  start-page: 1345
  year: 2003
  end-page: 1352
  article-title: Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation and wound repair
  publication-title: J Allergy Clin Immunol
– volume: 73
  start-page: 203
  year: 2008
  end-page: 214
  article-title: Long‐acting β ‐adrenoreceptor agonists synergistically enhance glucocorticoid‐dependent transcription in human airway epithelial and smooth muscle cells
  publication-title: Mol Pharmacol
– volume: 90
  start-page: 1296
  year: 1992
  end-page: 1301
  article-title: Modulation of airway inflammation in cystic fibrosis. suppression of interleukin‐8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor
  publication-title: J Clin Invest
– volume: 179
  start-page: 6237
  year: 2007
  end-page: 6245
  article-title: The role of IκB kinase 2, but not activation of NF‐κB, in the release of CXCR3 ligands from IFN‐γ‐stimulated human bronchial epithelial cells
  publication-title: J Immunol
– volume: 89
  start-page: 120
  year: 2009
  end-page: 125
  article-title: On the biosynthesis and biological role of eoxins and 15‐lipoxygenase‐1 in airway inflammation and Hodgkin lymphoma
  publication-title: Prostaglandins Other Lipid Mediat
– volume: 121
  start-page: 1238
  year: 2008
  end-page: 1245
  article-title: Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling
  publication-title: J Allergy Clin Immunol
– volume: 72
  start-page: 799
  year: 2007
  end-page: 809
  article-title: Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor
  publication-title: Mol Pharmacol
– volume: 97
  start-page: 1110
  year: 1996
  end-page: 1115
  article-title: Identification of IL‐5 and RANTES as the major eosinophilic chemoattractants in the human lung
  publication-title: J Allergy Clin Immunol
– volume: 32
  start-page: 1558
  year: 2002
  end-page: 1565
  article-title: Expression and activation of 15‐lipoxygenase pathway in severe asthma: relationship to eosinophilic phenotype and collagen depostion
  publication-title: Clin Exp Allergy
– volume: 182
  start-page: 332
  year: 2010
  end-page: 340
  article-title: Increased cytokine response of rhinovirus‐infected airway epithelial cells in chronic obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 81
  start-page: 1186
  year: 2007
  end-page: 1194
  article-title: Rhinovirus activates interleukin‐8 expression via a Src/p110β phosphatylinositol 3‐kinase pathway in human airway epithelial cells
  publication-title: J Virol
– volume: 35
  start-page: 1256
  year: 2010
  end-page: 1263
  article-title: Cigarette smoke modulates rhinovirus‐induced airway epithelial chemokine production
  publication-title: Eur Respir J
– volume: 36
  start-page: 1425
  year: 2010
  end-page: 1435
  article-title: Rhinovirus induces MUC5AC in a human infection model and via NF‐κB and EGFR pathways
  publication-title: Eur Respir J
– volume: 289
  start-page: L85
  year: 2005
  end-page: L95
  article-title: Human airway epithelial cells produce IP‐10 (CXCL10) and upon rhinovirus infection
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 343
  start-page: 133
  year: 1994
  end-page: 135
  article-title: Increased nitric oxide in exhaled air of asthmatic patients
  publication-title: Lancet
– volume: 170
  start-page: 836
  year: 2004
  end-page: 844
  article-title: Can guideline‐defined asthma control be achieved? The Gaining Optimal Asthma Control study
  publication-title: Am J Respir Crit Care Med
– volume: 119
  start-page: 1105
  year: 2007
  end-page: 1110
  article-title: Early‐life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma
  publication-title: J Allergy Clin Immunol
– volume: 86
  start-page: 2006
  year: 2006
  article-title: Respiratory tract mucin genes and mucin glycoproteins in health and disease
  publication-title: Physiol Rev
– volume: 77
  start-page: 466
  year: 2005
  end-page: 475
  article-title: Mammalian defensins: structures and mechanism of antibiotic activity
  publication-title: J Leukoc Biol
– volume: 162
  start-page: 723
  year: 2000
  end-page: 732
  article-title: Monocyte chemoattractant protein (MCP)‐4 expression in the airway of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory peptides
  publication-title: Am J Respir Crit Care Med
– volume: 36
  start-page: 351
  year: 2007
  end-page: 359
  article-title: Der p, IL‐4, and TGF‐β cooperatively induce EGFR‐dependent TARC expression in airway epithelium
  publication-title: Am J Respir Cell Mol Biol
– volume: 148
  start-page: 689
  year: 1993
  end-page: 694
  article-title: HLA‐DR and ICAM‐1 expression on bronchial epithelial cells in asthma and chronic bronchitis
  publication-title: Am Rev Respir Dis
– volume: 353
  start-page: 1711
  year: 2005
  end-page: 1723
  article-title: Antiinflammatory action of glucocorticoids – new mechanisms for old drugs
  publication-title: N Engl J Med
– volume: 27
  start-page: 1286
  year: 2006
  end-page: 1306
  article-title: Beyond the dogma: novel β ‐adrenoreceptor signalling in the airways
  publication-title: Eur Respir J
– volume: 212
  start-page: 198
  year: 2007
  end-page: 202
  article-title: Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam‐C‐deficient mice
  publication-title: J Pathol
– volume: 3
  start-page: 69
  year: 2010
  end-page: 80
  article-title: Rhinovirus‐induced modulation of gene expression in bronchial epithelial cells from subjects with asthma
  publication-title: Mucosal Immunol
– volume: 140
  start-page: 449
  year: 1989
  end-page: 459
  article-title: Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells
  publication-title: Am Rev Respir Dis
– volume: 41
  start-page: 515
  year: 2006
  end-page: 527
  article-title: Nitric oxide and reactive nitrogen species in airway epithelial cell signaling and inflammation
  publication-title: Free Radic Biol Med
– volume: 40
  start-page: 19
  year: 2009
  end-page: 30
  article-title: Regulation of COX‐2 expression and IL‐6 release by particulate matter in airway epithelial cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 25
  start-page: 373
  year: 2001
  end-page: 380
  article-title: Transient exposure of human bronchial epithelial cells to cytokines leads to persistent increased expression of ICAM‐1
  publication-title: Inflammation
– volume: 278
  start-page: L1101
  year: 2000
  end-page: L1106
  article-title: Dexamethasone potentiates high‐affinity β‐agonist binding and G α protein expression in airway smooth muscle
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 280
  start-page: H1
  year: 2001
  end-page: H10
  article-title: The lung HETEs (and EETs) up
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 27
  start-page: S97
  year: 2008
  end-page: S103
  article-title: Viral respiratory infection and the link to asthma
  publication-title: Pediatr Infect Dis J
– volume: 161
  start-page: 1501
  year: 2000
  end-page: 1507
  article-title: Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7
  publication-title: Am J Respir Crit Care Med
– volume: 414
  start-page: 101
  year: 2006
  end-page: 105
  article-title: Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses
  publication-title: Nature
– volume: 183
  start-page: 6989
  year: 2009
  end-page: 6997
  article-title: Role of double‐stranded RNA pattern recognition receptors in rhinovirus‐induced airway epithelial cell responses
  publication-title: J Immunol
– volume: 25
  start-page: 233
  year: 2001
  end-page: 238
  article-title: Interferon‐γ stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence
  publication-title: Am J Respir Cell Mol Biol
– volume: 172
  start-page: 4637
  year: 2004
  end-page: 4645
  article-title: Human rhinovirus infection induces airway epithelial cell production of human β‐defensin‐2 both and
  publication-title: J Immunol
– volume: 177
  start-page: 3344
  year: 2006
  end-page: 3354
  article-title: Functional analysis of the chemokine receptor CCR3 on airway epithelial cells
  publication-title: J Immunol
– volume: 94
  start-page: 2028
  year: 1994
  end-page: 2035
  article-title: Airway epithelial cell expression of interleukin‐6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity
  publication-title: J Clin Invest
– volume: 36
  start-page: 1268
  year: 2006
  end-page: 1273
  article-title: Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus‐induced epithelial production of remodelling‐associated growth factors
  publication-title: Clin Exp Allergy
– volume: 112
  start-page: 930
  year: 2003
  end-page: 934
  article-title: Release of both CCR4‐active and CXCR3‐active chemokines during human allergic pulmonary late‐phase reactions
  publication-title: J Allergy Clin Immunol
– volume: 65
  start-page: 1
  year: 1999
  end-page: 15
  article-title: Endothelins and asthma
  publication-title: Life Sci
– volume: 16
  start-page: 43
  year: 2005
  end-page: 51
  article-title: Markers of eosinophilic inflammation and tissue re‐modelling in children before clinically diagnosed bronchial asthma
  publication-title: Pediatr Allergy Immunol
– volume: 123
  start-page: 1090
  year: 2009
  end-page: 1097
  article-title: The outer wall of small airways is a major site of remodeling in fatal asthma
  publication-title: J Allergy Clin Immunol
– volume: 276
  start-page: 29603
  year: 2001
  end-page: 29610
  article-title: Inhibition of AP‐1 by the glucocorticoid‐inducible protein GILZ
  publication-title: J Biol Chem
– volume: 107
  start-page: 235
  year: 2001
  end-page: 243
  article-title: Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells and
  publication-title: J Allergy Clin Immunol
– volume: 113
  start-page: 697
  year: 2004
  end-page: 702
  article-title: Role of nasal nitric oxide in the resolution of experimental rhinovirus infection
  publication-title: J Allergy Clin Immunol
– volume: 28
  start-page: 648
  year: 2003
  end-page: 654
  article-title: Airway epithelial cells release MIP‐3alpha/CCL20 in response to cytokines and ambient particulate matter
  publication-title: Am J Respir Cell Mol Biol
– volume: 72
  start-page: 934
  year: 1998
  end-page: 942
  article-title: Nitric oxide inhibits rhinovirus‐induced cytokine production and viral replication in a human respiratory epithelial cell line
  publication-title: J Virol
– volume: 161
  start-page: 3645
  year: 1998
  end-page: 3651
  article-title: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium
  publication-title: J Immunol
– volume: 129
  start-page: 15
  year: 2006
  end-page: 26
  article-title: The Salmeterol Multicenter Asthma Reseach Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol
  publication-title: Chest
– volume: 126
  start-page: 859
  year: 2010
  end-page: 867
  article-title: Eoxins: A new inflammatory pathway in childhood asthma
  publication-title: J Allergy Clin Immunol
– volume: 61
  start-page: 382
  year: 2006
  end-page: 388
  article-title: Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells
  publication-title: Allergy
– volume: 14
  start-page: 275
  year: 1999
  end-page: 282
  article-title: The long‐acting β ‐agonist salmeterol xinafoate: effects on airway inflammation in asthma
  publication-title: Eur Respir J
– volume: 125
  start-page: 1178
  year: 2010
  end-page: 1187
  article-title: The role of viruses in acute exacerbations of asthma
  publication-title: J Allergy Clin Immunol
– volume: 23
  start-page: 389
  year: 2000
  end-page: 395
  article-title: Neutrophil transmigration across human airway epithelial monolayers; mechanisms and dependence on electrical resistance
  publication-title: Am J Respir Cell Mol Biol
– volume: 322
  start-page: 231
  year: 2004
  end-page: 238
  article-title: Does Toll‐like receptor 3 play a biological role in virus infections?
  publication-title: Virology
– volume: 7
  start-page: 541
  year: 2006
  end-page: 545
  article-title: Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation
  publication-title: Curr Drug Targets
– year: 2005
  article-title: Beclomethasone versus placebo for chronic asthma
  publication-title: Cochrane Database Syst Rev
– volume: 43
  start-page: 652
  year: 2010
  end-page: 661
  article-title: Interleukin‐13 induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection
  publication-title: Am J Respir Cell Mol Biol
– volume: 161
  start-page: 5138
  year: 1998
  end-page: 5142
  article-title: LFA‐1 interaction with ICAM‐1 and ICAM‐2 regulates Th2 cytokine production
  publication-title: J Immunol
– volume: 43
  start-page: 201
  year: 2010
  end-page: 209
  article-title: Human rhinovirus infection of airway epithelial cells upregulates MMP‐9 production via NF‐κB
  publication-title: Am J Respir Cell Mol Biol
– volume: 271
  start-page: 4042
  year: 2004
  end-page: 4052
  article-title: Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E release
  publication-title: Eur J Biochem
– volume: 268
  start-page: L41
  year: 1995
  end-page: L46
  article-title: Glucocorticoids increase β ‐adrenergic receptor transcription in human lung
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 156
  start-page: 772
  year: 1996
  end-page: 777
  article-title: Cellular detachment and deformation induce IL‐8 gene expression in human bronchial epithelial cells
  publication-title: J Immunol
– volume: 24
  start-page: 863
  year: 1998
  end-page: 868
  article-title: Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells
  publication-title: Free Radic Biol Med
– volume: 177
  start-page: 6859
  year: 2006
  end-page: 6870
  article-title: Syk is downstream of intercellular adhesion molecule‐1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells
  publication-title: J Immunol
– volume: 39
  start-page: 181
  year: 2009
  end-page: 192
  article-title: Provoked models of asthma: what have we learnt?
  publication-title: Clin Exp Allergy
– volume: 343
  start-page: 332
  year: 2000
  end-page: 336
  article-title: Low‐dose inhaled corticosteroids and the prevention of death from asthma
  publication-title: N Engl J Med
– volume: 33
  start-page: 280
  year: 2005
  end-page: 289
  article-title: Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 117
  start-page: 989
  year: 2006
  end-page: 994
  article-title: Eosinophilic bronchitis in asthma: a model for establishing dose‐response and relative potency of inhaled corticosteroids
  publication-title: J Allergy Clin Immunol
– volume: 169
  start-page: 6445
  year: 2002
  end-page: 6451
  article-title: Functional expression of the C‐X‐C chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators
  publication-title: J Immunol
– volume: 258
  start-page: 593
  year: 1992
  end-page: 597
  article-title: Interleukin‐6 and its receptor: a paradigm for cytokines
  publication-title: Science
– volume: 75
  start-page: 189
  year: 1992
  end-page: 195
  article-title: Production of granulocyte‐macrophage colony‐stimulating factor by cultured human tracheal epithelial cells
  publication-title: Immunology
– volume: 185
  start-page: 461
  year: 1997
  end-page: 469
  article-title: Interleukin (IL)‐6 directs the differentiation of IL‐4 producing CD4 T cells
  publication-title: J Exp Med
– volume: 293
  start-page: L505
  year: 2007
  end-page: L515
  article-title: Interleukin‐17A modulates human airway epithelial responses to human rhinovirus infection
  publication-title: Am J Physiol Cell Mol Physiol
– volume: 19
  start-page: 68
  year: 2002
  end-page: 75
  article-title: Neutrophil degranulation and cell lysis is associated with clinical severity in virus‐induced asthma
  publication-title: Eur Respir J
– volume: 23
  start-page: 327
  year: 2004
  end-page: 333
  article-title: Innate immunity in the lung; how epithelial cells fight against respiratory pathogens
  publication-title: Eur Respir J
– volume: 176
  start-page: 300
  year: 1997
  end-page: 303
  article-title: Proteases from induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines
  publication-title: J Infect Dis
– volume: 201
  start-page: 937
  year: 2005
  end-page: 947
  article-title: Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus
  publication-title: J Exp Med
– volume: 39
  start-page: 1700
  year: 2009
  end-page: 1710
  article-title: Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus
  publication-title: Clin Exp Allergy
– volume: 169
  start-page: 4572
  year: 2002
  end-page: 4578
  article-title: House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease‐activated receptor (PAR)‐2 and inactivates PAR‐1
  publication-title: J Immunol
– volume: 5
  start-page: 37
  year: 2005
  end-page: 42
  article-title: Nitric oxide and the common cold
  publication-title: Curr Opin Allergy Clin Immunol
– volume: 452
  start-page: 103
  year: 2008
  end-page: 107
  article-title: The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response
  publication-title: Nature
– volume: 2
  start-page: 22
  year: 2011
  end-page: 29
  article-title: Human rhinovirus recognition in non‐immune cells is mediated by Toll‐like receptors amd MDA‐5, which trigger a synergetic pro‐inflammatory immune response
  publication-title: Virulence
– volume: 111
  start-page: 66
  year: 2003
  end-page: 71
  article-title: Rhinovirus‐induced wheezing in infancy‐the first sign of childhood asthma?
  publication-title: J Allergy Clin Immunol
– volume: 119
  start-page: 115
  year: 2007
  end-page: 122
  article-title: The anti‐inflammatory effects of glucocorticoids is mediated by glucocorticoid‐induced leucine zipper in epithelial cells
  publication-title: J Allergy Clin Immunol
– volume: 59
  start-page: 757
  year: 2004
  end-page: 760
  article-title: Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath
  publication-title: Thorax
– volume: 297
  start-page: L196
  year: 2009
  end-page: L203
  article-title: 15‐lipoxygenase‐1 induces expression and release of chemokines in cultured human lung epithelial cells
  publication-title: Am J Physiol Lung Cell Mol Biol
– volume: 77
  start-page: 330
  year: 1992
  end-page: 337
  article-title: Expression and generation of interleukin‐8, IL‐6 and granulocyte‐macrophage colony‐stimulating factor by bronchial epithelial cells and enhancement by IL‐1ß and tumour necrosis factor‐α
  publication-title: Immunology
– volume: 104
  start-page: 123
  year: 1999
  end-page: 133
  article-title: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions
  publication-title: J Clin Invest
– volume: 2
  start-page: 96
  year: 2007
  end-page: 105
  article-title: The interferon‐inducible protein viperin inhibits influenza virus release by perturbing lipid rafts
  publication-title: Cell Host Microbe
– volume: 72
  start-page: 4534
  year: 1998
  end-page: 4536
  article-title: Influenza virus‐infected epithelial cells present viral antigens to antigen‐specific CD8 cytotoxic T lymphocytes
  publication-title: J Virol
– volume: 10
  start-page: 142
  year: 1994
  end-page: 147
  article-title: Increased expression of the monocyte chemoattractant protein‐1 in bronchial tissue from asthmatic subjects
  publication-title: Am J Respir Cell Mol Biol
– volume: 6
  start-page: 903
  year: 1993
  end-page: 916
  article-title: Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa
  publication-title: Eur Respir J
– volume: 173
  start-page: 3482
  year: 2004
  end-page: 3491
  article-title: IL‐17 markedly up‐regulates β‐Defensin‐2 expression in human airway epithelium via JAK and NF‐κB signaling pathways
  publication-title: J Immunol
– volume: 143
  start-page: 138
  year: 1991
  end-page: 143
  article-title: Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma
  publication-title: Am Rev Respir Dis
– volume: 96
  start-page: 549
  year: 1995
  end-page: 557
  article-title: Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure
  publication-title: J Clin Invest
– volume: 72
  start-page: 4756
  year: 1998
  end-page: 4764
  article-title: Cell‐specific expression of RANTES, MCP‐1, and MIP‐1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus
  publication-title: J Virol
– volume: 180
  start-page: 870
  year: 2008
  end-page: 880
  article-title: Syk associates with clathrin and mediates phosphatidylinositol 3‐kinase activation during human rhinovirus internalization
  publication-title: J Immunol
– volume: 47
  start-page: 345
  year: 2010
  end-page: 361
  article-title: Asthma and cigarette smoking: a review of the empirical literature
  publication-title: J Asthma
– volume: 6
  start-page: 81
  year: 2006
  end-page: 85
  article-title: The role of defensins in virus‐induced asthma
  publication-title: Curr Allergy Asthma Rep
– volume: 17
  start-page: 193
  year: 1997
  end-page: 202
  article-title: Increased expression of interleukin‐16 in bronchial mucosa of subjects with atopic asthma
  publication-title: Am J Respir Cell Mol Biol
– volume: 174
  start-page: 8183
  year: 2005
  end-page: 8190
  article-title: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2‐attracting chemokines and disease severity
  publication-title: J Immunol
– volume: 123
  start-page: 1384
  year: 2009
  end-page: 1390
  article-title: susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects
  publication-title: J Allergy Clin Immunol
– volume: 144
  start-page: 51
  year: 1991
  end-page: 58
  article-title: Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: Cellular, mediator, and permeability changes
  publication-title: Am Rev Respir Dis
– volume: 15
  start-page: 557
  year: 2003
  end-page: 564
  article-title: Leukocyte‐epithelial interactions
  publication-title: Curr Opin Cell Biol
– volume: 332
  start-page: 133
  year: 1995
  end-page: 138
  article-title: Asthma and wheezing in the first six years of life
  publication-title: N Engl J Med
– volume: 124
  start-page: 913
  year: 2009
  end-page: 920
  article-title: Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack
  publication-title: J Allergy Clin Immunol
– volume: 11
  start-page: 57
  year: 1994
  end-page: 65
  article-title: Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line
  publication-title: Am J Respir Cell Mol Biol
– volume: 43
  start-page: 413
  year: 2010
  end-page: 421
  article-title: Human rhinovirus‐induced epithelial production of CXCL10 is dependent upon IFN regulatory factor‐1
  publication-title: Am J Respir Cell Mol Biol
– volume: 40
  start-page: 610
  year: 2009
  end-page: 619
  article-title: Rhinovirus‐induced major airway mucin production involves a novel TLR3‐EGFR‐dependent pathway
  publication-title: Am J Respir Cell Mol Biol
– volume: 178
  start-page: 667
  year: 2008
  end-page: 672
  article-title: Wheezing rhinovirus illnesses in early life predict asthma development in high‐risk children
  publication-title: Am J Respir Crit Care Med
– volume: 181
  start-page: 1780
  year: 2000
  end-page: 1784
  article-title: Rhinovirus infection induces major histocompatability complex class I and costimulatory molecule upregulation on respiratory epithelial cells
  publication-title: J Infect Dis
– volume: 175
  start-page: 174
  year: 2007
  end-page: 183
  article-title: A novel host defense system of airways is defective in cystic fibrosis
  publication-title: Am J Respir Crit Care Med
– volume: 83
  start-page: 1277
  year: 1993
  end-page: 1283
  article-title: Smoking, alcohol consumption, and susceptibility to the common cold
  publication-title: Am J Public Health
– volume: 21
  start-page: 365
  year: 1999
  end-page: 379
  article-title: Antigen trafficking and accessory cell function in respiratory epithelial cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 43
  start-page: 1293
  year: 2006
  end-page: 1315
  article-title: Surfactant proteins SP‐A and SP‐D: structure, function and receptors
  publication-title: Mol Immunol
– volume: 155
  start-page: 111
  year: 2010
  end-page: 118
  article-title: Non‐proteolytic aeroallegens from mites, cat and dog exert adjuvant‐like activation of bronchial epithelial cells
  publication-title: Int Arch Allergy Immunol
– volume: 324
  start-page: 55
  year: 2009
  end-page: 59
  article-title: Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution
  publication-title: Science
– volume: 182
  start-page: 4854
  year: 2009
  end-page: 4864
  article-title: Selective transcriptional downregulation of human rhinovirus‐induced production of CXCL10 from airway epithelial cells via the MEK1 pathway
  publication-title: J Immunol
– volume: 44
  start-page: 803
  year: 2007
  end-page: 811
  article-title: Epithelial differentiation is a determinant in the production of eotaxin‐2 and ‐3 by bronchial epithelial cells in response to IL‐4 and IL‐13
  publication-title: Mol Immunol
– volume: 24
  start-page: 488
  year: 2003
  end-page: 522
  article-title: The interplay between the glucocorticoid receptor and nuclear factor‐κB or activator protein‐1: molecular mechanisms for gene repression
  publication-title: Endocr Rev
– volume: 344
  start-page: 219
  year: 1994
  end-page: 224
  article-title: Added salmeterol versus higher‐dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid
  publication-title: Lancet
– volume: 1
  start-page: 747
  year: 1989
  end-page: 748
  article-title: Endothelin and bronchial asthma
  publication-title: Lancet
– volume: 117
  start-page: 291
  year: 2006
  end-page: 297
  article-title: Vascular endothelial growth factor‐mediated induction of angiogenesis by human rhinovirus
  publication-title: J Allergy Clin Immunol
– volume: 179
  start-page: 1091
  year: 2009
  end-page: 1097
  article-title: Exploring the association between severe respiratory syncytial virus infection and asthma: a registry‐based twin study
  publication-title: Am J Respir Crit Care Med
– volume: 238
  start-page: 87
  year: 2005
  end-page: 96
  article-title: IL‐1β and TNF‐α induce increased expression of CCL28 by airway epithelial cells via an NFκB‐dependent pathway
  publication-title: Cell Immunol
– volume: 12
  start-page: 1023
  year: 2006
  end-page: 1026
  article-title: Role of deficient type‐III interferon‐l production in asthma exacerbations
  publication-title: Nat Med
– volume: 391
  start-page: 1390
  year: 2010
  end-page: 1395
  article-title: Structural characterization reveals that viperin is a radical S‐adenosyl‐L‐methionine (SAM) enzyme
  publication-title: Biochem Biophys Res Commun
– volume: 32
  start-page: 314
  year: 2008
  end-page: 320
  article-title: Serial viral infections in infants with recurrent respiratory illnesses
  publication-title: Eur Respir J
– volume: 10
  start-page: 166
  year: 2010
  end-page: 172
  article-title: Lipoxins: regulators of resolution
  publication-title: Curr Opin Pharmacol
– volume: 24
  start-page: 317
  year: 2001
  end-page: 325
  article-title: Nitric oxide inhibits rhinovirus‐induced GM‐CSF production in bronchial epithelial cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 30
  start-page: 556
  year: 2009
  end-page: 565
  article-title: The NLRP3 inflammasome mediates innate immunity to influenza virus through recognition of viral RNA
  publication-title: Immunity
– volume: 91
  start-page: 618
  year: 1995
  end-page: 627
  article-title: Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin‐1
  publication-title: J Allergy Clin Immunol
– volume: 269
  start-page: 434
  year: 1996
  end-page: 442
  article-title: Nitric oxide as an antiinflammatory agent
  publication-title: Methods Enzymol
– volume: 171
  start-page: 722
  year: 2005
  end-page: 727
  article-title: Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction
  publication-title: Am J Respir Crit Care Med
– volume: 55
  start-page: 972
  year: 2004
  end-page: 978
  article-title: Enhanced adherence of to human epithelial cells infected with respiratory syncytial virus
  publication-title: Pediatr Res
– volume: 152
  start-page: 1757
  year: 1995
  end-page: 1764
  article-title: Effects of intranasal administration of endothelin‐1 to allergic and nonallergic individuals
  publication-title: Am J Respir Crit Care Med
– volume: 152
  start-page: 927
  year: 1995
  end-page: 933
  article-title: Secretion of chemokines and other cytokines in allergen‐induced nasal responses: inhibition by topical steroid treatment
  publication-title: Am J Respir Crit Care Med
– volume: 121
  start-page: 1155
  year: 2008
  end-page: 1160
  article-title: Induction of B7‐H1 and B7‐DC expression on airway epithelial cells by the Toll‐like receptor 3 agonist double‐stranded RNA and human rhinovirus infection: and studies
  publication-title: J Allergy Clin Immunol
– volume: 280
  start-page: 36952
  year: 2005
  end-page: 36961
  article-title: Phosphatidylinositol 3‐kinase is required for rhinovirus‐induced airway epithelial cell interleukin‐8 expression
  publication-title: J Biol Chem
– volume: 6
  start-page: e1001178
  year: 2010
  article-title: Co‐ordinated role of TLR‐3, RIG‐I and MDA5 in the innate response to rhinovirus in bronchial epithelium
  publication-title: PLoS Pathog
– volume: 285
  start-page: 42013
  year: 2010
  end-page: 42022
  article-title: Transcription factor redundancy ensures induction of the antiviral state
  publication-title: J Biol Chem
– volume: 112
  start-page: 1139
  year: 2003
  end-page: 1146
  article-title: The CX3C chemokine fractalkine in allergic asthma and rhinitis
  publication-title: J Allergy Clin Immunol
– volume: 120
  start-page: 1233
  year: 2007
  end-page: 1244
  article-title: Epithelium dysfunction in asthma
  publication-title: J Allergy Clin Immunol
– volume: 138
  start-page: 4S
  year: 2010
  end-page: 10S
  article-title: The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance
  publication-title: Chest
– volume: 8
  start-page: 295
  year: 1995
  end-page: 297
  article-title: Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections
  publication-title: Eur Respir J
– volume: 289
  start-page: L834
  year: 2005
  end-page: L841
  article-title: Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 148
  start-page: 87
  year: 1993
  end-page: 90
  article-title: Effect of inhaled prostaglandin E2 on allergen‐induced asthma
  publication-title: Am Rev Respir Dis
– volume: 121
  start-page: 717
  year: 1997
  end-page: 722
  article-title: Protection by dexamethasone of the functional desensitization to β ‐adrenoreceptor‐mediated responses in human lung mast cells
  publication-title: Br J Pharmacol
– volume: 23
  start-page: 19
  year: 2005
  end-page: 28
  article-title: Cell type‐specific involvement of RIG‐I in antiviral response
  publication-title: Immunity
– volume: 287
  start-page: L584
  year: 2004
  end-page: L591
  article-title: The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 184
  start-page: 5179
  year: 2010
  end-page: 5185
  article-title: IFN regulatory factor‐1 bypassess IFN‐mediated antiviral effects through viperin gene induction
  publication-title: J Immunol
– volume: 153
  start-page: 1675
  year: 1996
  end-page: 1681
  article-title: GM‐CSF, IL‐8, IL‐1R, TNF‐αR, and HLA‐DR in nasal epithelial cells in allergic rhinitis
  publication-title: Am J Respir Crit Care Med
– volume: 178
  start-page: 962
  year: 2008
  end-page: 968
  article-title: Gene expression profiles during human rhinovirus infection: insights into the host response
  publication-title: Am J Respir Crit Care Med
– volume: 153
  start-page: 1090
  year: 2008
  end-page: 1104
  article-title: A Holy Grail of asthma management: towards understanding how long‐actingβ ‐adrenoreceptor agonists enhance the clinical efficacy of inhaled corticosteroids
  publication-title: Br J Pharmacol
– volume: 176
  start-page: 146
  year: 2007
  end-page: 153
  article-title: Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma
  publication-title: Am J Respir Crit Care Med
– volume: 98
  start-page: 766
  year: 1996
  end-page: 780
  article-title: Detection of the chemokine RANTES and endothelial cell adhesion molecules in nasal polyps
  publication-title: J Allergy Clin Immunol
– volume: 31
  start-page: 279
  year: 2001
  end-page: 294
  article-title: The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of
  publication-title: Clin Exp Allergy
– volume: 154
  start-page: 484
  year: 2006
  end-page: 499
  article-title: Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells
  publication-title: Respir Physiol Neurobiol
– volume: 105
  start-page: 232
  year: 2000
  end-page: 238
  article-title: IL‐11 expression is increased in severe asthma: association with epithelial cells and eosinophils
  publication-title: J Allergy Clin Immunol
– volume: 107
  start-page: 1357
  year: 2001
  end-page: 1364
  article-title: The C‐C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics
  publication-title: J Clin Invest
– volume: 34
  start-page: 616
  year: 2006
  end-page: 624
  article-title: Combination therapy. Synergistic suppression of virus‐induced chemokines in airway epithelial cells
  publication-title: Am J Respir Cell Mol Biol
– volume: 19
  start-page: 34
  year: 2008
  end-page: 41
  article-title: Matrix metalloproteinases as modulators of inflammation
  publication-title: Semin Cell Dev Biol
– volume: 64
  start-page: 194
  year: 2008
  end-page: 199
  article-title: Bronchoalveolar lavage MMP‐9 and TIMP‐1 in preschool wheezers and their relationship to persitent wheeze
  publication-title: Pediatr Res
– volume: 123
  start-page: 201
  year: 2009
  end-page: 208
  article-title: Nitric oxide inhibits human rhinovirus‐induced transcriptional activation of CXCL10 in airway epithelial cells
  publication-title: J Allergy Clin Immunol
– volume: 15
  start-page: 3926
  year: 2004
  end-page: 3937
  article-title: JAM‐C is a component of desmosomes and a ligand for CD11b/CD18‐mediated neutrophil transepithelial migration
  publication-title: Mol Biol Cell
– volume: 120
  start-page: 813
  year: 2007
  end-page: 819
  article-title: Vascular remodeling is a feature of asthma and nonasthmatic eosinophil bronchitis
  publication-title: J Allergy Clin Immunol
– volume: 20
  start-page: 2121
  year: 2006
  end-page: 2123
  article-title: H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM‐1 and TLR3 expression
  publication-title: FASEB J
– volume: 124
  start-page: 551
  year: 2009
  end-page: 557
  article-title: Nitric oxide inhibits IFN regulatory factor 1 and nuclear factor‐κB pathways in rhinovirus‐infected epithelial cells
  publication-title: J Allergy Clin Immunol
– volume: 303
  start-page: pe47
  year: 2005
  article-title: Evaluation of selective prostaglandin E2 (PGE2) receptor agonists as therapeutic agents for the treatment of asthma
  publication-title: Sci STKE
– volume: 56
  start-page: 351
  year: 2001
  end-page: 357
  article-title: Increased expression of inducible nitric oxide synthase and cyclo‐oxygenase‐2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment
  publication-title: Thorax
– volume: 55
  start-page: 603
  year: 2000
  end-page: 613
  article-title: Molecular mechanisms of glucocorticoid action: what is important?
  publication-title: Thorax
– volume: 368
  start-page: 744
  year: 2006
  end-page: 753
  article-title: Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomized controlled, double‐blind study
  publication-title: Lancet
– volume: 6
  start-page: 372
  year: 2006
  end-page: 376
  article-title: Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma
  publication-title: Curr Allergy Asthma Rep
– ident: e_1_2_8_13_2
  doi: 10.1165/rcmb.2006-0235OC
– ident: e_1_2_8_178_2
  doi: 10.1034/j.1399-3003.1999.14b07.x
– ident: e_1_2_8_31_2
  doi: 10.1165/ajrcmb.10.2.8110469
– ident: e_1_2_8_149_2
  doi: 10.1165/rcmb.2009-0216OC
– ident: e_1_2_8_153_2
  doi: 10.1016/j.jaci.2009.02.032
– volume: 6
  start-page: 903
  year: 1993
  ident: e_1_2_8_70_2
  article-title: Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.06060903
– ident: e_1_2_8_91_2
  doi: 10.4161/viru.2.1.13807
– ident: e_1_2_8_181_2
  doi: 10.1111/j.1365-2222.2009.03307.x
– ident: e_1_2_8_68_2
  doi: 10.1002/path.2163
– ident: e_1_2_8_111_2
  doi: 10.1164/rccm.200911-1673OC
– ident: e_1_2_8_63_2
  doi: 10.1016/S0076-6879(96)69044-2
– ident: e_1_2_8_23_2
  doi: 10.1016/S0091-6749(96)70265-8
– ident: e_1_2_8_135_2
  doi: 10.1164/rccm.200410-1404OC
– ident: e_1_2_8_167_2
  doi: 10.1074/jbc.M101522200
– ident: e_1_2_8_160_2
  doi: 10.1016/j.jaci.2006.01.045
– ident: e_1_2_8_140_2
  doi: 10.1067/mai.2003.33
– ident: e_1_2_8_107_2
  doi: 10.1164/rccm.200805-670OC
– ident: e_1_2_8_98_2
  doi: 10.2105/AJPH.83.9.1277
– ident: e_1_2_8_57_2
  doi: 10.1152/ajplung.00069.2005
– ident: e_1_2_8_29_2
  doi: 10.1165/rcmb.2002-0095OC
– ident: e_1_2_8_65_2
  doi: 10.1165/ajrcmb.23.3.4068
– ident: e_1_2_8_12_2
  doi: 10.1007/s11882-996-0006-7
– ident: e_1_2_8_43_2
  doi: 10.1164/ajrccm/148.1.87
– ident: e_1_2_8_115_2
  doi: 10.4049/jimmunol.0802401
– ident: e_1_2_8_28_2
  doi: 10.1016/j.jaci.2003.08.012
– ident: e_1_2_8_103_2
  doi: 10.1007/s11882-006-0015-6
– volume: 77
  start-page: 330
  year: 1992
  ident: e_1_2_8_4_2
  article-title: Expression and generation of interleukin‐8, IL‐6 and granulocyte‐macrophage colony‐stimulating factor by bronchial epithelial cells and enhancement by IL‐1ß and tumour necrosis factor‐α
  publication-title: Immunology
– ident: e_1_2_8_7_2
  doi: 10.1172/JCI118067
– ident: e_1_2_8_124_2
  doi: 10.1164/ajrccm/148.3.689
– ident: e_1_2_8_138_2
  doi: 10.1056/NEJM199501193320301
– ident: e_1_2_8_172_2
  doi: 10.1016/S0140-6736(06)69284-2
– ident: e_1_2_8_51_2
  doi: 10.1016/S0091-6749(95)70260-1
– ident: e_1_2_8_154_2
  doi: 10.1164/rccm.200701-042OC
– ident: e_1_2_8_175_2
  doi: 10.1038/sj.bjp.0701185
– ident: e_1_2_8_95_2
  doi: 10.1152/ajplung.00066.2007
– ident: e_1_2_8_78_2
  doi: 10.1128/JVI.72.2.934-942.1998
– ident: e_1_2_8_102_2
  doi: 10.1189/jlb.0804452
– ident: e_1_2_8_53_2
  doi: 10.1016/S0024-3205(98)00614-6
– ident: e_1_2_8_97_2
  doi: 10.1183/09031936.00128809
– ident: e_1_2_8_46_2
  doi: 10.1152/ajplung.00036.2008
– ident: e_1_2_8_133_2
  doi: 10.1111/j.1365-2222.2008.03172.x
– ident: e_1_2_8_165_2
  doi: 10.1136/thorax.55.7.603
– ident: e_1_2_8_84_2
  doi: 10.1016/j.immuni.2009.02.005
– ident: e_1_2_8_173_2
  doi: 10.1164/rccm.200401-033OC
– ident: e_1_2_8_2_2
  doi: 10.1126/science.1411569
– ident: e_1_2_8_99_2
  doi: 10.3109/02770900903556413
– ident: e_1_2_8_132_2
  doi: 10.1016/j.jaci.2007.05.028
– ident: e_1_2_8_10_2
  doi: 10.1016/S0091-6749(00)90070-8
– ident: e_1_2_8_94_2
  doi: 10.1165/rcmb.2009-0244OC
– ident: e_1_2_8_80_2
  doi: 10.1074/jbc.M502449200
– volume: 72
  start-page: 4534
  year: 1998
  ident: e_1_2_8_129_2
  article-title: Influenza virus‐infected epithelial cells present viral antigens to antigen‐specific CD8+ cytotoxic T lymphocytes
  publication-title: J Virol
  doi: 10.1128/JVI.72.5.4534-4536.1998
– ident: e_1_2_8_11_2
  doi: 10.4049/jimmunol.174.12.8183
– ident: e_1_2_8_37_2
  doi: 10.1152/ajplung.00453.2003
– ident: e_1_2_8_118_2
  doi: 10.1067/mai.2001.112028
– ident: e_1_2_8_170_2
  doi: 10.1378/chest.129.1.15
– ident: e_1_2_8_21_2
  doi: 10.1152/ajplung.00397.2004
– ident: e_1_2_8_125_2
  doi: 10.1165/rcmb.2004-0129OC
– ident: e_1_2_8_151_2
  doi: 10.1067/mai.2003.1464
– ident: e_1_2_8_64_2
  doi: 10.1023/A:1012850630351
– ident: e_1_2_8_106_2
  doi: 10.1038/mi.2009.109
– year: 2005
  ident: e_1_2_8_159_2
  article-title: Beclomethasone versus placebo for chronic asthma
  publication-title: Cochrane Database Syst Rev
– volume: 161
  start-page: 5138
  year: 1998
  ident: e_1_2_8_127_2
  article-title: LFA‐1 interaction with ICAM‐1 and ICAM‐2 regulates Th2 cytokine production
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.10.5138
– ident: e_1_2_8_14_2
  doi: 10.1165/ajrcmb.17.2.2750
– ident: e_1_2_8_61_2
  doi: 10.1183/09031936.95.08020295
– ident: e_1_2_8_163_2
  doi: 10.1124/mol.107.038794
– ident: e_1_2_8_176_2
  doi: 10.1152/ajplung.2000.278.5.L1101
– ident: e_1_2_8_113_2
  doi: 10.4049/jimmunol.0902264
– ident: e_1_2_8_66_2
  doi: 10.1016/S0955-0674(03)00103-0
– ident: e_1_2_8_162_2
  doi: 10.1111/j.1432-1033.2004.04342.x
– ident: e_1_2_8_26_2
  doi: 10.1165/rcmb.2006-0160OC
– ident: e_1_2_8_85_2
  doi: 10.1038/nature06664
– ident: e_1_2_8_90_2
  doi: 10.1371/journal.ppat.1001178
– volume: 72
  start-page: 4756
  year: 1998
  ident: e_1_2_8_30_2
  article-title: Cell‐specific expression of RANTES, MCP‐1, and MIP‐1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus
  publication-title: J Virol
  doi: 10.1128/JVI.72.6.4756-4764.1998
– ident: e_1_2_8_45_2
  doi: 10.1046/j.1365-2222.2002.01477.x
– ident: e_1_2_8_86_2
  doi: 10.1016/j.virol.2004.01.033
– ident: e_1_2_8_72_2
  doi: 10.1172/JCI115994
– ident: e_1_2_8_33_2
  doi: 10.1016/j.cellimm.2006.02.003
– ident: e_1_2_8_52_2
  doi: 10.1016/S0140-6736(89)90814-3
– ident: e_1_2_8_143_2
  doi: 10.1016/j.jaci.2006.12.669
– volume: 268
  start-page: L41
  year: 1995
  ident: e_1_2_8_174_2
  article-title: Glucocorticoids increase β2‐adrenergic receptor transcription in human lung
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.1995.268.1.L41
– ident: e_1_2_8_112_2
  doi: 10.1074/jbc.M110.165936
– ident: e_1_2_8_152_2
  doi: 10.1203/PDR.0b013e318175dd2d
– ident: e_1_2_8_88_2
  doi: 10.1016/j.immuni.2005.04.010
– ident: e_1_2_8_48_2
  doi: 10.1016/j.prostaglandins.2008.12.003
– ident: e_1_2_8_117_2
  doi: 10.1016/j.bbrc.2009.12.070
– ident: e_1_2_8_22_2
  doi: 10.1016/j.molimm.2006.04.008
– ident: e_1_2_8_50_2
  doi: 10.1152/ajpheart.2001.280.1.H1
– ident: e_1_2_8_76_2
  doi: 10.4049/jimmunol.169.8.4572
– ident: e_1_2_8_83_2
  doi: 10.1128/JVI.02309-06
– ident: e_1_2_8_20_2
  doi: 10.4049/jimmunol.179.9.6237
– ident: e_1_2_8_3_2
  doi: 10.1084/jem.185.3.461
– ident: e_1_2_8_24_2
  doi: 10.1164/ajrccm.152.3.7545059
– ident: e_1_2_8_81_2
  doi: 10.4049/jimmunol.180.2.870
– ident: e_1_2_8_100_2
  doi: 10.4049/jimmunol.173.5.3482
– ident: e_1_2_8_42_2
  doi: 10.1164/ajrccm/144.1.51
– ident: e_1_2_8_155_2
  doi: 10.1016/j.jaci.2005.11.005
– ident: e_1_2_8_54_2
  doi: 10.1164/ajrccm.152.6.8520734
– ident: e_1_2_8_38_2
  doi: 10.4049/jimmunol.177.5.3344
– ident: e_1_2_8_110_2
  doi: 10.1016/j.jaci.2009.03.010
– ident: e_1_2_8_119_2
  doi: 10.1016/j.jaci.2004.01.755
– ident: e_1_2_8_25_2
  doi: 10.1016/S0091-6749(96)70126-4
– ident: e_1_2_8_59_2
  doi: 10.1136/thx.2003.014894
– ident: e_1_2_8_131_2
  doi: 10.1164/ajrccm/143.1.138
– ident: e_1_2_8_34_2
  doi: 10.1165/ajrcmb.25.2.4275
– ident: e_1_2_8_179_2
  doi: 10.1124/mol.107.040121
– ident: e_1_2_8_177_2
  doi: 10.1038/sj.bjp.0707627
– ident: e_1_2_8_8_2
  doi: 10.1172/JCI117556
– ident: e_1_2_8_164_2
  doi: 10.1210/er.2002-0006
– ident: e_1_2_8_15_2
  doi: 10.1159/000318743
– ident: e_1_2_8_161_2
  doi: 10.1056/NEJM200008033430504
– ident: e_1_2_8_156_2
  doi: 10.1016/j.resp.2005.11.006
– ident: e_1_2_8_96_2
  doi: 10.1183/09031936.02.00226302
– ident: e_1_2_8_67_2
  doi: 10.1091/mbc.E04-04-0317
– ident: e_1_2_8_104_2
  doi: 10.1183/09031936.03.00098803
– ident: e_1_2_8_139_2
  doi: 10.1164/ajrccm.161.5.9906076
– ident: e_1_2_8_166_2
  doi: 10.1056/NEJMra050541
– ident: e_1_2_8_27_2
  doi: 10.1172/JCI12655
– ident: e_1_2_8_58_2
  doi: 10.1097/00130832-200502000-00008
– ident: e_1_2_8_74_2
  doi: 10.1046/j.1365-2222.2001.00970.x
– ident: e_1_2_8_122_2
  doi: 10.2174/138945006776818647
– volume: 75
  start-page: 189
  year: 1992
  ident: e_1_2_8_16_2
  article-title: Production of granulocyte‐macrophage colony‐stimulating factor by cultured human tracheal epithelial cells
  publication-title: Immunology
– ident: e_1_2_8_69_2
  doi: 10.1152/physrev.00010.2005
– ident: e_1_2_8_147_2
  doi: 10.1016/j.jaci.2010.04.021
– ident: e_1_2_8_144_2
  doi: 10.1183/09031936.00161907
– ident: e_1_2_8_180_2
  doi: 10.1165/rcmb.2005-0385OC
– ident: e_1_2_8_32_2
  doi: 10.1164/ajrccm.162.2.9901080
– volume: 161
  start-page: 3645
  year: 1998
  ident: e_1_2_8_6_2
  article-title: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.7.3645
– ident: e_1_2_8_130_2
  doi: 10.1016/j.jaci.2007.10.025
– ident: e_1_2_8_17_2
  doi: 10.1164/ajrccm.153.5.8630619
– ident: e_1_2_8_141_2
  doi: 10.1164/rccm.200809-1471OC
– ident: e_1_2_8_150_2
  doi: 10.1016/j.semcdb.2007.07.003
– ident: e_1_2_8_158_2
  doi: 10.1183/09031936.00026910
– ident: e_1_2_8_89_2
  doi: 10.4049/jimmunol.0901386
– ident: e_1_2_8_93_2
  doi: 10.1096/fj.06-5806fje
– ident: e_1_2_8_114_2
  doi: 10.1165/rcmb.2009-0203OC
– ident: e_1_2_8_36_2
  doi: 10.4049/jimmunol.169.11.6445
– ident: e_1_2_8_44_2
  doi: 10.1126/stke.3032005pe47
– ident: e_1_2_8_5_2
  doi: 10.1086/517272
– ident: e_1_2_8_77_2
  doi: 10.1126/science.1165557
– ident: e_1_2_8_121_2
  doi: 10.1016/j.jaci.2009.04.041
– ident: e_1_2_8_168_2
  doi: 10.1016/j.jaci.2006.08.027
– ident: e_1_2_8_49_2
  doi: 10.1016/j.coph.2010.02.005
– ident: e_1_2_8_75_2
  doi: 10.1111/j.1398-9995.2005.00958.x
– ident: e_1_2_8_73_2
  doi: 10.1172/JCI5844
– ident: e_1_2_8_116_2
  doi: 10.1016/j.chom.2007.06.009
– ident: e_1_2_8_108_2
  doi: 10.1084/jem.20041901
– ident: e_1_2_8_146_2
  doi: 10.1016/j.jaci.2008.01.067
– ident: e_1_2_8_55_2
  doi: 10.1164/rccm.200607-1029OC
– ident: e_1_2_8_105_2
  doi: 10.1016/j.molimm.2005.08.004
– ident: e_1_2_8_82_2
  doi: 10.4049/jimmunol.177.10.6859
– ident: e_1_2_8_157_2
  doi: 10.1165/rcmb.2008-0223OC
– volume: 156
  start-page: 772
  year: 1996
  ident: e_1_2_8_18_2
  article-title: Cellular detachment and deformation induce IL‐8 gene expression in human bronchial epithelial cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.156.2.772
– ident: e_1_2_8_41_2
  doi: 10.1164/ajrccm/140.2.449
– ident: e_1_2_8_145_2
  doi: 10.1111/j.1365-2222.2006.02566.x
– ident: e_1_2_8_136_2
  doi: 10.1378/chest.10-0100
– ident: e_1_2_8_60_2
  doi: 10.1016/S0140-6736(94)90931-8
– ident: e_1_2_8_39_2
  doi: 10.1165/rcmb.2008-0105OC
– ident: e_1_2_8_47_2
  doi: 10.1016/j.jaci.2010.07.015
– ident: e_1_2_8_92_2
  doi: 10.1203/01.PDR.0000127431.11750.D9
– ident: e_1_2_8_142_2
  doi: 10.1164/rccm.200802-309OC
– ident: e_1_2_8_126_2
  doi: 10.1016/j.jaci.2008.02.009
– ident: e_1_2_8_9_2
  doi: 10.1172/JCI118514
– ident: e_1_2_8_35_2
  doi: 10.1016/j.jaci.2003.09.041
– ident: e_1_2_8_56_2
  doi: 10.1016/S0891-5849(97)00375-4
– ident: e_1_2_8_109_2
  doi: 10.1038/nm1462
– ident: e_1_2_8_101_2
  doi: 10.4049/jimmunol.172.7.4637
– ident: e_1_2_8_134_2
  doi: 10.1111/j.1399-3038.2005.00239.x
– ident: e_1_2_8_171_2
  doi: 10.1016/S0140-6736(94)92996-3
– ident: e_1_2_8_148_2
  doi: 10.1016/j.jaci.2009.08.044
– ident: e_1_2_8_79_2
  doi: 10.1165/ajrcmb.24.3.4131
– ident: e_1_2_8_62_2
  doi: 10.1016/j.freeradbiomed.2006.05.011
– ident: e_1_2_8_169_2
  doi: 10.1183/09031936.06.00112605
– ident: e_1_2_8_137_2
  doi: 10.1097/INF.0b013e318168b718
– ident: e_1_2_8_40_2
  doi: 10.1136/thorax.56.5.351
– ident: e_1_2_8_123_2
  doi: 10.1086/315463
– ident: e_1_2_8_128_2
  doi: 10.1165/ajrcmb.21.3.3529
– ident: e_1_2_8_87_2
  doi: 10.1038/nature04734
– ident: e_1_2_8_19_2
  doi: 10.1074/jbc.M007703200
– ident: e_1_2_8_71_2
  doi: 10.1165/ajrcmb.11.1.7517143
– ident: e_1_2_8_120_2
  doi: 10.1016/j.jaci.2008.09.041
SSID ssj0017324
Score 2.4454415
SecondaryResourceType review_article
Snippet The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms airway remodeling
Airway Remodeling - immunology
Allergens
Allergens - immunology
Animals
Asthma
Asthma - drug therapy
Asthma - immunology
Asthma - physiopathology
Bronchodilator Agents - therapeutic use
Cell Adhesion Molecules - immunology
Child
Cytokines - immunology
Drugs
Environmental factors
epithelial cell
Epithelial cells
Epithelial Cells - drug effects
Epithelial Cells - immunology
Epithelial Cells - metabolism
Epithelium
Epithelium - drug effects
Epithelium - immunology
Epithelium - metabolism
host defense
Humans
Hypersensitivity - drug therapy
Hypersensitivity - immunology
Hypersensitivity - physiopathology
Immune response
Immunity, Innate
Immunoregulation
inflammation
Inflammation - immunology
innate immunity
Intercellular Signaling Peptides and Proteins - immunology
Mice
Mice, Knockout
Pathogens
Picornaviridae Infections - immunology
Picornaviridae Infections - virology
Pollutants
Respiratory System - drug effects
Respiratory System - immunology
Respiratory System - physiopathology
Respiratory tract diseases
Respiratory Tract Infections - immunology
Respiratory Tract Infections - virology
Reviews
Rhinovirus - immunology
Rhinovirus - physiology
Signal Transduction - immunology
Structure-function relationships
Title Epithelial cells and airway diseases
URI https://api.istex.fr/ark:/67375/WNG-D9WB7RGM-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01033.x
https://www.ncbi.nlm.nih.gov/pubmed/21682746
https://www.proquest.com/docview/873122804
https://www.proquest.com/docview/883042202
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4hEFIv0AIF9yUfEDdHWa_34WNLgRQpHCJQclvtyxIKMlEeIvDru2M7FkGoQqg3Hzy2dx7eb3dnvgE4dowUnBifyJzkSaaZTbSQNHEk5Y75PIASLHDuX_HeTXY5YqMm_wlrYWp-iHbDDSOj-l9jgGszWw9yjlXRnI0aJk7SpbSDeBJTtxAfDVomKSJoWtN8d1kS1hh8Pann1QetzVRbqPTlazB0HdVW09L5LoxXA6qzUcadxdx07NMLrsf_M-KPsNOg1_hn7W6fYMOXe7Bd97N83IfjswmWeNwFn47xRGAW69LF-nb6oB_j5ihodgA352fXp72kacOQWKQ3S5wzlglfMNdNnfZh_VPY3DhvuPUss1mR51rKjEohLbXS2EIQJNmXzMoseAj9DJvlfemPIA7gkBvnmNaeZtIVOTY7oUIj0guWMRGIlcqVbTjKsVXGnXq2Vgk6UKgDhTpQlQ7UMgLSSk5qno43yJxUVm0F9HSMeW6CqeHVhfqdD3-JwUVfjSKIV2ZXIfpQgbr094uZkoISJBTK_nGLxB2jtJtGcFh7TPu-lHCZBhVEwCu7v_nL1Z_-AK--vFfwK3yoN8cx7_gbbM6nC_89oKu5-VHFzV_RIhHX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VRBW9lBb6MC2tD4ibo6zX-_CxDyC0JIcIRG6rfVmqiAzKQxB-fXdsxyIIIVT15oPH9s7DOzM78w3AvmOk4MT4ROYkTzLNbKKFpIkjKXfM58EpwQbnwZD3z7NfYzZuxgFhL0yND9Em3NAyqv81GjgmpNetnGNbNGfjBoqT9CjtBoeygwO-q_hq1GJJEUHTGui7x5IQZfD1sp5Hn7S2V3WQ7bePOaLrfm21MR1twWS1pLoe5bK7mJuuvXuA9vif1vwGXjcObPyt1ri38MKX2_CyHmm53IH9w2vs8pgEtY7xUGAW69LF-s_0Ri_j5jRo9g7Ojw7PfvSTZhJDYhHhLHHOWCZ8wVwvddqHEKiwuXHecOtZZrMiz7WUGZVCWmqlsYUgiLMvmZVZUBL6HjbKq9J_hDj4h9w4x7T2NJOuyHHeCRUanb0gGhOBWPFc2QamHKdlTNS9cCXwQCEPFPJAVTxQtxGQlvK6hup4Bs1BJdaWQE8vsdRNMHUxPFY_84vvYnQ8UOMI4pXcVTBAZKAu_dVipqSgBDGFsidukZg0SntpBB9qlWnflxIu08CCCHgl-Gd_uToZjPBq918Jv8Jm_2xwqk5Phr8_was6V45lyJ9hYz5d-L3gbM3Nl8qI_gID2xXy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFH5CrUBc2Bez-lBxc-TxrD4CadoCiVBE1dxGs1lCqdwoi2j59cyzHYugClWImw9-tuctnm9m3vsewIHnpBLEhkyVpMyY4S4zUtHMk0J4HsoISrDAeTwRx6fs04zPuvwnrIVp-SH6DTeMjOZ_jQG-8NVukAusihZ81jFxkpzSQcST-0zkCj18OO2ppIikRcvznfMsLjLEblbPtU_amar2UeuX1-HQXVjbzEuj-zDfjqhNR5kPNms7cD__IHv8P0N-APc6-Jq-b_3tIdwK9SO43Ta0vHoMB4cLrPE4j06d4pHAKjW1T8335Q9zlXZnQasncDo6_PbxOOv6MGQO-c0y763jMlTc54U3IS6AKldaH6xwgTPHqrI0SjGqpHLUKesqSZBlX3GnWHQR-hT26os6PIc0okNhvefGBMqUr0rsdkKlQagXLWMTkFuVa9eRlGOvjHP922Il6kCjDjTqQDc60JcJkF5y0RJ13EDmXWPVXsAs55joJrk-mxzpYXn2QU6PxnqWQLo1u47hhwo0dbjYrLSSlCCjEPvLLQq3jIq8SOBZ6zH9-woiVBFVkIBo7H7jL9cn4ylevfhXwbdw5-twpL-cTD6_hLvtRjnmIL-CvfVyE15HpLW2b5oQ-gWzchSq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial+cells+and+airway+diseases&rft.jtitle=Immunological+reviews&rft.au=Proud%2C+David&rft.au=Leigh%2C+Richard&rft.date=2011-07-01&rft.eissn=1600-065X&rft.volume=242&rft.issue=1&rft.spage=186&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01033.x&rft_id=info%3Apmid%2F21682746&rft.externalDocID=21682746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon