Epithelial cells and airway diseases
The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory...
Saved in:
Published in | Immunological reviews Vol. 242; no. 1; pp. 186 - 204 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0105-2896 1600-065X 1600-065X |
DOI | 10.1111/j.1600-065X.2011.01033.x |
Cover
Loading…
Abstract | The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function. |
---|---|
AbstractList | The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function. The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function. |
Author | Proud, David Leigh, Richard |
Author_xml | – sequence: 1 givenname: David surname: Proud fullname: Proud, David organization: Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada – sequence: 2 givenname: Richard surname: Leigh fullname: Leigh, Richard organization: Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21682746$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM1O3DAURi0EgmHoK1RZVOoqwf92FlRqKR2QoJUQFeyuHOdG9ZBJhjgjZt6-CQMs2IA3tuzvfL46h2S3aRskJGE0Y8M6nmdMU5pSre4yThnLKKNCZOsdMnl92CWT4Val3Ob6gBzGOKeUGcHlPjngTFtupJ6QL2fL0P_DOrg68VjXMXFNmbjQPbpNUoaILmI8InuVqyN-et6n5O-vs5vT8_Tyz-zi9Ptl6hWVIi3LwiuDlSopLx1qqiqfFyUW2qOSXlZ57qyVwhrrhbeFrwxTUgurvJXovZiSr9veZdc-rDD2sAhxnMo12K4iWCuo5Jzy95NGMM7tMNWUfH5OrooFlrDswsJ1G3hRMAS-bQO-a2PssAIfeteHtuk7F2pgFEbnMIdRLYxqYXQOT85hPRTYNwUvf3wAPdmij6HGzYc5uLi6Hk8Dn275EHtcv_KuuwdthFFw-3sGP_PbH-Z6dgV34j8fuKaS |
CitedBy_id | crossref_primary_10_1111_all_13390 crossref_primary_10_1155_2012_794970 crossref_primary_10_1097_TP_0000000000001215 crossref_primary_10_1016_j_scitotenv_2019_136300 crossref_primary_10_1152_ajplung_00145_2024 crossref_primary_10_1016_j_imbio_2020_151937 crossref_primary_10_3390_cells11091416 crossref_primary_10_1002_ar_24506 crossref_primary_10_1038_srep42214 crossref_primary_10_1111_1440_1681_12068 crossref_primary_10_1177_20417314241309183 crossref_primary_10_1016_j_coi_2012_08_012 crossref_primary_10_1111_j_1600_065X_2011_01036_x crossref_primary_10_1016_j_tiv_2023_105718 crossref_primary_10_1242_jcs_137802 crossref_primary_10_1371_journal_ppat_1005797 crossref_primary_10_1371_journal_pone_0144840 crossref_primary_10_3390_nu12103163 crossref_primary_10_1111_j_1365_2567_2012_03618_x crossref_primary_10_1124_jpet_124_002226 crossref_primary_10_1155_2012_910520 crossref_primary_10_18632_oncotarget_24348 crossref_primary_10_1165_rcmb_2020_0424OC crossref_primary_10_1017_S0029665112000109 crossref_primary_10_1038_srep34445 crossref_primary_10_1088_1752_7155_8_4_046006 crossref_primary_10_1016_j_jhazmat_2024_134011 crossref_primary_10_1016_j_smim_2013_04_009 crossref_primary_10_1186_s12940_015_0046_3 crossref_primary_10_2478_s11658_013_0107_y crossref_primary_10_1371_journal_pone_0080257 crossref_primary_10_1096_fj_202200150RR crossref_primary_10_1186_s12931_023_02529_9 crossref_primary_10_1016_j_ajpath_2013_07_007 crossref_primary_10_1093_femspd_ftv045 crossref_primary_10_1016_j_celrep_2021_108956 crossref_primary_10_1007_s11882_016_0661_2 crossref_primary_10_1016_j_addr_2021_114038 crossref_primary_10_1097_JOM_0000000000000841 crossref_primary_10_3389_fimmu_2023_1271342 crossref_primary_10_3390_v12111328 crossref_primary_10_1155_2019_7281462 crossref_primary_10_4049_jimmunol_1800547 crossref_primary_10_1152_ajpcell_00257_2014 crossref_primary_10_1189_jlb_3HI0816_368RR crossref_primary_10_1016_j_micinf_2012_05_016 crossref_primary_10_3389_fimmu_2023_1310098 crossref_primary_10_1186_1710_1492_10_S1_A71 crossref_primary_10_1186_s12931_016_0479_4 crossref_primary_10_1042_CS20191309 crossref_primary_10_1016_j_intimp_2024_112624 crossref_primary_10_1111_imm_13195 crossref_primary_10_3389_fphys_2018_01168 crossref_primary_10_1016_j_micinf_2015_09_003 crossref_primary_10_4168_aair_2013_5_6_402 crossref_primary_10_1111_sji_12263 crossref_primary_10_1016_j_ejphar_2013_02_056 crossref_primary_10_1177_0748233720947214 crossref_primary_10_3389_fimmu_2020_534501 crossref_primary_10_1016_j_envpol_2023_121798 crossref_primary_10_1016_j_ijpharm_2021_121054 crossref_primary_10_1016_j_jaci_2015_12_1308 crossref_primary_10_1016_j_coviro_2012_03_008 crossref_primary_10_3389_fcimb_2021_643913 crossref_primary_10_1016_j_intimp_2021_108489 crossref_primary_10_1016_j_tiv_2016_11_009 crossref_primary_10_1073_pnas_1208092109 crossref_primary_10_1007_s10456_024_09910_2 crossref_primary_10_1016_j_yexcr_2019_02_013 crossref_primary_10_3201_eid2201_151384 crossref_primary_10_1074_jbc_M113_511527 crossref_primary_10_1016_S2213_2600_13_70165_6 crossref_primary_10_1038_s41467_017_00101_w crossref_primary_10_1002_adma_202210807 crossref_primary_10_1016_j_biopha_2017_07_001 crossref_primary_10_1038_s41385_020_00370_7 crossref_primary_10_1371_journal_pone_0084679 crossref_primary_10_15252_embr_201949666 crossref_primary_10_1111_bph_13014 crossref_primary_10_1016_j_pharmthera_2013_10_008 crossref_primary_10_1039_C5FO01037C crossref_primary_10_1038_cmi_2012_77 crossref_primary_10_1080_21688370_2021_2020706 crossref_primary_10_1016_j_scitotenv_2017_09_276 crossref_primary_10_3390_ani13233711 crossref_primary_10_1002_jbt_70203 crossref_primary_10_4141_cjas2013_145 crossref_primary_10_1093_toxsci_kft071 crossref_primary_10_1189_jlb_0813452 crossref_primary_10_1371_journal_pone_0100537 crossref_primary_10_3109_02770903_2013_794239 crossref_primary_10_3389_fendo_2014_00236 crossref_primary_10_33086_iimj_v4i1_3817 crossref_primary_10_1165_rcmb_2014_0035OC crossref_primary_10_1152_ajpcell_00117_2017 crossref_primary_10_1186_1710_1492_10_S1_A44 crossref_primary_10_1016_j_jaci_2015_05_007 crossref_primary_10_1111_resp_12316 crossref_primary_10_1016_j_aogh_2016_01_007 crossref_primary_10_1002_alr_21237 crossref_primary_10_1016_j_ajpath_2021_10_007 crossref_primary_10_1371_journal_pone_0095533 crossref_primary_10_2147_COPD_S495306 crossref_primary_10_3389_fmicb_2016_00580 crossref_primary_10_4049_immunohorizons_2000052 crossref_primary_10_1155_2013_735031 crossref_primary_10_1016_j_aller_2017_04_003 crossref_primary_10_1016_j_aller_2015_04_004 crossref_primary_10_1186_s12989_018_0256_2 crossref_primary_10_1016_j_semcdb_2022_12_006 crossref_primary_10_1080_24745332_2020_1855607 crossref_primary_10_1093_toxsci_kfv122 crossref_primary_10_1371_journal_pone_0115486 crossref_primary_10_1016_j_prostaglandins_2013_05_001 crossref_primary_10_1083_jcb_201506014 crossref_primary_10_1186_1465_9921_14_35 crossref_primary_10_4168_aair_2014_6_6_548 crossref_primary_10_1371_journal_pone_0086554 crossref_primary_10_1016_j_intimp_2015_04_017 crossref_primary_10_12688_f1000research_14581_1 crossref_primary_10_1093_abbs_gmu035 crossref_primary_10_1016_j_mbplus_2021_100058 crossref_primary_10_1016_j_alit_2014_10_006 crossref_primary_10_1080_21688370_2017_1367458 crossref_primary_10_1016_j_mam_2021_100969 crossref_primary_10_1124_jpet_113_206284 crossref_primary_10_1124_jpet_120_000196 crossref_primary_10_1111_imm_12077 crossref_primary_10_1378_chest_15_1335 crossref_primary_10_1152_physrev_00039_2014 crossref_primary_10_1016_j_jaci_2012_04_019 crossref_primary_10_1038_aps_2013_191 crossref_primary_10_1016_j_autneu_2013_12_008 crossref_primary_10_1186_1710_1492_10_S1_A69 crossref_primary_10_3389_fimmu_2016_00095 crossref_primary_10_1038_s41598_018_32008_x crossref_primary_10_1007_s12026_012_8296_4 crossref_primary_10_1016_S2225_4110_16_30069_4 crossref_primary_10_3389_fcimb_2020_00487 crossref_primary_10_4049_jimmunol_1900165 crossref_primary_10_1111_cea_12309 crossref_primary_10_1124_jpet_114_212795 crossref_primary_10_1371_journal_pone_0122753 crossref_primary_10_1038_s41467_017_01201_3 crossref_primary_10_3390_plants10050951 crossref_primary_10_1016_j_toxlet_2014_05_023 crossref_primary_10_3109_15376516_2016_1170251 crossref_primary_10_1002_dvdy_23773 crossref_primary_10_1111_cei_12082 crossref_primary_10_1186_1476_9255_10_15 crossref_primary_10_1111_cea_12383 crossref_primary_10_3892_mmr_2017_7636 crossref_primary_10_2500_ajra_2014_28_4018 crossref_primary_10_1016_j_pharmthera_2013_07_008 crossref_primary_10_1152_ajplung_00362_2016 crossref_primary_10_1002_stem_1150 crossref_primary_10_1007_s42770_019_00183_2 crossref_primary_10_1016_j_anai_2013_07_029 crossref_primary_10_1016_j_bpj_2021_11_2887 crossref_primary_10_1186_s13567_014_0126_3 crossref_primary_10_1371_journal_pone_0160779 crossref_primary_10_1089_ten_teb_2012_0603 crossref_primary_10_3389_fcell_2024_1490315 crossref_primary_10_1016_j_ydbio_2015_03_013 crossref_primary_10_1016_j_psj_2022_102028 crossref_primary_10_1164_rccm_201611_2248ST crossref_primary_10_1016_j_jaci_2016_02_038 crossref_primary_10_1002_lary_30040 crossref_primary_10_1097_ACI_0000000000000135 crossref_primary_10_1177_0960327118802628 |
Cites_doi | 10.1165/rcmb.2006-0235OC 10.1034/j.1399-3003.1999.14b07.x 10.1165/ajrcmb.10.2.8110469 10.1165/rcmb.2009-0216OC 10.1016/j.jaci.2009.02.032 10.1183/09031936.93.06060903 10.4161/viru.2.1.13807 10.1111/j.1365-2222.2009.03307.x 10.1002/path.2163 10.1164/rccm.200911-1673OC 10.1016/S0076-6879(96)69044-2 10.1016/S0091-6749(96)70265-8 10.1164/rccm.200410-1404OC 10.1074/jbc.M101522200 10.1016/j.jaci.2006.01.045 10.1067/mai.2003.33 10.1164/rccm.200805-670OC 10.2105/AJPH.83.9.1277 10.1152/ajplung.00069.2005 10.1165/rcmb.2002-0095OC 10.1165/ajrcmb.23.3.4068 10.1007/s11882-996-0006-7 10.1164/ajrccm/148.1.87 10.4049/jimmunol.0802401 10.1016/j.jaci.2003.08.012 10.1007/s11882-006-0015-6 10.1172/JCI118067 10.1164/ajrccm/148.3.689 10.1056/NEJM199501193320301 10.1016/S0140-6736(06)69284-2 10.1016/S0091-6749(95)70260-1 10.1164/rccm.200701-042OC 10.1038/sj.bjp.0701185 10.1152/ajplung.00066.2007 10.1128/JVI.72.2.934-942.1998 10.1189/jlb.0804452 10.1016/S0024-3205(98)00614-6 10.1183/09031936.00128809 10.1152/ajplung.00036.2008 10.1111/j.1365-2222.2008.03172.x 10.1136/thorax.55.7.603 10.1016/j.immuni.2009.02.005 10.1164/rccm.200401-033OC 10.1126/science.1411569 10.3109/02770900903556413 10.1016/j.jaci.2007.05.028 10.1016/S0091-6749(00)90070-8 10.1165/rcmb.2009-0244OC 10.1074/jbc.M502449200 10.1128/JVI.72.5.4534-4536.1998 10.4049/jimmunol.174.12.8183 10.1152/ajplung.00453.2003 10.1067/mai.2001.112028 10.1378/chest.129.1.15 10.1152/ajplung.00397.2004 10.1165/rcmb.2004-0129OC 10.1067/mai.2003.1464 10.1023/A:1012850630351 10.1038/mi.2009.109 10.4049/jimmunol.161.10.5138 10.1165/ajrcmb.17.2.2750 10.1183/09031936.95.08020295 10.1124/mol.107.038794 10.1152/ajplung.2000.278.5.L1101 10.4049/jimmunol.0902264 10.1016/S0955-0674(03)00103-0 10.1111/j.1432-1033.2004.04342.x 10.1165/rcmb.2006-0160OC 10.1038/nature06664 10.1371/journal.ppat.1001178 10.1128/JVI.72.6.4756-4764.1998 10.1046/j.1365-2222.2002.01477.x 10.1016/j.virol.2004.01.033 10.1172/JCI115994 10.1016/j.cellimm.2006.02.003 10.1016/S0140-6736(89)90814-3 10.1016/j.jaci.2006.12.669 10.1152/ajplung.1995.268.1.L41 10.1074/jbc.M110.165936 10.1203/PDR.0b013e318175dd2d 10.1016/j.immuni.2005.04.010 10.1016/j.prostaglandins.2008.12.003 10.1016/j.bbrc.2009.12.070 10.1016/j.molimm.2006.04.008 10.1152/ajpheart.2001.280.1.H1 10.4049/jimmunol.169.8.4572 10.1128/JVI.02309-06 10.4049/jimmunol.179.9.6237 10.1084/jem.185.3.461 10.1164/ajrccm.152.3.7545059 10.4049/jimmunol.180.2.870 10.4049/jimmunol.173.5.3482 10.1164/ajrccm/144.1.51 10.1016/j.jaci.2005.11.005 10.1164/ajrccm.152.6.8520734 10.4049/jimmunol.177.5.3344 10.1016/j.jaci.2009.03.010 10.1016/j.jaci.2004.01.755 10.1016/S0091-6749(96)70126-4 10.1136/thx.2003.014894 10.1164/ajrccm/143.1.138 10.1165/ajrcmb.25.2.4275 10.1124/mol.107.040121 10.1038/sj.bjp.0707627 10.1172/JCI117556 10.1210/er.2002-0006 10.1159/000318743 10.1056/NEJM200008033430504 10.1016/j.resp.2005.11.006 10.1183/09031936.02.00226302 10.1091/mbc.E04-04-0317 10.1183/09031936.03.00098803 10.1164/ajrccm.161.5.9906076 10.1056/NEJMra050541 10.1172/JCI12655 10.1097/00130832-200502000-00008 10.1046/j.1365-2222.2001.00970.x 10.2174/138945006776818647 10.1152/physrev.00010.2005 10.1016/j.jaci.2010.04.021 10.1183/09031936.00161907 10.1165/rcmb.2005-0385OC 10.1164/ajrccm.162.2.9901080 10.4049/jimmunol.161.7.3645 10.1016/j.jaci.2007.10.025 10.1164/ajrccm.153.5.8630619 10.1164/rccm.200809-1471OC 10.1016/j.semcdb.2007.07.003 10.1183/09031936.00026910 10.4049/jimmunol.0901386 10.1096/fj.06-5806fje 10.1165/rcmb.2009-0203OC 10.4049/jimmunol.169.11.6445 10.1126/stke.3032005pe47 10.1086/517272 10.1126/science.1165557 10.1016/j.jaci.2009.04.041 10.1016/j.jaci.2006.08.027 10.1016/j.coph.2010.02.005 10.1111/j.1398-9995.2005.00958.x 10.1172/JCI5844 10.1016/j.chom.2007.06.009 10.1084/jem.20041901 10.1016/j.jaci.2008.01.067 10.1164/rccm.200607-1029OC 10.1016/j.molimm.2005.08.004 10.4049/jimmunol.177.10.6859 10.1165/rcmb.2008-0223OC 10.4049/jimmunol.156.2.772 10.1164/ajrccm/140.2.449 10.1111/j.1365-2222.2006.02566.x 10.1378/chest.10-0100 10.1016/S0140-6736(94)90931-8 10.1165/rcmb.2008-0105OC 10.1016/j.jaci.2010.07.015 10.1203/01.PDR.0000127431.11750.D9 10.1164/rccm.200802-309OC 10.1016/j.jaci.2008.02.009 10.1172/JCI118514 10.1016/j.jaci.2003.09.041 10.1016/S0891-5849(97)00375-4 10.1038/nm1462 10.4049/jimmunol.172.7.4637 10.1111/j.1399-3038.2005.00239.x 10.1016/S0140-6736(94)92996-3 10.1016/j.jaci.2009.08.044 10.1165/ajrcmb.24.3.4131 10.1016/j.freeradbiomed.2006.05.011 10.1183/09031936.06.00112605 10.1097/INF.0b013e318168b718 10.1136/thorax.56.5.351 10.1086/315463 10.1165/ajrcmb.21.3.3529 10.1038/nature04734 10.1074/jbc.M007703200 10.1165/ajrcmb.11.1.7517143 10.1016/j.jaci.2008.09.041 |
ContentType | Journal Article |
Copyright | 2011 John Wiley & Sons A/S 2011 John Wiley & Sons A/S. |
Copyright_xml | – notice: 2011 John Wiley & Sons A/S – notice: 2011 John Wiley & Sons A/S. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 |
DOI | 10.1111/j.1600-065X.2011.01033.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1600-065X |
EndPage | 204 |
ExternalDocumentID | 21682746 10_1111_j_1600_065X_2011_01033_x IMR1033 ark_67375_WNG_D9WB7RGM_X |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7T5 H94 |
ID | FETCH-LOGICAL-c5043-ddbc57ef5d02dae605fc9bdeb6ce54c4f99a8843878c3c8bcf71546385c84ecc3 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 1600-065X |
IngestDate | Thu Jul 10 22:18:55 EDT 2025 Fri Jul 11 04:54:50 EDT 2025 Thu Apr 03 06:52:50 EDT 2025 Tue Jul 01 00:20:57 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Wed Jan 22 16:45:39 EST 2025 Wed Oct 30 09:50:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 John Wiley & Sons A/S. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5043-ddbc57ef5d02dae605fc9bdeb6ce54c4f99a8843878c3c8bcf71546385c84ecc3 |
Notes | ark:/67375/WNG-D9WB7RGM-X istex:611990D098C4EBF042BE7E133CBC10E140C929D9 ArticleID:IMR1033 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21682746 |
PQID | 873122804 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_883042202 proquest_miscellaneous_873122804 pubmed_primary_21682746 crossref_citationtrail_10_1111_j_1600_065X_2011_01033_x crossref_primary_10_1111_j_1600_065X_2011_01033_x wiley_primary_10_1111_j_1600_065X_2011_01033_x_IMR1033 istex_primary_ark_67375_WNG_D9WB7RGM_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Tai HY, et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006;61:382-388. Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol 2007;120:1233-1244. Saetta M, Di Stefano A, Rosina C, Thiene G, Fabbri LM. Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 1991;143:138-143. Lane C, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004;59:757-760. Leigh R, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol 2008;121:1238-1245. King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998;161:3645-3651. Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008;19:34-41. Roberts JA, et al. The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J 1999;14:275-282. Mak JC, Nishikawa M, Barnes PJ. Glucocorticoids increase β2-adrenergic receptor transcription in human lung. Am J Physiol Lung Cell Mol Physiol 1995;268:L41-L46. Ackerman V, Carpi S, Bellini A, Vassalli G, Marini M, Mattoli S. Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. J Allergy Clin Immunol 1995;91:618-627. Sanders SP, Kim J, Connolly KR, Porter JD, Siekierski ES, Proud D. Nitric oxide inhibits rhinovirus-induced GM-CSF production in bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;24:317-325. Osterlund C, Grönlund H, Gafvelin G, Bucht A. Non-proteolytic aeroallegens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol 2010;155:111-118. Shibata Y, Nakamura H, Kato S, Tomoike H. Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 1996;156:772-777. Panina-Bordignon P, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics. J Clin Invest 2001;107:1357-1364. McLeish AC, Zvolensky MJ. Asthma and cigarette smoking: a review of the empirical literature. J Asthma 2010;47:345-361. Redington AE, et al. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 2001;56:351-357. Wark PAB, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002;19:68-75. Kelsen SG, et al. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004;287:L584-L591. Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol 2001;107:235-243. Busse WW. The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010;138:4S-10S. Sahl H-G, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 2005;77:466-475. Granger DN, Kubes P. Nitric oxide as an antiinflammatory agent. Methods Enzymol 1996;269:434-442. Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112:930-934. Proud D, Subauste MC, Ward PE. Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line. Am J Respir Cell Mol Biol 1994;11:57-65. Sanders SP, Proud D, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 2004;113:697-702. Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005;289:L85-L95. Thomsen SF, et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med 2009;179:1091-1097. Slater L, et al. Co-ordinated role of TLR-3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010;6:e1001178. Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J Clin Invest 1996;97:915-924. O'Gorman MT, Jatoi NA, Lane SJ, Mahon BP. IL-1β and TNF-α induce increased expression of CCL28 by airway epithelial cells via an NFκB-dependent pathway. Cell Immunol 2005;238:87-96. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids - new mechanisms for old drugs. N Engl J Med 2005;353:1711-1723. Eddleston J, Herschbach J, Wagelie-Steffen AL, Christiansen SC, Zuraw BL. The anti-inflammatory effects of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J Allergy Clin Immunol 2007;119:115-122. Minshall E, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol 2000;105:232-238. Wan H, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279-294. Nguyen HH, et al. Influenza virus-infected epithelial cells present viral antigens to antigen-specific CD8+ cytotoxic T lymphocytes. J Virol 1998;72:4534-4536. Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection of airway epithelial cells upregulates MMP-9 production via NF-κB. Am J Respir Cell Mol Biol 2010;43:201-209. Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 2003;28:648-654. Enomoto Y, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 2009;124:913-920. Triantafilou K, Vakakis E, Richer EAJ, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors amd MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-29. Ying S, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174:8183-8190. Salik E, et al. Antigen trafficking and accessory cell function in respiratory epithelial cells. Am J Respir Cell Mol Biol 1999;21:365-379. DiCosmo BF, et al. Airway epithelial cell expression of interleukin-6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity. J Clin Invest 1994;94:2028-2035. Bals R, Hiemstra PS. Innate immunity in the lung; how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327-333. Chong LK, Drury DEJ, Dummer JF, Ghahramani P, Schleimer RP, Peachell PT. Protection by dexamethasone of the functional desensitization to β2-adrenoreceptor-mediated responses in human lung mast cells. Br J Pharmacol 1997;121:717-722. Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. Nomura A, Uchida Y, Kameyama M, Saotome M, Oki K, Hasegawa S. Endothelin and bronchial asthma. Lancet 1989;1:747-748. Cohen S, Tyrrell DA, Russell MA, Jarvis MJ, Smith AP. Smoking, alcohol consumption, and susceptibility to the common cold. Am J Public Health 1993;83:1277-1283. Vignola AM, et al. HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 1993;148:689-694. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000;55:603-613. Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting β2-adrenoreceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008;73:203-214. Wang X, et al. Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 2006;177:6859-6870. Jartti T, Lee W-M, Pappas T, Evans M, Lemanske RFJ, Gern JE. Serial viral infections in infants with recurrent respiratory illnesses. Eur Respir J 2008;32:314-320. Newcomb DC, et al. Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem 2005;280:36952-36961. Hament JM, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 2004;55:972-978. Beck LA, et al. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 2006;177:3344-3354. Upham JW, Stick SM. Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets 2006;7:541-545. Ratner AJ, et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001;276:19267-19275. Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13 induced mucous metaplasia incre 2009; 89 2004; 287 2010; 10 2005; 171 2005; 174 2004; 322 2002; 19 2006; 34 2004; 23 2006; 36 2008; 32 2010; 184 2007; 72 2010; 182 1996; 269 2006; 177 2007; 179 2007; 212 2006; 20 2007; 293 2004; 170 2007; 176 2006; 27 2004; 173 2004; 172 2008; 27 2007; 175 2009; 123 2009; 124 2007; 2 2010; 3 2001; 56 2005; 77 1998; 161 2010; 6 1989; 1 2011; 2 2010; 36 2010; 35 2005; 353 2001; 280 2009; 182 1997; 176 2005; 238 2009; 297 1989; 140 2010; 285 1999; 21 2009; 179 1999; 104 2001; 24 2008; 121 1995; 152 2001; 25 2006; 117 1996; 98 1996; 97 1995; 8 2001; 276 2004; 55 2010; 43 2006; 41 2010; 47 2006; 43 2000; 105 2004; 59 2004; 271 1992; 258 2005; 5 2003; 24 1994; 11 2007; 81 2003; 28 2009; 183 1995; 268 1998; 72 2000; 343 2005; 16 1994; 94 1994; 10 2001; 31 2000; 181 2009; 40 2003; 15 1995; 332 2001; 107 2008; 73 2003; 112 2006; 414 2003; 111 2007; 36 2005; 23 2007; 37 1993; 6 1994; 343 1991; 143 1992; 90 1994; 344 2006; 61 1991; 144 1997; 185 2000; 55 2005; 303 1999; 14 2010; 155 2000; 161 1997; 17 2000; 162 2010; 391 2008; 64 2006; 368 2006; 129 2008; 153 2005; 33 2009; 324 1995; 96 1995; 91 2006; 12 2000; 278 1993; 83 2000; 23 2010; 125 2010; 126 2008; 19 2002; 32 2007; 120 2006; 7 2006; 154 2006; 6 1999; 65 2005 1992; 75 1992; 77 1993; 148 1998; 24 2008; 180 2005; 280 2009; 30 2006; 86 2007; 119 2004; 113 2010; 138 2005; 289 2005; 201 2002; 169 2004; 15 1997; 121 1996; 153 2008; 178 2008; 452 2007; 44 1996; 156 2009; 39 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_151_2 e_1_2_8_5_2 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_170_2 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_83_2 e_1_2_8_136_2 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_155_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_2 e_1_2_8_143_2 e_1_2_8_95_2 e_1_2_8_120_2 e_1_2_8_162_2 e_1_2_8_99_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_181_2 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_128_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_147_2 e_1_2_8_124_2 e_1_2_8_166_2 e_1_2_8_29_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_110_2 e_1_2_8_152_2 e_1_2_8_179_2 Plotkowski MC (e_1_2_8_70_2) 1993; 6 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_137_2 e_1_2_8_171_2 e_1_2_8_40_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_133_2 e_1_2_8_156_2 e_1_2_8_175_2 Salomon B (e_1_2_8_127_2) 1998; 161 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_90_2 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_140_2 e_1_2_8_163_2 e_1_2_8_98_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_148_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_144_2 e_1_2_8_167_2 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_119_2 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_153_2 Adams NP (e_1_2_8_159_2) 2005 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_7_2 King C (e_1_2_8_6_2) 1998; 161 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_172_2 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_157_2 e_1_2_8_81_2 e_1_2_8_134_2 e_1_2_8_176_2 e_1_2_8_17_2 e_1_2_8_13_2 e_1_2_8_59_2 Mak JC (e_1_2_8_174_2) 1995; 268 e_1_2_8_36_2 e_1_2_8_78_2 Olszewska‐Pazdrak B (e_1_2_8_30_2) 1998; 72 Cromwell O (e_1_2_8_4_2) 1992; 77 e_1_2_8_164_2 e_1_2_8_141_2 e_1_2_8_97_2 e_1_2_8_160_2 e_1_2_8_55_2 e_1_2_8_126_2 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_107_2 e_1_2_8_149_2 e_1_2_8_51_2 e_1_2_8_122_2 e_1_2_8_168_2 e_1_2_8_93_2 e_1_2_8_103_2 e_1_2_8_145_2 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 Churchill L (e_1_2_8_16_2) 1992; 75 e_1_2_8_80_2 e_1_2_8_131_2 e_1_2_8_154_2 e_1_2_8_177_2 e_1_2_8_150_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_39_2 Nguyen HH (e_1_2_8_129_2) 1998; 72 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_108_2 Shibata Y (e_1_2_8_18_2) 1996; 156 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_96_2 e_1_2_8_161_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_104_2 e_1_2_8_180_2 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_146_2 e_1_2_8_169_2 e_1_2_8_92_2 |
References_xml | – reference: Rabe KF, Atienza T, Magyar P, Larsson P, Jorup C, Lalloo UG. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomized controlled, double-blind study. Lancet 2006;368:744-753. – reference: Wark PAB, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002;19:68-75. – reference: Kao C-Y, et al. IL-17 markedly up-regulates β-Defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J Immunol 2004;173:3482-3491. – reference: Beck LA, et al. Detection of the chemokine RANTES and endothelial cell adhesion molecules in nasal polyps. J Allergy Clin Immunol 1996;98:766-780. – reference: Proud D. Nitric oxide and the common cold. Curr Opin Allergy Clin Immunol 2005;5:37-42. – reference: Ratner AJ, et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001;276:19267-19275. – reference: O'Byrne PM, Gauvreau GM, Brannan JD. Provoked models of asthma: what have we learnt? Clin Exp Allergy 2009;39:181-192. – reference: Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA. Interleukin (IL)-6 directs the differentiation of IL-4 producing CD4+ T cells. J Exp Med 1997;185:461-469. – reference: Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 1995;8:295-297. – reference: Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112:930-934. – reference: Kidney JC, Proud D. Neutrophil transmigration across human airway epithelial monolayers; mechanisms and dependence on electrical resistance. Am J Respir Cell Mol Biol 2000;23:389-395. – reference: Lamkhioued B, et al. Monocyte chemoattractant protein (MCP)-4 expression in the airway of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory peptides. Am J Respir Crit Care Med 2000;162:723-732. – reference: Upham JW, Stick SM. Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets 2006;7:541-545. – reference: Zhu L, Lee P, Lee W-M, Zhao Y, Yu D, Chen Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol 2009;40:610-619. – reference: Skevaki CL, et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy 2009;39:1700-1710. – reference: Hament JM, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 2004;55:972-978. – reference: Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol 2001;107:235-243. – reference: Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol 2007;120:1233-1244. – reference: Sajjan US, et al. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J 2006;20:2121-2123. – reference: Busse WW. The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010;138:4S-10S. – reference: Cohen S, Tyrrell DA, Russell MA, Jarvis MJ, Smith AP. Smoking, alcohol consumption, and susceptibility to the common cold. Am J Public Health 1993;83:1277-1283. – reference: Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation and wound repair. J Allergy Clin Immunol 2003;111:1345-1352. – reference: Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science 1992;258:593-597. – reference: Proud D, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008;178:962-968. – reference: Regamey N, et al. Airway epithelial IL-15 transforms monocytes into dendritic cells. Am J Respir Cell Mol Biol 2007;37:75-84. – reference: Sim TC, Reece LM, Hilsmeier KA, Grant JA, Alam R. Secretion of chemokines and other cytokines in allergen-induced nasal responses: inhibition by topical steroid treatment. Am J Respir Crit Care Med 1995;152:927-933. – reference: Plotkowski MC, Bajolet-Laudinet O, Puchelle E. Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa. Eur Respir J 1993;6:903-916. – reference: Salik E, et al. Antigen trafficking and accessory cell function in respiratory epithelial cells. Am J Respir Cell Mol Biol 1999;21:365-379. – reference: Huston DP, Liu YJ. Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma. Curr Allergy Asthma Rep 2006;6:372-376. – reference: Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:2006. – reference: Lau C, et al. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol 2008;180:870-880. – reference: Gern JE. Viral respiratory infection and the link to asthma. Pediatr Infect Dis J 2008;27:S97-S103. – reference: Bove PF, van der Vliet A. Nitric oxide and reactive nitrogen species in airway epithelial cell signaling and inflammation. Free Radic Biol Med 2006;41:515-527. – reference: Zaheer RS, Koetzler R, Holden NS, Wiehler S, Proud D. Selective transcriptional downregulation of human rhinovirus-induced production of CXCL10 from airway epithelial cells via the MEK1 pathway. J Immunol 2009;182:4854-4864. – reference: Shibata Y, Nakamura H, Kato S, Tomoike H. Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 1996;156:772-777. – reference: Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection of airway epithelial cells upregulates MMP-9 production via NF-κB. Am J Respir Cell Mol Biol 2010;43:201-209. – reference: Claesson H-E. On the biosynthesis and biological role of eoxins and 15-lipoxygenase-1 in airway inflammation and Hodgkin lymphoma. Prostaglandins Other Lipid Mediat 2009;89:120-125. – reference: Rimaniol AC, et al. The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 2003;112:1139-1146. – reference: Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000;55:603-613. – reference: Leigh R, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol 2008;121:1238-1245. – reference: Imhof BA, et al. Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice. J Pathol 2007;212:198-202. – reference: Bentley JK, Newcomb DC, Goldsmith AM, Jia Y, Sajjan US, Hershenson MB. Rhinovirus activates interleukin-8 expression via a Src/p110β phosphatylinositol 3-kinase pathway in human airway epithelial cells. J Virol 2007;81:1186-1194. – reference: Zhao Y, et al. Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am J Respir Cell Mol Biol 2009;40:19-30. – reference: Granger DN, Kubes P. Nitric oxide as an antiinflammatory agent. Methods Enzymol 1996;269:434-442. – reference: King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998;161:3645-3651. – reference: Zen K, Babbin BA, Liu Y, Whelan JB, Nusrat A, Parkos CA. JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol Biol Cell 2004;15:3926-3937. – reference: Wan H, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279-294. – reference: Ryan A, Godson C. Lipoxins: regulators of resolution. Curr Opin Pharmacol 2010;10:166-172. – reference: Psarras S, et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinovirus. J Allergy Clin Immunol 2006;117:291-297. – reference: Giembycz MA, Kaur M, Leigh R, Newton R. A Holy Grail of asthma management: towards understanding how long-actingβ2-adrenoreceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br J Pharmacol 2008;153:1090-1104. – reference: Churchill L, Friedman B, Schleimer RP, Proud D. Production of granulocyte-macrophage colony-stimulating factor by cultured human tracheal epithelial cells. Immunology 1992;75:189-195. – reference: Wark PAB, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-947. – reference: Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell production of human β-defensin-2 both in vitro and in vivo. J Immunol 2004;172:4637-4645. – reference: Ackerman V, Carpi S, Bellini A, Vassalli G, Marini M, Mattoli S. Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. J Allergy Clin Immunol 1995;91:618-627. – reference: McElvaney NG, et al. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 1992;90:1296-1301. – reference: Edwards MR, Johnson MW, Johnston SL. Combination therapy. Synergistic suppression of virus-induced chemokines in airway epithelial cells. Am J Respir Cell Mol Biol 2006;34:616-624. – reference: Tai HY, et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006;61:382-388. – reference: Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J Clin Invest 1996;97:915-924. – reference: Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MBA. Does Toll-like receptor 3 play a biological role in virus infections? Virology 2004;322:231-238. – reference: Vignola AM, et al. HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 1993;148:689-694. – reference: Riccio MM, Reynolds CJ, Hay DW, Proud D. Effects of intranasal administration of endothelin-1 to allergic and nonallergic individuals. Am J Respir Crit Care Med 1995;152:1757-1764. – reference: Lopez-Souza N, et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009;123:1384-1390. – reference: Hewson CA, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways. Eur Respir J 2010;36:1425-1435. – reference: McLeish AC, Zvolensky MJ. Asthma and cigarette smoking: a review of the empirical literature. J Asthma 2010;47:345-361. – reference: Kelly MM, Leigh R, L J, Goldsmith CH, Parameswaran K, Hargreave FE. Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol 2006;117:989-994. – reference: Greening AP, Ind PW, Northfield M, Shaw G. Added salmeterol versus higher-dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid. Lancet 1994;344:219-224. – reference: Goldie RG, Henry PJ. Endothelins and asthma. Life Sci 1999;65:1-15. – reference: Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13 induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol 2010;43:652-661. – reference: Cromwell O, et al. Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1ß and tumour necrosis factor-α. Immunology 1992;77:330-337. – reference: Wan H, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104:123-133. – reference: Panina-Bordignon P, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics. J Clin Invest 2001;107:1357-1364. – reference: Papi A, Stanciu LA, Papadopoulos NG, Teran LM, Holgate ST, Johnston SL. Rhinovirus infection induces major histocompatability complex class I and costimulatory molecule upregulation on respiratory epithelial cells. J Infect Dis 2000;181:1780-1784. – reference: Martinez FD, et al. Asthma and wheezing in the first six years of life. N Engl J Med 1995;332:133-138. – reference: Slater L, et al. Co-ordinated role of TLR-3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010;6:e1001178. – reference: Triantafilou K, Vakakis E, Richer EAJ, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors amd MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-29. – reference: Koetzler R, Zaheer RS, Newton R, Proud D. Nitric oxide inhibits IFN regulatory factor 1 and nuclear factor-κB pathways in rhinovirus-infected epithelial cells. J Allergy Clin Immunol 2009;124:551-557. – reference: Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med 2000;343:332-336. – reference: Heijink IH, Kies M, van Oosterhout AJM, Postma DS, Kauffman HF, Vellebga E. Der p, IL-4, and TGF-β cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 2007;36:351-359. – reference: DiCosmo BF, et al. Airway epithelial cell expression of interleukin-6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity. J Clin Invest 1994;94:2028-2035. – reference: Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne E, Barnes PJ. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994;343:133-135. – reference: Stirnweiss A, et al. IFN regulatory factor-1 bypassess IFN-mediated antiviral effects through viperin gene induction. J Immunol 2010;184:5179-5185. – reference: Hudy MH, Traves SL, Wiehler S, Proud D. Cigarette smoke modulates rhinovirus-induced airway epithelial chemokine production. Eur Respir J 2010;35:1256-1263. – reference: Koetzler R, Zaheer RS, Wiehler S, Holden NS, Giembycz MA, Proud D. Nitric oxide inhibits human rhinovirus-induced transcriptional activation of CXCL10 in airway epithelial cells. J Allergy Clin Immunol 2009;123:201-208. – reference: Bateman ED, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. Am J Respir Crit Care Med 2004;170:836-844. – reference: Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010;125:1178-1187. – reference: Nguyen HH, et al. Influenza virus-infected epithelial cells present viral antigens to antigen-specific CD8+ cytotoxic T lymphocytes. J Virol 1998;72:4534-4536. – reference: Kishore U, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 2006;43:1293-1315. – reference: Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008;19:34-41. – reference: Jartti T, Lee W-M, Pappas T, Evans M, Lemanske RFJ, Gern JE. Serial viral infections in infants with recurrent respiratory illnesses. Eur Respir J 2008;32:314-320. – reference: Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, Hirst SJ. Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma. Am J Respir Crit Care Med 2007;176:146-153. – reference: Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. – reference: Schmid S, Mordstein M, Kochs G, García-Sastre A, tenOever BR. Transcription factor redundancy ensures induction of the antiviral state. J Biol Chem 2010;285:42013-42022. – reference: Kusel MM, et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol 2007;119:1105-1110. – reference: Giembycz MA, Newton R. Beyond the dogma: novel β2-adrenoreceptor signalling in the airways. Eur Respir J 2006;27:1286-1306. – reference: Redington AE, et al. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 2001;56:351-357. – reference: Sousa AR, Lane SJ, Nakhosteen JA, Yoshimura T, Lee TH, Poston RN. Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am J Respir Cell Mol Biol 1994;10:142-147. – reference: Palmenberg AC, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009;324:55-59. – reference: Pohunek P, Warner JO, Turzíková J, Kudrmann J, Roche WR. Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr Allergy Immunol 2005;16:43-51. – reference: Churchill L, Chilton FH, Resau JH, Bascom R, Hubbard WC, Proud D. Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells. Am Rev Respir Dis 1989;140:449-459. – reference: Jackson DJ, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008;178:667-672. – reference: Kelsen SG, et al. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004;287:L584-L591. – reference: Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010;3:69-80. – reference: Wang Q, et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol 2009;183:6989-6997. – reference: Siddiqui S, et al. Vascular remodeling is a feature of asthma and nonasthmatic eosinophil bronchitis. J Allergy Clin Immunol 2007;120:813-819. – reference: Beck LA, et al. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 2006;177:3344-3354. – reference: De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003;24:488-522. – reference: Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The Salmeterol Multicenter Asthma Reseach Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 2006;129:15-26. – reference: Pavord ID, Wong CS, Williams J, Tattersfield AE. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis 1993;148:87-90. – reference: Liu MC, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: Cellular, mediator, and permeability changes. Am Rev Respir Dis 1991;144:51-58. – reference: Wiehler S, Proud D. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am J Physiol Cell Mol Physiol 2007;293:L505-L515. – reference: Nonaka M, Nonake R, Jordana M, Dolovich J. GM-CSF, IL-8, IL-1R, TNF-αR, and HLA-DR in nasal epithelial cells in allergic rhinitis. Am J Respir Crit Care Med 1996;153:1675-1681. – reference: Liu C, et al. 15-lipoxygenase-1 induces expression and release of chemokines in cultured human lung epithelial cells. Am J Physiol Lung Cell Mol Biol 2009;297:L196-L203. – reference: Sanders SP, Kim J, Connolly KR, Porter JD, Siekierski ES, Proud D. Nitric oxide inhibits rhinovirus-induced GM-CSF production in bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;24:317-325. – reference: Wang X, et al. Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. J Immunol 2006;177:6859-6870. – reference: van Wetering S, Zuyderduyn S, Ninaber DK, van Sterkenburg MAJA, Rabe KF, Hiemstra PS. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol Immunol 2007;44:803-811. – reference: Heinecke L, Proud D, Sanders S, Schleimer RP, Kim J. Induction of B7-H1 and B7-DC expression on airway epithelial cells by the Toll-like receptor 3 agonist double-stranded RNA and human rhinovirus infection: In vivo and in vitro studies. J Allergy Clin Immunol 2008;121:1155-1160. – reference: Eddleston J, Herschbach J, Wagelie-Steffen AL, Christiansen SC, Zuraw BL. The anti-inflammatory effects of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J Allergy Clin Immunol 2007;119:115-122. – reference: Eddleston J, Christiansen SC, Zuraw BL. Functional expression of the C-X-C chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators. J Immunol 2002;169:6445-6451. – reference: Adams NP, Bestall JC, Malouf R, Lasserson TJ, Jones P. Beclomethasone versus placebo for chronic asthma. Cochrane Database Syst Rev 2005; Issue 1. Art. No.: CD002738. – reference: Salomon B, Bluestone JA. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol 1998;161:5138-5142. – reference: Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids - new mechanisms for old drugs. N Engl J Med 2005;353:1711-1723. – reference: Subauste MC, Jacoby DB, Richards SM, Proud D. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest 1995;96:549-557. – reference: Olszewska-Pazdrak B, et al. Cell-specific expression of RANTES, MCP-1, and MIP-1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol 1998;72:4756-4764. – reference: Proud D, Subauste MC, Ward PE. Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line. Am J Respir Cell Mol Biol 1994;11:57-65. – reference: Contoli M, et al. Role of deficient type-III interferon-l production in asthma exacerbations. Nat Med 2006;12:1023-1026. – reference: Sahl H-G, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 2005;77:466-475. – reference: Shaveta G, Shi J, Chow VTK, Song J. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem Biophys Res Commun 2010;391:1390-1395. – reference: Roberts JA, et al. The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J 1999;14:275-282. – reference: Enomoto Y, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 2009;124:913-920. – reference: Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 1998;72:934-942. – reference: Fujimoto K, Imaizumi T, Yoshida H, Takanashi S, Okumura K, Satoh K. Interferon-γ stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence. Am J Respir Cell Mol Biol 2001;25:233-238. – reference: Sachs-Olsen C, et al. Eoxins: A new inflammatory pathway in childhood asthma. J Allergy Clin Immunol 2010;126:859-867. – reference: Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005;289:L834-L841. – reference: Chivers JE, et al. Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E release. Eur J Biochem 2004;271:4042-4052. – reference: Chong LK, Drury DEJ, Dummer JF, Ghahramani P, Schleimer RP, Peachell PT. Protection by dexamethasone of the functional desensitization to β2-adrenoreceptor-mediated responses in human lung mast cells. Br J Pharmacol 1997;121:717-722. – reference: Asokananthan N, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 2002;169:4572-4578. – reference: Proud D. The role of defensins in virus-induced asthma. Curr Allergy Asthma Rep 2006;6:81-85. – reference: Lane C, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004;59:757-760. – reference: Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 2000;161:1501-1507. – reference: Mak JC, Nishikawa M, Barnes PJ. Glucocorticoids increase β2-adrenergic receptor transcription in human lung. Am J Physiol Lung Cell Mol Physiol 1995;268:L41-L46. – reference: Saetta M, Di Stefano A, Rosina C, Thiene G, Fabbri LM. Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 1991;143:138-143. – reference: Muruve DA, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008;452:103-107. – reference: Bals R, Hiemstra PS. Innate immunity in the lung; how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327-333. – reference: Rochelle LG, Fischer BM, Adler KB. Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro. Free Radic Biol Med 1998;24:863-868. – reference: Laberge S, et al. Increased expression of interleukin-16 in bronchial mucosa of subjects with atopic asthma. Am J Respir Cell Mol Biol 1997;17:193-202. – reference: Newcomb DC, et al. Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem 2005;280:36952-36961. – reference: Kato H, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005;23:19-28. – reference: Saglani S, et al. Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am J Respir Crit Care Med 2005;171:722-727. – reference: Osterlund C, Grönlund H, Gafvelin G, Bucht A. Non-proteolytic aeroallegens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells. Int Arch Allergy Immunol 2010;155:111-118. – reference: Zaheer RS, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol 2010;43:413-421. – reference: Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor. Mol Pharmacol 2007;72:799-809. – reference: Chu HW, et al. Expression and activation of 15-lipoxygenase pathway in severe asthma: relationship to eosinophilic phenotype and collagen depostion. Clin Exp Allergy 2002;32:1558-1565. – reference: Volonaki E, Psarras S, Xepapadaki P, Psomali D, Gourgiotis D, Papadopoulos NG. Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors. Clin Exp Allergy 2006;36:1268-1273. – reference: Erlwyn-Lajeunesse MD, et al. Bronchoalveolar lavage MMP-9 and TIMP-1 in preschool wheezers and their relationship to persitent wheeze. Pediatr Res 2008;64:194-199. – reference: Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 2001;276:29603-29610. – reference: Zen K, Parkos CA. Leukocyte-epithelial interactions. Curr Opin Cell Biol 2003;15:557-564. – reference: Tomee JF, Wierenga ATJ, Hiemstra PS, Kaufman HK. Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis 1997;176:300-303. – reference: Nomura A, Uchida Y, Kameyama M, Saotome M, Oki K, Hasegawa S. Endothelin and bronchial asthma. Lancet 1989;1:747-748. – reference: Kim J, et al. Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells. Am J Respir Cell Mol Biol 2005;33:280-289. – reference: Inoue D, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir Physiol Neurobiol 2006;154:484-499. – reference: Kalavantavanich K, Schramm CM. Dexamethasone potentiates high-affinity β-agonist binding and Gsα protein expression in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2000;278:L1101-L1106. – reference: Jacobs ER, Zeldin DC. The lung HETEs (and EETs) up. Am J Physiol Heart Circ Physiol 2001;280:H1-H10. – reference: Thomsen SF, et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med 2009;179:1091-1097. – reference: Dolhnikoff M, et al. The outer wall of small airways is a major site of remodeling in fatal asthma. J Allergy Clin Immunol 2009;123:1090-1097. – reference: Chung KF. Evaluation of selective prostaglandin E2 (PGE2) receptor agonists as therapeutic agents for the treatment of asthma. Sci STKE 2005;303:pe47. – reference: Sanders SP, Proud D, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 2004;113:697-702. – reference: Kato H, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006;414:101-105. – reference: Tuthope SJ, et al. The role of IκB kinase 2, but not activation of NF-κB, in the release of CXCR3 ligands from IFN-γ-stimulated human bronchial epithelial cells. J Immunol 2007;179:6237-6245. – reference: Venge J, Lampinen M, Hakansson L, Rak S, Venge P. Identification of IL-5 and RANTES as the major eosinophilic chemoattractants in the human lung. J Allergy Clin Immunol 1996;97:1110-1115. – reference: Moskwa P, et al. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 2007;175:174-183. – reference: Kotaniemi-Syrjänen A, Vainionpää R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus-induced wheezing in infancy-the first sign of childhood asthma? J Allergy Clin Immunol 2003;111:66-71. – reference: Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005;289:L85-L95. – reference: Subauste MC, Choi D-C, Proud D. Transient exposure of human bronchial epithelial cells to cytokines leads to persistent increased expression of ICAM-1. Inflammation 2001;25:373-380. – reference: Minshall E, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol 2000;105:232-238. – reference: Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting β2-adrenoreceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008;73:203-214. – reference: Allen IC, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza virus through recognition of viral RNA. Immunity 2009;30:556-565. – reference: Schneider D, et al. Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;182:332-340. – reference: Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 2003;28:648-654. – reference: Ying S, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174:8183-8190. – reference: O'Gorman MT, Jatoi NA, Lane SJ, Mahon BP. IL-1β and TNF-α induce increased expression of CCL28 by airway epithelial cells via an NFκB-dependent pathway. Cell Immunol 2005;238:87-96. – volume: 276 start-page: 19267 year: 2001 end-page: 19275 article-title: Cystic fibrosis pathogens activate Ca ‐dependent mitogen‐activated protein kinase signaling pathways in airway epithelial cells publication-title: J Biol Chem – volume: 97 start-page: 915 year: 1996 end-page: 924 article-title: Interleukin‐11: stimulation and by respiratory viruses and induction of airways hyperresponsiveness publication-title: J Clin Invest – volume: 37 start-page: 75 year: 2007 end-page: 84 article-title: Airway epithelial IL‐15 transforms monocytes into dendritic cells publication-title: Am J Respir Cell Mol Biol – volume: 111 start-page: 1345 year: 2003 end-page: 1352 article-title: Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation and wound repair publication-title: J Allergy Clin Immunol – volume: 73 start-page: 203 year: 2008 end-page: 214 article-title: Long‐acting β ‐adrenoreceptor agonists synergistically enhance glucocorticoid‐dependent transcription in human airway epithelial and smooth muscle cells publication-title: Mol Pharmacol – volume: 90 start-page: 1296 year: 1992 end-page: 1301 article-title: Modulation of airway inflammation in cystic fibrosis. suppression of interleukin‐8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor publication-title: J Clin Invest – volume: 179 start-page: 6237 year: 2007 end-page: 6245 article-title: The role of IκB kinase 2, but not activation of NF‐κB, in the release of CXCR3 ligands from IFN‐γ‐stimulated human bronchial epithelial cells publication-title: J Immunol – volume: 89 start-page: 120 year: 2009 end-page: 125 article-title: On the biosynthesis and biological role of eoxins and 15‐lipoxygenase‐1 in airway inflammation and Hodgkin lymphoma publication-title: Prostaglandins Other Lipid Mediat – volume: 121 start-page: 1238 year: 2008 end-page: 1245 article-title: Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling publication-title: J Allergy Clin Immunol – volume: 72 start-page: 799 year: 2007 end-page: 809 article-title: Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor publication-title: Mol Pharmacol – volume: 97 start-page: 1110 year: 1996 end-page: 1115 article-title: Identification of IL‐5 and RANTES as the major eosinophilic chemoattractants in the human lung publication-title: J Allergy Clin Immunol – volume: 32 start-page: 1558 year: 2002 end-page: 1565 article-title: Expression and activation of 15‐lipoxygenase pathway in severe asthma: relationship to eosinophilic phenotype and collagen depostion publication-title: Clin Exp Allergy – volume: 182 start-page: 332 year: 2010 end-page: 340 article-title: Increased cytokine response of rhinovirus‐infected airway epithelial cells in chronic obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – volume: 81 start-page: 1186 year: 2007 end-page: 1194 article-title: Rhinovirus activates interleukin‐8 expression via a Src/p110β phosphatylinositol 3‐kinase pathway in human airway epithelial cells publication-title: J Virol – volume: 35 start-page: 1256 year: 2010 end-page: 1263 article-title: Cigarette smoke modulates rhinovirus‐induced airway epithelial chemokine production publication-title: Eur Respir J – volume: 36 start-page: 1425 year: 2010 end-page: 1435 article-title: Rhinovirus induces MUC5AC in a human infection model and via NF‐κB and EGFR pathways publication-title: Eur Respir J – volume: 289 start-page: L85 year: 2005 end-page: L95 article-title: Human airway epithelial cells produce IP‐10 (CXCL10) and upon rhinovirus infection publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 343 start-page: 133 year: 1994 end-page: 135 article-title: Increased nitric oxide in exhaled air of asthmatic patients publication-title: Lancet – volume: 170 start-page: 836 year: 2004 end-page: 844 article-title: Can guideline‐defined asthma control be achieved? The Gaining Optimal Asthma Control study publication-title: Am J Respir Crit Care Med – volume: 119 start-page: 1105 year: 2007 end-page: 1110 article-title: Early‐life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma publication-title: J Allergy Clin Immunol – volume: 86 start-page: 2006 year: 2006 article-title: Respiratory tract mucin genes and mucin glycoproteins in health and disease publication-title: Physiol Rev – volume: 77 start-page: 466 year: 2005 end-page: 475 article-title: Mammalian defensins: structures and mechanism of antibiotic activity publication-title: J Leukoc Biol – volume: 162 start-page: 723 year: 2000 end-page: 732 article-title: Monocyte chemoattractant protein (MCP)‐4 expression in the airway of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory peptides publication-title: Am J Respir Crit Care Med – volume: 36 start-page: 351 year: 2007 end-page: 359 article-title: Der p, IL‐4, and TGF‐β cooperatively induce EGFR‐dependent TARC expression in airway epithelium publication-title: Am J Respir Cell Mol Biol – volume: 148 start-page: 689 year: 1993 end-page: 694 article-title: HLA‐DR and ICAM‐1 expression on bronchial epithelial cells in asthma and chronic bronchitis publication-title: Am Rev Respir Dis – volume: 353 start-page: 1711 year: 2005 end-page: 1723 article-title: Antiinflammatory action of glucocorticoids – new mechanisms for old drugs publication-title: N Engl J Med – volume: 27 start-page: 1286 year: 2006 end-page: 1306 article-title: Beyond the dogma: novel β ‐adrenoreceptor signalling in the airways publication-title: Eur Respir J – volume: 212 start-page: 198 year: 2007 end-page: 202 article-title: Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam‐C‐deficient mice publication-title: J Pathol – volume: 3 start-page: 69 year: 2010 end-page: 80 article-title: Rhinovirus‐induced modulation of gene expression in bronchial epithelial cells from subjects with asthma publication-title: Mucosal Immunol – volume: 140 start-page: 449 year: 1989 end-page: 459 article-title: Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells publication-title: Am Rev Respir Dis – volume: 41 start-page: 515 year: 2006 end-page: 527 article-title: Nitric oxide and reactive nitrogen species in airway epithelial cell signaling and inflammation publication-title: Free Radic Biol Med – volume: 40 start-page: 19 year: 2009 end-page: 30 article-title: Regulation of COX‐2 expression and IL‐6 release by particulate matter in airway epithelial cells publication-title: Am J Respir Cell Mol Biol – volume: 25 start-page: 373 year: 2001 end-page: 380 article-title: Transient exposure of human bronchial epithelial cells to cytokines leads to persistent increased expression of ICAM‐1 publication-title: Inflammation – volume: 278 start-page: L1101 year: 2000 end-page: L1106 article-title: Dexamethasone potentiates high‐affinity β‐agonist binding and G α protein expression in airway smooth muscle publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 280 start-page: H1 year: 2001 end-page: H10 article-title: The lung HETEs (and EETs) up publication-title: Am J Physiol Heart Circ Physiol – volume: 27 start-page: S97 year: 2008 end-page: S103 article-title: Viral respiratory infection and the link to asthma publication-title: Pediatr Infect Dis J – volume: 161 start-page: 1501 year: 2000 end-page: 1507 article-title: Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7 publication-title: Am J Respir Crit Care Med – volume: 414 start-page: 101 year: 2006 end-page: 105 article-title: Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses publication-title: Nature – volume: 183 start-page: 6989 year: 2009 end-page: 6997 article-title: Role of double‐stranded RNA pattern recognition receptors in rhinovirus‐induced airway epithelial cell responses publication-title: J Immunol – volume: 25 start-page: 233 year: 2001 end-page: 238 article-title: Interferon‐γ stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence publication-title: Am J Respir Cell Mol Biol – volume: 172 start-page: 4637 year: 2004 end-page: 4645 article-title: Human rhinovirus infection induces airway epithelial cell production of human β‐defensin‐2 both and publication-title: J Immunol – volume: 177 start-page: 3344 year: 2006 end-page: 3354 article-title: Functional analysis of the chemokine receptor CCR3 on airway epithelial cells publication-title: J Immunol – volume: 94 start-page: 2028 year: 1994 end-page: 2035 article-title: Airway epithelial cell expression of interleukin‐6 in transgenic mice: uncoupling of airway inflammation and bronchial hyperreactivity publication-title: J Clin Invest – volume: 36 start-page: 1268 year: 2006 end-page: 1273 article-title: Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus‐induced epithelial production of remodelling‐associated growth factors publication-title: Clin Exp Allergy – volume: 112 start-page: 930 year: 2003 end-page: 934 article-title: Release of both CCR4‐active and CXCR3‐active chemokines during human allergic pulmonary late‐phase reactions publication-title: J Allergy Clin Immunol – volume: 65 start-page: 1 year: 1999 end-page: 15 article-title: Endothelins and asthma publication-title: Life Sci – volume: 16 start-page: 43 year: 2005 end-page: 51 article-title: Markers of eosinophilic inflammation and tissue re‐modelling in children before clinically diagnosed bronchial asthma publication-title: Pediatr Allergy Immunol – volume: 123 start-page: 1090 year: 2009 end-page: 1097 article-title: The outer wall of small airways is a major site of remodeling in fatal asthma publication-title: J Allergy Clin Immunol – volume: 276 start-page: 29603 year: 2001 end-page: 29610 article-title: Inhibition of AP‐1 by the glucocorticoid‐inducible protein GILZ publication-title: J Biol Chem – volume: 107 start-page: 235 year: 2001 end-page: 243 article-title: Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells and publication-title: J Allergy Clin Immunol – volume: 113 start-page: 697 year: 2004 end-page: 702 article-title: Role of nasal nitric oxide in the resolution of experimental rhinovirus infection publication-title: J Allergy Clin Immunol – volume: 28 start-page: 648 year: 2003 end-page: 654 article-title: Airway epithelial cells release MIP‐3alpha/CCL20 in response to cytokines and ambient particulate matter publication-title: Am J Respir Cell Mol Biol – volume: 72 start-page: 934 year: 1998 end-page: 942 article-title: Nitric oxide inhibits rhinovirus‐induced cytokine production and viral replication in a human respiratory epithelial cell line publication-title: J Virol – volume: 161 start-page: 3645 year: 1998 end-page: 3651 article-title: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium publication-title: J Immunol – volume: 129 start-page: 15 year: 2006 end-page: 26 article-title: The Salmeterol Multicenter Asthma Reseach Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol publication-title: Chest – volume: 126 start-page: 859 year: 2010 end-page: 867 article-title: Eoxins: A new inflammatory pathway in childhood asthma publication-title: J Allergy Clin Immunol – volume: 61 start-page: 382 year: 2006 end-page: 388 article-title: Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells publication-title: Allergy – volume: 14 start-page: 275 year: 1999 end-page: 282 article-title: The long‐acting β ‐agonist salmeterol xinafoate: effects on airway inflammation in asthma publication-title: Eur Respir J – volume: 125 start-page: 1178 year: 2010 end-page: 1187 article-title: The role of viruses in acute exacerbations of asthma publication-title: J Allergy Clin Immunol – volume: 23 start-page: 389 year: 2000 end-page: 395 article-title: Neutrophil transmigration across human airway epithelial monolayers; mechanisms and dependence on electrical resistance publication-title: Am J Respir Cell Mol Biol – volume: 322 start-page: 231 year: 2004 end-page: 238 article-title: Does Toll‐like receptor 3 play a biological role in virus infections? publication-title: Virology – volume: 7 start-page: 541 year: 2006 end-page: 545 article-title: Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation publication-title: Curr Drug Targets – year: 2005 article-title: Beclomethasone versus placebo for chronic asthma publication-title: Cochrane Database Syst Rev – volume: 43 start-page: 652 year: 2010 end-page: 661 article-title: Interleukin‐13 induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection publication-title: Am J Respir Cell Mol Biol – volume: 161 start-page: 5138 year: 1998 end-page: 5142 article-title: LFA‐1 interaction with ICAM‐1 and ICAM‐2 regulates Th2 cytokine production publication-title: J Immunol – volume: 43 start-page: 201 year: 2010 end-page: 209 article-title: Human rhinovirus infection of airway epithelial cells upregulates MMP‐9 production via NF‐κB publication-title: Am J Respir Cell Mol Biol – volume: 271 start-page: 4042 year: 2004 end-page: 4052 article-title: Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E release publication-title: Eur J Biochem – volume: 268 start-page: L41 year: 1995 end-page: L46 article-title: Glucocorticoids increase β ‐adrenergic receptor transcription in human lung publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 156 start-page: 772 year: 1996 end-page: 777 article-title: Cellular detachment and deformation induce IL‐8 gene expression in human bronchial epithelial cells publication-title: J Immunol – volume: 24 start-page: 863 year: 1998 end-page: 868 article-title: Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells publication-title: Free Radic Biol Med – volume: 177 start-page: 6859 year: 2006 end-page: 6870 article-title: Syk is downstream of intercellular adhesion molecule‐1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells publication-title: J Immunol – volume: 39 start-page: 181 year: 2009 end-page: 192 article-title: Provoked models of asthma: what have we learnt? publication-title: Clin Exp Allergy – volume: 343 start-page: 332 year: 2000 end-page: 336 article-title: Low‐dose inhaled corticosteroids and the prevention of death from asthma publication-title: N Engl J Med – volume: 33 start-page: 280 year: 2005 end-page: 289 article-title: Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells publication-title: Am J Respir Cell Mol Biol – volume: 117 start-page: 989 year: 2006 end-page: 994 article-title: Eosinophilic bronchitis in asthma: a model for establishing dose‐response and relative potency of inhaled corticosteroids publication-title: J Allergy Clin Immunol – volume: 169 start-page: 6445 year: 2002 end-page: 6451 article-title: Functional expression of the C‐X‐C chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators publication-title: J Immunol – volume: 258 start-page: 593 year: 1992 end-page: 597 article-title: Interleukin‐6 and its receptor: a paradigm for cytokines publication-title: Science – volume: 75 start-page: 189 year: 1992 end-page: 195 article-title: Production of granulocyte‐macrophage colony‐stimulating factor by cultured human tracheal epithelial cells publication-title: Immunology – volume: 185 start-page: 461 year: 1997 end-page: 469 article-title: Interleukin (IL)‐6 directs the differentiation of IL‐4 producing CD4 T cells publication-title: J Exp Med – volume: 293 start-page: L505 year: 2007 end-page: L515 article-title: Interleukin‐17A modulates human airway epithelial responses to human rhinovirus infection publication-title: Am J Physiol Cell Mol Physiol – volume: 19 start-page: 68 year: 2002 end-page: 75 article-title: Neutrophil degranulation and cell lysis is associated with clinical severity in virus‐induced asthma publication-title: Eur Respir J – volume: 23 start-page: 327 year: 2004 end-page: 333 article-title: Innate immunity in the lung; how epithelial cells fight against respiratory pathogens publication-title: Eur Respir J – volume: 176 start-page: 300 year: 1997 end-page: 303 article-title: Proteases from induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines publication-title: J Infect Dis – volume: 201 start-page: 937 year: 2005 end-page: 947 article-title: Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus publication-title: J Exp Med – volume: 39 start-page: 1700 year: 2009 end-page: 1710 article-title: Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus publication-title: Clin Exp Allergy – volume: 169 start-page: 4572 year: 2002 end-page: 4578 article-title: House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease‐activated receptor (PAR)‐2 and inactivates PAR‐1 publication-title: J Immunol – volume: 5 start-page: 37 year: 2005 end-page: 42 article-title: Nitric oxide and the common cold publication-title: Curr Opin Allergy Clin Immunol – volume: 452 start-page: 103 year: 2008 end-page: 107 article-title: The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response publication-title: Nature – volume: 2 start-page: 22 year: 2011 end-page: 29 article-title: Human rhinovirus recognition in non‐immune cells is mediated by Toll‐like receptors amd MDA‐5, which trigger a synergetic pro‐inflammatory immune response publication-title: Virulence – volume: 111 start-page: 66 year: 2003 end-page: 71 article-title: Rhinovirus‐induced wheezing in infancy‐the first sign of childhood asthma? publication-title: J Allergy Clin Immunol – volume: 119 start-page: 115 year: 2007 end-page: 122 article-title: The anti‐inflammatory effects of glucocorticoids is mediated by glucocorticoid‐induced leucine zipper in epithelial cells publication-title: J Allergy Clin Immunol – volume: 59 start-page: 757 year: 2004 end-page: 760 article-title: Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath publication-title: Thorax – volume: 297 start-page: L196 year: 2009 end-page: L203 article-title: 15‐lipoxygenase‐1 induces expression and release of chemokines in cultured human lung epithelial cells publication-title: Am J Physiol Lung Cell Mol Biol – volume: 77 start-page: 330 year: 1992 end-page: 337 article-title: Expression and generation of interleukin‐8, IL‐6 and granulocyte‐macrophage colony‐stimulating factor by bronchial epithelial cells and enhancement by IL‐1ß and tumour necrosis factor‐α publication-title: Immunology – volume: 104 start-page: 123 year: 1999 end-page: 133 article-title: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions publication-title: J Clin Invest – volume: 2 start-page: 96 year: 2007 end-page: 105 article-title: The interferon‐inducible protein viperin inhibits influenza virus release by perturbing lipid rafts publication-title: Cell Host Microbe – volume: 72 start-page: 4534 year: 1998 end-page: 4536 article-title: Influenza virus‐infected epithelial cells present viral antigens to antigen‐specific CD8 cytotoxic T lymphocytes publication-title: J Virol – volume: 10 start-page: 142 year: 1994 end-page: 147 article-title: Increased expression of the monocyte chemoattractant protein‐1 in bronchial tissue from asthmatic subjects publication-title: Am J Respir Cell Mol Biol – volume: 6 start-page: 903 year: 1993 end-page: 916 article-title: Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa publication-title: Eur Respir J – volume: 173 start-page: 3482 year: 2004 end-page: 3491 article-title: IL‐17 markedly up‐regulates β‐Defensin‐2 expression in human airway epithelium via JAK and NF‐κB signaling pathways publication-title: J Immunol – volume: 143 start-page: 138 year: 1991 end-page: 143 article-title: Qantitative structural analysis of peripheral airways and arteries in sudden fatal asthma publication-title: Am Rev Respir Dis – volume: 96 start-page: 549 year: 1995 end-page: 557 article-title: Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure publication-title: J Clin Invest – volume: 72 start-page: 4756 year: 1998 end-page: 4764 article-title: Cell‐specific expression of RANTES, MCP‐1, and MIP‐1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus publication-title: J Virol – volume: 180 start-page: 870 year: 2008 end-page: 880 article-title: Syk associates with clathrin and mediates phosphatidylinositol 3‐kinase activation during human rhinovirus internalization publication-title: J Immunol – volume: 47 start-page: 345 year: 2010 end-page: 361 article-title: Asthma and cigarette smoking: a review of the empirical literature publication-title: J Asthma – volume: 6 start-page: 81 year: 2006 end-page: 85 article-title: The role of defensins in virus‐induced asthma publication-title: Curr Allergy Asthma Rep – volume: 17 start-page: 193 year: 1997 end-page: 202 article-title: Increased expression of interleukin‐16 in bronchial mucosa of subjects with atopic asthma publication-title: Am J Respir Cell Mol Biol – volume: 174 start-page: 8183 year: 2005 end-page: 8190 article-title: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2‐attracting chemokines and disease severity publication-title: J Immunol – volume: 123 start-page: 1384 year: 2009 end-page: 1390 article-title: susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects publication-title: J Allergy Clin Immunol – volume: 144 start-page: 51 year: 1991 end-page: 58 article-title: Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: Cellular, mediator, and permeability changes publication-title: Am Rev Respir Dis – volume: 15 start-page: 557 year: 2003 end-page: 564 article-title: Leukocyte‐epithelial interactions publication-title: Curr Opin Cell Biol – volume: 332 start-page: 133 year: 1995 end-page: 138 article-title: Asthma and wheezing in the first six years of life publication-title: N Engl J Med – volume: 124 start-page: 913 year: 2009 end-page: 920 article-title: Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack publication-title: J Allergy Clin Immunol – volume: 11 start-page: 57 year: 1994 end-page: 65 article-title: Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line publication-title: Am J Respir Cell Mol Biol – volume: 43 start-page: 413 year: 2010 end-page: 421 article-title: Human rhinovirus‐induced epithelial production of CXCL10 is dependent upon IFN regulatory factor‐1 publication-title: Am J Respir Cell Mol Biol – volume: 40 start-page: 610 year: 2009 end-page: 619 article-title: Rhinovirus‐induced major airway mucin production involves a novel TLR3‐EGFR‐dependent pathway publication-title: Am J Respir Cell Mol Biol – volume: 178 start-page: 667 year: 2008 end-page: 672 article-title: Wheezing rhinovirus illnesses in early life predict asthma development in high‐risk children publication-title: Am J Respir Crit Care Med – volume: 181 start-page: 1780 year: 2000 end-page: 1784 article-title: Rhinovirus infection induces major histocompatability complex class I and costimulatory molecule upregulation on respiratory epithelial cells publication-title: J Infect Dis – volume: 175 start-page: 174 year: 2007 end-page: 183 article-title: A novel host defense system of airways is defective in cystic fibrosis publication-title: Am J Respir Crit Care Med – volume: 83 start-page: 1277 year: 1993 end-page: 1283 article-title: Smoking, alcohol consumption, and susceptibility to the common cold publication-title: Am J Public Health – volume: 21 start-page: 365 year: 1999 end-page: 379 article-title: Antigen trafficking and accessory cell function in respiratory epithelial cells publication-title: Am J Respir Cell Mol Biol – volume: 43 start-page: 1293 year: 2006 end-page: 1315 article-title: Surfactant proteins SP‐A and SP‐D: structure, function and receptors publication-title: Mol Immunol – volume: 155 start-page: 111 year: 2010 end-page: 118 article-title: Non‐proteolytic aeroallegens from mites, cat and dog exert adjuvant‐like activation of bronchial epithelial cells publication-title: Int Arch Allergy Immunol – volume: 324 start-page: 55 year: 2009 end-page: 59 article-title: Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution publication-title: Science – volume: 182 start-page: 4854 year: 2009 end-page: 4864 article-title: Selective transcriptional downregulation of human rhinovirus‐induced production of CXCL10 from airway epithelial cells via the MEK1 pathway publication-title: J Immunol – volume: 44 start-page: 803 year: 2007 end-page: 811 article-title: Epithelial differentiation is a determinant in the production of eotaxin‐2 and ‐3 by bronchial epithelial cells in response to IL‐4 and IL‐13 publication-title: Mol Immunol – volume: 24 start-page: 488 year: 2003 end-page: 522 article-title: The interplay between the glucocorticoid receptor and nuclear factor‐κB or activator protein‐1: molecular mechanisms for gene repression publication-title: Endocr Rev – volume: 344 start-page: 219 year: 1994 end-page: 224 article-title: Added salmeterol versus higher‐dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid publication-title: Lancet – volume: 1 start-page: 747 year: 1989 end-page: 748 article-title: Endothelin and bronchial asthma publication-title: Lancet – volume: 117 start-page: 291 year: 2006 end-page: 297 article-title: Vascular endothelial growth factor‐mediated induction of angiogenesis by human rhinovirus publication-title: J Allergy Clin Immunol – volume: 179 start-page: 1091 year: 2009 end-page: 1097 article-title: Exploring the association between severe respiratory syncytial virus infection and asthma: a registry‐based twin study publication-title: Am J Respir Crit Care Med – volume: 238 start-page: 87 year: 2005 end-page: 96 article-title: IL‐1β and TNF‐α induce increased expression of CCL28 by airway epithelial cells via an NFκB‐dependent pathway publication-title: Cell Immunol – volume: 12 start-page: 1023 year: 2006 end-page: 1026 article-title: Role of deficient type‐III interferon‐l production in asthma exacerbations publication-title: Nat Med – volume: 391 start-page: 1390 year: 2010 end-page: 1395 article-title: Structural characterization reveals that viperin is a radical S‐adenosyl‐L‐methionine (SAM) enzyme publication-title: Biochem Biophys Res Commun – volume: 32 start-page: 314 year: 2008 end-page: 320 article-title: Serial viral infections in infants with recurrent respiratory illnesses publication-title: Eur Respir J – volume: 10 start-page: 166 year: 2010 end-page: 172 article-title: Lipoxins: regulators of resolution publication-title: Curr Opin Pharmacol – volume: 24 start-page: 317 year: 2001 end-page: 325 article-title: Nitric oxide inhibits rhinovirus‐induced GM‐CSF production in bronchial epithelial cells publication-title: Am J Respir Cell Mol Biol – volume: 30 start-page: 556 year: 2009 end-page: 565 article-title: The NLRP3 inflammasome mediates innate immunity to influenza virus through recognition of viral RNA publication-title: Immunity – volume: 91 start-page: 618 year: 1995 end-page: 627 article-title: Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin‐1 publication-title: J Allergy Clin Immunol – volume: 269 start-page: 434 year: 1996 end-page: 442 article-title: Nitric oxide as an antiinflammatory agent publication-title: Methods Enzymol – volume: 171 start-page: 722 year: 2005 end-page: 727 article-title: Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction publication-title: Am J Respir Crit Care Med – volume: 55 start-page: 972 year: 2004 end-page: 978 article-title: Enhanced adherence of to human epithelial cells infected with respiratory syncytial virus publication-title: Pediatr Res – volume: 152 start-page: 1757 year: 1995 end-page: 1764 article-title: Effects of intranasal administration of endothelin‐1 to allergic and nonallergic individuals publication-title: Am J Respir Crit Care Med – volume: 152 start-page: 927 year: 1995 end-page: 933 article-title: Secretion of chemokines and other cytokines in allergen‐induced nasal responses: inhibition by topical steroid treatment publication-title: Am J Respir Crit Care Med – volume: 121 start-page: 1155 year: 2008 end-page: 1160 article-title: Induction of B7‐H1 and B7‐DC expression on airway epithelial cells by the Toll‐like receptor 3 agonist double‐stranded RNA and human rhinovirus infection: and studies publication-title: J Allergy Clin Immunol – volume: 280 start-page: 36952 year: 2005 end-page: 36961 article-title: Phosphatidylinositol 3‐kinase is required for rhinovirus‐induced airway epithelial cell interleukin‐8 expression publication-title: J Biol Chem – volume: 6 start-page: e1001178 year: 2010 article-title: Co‐ordinated role of TLR‐3, RIG‐I and MDA5 in the innate response to rhinovirus in bronchial epithelium publication-title: PLoS Pathog – volume: 285 start-page: 42013 year: 2010 end-page: 42022 article-title: Transcription factor redundancy ensures induction of the antiviral state publication-title: J Biol Chem – volume: 112 start-page: 1139 year: 2003 end-page: 1146 article-title: The CX3C chemokine fractalkine in allergic asthma and rhinitis publication-title: J Allergy Clin Immunol – volume: 120 start-page: 1233 year: 2007 end-page: 1244 article-title: Epithelium dysfunction in asthma publication-title: J Allergy Clin Immunol – volume: 138 start-page: 4S year: 2010 end-page: 10S article-title: The relationship between airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance publication-title: Chest – volume: 8 start-page: 295 year: 1995 end-page: 297 article-title: Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections publication-title: Eur Respir J – volume: 289 start-page: L834 year: 2005 end-page: L841 article-title: Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 148 start-page: 87 year: 1993 end-page: 90 article-title: Effect of inhaled prostaglandin E2 on allergen‐induced asthma publication-title: Am Rev Respir Dis – volume: 121 start-page: 717 year: 1997 end-page: 722 article-title: Protection by dexamethasone of the functional desensitization to β ‐adrenoreceptor‐mediated responses in human lung mast cells publication-title: Br J Pharmacol – volume: 23 start-page: 19 year: 2005 end-page: 28 article-title: Cell type‐specific involvement of RIG‐I in antiviral response publication-title: Immunity – volume: 287 start-page: L584 year: 2004 end-page: L591 article-title: The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 184 start-page: 5179 year: 2010 end-page: 5185 article-title: IFN regulatory factor‐1 bypassess IFN‐mediated antiviral effects through viperin gene induction publication-title: J Immunol – volume: 153 start-page: 1675 year: 1996 end-page: 1681 article-title: GM‐CSF, IL‐8, IL‐1R, TNF‐αR, and HLA‐DR in nasal epithelial cells in allergic rhinitis publication-title: Am J Respir Crit Care Med – volume: 178 start-page: 962 year: 2008 end-page: 968 article-title: Gene expression profiles during human rhinovirus infection: insights into the host response publication-title: Am J Respir Crit Care Med – volume: 153 start-page: 1090 year: 2008 end-page: 1104 article-title: A Holy Grail of asthma management: towards understanding how long‐actingβ ‐adrenoreceptor agonists enhance the clinical efficacy of inhaled corticosteroids publication-title: Br J Pharmacol – volume: 176 start-page: 146 year: 2007 end-page: 153 article-title: Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma publication-title: Am J Respir Crit Care Med – volume: 98 start-page: 766 year: 1996 end-page: 780 article-title: Detection of the chemokine RANTES and endothelial cell adhesion molecules in nasal polyps publication-title: J Allergy Clin Immunol – volume: 31 start-page: 279 year: 2001 end-page: 294 article-title: The transmembrane protein occludin of epithelial tight junctions is a functional target for serine proteins from faecal pellets of publication-title: Clin Exp Allergy – volume: 154 start-page: 484 year: 2006 end-page: 499 article-title: Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells publication-title: Respir Physiol Neurobiol – volume: 105 start-page: 232 year: 2000 end-page: 238 article-title: IL‐11 expression is increased in severe asthma: association with epithelial cells and eosinophils publication-title: J Allergy Clin Immunol – volume: 107 start-page: 1357 year: 2001 end-page: 1364 article-title: The C‐C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen challenged atopic asthmatics publication-title: J Clin Invest – volume: 34 start-page: 616 year: 2006 end-page: 624 article-title: Combination therapy. Synergistic suppression of virus‐induced chemokines in airway epithelial cells publication-title: Am J Respir Cell Mol Biol – volume: 19 start-page: 34 year: 2008 end-page: 41 article-title: Matrix metalloproteinases as modulators of inflammation publication-title: Semin Cell Dev Biol – volume: 64 start-page: 194 year: 2008 end-page: 199 article-title: Bronchoalveolar lavage MMP‐9 and TIMP‐1 in preschool wheezers and their relationship to persitent wheeze publication-title: Pediatr Res – volume: 123 start-page: 201 year: 2009 end-page: 208 article-title: Nitric oxide inhibits human rhinovirus‐induced transcriptional activation of CXCL10 in airway epithelial cells publication-title: J Allergy Clin Immunol – volume: 15 start-page: 3926 year: 2004 end-page: 3937 article-title: JAM‐C is a component of desmosomes and a ligand for CD11b/CD18‐mediated neutrophil transepithelial migration publication-title: Mol Biol Cell – volume: 120 start-page: 813 year: 2007 end-page: 819 article-title: Vascular remodeling is a feature of asthma and nonasthmatic eosinophil bronchitis publication-title: J Allergy Clin Immunol – volume: 20 start-page: 2121 year: 2006 end-page: 2123 article-title: H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM‐1 and TLR3 expression publication-title: FASEB J – volume: 124 start-page: 551 year: 2009 end-page: 557 article-title: Nitric oxide inhibits IFN regulatory factor 1 and nuclear factor‐κB pathways in rhinovirus‐infected epithelial cells publication-title: J Allergy Clin Immunol – volume: 303 start-page: pe47 year: 2005 article-title: Evaluation of selective prostaglandin E2 (PGE2) receptor agonists as therapeutic agents for the treatment of asthma publication-title: Sci STKE – volume: 56 start-page: 351 year: 2001 end-page: 357 article-title: Increased expression of inducible nitric oxide synthase and cyclo‐oxygenase‐2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment publication-title: Thorax – volume: 55 start-page: 603 year: 2000 end-page: 613 article-title: Molecular mechanisms of glucocorticoid action: what is important? publication-title: Thorax – volume: 368 start-page: 744 year: 2006 end-page: 753 article-title: Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomized controlled, double‐blind study publication-title: Lancet – volume: 6 start-page: 372 year: 2006 end-page: 376 article-title: Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma publication-title: Curr Allergy Asthma Rep – ident: e_1_2_8_13_2 doi: 10.1165/rcmb.2006-0235OC – ident: e_1_2_8_178_2 doi: 10.1034/j.1399-3003.1999.14b07.x – ident: e_1_2_8_31_2 doi: 10.1165/ajrcmb.10.2.8110469 – ident: e_1_2_8_149_2 doi: 10.1165/rcmb.2009-0216OC – ident: e_1_2_8_153_2 doi: 10.1016/j.jaci.2009.02.032 – volume: 6 start-page: 903 year: 1993 ident: e_1_2_8_70_2 article-title: Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa publication-title: Eur Respir J doi: 10.1183/09031936.93.06060903 – ident: e_1_2_8_91_2 doi: 10.4161/viru.2.1.13807 – ident: e_1_2_8_181_2 doi: 10.1111/j.1365-2222.2009.03307.x – ident: e_1_2_8_68_2 doi: 10.1002/path.2163 – ident: e_1_2_8_111_2 doi: 10.1164/rccm.200911-1673OC – ident: e_1_2_8_63_2 doi: 10.1016/S0076-6879(96)69044-2 – ident: e_1_2_8_23_2 doi: 10.1016/S0091-6749(96)70265-8 – ident: e_1_2_8_135_2 doi: 10.1164/rccm.200410-1404OC – ident: e_1_2_8_167_2 doi: 10.1074/jbc.M101522200 – ident: e_1_2_8_160_2 doi: 10.1016/j.jaci.2006.01.045 – ident: e_1_2_8_140_2 doi: 10.1067/mai.2003.33 – ident: e_1_2_8_107_2 doi: 10.1164/rccm.200805-670OC – ident: e_1_2_8_98_2 doi: 10.2105/AJPH.83.9.1277 – ident: e_1_2_8_57_2 doi: 10.1152/ajplung.00069.2005 – ident: e_1_2_8_29_2 doi: 10.1165/rcmb.2002-0095OC – ident: e_1_2_8_65_2 doi: 10.1165/ajrcmb.23.3.4068 – ident: e_1_2_8_12_2 doi: 10.1007/s11882-996-0006-7 – ident: e_1_2_8_43_2 doi: 10.1164/ajrccm/148.1.87 – ident: e_1_2_8_115_2 doi: 10.4049/jimmunol.0802401 – ident: e_1_2_8_28_2 doi: 10.1016/j.jaci.2003.08.012 – ident: e_1_2_8_103_2 doi: 10.1007/s11882-006-0015-6 – volume: 77 start-page: 330 year: 1992 ident: e_1_2_8_4_2 article-title: Expression and generation of interleukin‐8, IL‐6 and granulocyte‐macrophage colony‐stimulating factor by bronchial epithelial cells and enhancement by IL‐1ß and tumour necrosis factor‐α publication-title: Immunology – ident: e_1_2_8_7_2 doi: 10.1172/JCI118067 – ident: e_1_2_8_124_2 doi: 10.1164/ajrccm/148.3.689 – ident: e_1_2_8_138_2 doi: 10.1056/NEJM199501193320301 – ident: e_1_2_8_172_2 doi: 10.1016/S0140-6736(06)69284-2 – ident: e_1_2_8_51_2 doi: 10.1016/S0091-6749(95)70260-1 – ident: e_1_2_8_154_2 doi: 10.1164/rccm.200701-042OC – ident: e_1_2_8_175_2 doi: 10.1038/sj.bjp.0701185 – ident: e_1_2_8_95_2 doi: 10.1152/ajplung.00066.2007 – ident: e_1_2_8_78_2 doi: 10.1128/JVI.72.2.934-942.1998 – ident: e_1_2_8_102_2 doi: 10.1189/jlb.0804452 – ident: e_1_2_8_53_2 doi: 10.1016/S0024-3205(98)00614-6 – ident: e_1_2_8_97_2 doi: 10.1183/09031936.00128809 – ident: e_1_2_8_46_2 doi: 10.1152/ajplung.00036.2008 – ident: e_1_2_8_133_2 doi: 10.1111/j.1365-2222.2008.03172.x – ident: e_1_2_8_165_2 doi: 10.1136/thorax.55.7.603 – ident: e_1_2_8_84_2 doi: 10.1016/j.immuni.2009.02.005 – ident: e_1_2_8_173_2 doi: 10.1164/rccm.200401-033OC – ident: e_1_2_8_2_2 doi: 10.1126/science.1411569 – ident: e_1_2_8_99_2 doi: 10.3109/02770900903556413 – ident: e_1_2_8_132_2 doi: 10.1016/j.jaci.2007.05.028 – ident: e_1_2_8_10_2 doi: 10.1016/S0091-6749(00)90070-8 – ident: e_1_2_8_94_2 doi: 10.1165/rcmb.2009-0244OC – ident: e_1_2_8_80_2 doi: 10.1074/jbc.M502449200 – volume: 72 start-page: 4534 year: 1998 ident: e_1_2_8_129_2 article-title: Influenza virus‐infected epithelial cells present viral antigens to antigen‐specific CD8+ cytotoxic T lymphocytes publication-title: J Virol doi: 10.1128/JVI.72.5.4534-4536.1998 – ident: e_1_2_8_11_2 doi: 10.4049/jimmunol.174.12.8183 – ident: e_1_2_8_37_2 doi: 10.1152/ajplung.00453.2003 – ident: e_1_2_8_118_2 doi: 10.1067/mai.2001.112028 – ident: e_1_2_8_170_2 doi: 10.1378/chest.129.1.15 – ident: e_1_2_8_21_2 doi: 10.1152/ajplung.00397.2004 – ident: e_1_2_8_125_2 doi: 10.1165/rcmb.2004-0129OC – ident: e_1_2_8_151_2 doi: 10.1067/mai.2003.1464 – ident: e_1_2_8_64_2 doi: 10.1023/A:1012850630351 – ident: e_1_2_8_106_2 doi: 10.1038/mi.2009.109 – year: 2005 ident: e_1_2_8_159_2 article-title: Beclomethasone versus placebo for chronic asthma publication-title: Cochrane Database Syst Rev – volume: 161 start-page: 5138 year: 1998 ident: e_1_2_8_127_2 article-title: LFA‐1 interaction with ICAM‐1 and ICAM‐2 regulates Th2 cytokine production publication-title: J Immunol doi: 10.4049/jimmunol.161.10.5138 – ident: e_1_2_8_14_2 doi: 10.1165/ajrcmb.17.2.2750 – ident: e_1_2_8_61_2 doi: 10.1183/09031936.95.08020295 – ident: e_1_2_8_163_2 doi: 10.1124/mol.107.038794 – ident: e_1_2_8_176_2 doi: 10.1152/ajplung.2000.278.5.L1101 – ident: e_1_2_8_113_2 doi: 10.4049/jimmunol.0902264 – ident: e_1_2_8_66_2 doi: 10.1016/S0955-0674(03)00103-0 – ident: e_1_2_8_162_2 doi: 10.1111/j.1432-1033.2004.04342.x – ident: e_1_2_8_26_2 doi: 10.1165/rcmb.2006-0160OC – ident: e_1_2_8_85_2 doi: 10.1038/nature06664 – ident: e_1_2_8_90_2 doi: 10.1371/journal.ppat.1001178 – volume: 72 start-page: 4756 year: 1998 ident: e_1_2_8_30_2 article-title: Cell‐specific expression of RANTES, MCP‐1, and MIP‐1α by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus publication-title: J Virol doi: 10.1128/JVI.72.6.4756-4764.1998 – ident: e_1_2_8_45_2 doi: 10.1046/j.1365-2222.2002.01477.x – ident: e_1_2_8_86_2 doi: 10.1016/j.virol.2004.01.033 – ident: e_1_2_8_72_2 doi: 10.1172/JCI115994 – ident: e_1_2_8_33_2 doi: 10.1016/j.cellimm.2006.02.003 – ident: e_1_2_8_52_2 doi: 10.1016/S0140-6736(89)90814-3 – ident: e_1_2_8_143_2 doi: 10.1016/j.jaci.2006.12.669 – volume: 268 start-page: L41 year: 1995 ident: e_1_2_8_174_2 article-title: Glucocorticoids increase β2‐adrenergic receptor transcription in human lung publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.1995.268.1.L41 – ident: e_1_2_8_112_2 doi: 10.1074/jbc.M110.165936 – ident: e_1_2_8_152_2 doi: 10.1203/PDR.0b013e318175dd2d – ident: e_1_2_8_88_2 doi: 10.1016/j.immuni.2005.04.010 – ident: e_1_2_8_48_2 doi: 10.1016/j.prostaglandins.2008.12.003 – ident: e_1_2_8_117_2 doi: 10.1016/j.bbrc.2009.12.070 – ident: e_1_2_8_22_2 doi: 10.1016/j.molimm.2006.04.008 – ident: e_1_2_8_50_2 doi: 10.1152/ajpheart.2001.280.1.H1 – ident: e_1_2_8_76_2 doi: 10.4049/jimmunol.169.8.4572 – ident: e_1_2_8_83_2 doi: 10.1128/JVI.02309-06 – ident: e_1_2_8_20_2 doi: 10.4049/jimmunol.179.9.6237 – ident: e_1_2_8_3_2 doi: 10.1084/jem.185.3.461 – ident: e_1_2_8_24_2 doi: 10.1164/ajrccm.152.3.7545059 – ident: e_1_2_8_81_2 doi: 10.4049/jimmunol.180.2.870 – ident: e_1_2_8_100_2 doi: 10.4049/jimmunol.173.5.3482 – ident: e_1_2_8_42_2 doi: 10.1164/ajrccm/144.1.51 – ident: e_1_2_8_155_2 doi: 10.1016/j.jaci.2005.11.005 – ident: e_1_2_8_54_2 doi: 10.1164/ajrccm.152.6.8520734 – ident: e_1_2_8_38_2 doi: 10.4049/jimmunol.177.5.3344 – ident: e_1_2_8_110_2 doi: 10.1016/j.jaci.2009.03.010 – ident: e_1_2_8_119_2 doi: 10.1016/j.jaci.2004.01.755 – ident: e_1_2_8_25_2 doi: 10.1016/S0091-6749(96)70126-4 – ident: e_1_2_8_59_2 doi: 10.1136/thx.2003.014894 – ident: e_1_2_8_131_2 doi: 10.1164/ajrccm/143.1.138 – ident: e_1_2_8_34_2 doi: 10.1165/ajrcmb.25.2.4275 – ident: e_1_2_8_179_2 doi: 10.1124/mol.107.040121 – ident: e_1_2_8_177_2 doi: 10.1038/sj.bjp.0707627 – ident: e_1_2_8_8_2 doi: 10.1172/JCI117556 – ident: e_1_2_8_164_2 doi: 10.1210/er.2002-0006 – ident: e_1_2_8_15_2 doi: 10.1159/000318743 – ident: e_1_2_8_161_2 doi: 10.1056/NEJM200008033430504 – ident: e_1_2_8_156_2 doi: 10.1016/j.resp.2005.11.006 – ident: e_1_2_8_96_2 doi: 10.1183/09031936.02.00226302 – ident: e_1_2_8_67_2 doi: 10.1091/mbc.E04-04-0317 – ident: e_1_2_8_104_2 doi: 10.1183/09031936.03.00098803 – ident: e_1_2_8_139_2 doi: 10.1164/ajrccm.161.5.9906076 – ident: e_1_2_8_166_2 doi: 10.1056/NEJMra050541 – ident: e_1_2_8_27_2 doi: 10.1172/JCI12655 – ident: e_1_2_8_58_2 doi: 10.1097/00130832-200502000-00008 – ident: e_1_2_8_74_2 doi: 10.1046/j.1365-2222.2001.00970.x – ident: e_1_2_8_122_2 doi: 10.2174/138945006776818647 – volume: 75 start-page: 189 year: 1992 ident: e_1_2_8_16_2 article-title: Production of granulocyte‐macrophage colony‐stimulating factor by cultured human tracheal epithelial cells publication-title: Immunology – ident: e_1_2_8_69_2 doi: 10.1152/physrev.00010.2005 – ident: e_1_2_8_147_2 doi: 10.1016/j.jaci.2010.04.021 – ident: e_1_2_8_144_2 doi: 10.1183/09031936.00161907 – ident: e_1_2_8_180_2 doi: 10.1165/rcmb.2005-0385OC – ident: e_1_2_8_32_2 doi: 10.1164/ajrccm.162.2.9901080 – volume: 161 start-page: 3645 year: 1998 ident: e_1_2_8_6_2 article-title: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium publication-title: J Immunol doi: 10.4049/jimmunol.161.7.3645 – ident: e_1_2_8_130_2 doi: 10.1016/j.jaci.2007.10.025 – ident: e_1_2_8_17_2 doi: 10.1164/ajrccm.153.5.8630619 – ident: e_1_2_8_141_2 doi: 10.1164/rccm.200809-1471OC – ident: e_1_2_8_150_2 doi: 10.1016/j.semcdb.2007.07.003 – ident: e_1_2_8_158_2 doi: 10.1183/09031936.00026910 – ident: e_1_2_8_89_2 doi: 10.4049/jimmunol.0901386 – ident: e_1_2_8_93_2 doi: 10.1096/fj.06-5806fje – ident: e_1_2_8_114_2 doi: 10.1165/rcmb.2009-0203OC – ident: e_1_2_8_36_2 doi: 10.4049/jimmunol.169.11.6445 – ident: e_1_2_8_44_2 doi: 10.1126/stke.3032005pe47 – ident: e_1_2_8_5_2 doi: 10.1086/517272 – ident: e_1_2_8_77_2 doi: 10.1126/science.1165557 – ident: e_1_2_8_121_2 doi: 10.1016/j.jaci.2009.04.041 – ident: e_1_2_8_168_2 doi: 10.1016/j.jaci.2006.08.027 – ident: e_1_2_8_49_2 doi: 10.1016/j.coph.2010.02.005 – ident: e_1_2_8_75_2 doi: 10.1111/j.1398-9995.2005.00958.x – ident: e_1_2_8_73_2 doi: 10.1172/JCI5844 – ident: e_1_2_8_116_2 doi: 10.1016/j.chom.2007.06.009 – ident: e_1_2_8_108_2 doi: 10.1084/jem.20041901 – ident: e_1_2_8_146_2 doi: 10.1016/j.jaci.2008.01.067 – ident: e_1_2_8_55_2 doi: 10.1164/rccm.200607-1029OC – ident: e_1_2_8_105_2 doi: 10.1016/j.molimm.2005.08.004 – ident: e_1_2_8_82_2 doi: 10.4049/jimmunol.177.10.6859 – ident: e_1_2_8_157_2 doi: 10.1165/rcmb.2008-0223OC – volume: 156 start-page: 772 year: 1996 ident: e_1_2_8_18_2 article-title: Cellular detachment and deformation induce IL‐8 gene expression in human bronchial epithelial cells publication-title: J Immunol doi: 10.4049/jimmunol.156.2.772 – ident: e_1_2_8_41_2 doi: 10.1164/ajrccm/140.2.449 – ident: e_1_2_8_145_2 doi: 10.1111/j.1365-2222.2006.02566.x – ident: e_1_2_8_136_2 doi: 10.1378/chest.10-0100 – ident: e_1_2_8_60_2 doi: 10.1016/S0140-6736(94)90931-8 – ident: e_1_2_8_39_2 doi: 10.1165/rcmb.2008-0105OC – ident: e_1_2_8_47_2 doi: 10.1016/j.jaci.2010.07.015 – ident: e_1_2_8_92_2 doi: 10.1203/01.PDR.0000127431.11750.D9 – ident: e_1_2_8_142_2 doi: 10.1164/rccm.200802-309OC – ident: e_1_2_8_126_2 doi: 10.1016/j.jaci.2008.02.009 – ident: e_1_2_8_9_2 doi: 10.1172/JCI118514 – ident: e_1_2_8_35_2 doi: 10.1016/j.jaci.2003.09.041 – ident: e_1_2_8_56_2 doi: 10.1016/S0891-5849(97)00375-4 – ident: e_1_2_8_109_2 doi: 10.1038/nm1462 – ident: e_1_2_8_101_2 doi: 10.4049/jimmunol.172.7.4637 – ident: e_1_2_8_134_2 doi: 10.1111/j.1399-3038.2005.00239.x – ident: e_1_2_8_171_2 doi: 10.1016/S0140-6736(94)92996-3 – ident: e_1_2_8_148_2 doi: 10.1016/j.jaci.2009.08.044 – ident: e_1_2_8_79_2 doi: 10.1165/ajrcmb.24.3.4131 – ident: e_1_2_8_62_2 doi: 10.1016/j.freeradbiomed.2006.05.011 – ident: e_1_2_8_169_2 doi: 10.1183/09031936.06.00112605 – ident: e_1_2_8_137_2 doi: 10.1097/INF.0b013e318168b718 – ident: e_1_2_8_40_2 doi: 10.1136/thorax.56.5.351 – ident: e_1_2_8_123_2 doi: 10.1086/315463 – ident: e_1_2_8_128_2 doi: 10.1165/ajrcmb.21.3.3529 – ident: e_1_2_8_87_2 doi: 10.1038/nature04734 – ident: e_1_2_8_19_2 doi: 10.1074/jbc.M007703200 – ident: e_1_2_8_71_2 doi: 10.1165/ajrcmb.11.1.7517143 – ident: e_1_2_8_120_2 doi: 10.1016/j.jaci.2008.09.041 |
SSID | ssj0017324 |
Score | 2.4454415 |
SecondaryResourceType | review_article |
Snippet | The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 186 |
SubjectTerms | airway remodeling Airway Remodeling - immunology Allergens Allergens - immunology Animals Asthma Asthma - drug therapy Asthma - immunology Asthma - physiopathology Bronchodilator Agents - therapeutic use Cell Adhesion Molecules - immunology Child Cytokines - immunology Drugs Environmental factors epithelial cell Epithelial cells Epithelial Cells - drug effects Epithelial Cells - immunology Epithelial Cells - metabolism Epithelium Epithelium - drug effects Epithelium - immunology Epithelium - metabolism host defense Humans Hypersensitivity - drug therapy Hypersensitivity - immunology Hypersensitivity - physiopathology Immune response Immunity, Innate Immunoregulation inflammation Inflammation - immunology innate immunity Intercellular Signaling Peptides and Proteins - immunology Mice Mice, Knockout Pathogens Picornaviridae Infections - immunology Picornaviridae Infections - virology Pollutants Respiratory System - drug effects Respiratory System - immunology Respiratory System - physiopathology Respiratory tract diseases Respiratory Tract Infections - immunology Respiratory Tract Infections - virology Reviews Rhinovirus - immunology Rhinovirus - physiology Signal Transduction - immunology Structure-function relationships |
Title | Epithelial cells and airway diseases |
URI | https://api.istex.fr/ark:/67375/WNG-D9WB7RGM-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01033.x https://www.ncbi.nlm.nih.gov/pubmed/21682746 https://www.proquest.com/docview/873122804 https://www.proquest.com/docview/883042202 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4hEFIv0AIF9yUfEDdHWa_34WNLgRQpHCJQclvtyxIKMlEeIvDru2M7FkGoQqg3Hzy2dx7eb3dnvgE4dowUnBifyJzkSaaZTbSQNHEk5Y75PIASLHDuX_HeTXY5YqMm_wlrYWp-iHbDDSOj-l9jgGszWw9yjlXRnI0aJk7SpbSDeBJTtxAfDVomKSJoWtN8d1kS1hh8Pann1QetzVRbqPTlazB0HdVW09L5LoxXA6qzUcadxdx07NMLrsf_M-KPsNOg1_hn7W6fYMOXe7Bd97N83IfjswmWeNwFn47xRGAW69LF-nb6oB_j5ihodgA352fXp72kacOQWKQ3S5wzlglfMNdNnfZh_VPY3DhvuPUss1mR51rKjEohLbXS2EIQJNmXzMoseAj9DJvlfemPIA7gkBvnmNaeZtIVOTY7oUIj0guWMRGIlcqVbTjKsVXGnXq2Vgk6UKgDhTpQlQ7UMgLSSk5qno43yJxUVm0F9HSMeW6CqeHVhfqdD3-JwUVfjSKIV2ZXIfpQgbr094uZkoISJBTK_nGLxB2jtJtGcFh7TPu-lHCZBhVEwCu7v_nL1Z_-AK--vFfwK3yoN8cx7_gbbM6nC_89oKu5-VHFzV_RIhHX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VRBW9lBb6MC2tD4ibo6zX-_CxDyC0JIcIRG6rfVmqiAzKQxB-fXdsxyIIIVT15oPH9s7DOzM78w3AvmOk4MT4ROYkTzLNbKKFpIkjKXfM58EpwQbnwZD3z7NfYzZuxgFhL0yND9Em3NAyqv81GjgmpNetnGNbNGfjBoqT9CjtBoeygwO-q_hq1GJJEUHTGui7x5IQZfD1sp5Hn7S2V3WQ7bePOaLrfm21MR1twWS1pLoe5bK7mJuuvXuA9vif1vwGXjcObPyt1ri38MKX2_CyHmm53IH9w2vs8pgEtY7xUGAW69LF-s_0Ri_j5jRo9g7Ojw7PfvSTZhJDYhHhLHHOWCZ8wVwvddqHEKiwuXHecOtZZrMiz7WUGZVCWmqlsYUgiLMvmZVZUBL6HjbKq9J_hDj4h9w4x7T2NJOuyHHeCRUanb0gGhOBWPFc2QamHKdlTNS9cCXwQCEPFPJAVTxQtxGQlvK6hup4Bs1BJdaWQE8vsdRNMHUxPFY_84vvYnQ8UOMI4pXcVTBAZKAu_dVipqSgBDGFsidukZg0SntpBB9qlWnflxIu08CCCHgl-Gd_uToZjPBq918Jv8Jm_2xwqk5Phr8_was6V45lyJ9hYz5d-L3gbM3Nl8qI_gID2xXy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFH5CrUBc2Bez-lBxc-TxrD4CadoCiVBE1dxGs1lCqdwoi2j59cyzHYugClWImw9-tuctnm9m3vsewIHnpBLEhkyVpMyY4S4zUtHMk0J4HsoISrDAeTwRx6fs04zPuvwnrIVp-SH6DTeMjOZ_jQG-8NVukAusihZ81jFxkpzSQcST-0zkCj18OO2ppIikRcvznfMsLjLEblbPtU_amar2UeuX1-HQXVjbzEuj-zDfjqhNR5kPNms7cD__IHv8P0N-APc6-Jq-b_3tIdwK9SO43Ta0vHoMB4cLrPE4j06d4pHAKjW1T8335Q9zlXZnQasncDo6_PbxOOv6MGQO-c0y763jMlTc54U3IS6AKldaH6xwgTPHqrI0SjGqpHLUKesqSZBlX3GnWHQR-hT26os6PIc0okNhvefGBMqUr0rsdkKlQagXLWMTkFuVa9eRlGOvjHP922Il6kCjDjTqQDc60JcJkF5y0RJ13EDmXWPVXsAs55joJrk-mxzpYXn2QU6PxnqWQLo1u47hhwo0dbjYrLSSlCCjEPvLLQq3jIq8SOBZ6zH9-woiVBFVkIBo7H7jL9cn4ylevfhXwbdw5-twpL-cTD6_hLvtRjnmIL-CvfVyE15HpLW2b5oQ-gWzchSq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial+cells+and+airway+diseases&rft.jtitle=Immunological+reviews&rft.au=Proud%2C+David&rft.au=Leigh%2C+Richard&rft.date=2011-07-01&rft.eissn=1600-065X&rft.volume=242&rft.issue=1&rft.spage=186&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01033.x&rft_id=info%3Apmid%2F21682746&rft.externalDocID=21682746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |