Characteristics of the VOR in Response to Linear Acceleration

: The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distanc...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 871; no. 1; pp. 123 - 135
Main Authors PAIGE, GARY D., SEIDMAN, SCOTT H.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.1999
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
DOI10.1111/j.1749-6632.1999.tb09179.x

Cover

Abstract : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.
AbstractList : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.
A bstract : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.
The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.
The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.
Author PAIGE, GARY D.
SEIDMAN, SCOTT H.
Author_xml – sequence: 1
  givenname: GARY D.
  surname: PAIGE
  fullname: PAIGE, GARY D.
  email: gary_paige@urmc.rochester.edu
  organization: Department of Neurobiology and Anatomy and the Center for Visual Science, University of Rochester, Rochester, New York 14642, USA
– sequence: 2
  givenname: SCOTT H.
  surname: SEIDMAN
  fullname: SEIDMAN, SCOTT H.
  organization: Department of Neurobiology and Anatomy and the Center for Visual Science, University of Rochester, Rochester, New York 14642, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10372066$$D View this record in MEDLINE/PubMed
BookMark eNqVkctOwzAQRS0Eghb4BRSxYJdgx4kdIyEoFRSk8lB5iZXluFPhkibFdkX5exJaEGIF3njhM9czZ9potaxKQGiX4IjUZ38cEZ6IkDEaR0QIEfkcC8JFNF9Bre-nVdTCmPMwEzHdQG3nxhiTOEv4OtogmPIYM9ZCh91nZZX2YI3zRrugGgX-GYKH60FgymAAblqVDgJfBX1TgrJBR2sowCpvqnILrY1U4WB7eW-i-7PTu-552L_uXXQ7_VCnOKGhSlTOQTGSpwqY0jEM81TXPXJNCRnyROtY51gLncY5ZyOcDHUKRFDFcZalim6ivUXu1FavM3BeToyr2yhUCdXMSSYySkRCa3BnCc7yCQzl1JqJsu_ya-AaOFgA2lbOWRj9QGRjV45lo1A2CmVjVy7tynldfPyrWBv_KcJbZYq_RRwtIt5MAe__-FxePXVuSdyMGC4S6oXB_DtB2RfJOOWpfLzqSS7S5IadXEpKPwBw5KSe
CitedBy_id crossref_primary_10_3233_VES_200705
crossref_primary_10_1007_s00221_004_1974_2
crossref_primary_10_1007_s00221_011_2568_4
crossref_primary_10_1007_s00221_015_4535_y
crossref_primary_10_1152_jn_00439_2017
crossref_primary_10_1523_JNEUROSCI_5900_10_2011
crossref_primary_10_1152_jn_00694_2006
crossref_primary_10_1007_s00221_010_2518_6
crossref_primary_10_1007_s00221_013_3635_9
crossref_primary_10_1152_jn_00904_2004
crossref_primary_10_3917_th_711_0062
crossref_primary_10_1097_01_wco_0000199021_48538_d9
crossref_primary_10_1111_j_1749_6632_2002_tb02830_x
crossref_primary_10_1007_s00221_006_0491_x
crossref_primary_10_1007_s00221_009_1805_6
crossref_primary_10_1152_jn_00892_2000
crossref_primary_10_1007_s10162_010_0210_y
crossref_primary_10_1523_JNEUROSCI_2232_08_2008
crossref_primary_10_1152_jn_01333_2006
crossref_primary_10_1196_annals_1325_030
crossref_primary_10_1016_j_neuron_2009_11_010
crossref_primary_10_1007_s00106_013_2738_8
crossref_primary_10_1016_j_actaastro_2005_01_031
crossref_primary_10_1007_s00221_004_1984_0
crossref_primary_10_1016_j_neures_2016_04_006
crossref_primary_10_1152_jn_00197_222
crossref_primary_10_1152_jn_00485_2019
crossref_primary_10_1007_s00221_004_2178_5
crossref_primary_10_3389_fneur_2024_1420699
crossref_primary_10_21790_rvs_2021_20_3_81
crossref_primary_10_1016_j_visres_2004_09_011
crossref_primary_10_1016_j_clinph_2008_03_009
crossref_primary_10_1088_1741_2560_2_3_S02
crossref_primary_10_1016_j_displa_2012_10_002
crossref_primary_10_3389_fneur_2017_00386
crossref_primary_10_1152_jn_00613_2005
crossref_primary_10_1002_ana_10370
crossref_primary_10_1016_S0168_0102_00_00179_6
crossref_primary_10_1007_s00422_009_0347_0
crossref_primary_10_1152_jn_00883_2018
crossref_primary_10_7554_eLife_28074
crossref_primary_10_1063_1_1938347
crossref_primary_10_1016_j_jns_2022_120407
crossref_primary_10_1016_j_visres_2003_10_009
crossref_primary_10_3389_fneur_2019_00063
Cites_doi 10.1016/S0957-4271(97)00001-3
10.1007/BF00228562
10.1007/BF00417361
10.1007/BF00229625
10.1111/j.1749-6632.1992.tb25212.x
10.1152/jn.1986.56.2.439
10.1111/j.1749-6632.1996.tb15712.x
10.1016/0042-6989(92)90249-I
10.1007/978-3-642-65920-1_14
10.1152/jn.1980.43.5.1406
10.1016/0957-4271(95)02039-X
10.1007/PL00005639
10.3109/00016488909139063
10.1016/0301-0082(93)90026-O
10.1152/jn.1983.49.1.152
10.1007/BF00242008
10.1007/s002210050706
10.1152/jn.1991.66.3.851
10.1007/BF00248228
10.1007/BF00228423
10.1152/jn.1996.75.6.2425
10.1016/0306-4522(95)00354-1
10.1007/BF00239580
10.1152/jn.1991.65.5.1183
10.1007/BF00228506
10.3109/00016489509125194
10.1007/978-3-642-65920-1_1
10.3109/00016487609119974
10.1007/BF00247576
10.1152/jn.1992.67.4.861
10.1111/j.1749-6632.1996.tb15707.x
10.1111/j.1749-6632.1996.tb15711.x
10.1152/jn.1996.75.6.2405
10.1152/jn.1996.76.5.3136
10.1152/jn.1976.39.5.996
10.1007/s002210050261
10.1007/BF02738407
10.1152/jn.1991.65.5.1170
10.1007/BF00231654
10.1152/jn.1997.78.4.1775
10.1152/jn.1992.68.6.2128
10.1007/s002210050346
10.1016/0893-6080(90)90070-2
10.3109/00016489109131402
10.1152/jn.1998.80.5.2391
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1749-6632.1999.tb09179.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 135
ExternalDocumentID 10372066
10_1111_j_1749_6632_1999_tb09179_x
NYAS123
ark_67375_WNG_7954P6BM_3
Genre article
Journal Article
Review
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AHDLI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c5043-a4ab7ea61b5ae6ac2edb5c6327c311d74cc2cb0c9c52b76f04dc5e193a70885a3
IEDL.DBID DR2
ISSN 0077-8923
IngestDate Fri Sep 05 02:50:31 EDT 2025
Wed Feb 19 02:32:39 EST 2025
Tue Jul 01 01:28:42 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Wed Jan 22 16:45:25 EST 2025
Wed Oct 30 09:47:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Non-programmatic
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-a4ab7ea61b5ae6ac2edb5c6327c311d74cc2cb0c9c52b76f04dc5e193a70885a3
Notes ArticleID:NYAS123
istex:393B22A415049CF81DC6E2B12318208929EA5B09
ark:/67375/WNG-7954P6BM-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 10372066
PQID 69831943
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_69831943
pubmed_primary_10372066
crossref_primary_10_1111_j_1749_6632_1999_tb09179_x
crossref_citationtrail_10_1111_j_1749_6632_1999_tb09179_x
wiley_primary_10_1111_j_1749_6632_1999_tb09179_x_NYAS123
istex_primary_ark_67375_WNG_7954P6BM_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-01-01
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – month: 01
  year: 1999
  text: 1999-01-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 1999
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Skipper, J. J. & G. R. Barnes. 1989. Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets. Acta Otolaryngol. 468(Suppl): 289-293.
Holly, J. E. & G. McCollum. 1996. The shape of self-motion perception I. Equivalence of classification for sustained motions. Neuroscience 70: 461-486.
McConville, K. M. V., R. D. Tomlinson & E. Q. Na. 1996. Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli.J. Neurophysiol. 76: 3136-3148.
Viirre, E., D. Tweed, K. Milner & T. Vilis. 1986. A reexamination of the gain of the vestibuloocular reflex.J. Neurophysiol. 56: 439-450.
Fernández, C. & J. M. Goldberg. 1976. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics.J. Neurophysiol. 39: 996-1008.
Barr, C. C., L. W. Schultheis & D. A. Robinson. 1976. Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol. (Stockh.) 81: 365-375.
Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.J. Neurophysiol. 65: 1170-1182.
Schöne, H. & H. G. Mortag. 1968. Variation of the subjective vertical on the parallel swing at different body positions.Psychol. Forsch. 32: 124-134.
Busettini, C., F. A. Miles, U. Schwarz & J. R. Carl. 1994. Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance.Exp. Brain Res. 100: 484-494.
Telford, L., S. H. Seidman & G. D. Paige. 1996. Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.Exp. Brain Res. 109: 407-418.
Rude, S. A. & J. F. Baker. 1988. Dynamic otolith stimulation improves the low frequency horizontal vestibulo-ocular reflex.Exp. Brain Res. 73: 357-363.
Barnes, G. R. 1993. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.Progr. Neurobiol. 41: 435-472.
Borel, L. & M. Lacour. 1992. Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.Exp. Brain Res. 91: 191-206.
Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.J. Neurophysiol. 65: 1183-1196.
Raphan, T., S. Wearne & B. Cohen. 1996. Modeling the organization of the linear and angular vestibulo-ocular reflexes.Ann. N.Y. Acad. Sci. 781: 348-363.
Merfeld, D. M., W. Teiwes, A. H. Clarke, H. Scherer & L. R. Young. 1996. The dynamic contributions of the otolith organs to human ocular torsion.Exp. Brain Res. 110: 315-321.
Demer, J. L. 1992. Mechanisms of human vertical visual-vestibular interaction.J. Neurophysiol. 68: 2128-2146.
Tomko, D. L., C. Wall III, F. R. Robinson & J. P. Staab. 1988. Influence of gravity on cat vertical vestibulo-ocular reflex.Exp. Brain Res. 69: 307-314.
Shelhamer, M., D. M. Merfeld & J. C. Mendoza. 1995. Effect of vergence on the gain of the linear vestibulo-ocular reflex. Acta Otolaryngol. 520(Suppl): 72-76.
Paige, G. D. 1994. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging.Exp. Brain Res. 98: 355-372.
Schwarz, U. & F. A. Miles. 1991. Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.J. Neurophysiol. 66: 851-863.
Seidman, S. H., L. Telford & G. D. Paige. 1998. Tilt perception during dynamic linear acceleration.Exp. Brain Res. 119: 307-314.
Telford, L., S. H. Seidman & G. D. Paige. 1997. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance.J. Neurophysiol. 78: 1775-1790.
Miles, F. A. & B. B. Eighmy. 1980. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.J. Neurophysiol. 43: 1406-1425.
McCrea, R. A., C. Chen-Huang, T. Belton & G. T. Gdowski. 1996. Behavior contingent processing of vestibular sensory signals in the vestibular nuclei.Ann. N.Y. Acad. Sci. 781: 292-303.
Tomko, D. L. & G. D. Paige. 1992. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural.Ann. N.Y. Acad. Sci. 656: 233-241.
Telford, L., S. H. Seidman & G. D. Paige. 1998. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance.Exp. Brain Res. 118: 115-125.
Paige, G. D. 1991. Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. Acta Otolaryngol. 481(Suppl): 282-286.
Snyder, L. H. & W. M. King. 1992. The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo-ocular reflex: I. Eye movement responses.J. Neurophysiol. 67: 861-874.
Paige, G. D., P. Boulos & S. H. Seidman. 1995. Eye movement responses to low frequency tilt and translation in the squirrel monkey.Soc. Neurosci. Abstr. 21: 138.
Seidman, S. H., L. Telford & G. D. Paige. 1995. Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey.Exp. Brain Res. 104: 218-226.
Bello, S., G. D. Paige & S. M. Highstein. 1991. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll.Exp. Brain Res. 87: 57-66.
Paige, G. D., L. Telford, S.H. Seidman & G.R. Barnes. 1998. Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement.J. Neurophysiol. 80: 2391-2404.
Fanelli, R., T. Raphan & C. Schnabolk. 1990. Neural network modelling of eye compensation during off-vertical-axis rotation. Neural Networks 3: 265-276.
Merfeld, D. M. & L. R. Young. 1995. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.Exp. Brain Res. 106: 111-122.
Paige, G. D., L. Telford, S. H. Seidman & P. Boulos. 1996. The linear vestibulo-ocular reflex (LVOR) following labyrinthectomy.Neurosci. Abst. 22: 661.
Crane, B. T., E. S. Viirre & J. L. Demer. 1997. The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration.Exp. Brain Res. 114: 304-320.
Angelaki, D. E. & B. J. Hess. 1996. Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys.Ann. N.Y. Acad. Sci. 781: 332-347.
Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off-vertical axis rotation.J. Neurophysiol. 75: 2405-2424.
Lichtenberg, B. K., L. R. Young & A. P. Arrott. 1982. Human ocular counterrolling induced by varying linear accelerations.Exp. Brain Res. 48: 127-136.
Snyder, L. H., D. M. Lawrence & W. M. King. 1992. Changes in vestibulo-ocular reflex (VOR) response anticipate changes in vergence angle.Vision Res. 32: 569-575.
Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.J. Neurophysiol. 75: 2425-2440.
Chen-Huang, C. & R. A. McCrea. 1998. Viewing distance related sensory processing in the ascending tract of deiters vestibulo-ocular reflex pathway.J. Vest. Res. 8: 175-184.
Tomlinson, R. D., K. M. V. McConville & E.-Q. Na. 1996. Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli.J. Vest. Res. 6: 145-158.
Paige, G. D. 1983. Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.J. Neurophysiol. 49: 152-168.
1997; 114
1996; 109
1986; 56
1976; 81
1993; 41
1980; 43
1998; 119
1998; 118
1996; 781
1998; 80
1988; 73
1996; 70
1992; 32
1996; 76
1996; 75
1990; 3
1992; 91
1994; 100
1982; 48
1991; 481
1989; 468
1991; 87
1991; 65
1991; 66
1988; 69
1995; 21
1997; 78
1995; 106
1992; 656
1995; 104
1992; 68
1996; 110
1995; 520
1976; 39
1983; 49
1992; 67
1968; 32
1994; 98
1996; 6
1998; 8
1996; 22
e_1_2_5_48_2
e_1_2_5_25_2
e_1_2_5_46_2
e_1_2_5_44_2
e_1_2_5_21_2
Demer J. L. (e_1_2_5_12_2) 1992; 68
Angelaki D. E. (e_1_2_5_3_2) 1996; 75
e_1_2_5_40_2
Angelaki D. E. (e_1_2_5_4_2) 1996; 75
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_15_2
e_1_2_5_7_2
Paige G. D. (e_1_2_5_27_2) 1995; 21
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_17_2
Viirre E. (e_1_2_5_50_2) 1986; 56
e_1_2_5_26_2
e_1_2_5_49_2
e_1_2_5_47_2
e_1_2_5_45_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_28_2
McConville K. M. V. (e_1_2_5_19_2) 1996; 76
e_1_2_5_41_2
Paige G. D. (e_1_2_5_29_2) 1996; 22
Merfeld D. M. (e_1_2_5_22_2) 1995; 106
e_1_2_5_14_2
Paige G. D. (e_1_2_5_24_2) 1983; 49
e_1_2_5_37_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_8_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
Paige G. D. (e_1_2_5_30_2) 1991; 65
Snyder L. H. (e_1_2_5_42_2) 1992; 67
e_1_2_5_2_2
Paige G. D. (e_1_2_5_31_2) 1991; 65
e_1_2_5_18_2
e_1_2_5_39_2
Schwarz U. (e_1_2_5_36_2) 1991; 66
Miles F. A. (e_1_2_5_23_2) 1980; 43
References_xml – reference: Barr, C. C., L. W. Schultheis & D. A. Robinson. 1976. Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol. (Stockh.) 81: 365-375.
– reference: Fernández, C. & J. M. Goldberg. 1976. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics.J. Neurophysiol. 39: 996-1008.
– reference: Paige, G. D. 1991. Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. Acta Otolaryngol. 481(Suppl): 282-286.
– reference: Skipper, J. J. & G. R. Barnes. 1989. Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets. Acta Otolaryngol. 468(Suppl): 289-293.
– reference: Tomlinson, R. D., K. M. V. McConville & E.-Q. Na. 1996. Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli.J. Vest. Res. 6: 145-158.
– reference: Busettini, C., F. A. Miles, U. Schwarz & J. R. Carl. 1994. Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance.Exp. Brain Res. 100: 484-494.
– reference: Seidman, S. H., L. Telford & G. D. Paige. 1998. Tilt perception during dynamic linear acceleration.Exp. Brain Res. 119: 307-314.
– reference: Snyder, L. H., D. M. Lawrence & W. M. King. 1992. Changes in vestibulo-ocular reflex (VOR) response anticipate changes in vergence angle.Vision Res. 32: 569-575.
– reference: Chen-Huang, C. & R. A. McCrea. 1998. Viewing distance related sensory processing in the ascending tract of deiters vestibulo-ocular reflex pathway.J. Vest. Res. 8: 175-184.
– reference: Telford, L., S. H. Seidman & G. D. Paige. 1996. Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.Exp. Brain Res. 109: 407-418.
– reference: Shelhamer, M., D. M. Merfeld & J. C. Mendoza. 1995. Effect of vergence on the gain of the linear vestibulo-ocular reflex. Acta Otolaryngol. 520(Suppl): 72-76.
– reference: Snyder, L. H. & W. M. King. 1992. The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo-ocular reflex: I. Eye movement responses.J. Neurophysiol. 67: 861-874.
– reference: McCrea, R. A., C. Chen-Huang, T. Belton & G. T. Gdowski. 1996. Behavior contingent processing of vestibular sensory signals in the vestibular nuclei.Ann. N.Y. Acad. Sci. 781: 292-303.
– reference: Crane, B. T., E. S. Viirre & J. L. Demer. 1997. The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration.Exp. Brain Res. 114: 304-320.
– reference: Lichtenberg, B. K., L. R. Young & A. P. Arrott. 1982. Human ocular counterrolling induced by varying linear accelerations.Exp. Brain Res. 48: 127-136.
– reference: Tomko, D. L. & G. D. Paige. 1992. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural.Ann. N.Y. Acad. Sci. 656: 233-241.
– reference: Paige, G. D., L. Telford, S. H. Seidman & P. Boulos. 1996. The linear vestibulo-ocular reflex (LVOR) following labyrinthectomy.Neurosci. Abst. 22: 661.
– reference: Angelaki, D. E. & B. J. Hess. 1996. Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys.Ann. N.Y. Acad. Sci. 781: 332-347.
– reference: Rude, S. A. & J. F. Baker. 1988. Dynamic otolith stimulation improves the low frequency horizontal vestibulo-ocular reflex.Exp. Brain Res. 73: 357-363.
– reference: Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off-vertical axis rotation.J. Neurophysiol. 75: 2405-2424.
– reference: Paige, G. D., L. Telford, S.H. Seidman & G.R. Barnes. 1998. Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement.J. Neurophysiol. 80: 2391-2404.
– reference: Tomko, D. L., C. Wall III, F. R. Robinson & J. P. Staab. 1988. Influence of gravity on cat vertical vestibulo-ocular reflex.Exp. Brain Res. 69: 307-314.
– reference: Barnes, G. R. 1993. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.Progr. Neurobiol. 41: 435-472.
– reference: Fanelli, R., T. Raphan & C. Schnabolk. 1990. Neural network modelling of eye compensation during off-vertical-axis rotation. Neural Networks 3: 265-276.
– reference: Schöne, H. & H. G. Mortag. 1968. Variation of the subjective vertical on the parallel swing at different body positions.Psychol. Forsch. 32: 124-134.
– reference: Telford, L., S. H. Seidman & G. D. Paige. 1998. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance.Exp. Brain Res. 118: 115-125.
– reference: Merfeld, D. M., W. Teiwes, A. H. Clarke, H. Scherer & L. R. Young. 1996. The dynamic contributions of the otolith organs to human ocular torsion.Exp. Brain Res. 110: 315-321.
– reference: Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.J. Neurophysiol. 65: 1170-1182.
– reference: Merfeld, D. M. & L. R. Young. 1995. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.Exp. Brain Res. 106: 111-122.
– reference: Raphan, T., S. Wearne & B. Cohen. 1996. Modeling the organization of the linear and angular vestibulo-ocular reflexes.Ann. N.Y. Acad. Sci. 781: 348-363.
– reference: Schwarz, U. & F. A. Miles. 1991. Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.J. Neurophysiol. 66: 851-863.
– reference: Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.J. Neurophysiol. 75: 2425-2440.
– reference: Paige, G. D. 1994. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging.Exp. Brain Res. 98: 355-372.
– reference: Bello, S., G. D. Paige & S. M. Highstein. 1991. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll.Exp. Brain Res. 87: 57-66.
– reference: Seidman, S. H., L. Telford & G. D. Paige. 1995. Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey.Exp. Brain Res. 104: 218-226.
– reference: Holly, J. E. & G. McCollum. 1996. The shape of self-motion perception I. Equivalence of classification for sustained motions. Neuroscience 70: 461-486.
– reference: Borel, L. & M. Lacour. 1992. Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.Exp. Brain Res. 91: 191-206.
– reference: Paige, G. D., P. Boulos & S. H. Seidman. 1995. Eye movement responses to low frequency tilt and translation in the squirrel monkey.Soc. Neurosci. Abstr. 21: 138.
– reference: Viirre, E., D. Tweed, K. Milner & T. Vilis. 1986. A reexamination of the gain of the vestibuloocular reflex.J. Neurophysiol. 56: 439-450.
– reference: Paige, G. D. 1983. Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.J. Neurophysiol. 49: 152-168.
– reference: Demer, J. L. 1992. Mechanisms of human vertical visual-vestibular interaction.J. Neurophysiol. 68: 2128-2146.
– reference: Telford, L., S. H. Seidman & G. D. Paige. 1997. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance.J. Neurophysiol. 78: 1775-1790.
– reference: Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.J. Neurophysiol. 65: 1183-1196.
– reference: McConville, K. M. V., R. D. Tomlinson & E. Q. Na. 1996. Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli.J. Neurophysiol. 76: 3136-3148.
– reference: Miles, F. A. & B. B. Eighmy. 1980. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.J. Neurophysiol. 43: 1406-1425.
– volume: 32
  start-page: 569
  year: 1992
  end-page: 575
  article-title: Changes in vestibulo‐ocular reflex (VOR) response anticipate changes in vergence angle.
  publication-title: Vision Res.
– volume: 781
  start-page: 348
  year: 1996
  end-page: 363
  article-title: Modeling the organization of the linear and angular vestibulo‐ocular reflexes.
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 98
  start-page: 355
  year: 1994
  end-page: 372
  article-title: Senescence of human visual‐vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging.
  publication-title: Exp. Brain Res.
– volume: 781
  start-page: 292
  year: 1996
  end-page: 303
  article-title: Behavior contingent processing of vestibular sensory signals in the vestibular nuclei.
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 87
  start-page: 57
  year: 1991
  end-page: 66
  article-title: The squirrel monkey vestibulo‐ocular reflex and adaptive plasticity in yaw, pitch, and roll.
  publication-title: Exp. Brain Res.
– volume: 119
  start-page: 307
  year: 1998
  end-page: 314
  article-title: Tilt perception during dynamic linear acceleration.
  publication-title: Exp. Brain Res.
– volume: 781
  start-page: 332
  year: 1996
  end-page: 347
  article-title: Organizational principles of otolith‐ and semicircular canal‐ocular reflexes in rhesus monkeys.
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 75
  start-page: 2405
  year: 1996
  end-page: 2424
  article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off‐vertical axis rotation.
  publication-title: J. Neurophysiol.
– volume: 91
  start-page: 191
  year: 1992
  end-page: 206
  article-title: Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.
  publication-title: Exp. Brain Res.
– volume: 114
  start-page: 304
  year: 1997
  end-page: 320
  article-title: The human horizontal vestibulo‐ocular reflex during combined linear and angular acceleration.
  publication-title: Exp. Brain Res.
– volume: 49
  start-page: 152
  year: 1983
  end-page: 168
  article-title: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.
  publication-title: J. Neurophysiol.
– volume: 8
  start-page: 175
  year: 1998
  end-page: 184
  article-title: Viewing distance related sensory processing in the ascending tract of deiters vestibulo‐ocular reflex pathway.
  publication-title: J. Vest. Res.
– volume: 100
  start-page: 484
  year: 1994
  end-page: 494
  article-title: Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance.
  publication-title: Exp. Brain Res.
– volume: 68
  start-page: 2128
  year: 1992
  end-page: 2146
  article-title: Mechanisms of human vertical visual‐vestibular interaction.
  publication-title: J. Neurophysiol.
– volume: 69
  start-page: 307
  year: 1988
  end-page: 314
  article-title: Influence of gravity on cat vertical vestibulo‐ocular reflex.
  publication-title: Exp. Brain Res.
– volume: 56
  start-page: 439
  year: 1986
  end-page: 450
  article-title: A reexamination of the gain of the vestibuloocular reflex.
  publication-title: J. Neurophysiol.
– volume: 481
  start-page: 282
  issue: Suppl
  year: 1991
  end-page: 286
  article-title: Linear vestibulo‐ocular reflex (LVOR) and modulation by vergence
  publication-title: Acta Otolaryngol.
– volume: 3
  start-page: 265
  year: 1990
  end-page: 276
  article-title: Neural network modelling of eye compensation during off‐vertical‐axis rotation
  publication-title: Neural Networks
– volume: 468
  start-page: 289
  issue: Suppl
  year: 1989
  end-page: 293
  article-title: Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets
  publication-title: Acta Otolaryngol.
– volume: 656
  start-page: 233
  year: 1992
  end-page: 241
  article-title: Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural.
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 39
  start-page: 996
  year: 1976
  end-page: 1008
  article-title: Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics.
  publication-title: J. Neurophysiol.
– volume: 104
  start-page: 218
  year: 1995
  end-page: 226
  article-title: Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey.
  publication-title: Exp. Brain Res.
– volume: 73
  start-page: 357
  year: 1988
  end-page: 363
  article-title: Dynamic otolith stimulation improves the low frequency horizontal vestibulo‐ocular reflex.
  publication-title: Exp. Brain Res.
– volume: 70
  start-page: 461
  year: 1996
  end-page: 486
  article-title: The shape of self‐motion perception I. Equivalence of classification for sustained motions
  publication-title: Neuroscience
– volume: 21
  start-page: 138
  year: 1995
  article-title: Eye movement responses to low frequency tilt and translation in the squirrel monkey.
  publication-title: Soc. Neurosci. Abstr.
– volume: 80
  start-page: 2391
  year: 1998
  end-page: 2404
  article-title: Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement.
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: 145
  year: 1996
  end-page: 158
  article-title: Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli.
  publication-title: J. Vest. Res.
– volume: 43
  start-page: 1406
  year: 1980
  end-page: 1425
  article-title: Long‐term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.
  publication-title: J. Neurophysiol.
– volume: 65
  start-page: 1183
  year: 1991
  end-page: 1196
  article-title: Eye movement responses to linear head motion in the squirrel monkey. II. Visual‐vestibular interactions and kinematic considerations.
  publication-title: J. Neurophysiol.
– volume: 67
  start-page: 861
  year: 1992
  end-page: 874
  article-title: The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo‐ocular reflex: I. Eye movement responses.
  publication-title: J. Neurophysiol.
– volume: 118
  start-page: 115
  year: 1998
  end-page: 125
  article-title: Canal‐otolith interactions in the squirrel monkey vestibulo‐ocular reflex and the influence of fixation distance.
  publication-title: Exp. Brain Res.
– volume: 41
  start-page: 435
  year: 1993
  end-page: 472
  article-title: Visual‐vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.
  publication-title: Progr. Neurobiol.
– volume: 76
  start-page: 3136
  year: 1996
  end-page: 3148
  article-title: Behavior of eye‐movement‐related cells in the vestibular nuclei during combined rotational and translational stimuli.
  publication-title: J. Neurophysiol.
– volume: 75
  start-page: 2425
  year: 1996
  end-page: 2440
  article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.
  publication-title: J. Neurophysiol.
– volume: 48
  start-page: 127
  year: 1982
  end-page: 136
  article-title: Human ocular counterrolling induced by varying linear accelerations.
  publication-title: Exp. Brain Res.
– volume: 110
  start-page: 315
  year: 1996
  end-page: 321
  article-title: The dynamic contributions of the otolith organs to human ocular torsion.
  publication-title: Exp. Brain Res.
– volume: 22
  start-page: 661
  year: 1996
  article-title: The linear vestibulo‐ocular reflex (LVOR) following labyrinthectomy.
  publication-title: Neurosci. Abst.
– volume: 81
  start-page: 365
  year: 1976
  end-page: 375
  article-title: Voluntary, non‐visual control of the human vestibulo‐ocular reflex
  publication-title: Acta Otolaryngol. (Stockh.)
– volume: 106
  start-page: 111
  year: 1995
  end-page: 122
  article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.
  publication-title: Exp. Brain Res.
– volume: 65
  start-page: 1170
  year: 1991
  end-page: 1182
  article-title: Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.
  publication-title: J. Neurophysiol.
– volume: 109
  start-page: 407
  year: 1996
  end-page: 418
  article-title: Canal‐otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.
  publication-title: Exp. Brain Res.
– volume: 32
  start-page: 124
  year: 1968
  end-page: 134
  article-title: Variation of the subjective vertical on the parallel swing at different body positions.
  publication-title: Psychol. Forsch.
– volume: 66
  start-page: 851
  year: 1991
  end-page: 863
  article-title: Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.
  publication-title: J. Neurophysiol.
– volume: 520
  start-page: 72
  issue: Suppl
  year: 1995
  end-page: 76
  article-title: Effect of vergence on the gain of the linear vestibulo‐ocular reflex
  publication-title: Acta Otolaryngol.
– volume: 78
  start-page: 1775
  year: 1997
  end-page: 1790
  article-title: Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance.
  publication-title: J. Neurophysiol.
– ident: e_1_2_5_10_2
  doi: 10.1016/S0957-4271(97)00001-3
– volume: 106
  start-page: 111
  year: 1995
  ident: e_1_2_5_22_2
  article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.
  publication-title: Exp. Brain Res.
– ident: e_1_2_5_21_2
  doi: 10.1007/BF00228562
– ident: e_1_2_5_35_2
  doi: 10.1007/BF00417361
– ident: e_1_2_5_44_2
  doi: 10.1007/BF00229625
– ident: e_1_2_5_47_2
  doi: 10.1111/j.1749-6632.1992.tb25212.x
– volume: 56
  start-page: 439
  year: 1986
  ident: e_1_2_5_50_2
  article-title: A reexamination of the gain of the vestibuloocular reflex.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1986.56.2.439
– ident: e_1_2_5_33_2
  doi: 10.1111/j.1749-6632.1996.tb15712.x
– ident: e_1_2_5_43_2
  doi: 10.1016/0042-6989(92)90249-I
– ident: e_1_2_5_18_2
  doi: 10.1007/978-3-642-65920-1_14
– volume: 43
  start-page: 1406
  year: 1980
  ident: e_1_2_5_23_2
  article-title: Long‐term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1980.43.5.1406
– ident: e_1_2_5_49_2
  doi: 10.1016/0957-4271(95)02039-X
– ident: e_1_2_5_32_2
– ident: e_1_2_5_11_2
  doi: 10.1007/PL00005639
– ident: e_1_2_5_41_2
  doi: 10.3109/00016488909139063
– ident: e_1_2_5_5_2
  doi: 10.1016/0301-0082(93)90026-O
– volume: 49
  start-page: 152
  year: 1983
  ident: e_1_2_5_24_2
  article-title: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1983.49.1.152
– ident: e_1_2_5_38_2
  doi: 10.1007/BF00242008
– ident: e_1_2_5_37_2
  doi: 10.1007/s002210050706
– volume: 66
  start-page: 851
  year: 1991
  ident: e_1_2_5_36_2
  article-title: Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1991.66.3.851
– ident: e_1_2_5_34_2
  doi: 10.1007/BF00248228
– ident: e_1_2_5_26_2
  doi: 10.1007/BF00228423
– volume: 75
  start-page: 2425
  year: 1996
  ident: e_1_2_5_4_2
  article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.75.6.2425
– ident: e_1_2_5_16_2
  doi: 10.1016/0306-4522(95)00354-1
– ident: e_1_2_5_17_2
  doi: 10.1007/BF00239580
– volume: 65
  start-page: 1183
  year: 1991
  ident: e_1_2_5_31_2
  article-title: Eye movement responses to linear head motion in the squirrel monkey. II. Visual‐vestibular interactions and kinematic considerations.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1991.65.5.1183
– ident: e_1_2_5_7_2
  doi: 10.1007/BF00228506
– ident: e_1_2_5_40_2
  doi: 10.3109/00016489509125194
– ident: e_1_2_5_15_2
  doi: 10.1007/978-3-642-65920-1_1
– ident: e_1_2_5_6_2
  doi: 10.3109/00016487609119974
– ident: e_1_2_5_48_2
  doi: 10.1007/BF00247576
– volume: 67
  start-page: 861
  year: 1992
  ident: e_1_2_5_42_2
  article-title: The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo‐ocular reflex: I. Eye movement responses.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.67.4.861
– volume: 21
  start-page: 138
  year: 1995
  ident: e_1_2_5_27_2
  article-title: Eye movement responses to low frequency tilt and translation in the squirrel monkey.
  publication-title: Soc. Neurosci. Abstr.
– ident: e_1_2_5_20_2
  doi: 10.1111/j.1749-6632.1996.tb15707.x
– ident: e_1_2_5_2_2
  doi: 10.1111/j.1749-6632.1996.tb15711.x
– volume: 75
  start-page: 2405
  year: 1996
  ident: e_1_2_5_3_2
  article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off‐vertical axis rotation.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.75.6.2405
– volume: 22
  start-page: 661
  year: 1996
  ident: e_1_2_5_29_2
  article-title: The linear vestibulo‐ocular reflex (LVOR) following labyrinthectomy.
  publication-title: Neurosci. Abst.
– volume: 76
  start-page: 3136
  year: 1996
  ident: e_1_2_5_19_2
  article-title: Behavior of eye‐movement‐related cells in the vestibular nuclei during combined rotational and translational stimuli.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.5.3136
– ident: e_1_2_5_14_2
  doi: 10.1152/jn.1976.39.5.996
– ident: e_1_2_5_46_2
  doi: 10.1007/s002210050261
– ident: e_1_2_5_9_2
  doi: 10.1007/BF02738407
– volume: 65
  start-page: 1170
  year: 1991
  ident: e_1_2_5_30_2
  article-title: Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1991.65.5.1170
– ident: e_1_2_5_8_2
  doi: 10.1007/BF00231654
– ident: e_1_2_5_45_2
  doi: 10.1152/jn.1997.78.4.1775
– volume: 68
  start-page: 2128
  year: 1992
  ident: e_1_2_5_12_2
  article-title: Mechanisms of human vertical visual‐vestibular interaction.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.68.6.2128
– ident: e_1_2_5_39_2
  doi: 10.1007/s002210050346
– ident: e_1_2_5_13_2
  doi: 10.1016/0893-6080(90)90070-2
– ident: e_1_2_5_25_2
  doi: 10.3109/00016489109131402
– ident: e_1_2_5_28_2
  doi: 10.1152/jn.1998.80.5.2391
SSID ssj0012847
Score 1.8307376
SecondaryResourceType review_article
Snippet : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help...
A bstract : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA)...
The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123
SubjectTerms Acceleration
Animals
Models, Biological
Posture - physiology
Reflex, Vestibulo-Ocular - physiology
Vestibule, Labyrinth - physiology
Vision, Ocular - physiology
Title Characteristics of the VOR in Response to Linear Acceleration
URI https://api.istex.fr/ark:/67375/WNG-7954P6BM-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.1999.tb09179.x
https://www.ncbi.nlm.nih.gov/pubmed/10372066
https://www.proquest.com/docview/69831943
Volume 871
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hokpcgJZHw6PdA0JwcBTH-8geA30JqQEFCuW02p2sJVRwUJNIhV_PjNexkqqHgrh77PV4Ht-sZ74FeGELXQYzsFmpbcxkgUXmY45UpdiBlIiUVXga-WSkj0_luzN11oxH8yxM4odoN9zYM-p4zQ7uw2zdyY20GWXMPo_cWd7jpNrDdhlR5oVmIv39ccslVcfhOiwbCssEaxoG0rat59pbrWWr26z4y-ug6DqyrVPT4T34sXyp1JFy3l3MQxd_X-F7_F9vfR_uNhhWDJPRbcGtWG3DZjrV8tc2bDXxYiZeNaTWrx8A9w-sMkOLaSkIe4rP78fiWyXGqVU3ivlUUHlM7ieGiJQSk4E-hNPDg09vj7Pm6IYMmRIt89IHE73Og_JRe-zHSVBIizZY5PnEsBVg6KFF1Q9Glz05QRUJTHpDYU_54hFsVNMq7oCQqEIkHFlScJLWBKrmsRdyP8mt75VRdsAuP5HDhtecj9f47lbqG9KZY5051plrdOYuO1C0sj8Tu8eNpF7WltCK-Itz7o8zyn0ZHTljlfyg35y4ogN7S1Nx5LX8K8ZXcbqYOW0HFPskXfE4WdDK4_ncIK07MKjt4C_W5UZfhx8JiTz5d9GncCfxUvAe0zPYmF8s4nNCXfOwW3vTH9ZZG58
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NmxC8MDa-OgbzA0LwkKppHLt-7IBRYC2obLA9WfbVkdCmdNpaafDXcxenUYv2AIj3XGKf7-N3zvlngOcmU4XXPZMUyoREZpglLqRIVYrpSYlIWYVPIw9HanAsP5zkJ2swXJyFifwQzYYbe0YVr9nBeUN61cu1NAmlzC6fuTO8yUnFh2kTpNyQhDy4FnszbtikqkhcBWZNgZmATc1B2jT23PiulXy1waq_vgmMrmLbKjkdbEK5mFbsSTlrz2e-jT9_Y3z8b_O-B3drGCv60e62YC2U23ArXmz5Yxu26pBxJV7WvNav7gO3ECyTQ4tpIQh-iq-fxuJ7KcaxWzeI2VRQhUweKPqIlBWjjT6A44O3R68HSX17Q4LMipY46bwOTqU-d0E57IaJz5EGrTFL04lmQ0DfQYN512tVdOQE80B40mmKfLnLHsJ6OS3DYxAScx9oQQuKT9JoTwU9dnzqJqlxnSLIFpjFGlmsqc35ho1zu1TikM4s68yyzmytM3vdgqyRvYgEH38k9aIyhUbEXZ5xi5zO7bfRO6tNLj-r_aHNWrC3sBVLjst_Y1wZpvMrq0yPwp-kJx5FE1r6PF8dpFQLepUh_MW47Oi0_4XAyM6_i-7B7cHR8NAevh99fAJ3Ik0Fbzntwvrsch6eEgib-WeVa_0CqDQfvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTSBegA3YCoP5ASF4SNU0jl0_dkAZHytTYbA9WfbFkdAgnbZWGvz13MVp1KI9AOI9lziX-_idc_czwBOTqdLrgUlKZUIiM8wSF1KkKsUMpESkrMLTyAdjtX8k3x7nx814NM_CRH6IdsONPaOO1-zgZ0W56uRamoQyZp9H7gzvcVLtYbqEKNelImjBEGnSkknVgbiOy5riMuGahoK07eu58l4r6WqdNX95FRZdhbZ1bhrdhu-Lt4otKafd-cx38edvhI__67XvwK0GxIphtLoNuBaqTbgej7X8sQkbTcC4EM8aVuvnd4EbCJapocW0FAQ-xecPE_G1EpPYqxvEbCqoPib_E0NEyonRQu_B0ejVpxf7SXN2Q4LMiZY46bwOTqU-d0E57IfC50iL1pilaaHZDND30GDe91qVPVlgHghNOk1xL3fZfVirplXYBiEx94GAZEnRSRrtqZzHnk9dkRrXK4PsgFl8IosNsTmfr_HNLhU4pDPLOrOsM9vozF52IGtlzyK9xx9JPa0toRVx56fcIKdz-2X82mqTy0O1d2CzDuwuTMWS2_K_GFeF6fzCKjOg4Cfpiq1oQUuP54ODlOrAoLaDv1iXHZ8MPxIUefDvortw4_DlyL5_M373EG5Gjgreb9qBtdn5PDwiBDbzj2vH-gUZiB5t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+the+VOR+in+Response+to+Linear+Acceleration&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=PAIGE%2C+GARY+D.&rft.au=SEIDMAN%2C+SCOTT+H.&rft.date=1999-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=871&rft.issue=1&rft.spage=123&rft.epage=135&rft_id=info:doi/10.1111%2Fj.1749-6632.1999.tb09179.x&rft.externalDBID=10.1111%252Fj.1749-6632.1999.tb09179.x&rft.externalDocID=NYAS123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon