Characteristics of the VOR in Response to Linear Acceleration
: The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distanc...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 871; no. 1; pp. 123 - 135 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.1999
|
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 |
DOI | 10.1111/j.1749-6632.1999.tb09179.x |
Cover
Abstract | : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR. |
---|---|
AbstractList | : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR. A bstract : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high‐pass dynamics (>1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity‐that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll‐tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA‐horizontal response, IA torsion behaves with low‐pass dynamics (with respect to “tilt”), and is uninfluenced by fixation distance. Interestingly, roll‐tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high‐pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR. The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR.The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR. The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help maintain binocular fixation on targets, and therefore a stable bifoveal image. The translational LVOR is strongly modulated by fixation distance, and operates with high-pass dynamics (> 1 Hz). Second, other LVOR responses occur that cannot be compensatory for translation and instead seem compensatory for head tilt. This reflects an otolith response ambiguity--that is, an inability to distinguish head translation from head tilt relative to gravity. Thus, ocular torsion is appropriately compensatory for head roll-tilt, but also occurs during IA translation, since both stimuli entail IA acceleration. Unlike the IA-horizontal response, IA torsion behaves with low-pass dynamics (with respect to "tilt"), and is uninfluenced by fixation distance. Interestingly, roll-tilt, like IA translation, also produces both horizontal (a translational reflex) and torsional (a tilt reflex) responses, further emphasizing the ambiguity problem. Early data from subjects following unilateral labyrinthectomy, which demonstrates a general immediate decline in translational LVOR responses, are also presented, followed by only modest recovery over several months. Interestingly, the usual high-pass dynamics of these reflexes shift to an even higher cutoff. Both eyes respond roughly equally, suggesting that unilateral otolith input generates a binocularly symmetric LVOR. |
Author | PAIGE, GARY D. SEIDMAN, SCOTT H. |
Author_xml | – sequence: 1 givenname: GARY D. surname: PAIGE fullname: PAIGE, GARY D. email: gary_paige@urmc.rochester.edu organization: Department of Neurobiology and Anatomy and the Center for Visual Science, University of Rochester, Rochester, New York 14642, USA – sequence: 2 givenname: SCOTT H. surname: SEIDMAN fullname: SEIDMAN, SCOTT H. organization: Department of Neurobiology and Anatomy and the Center for Visual Science, University of Rochester, Rochester, New York 14642, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10372066$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkctOwzAQRS0Eghb4BRSxYJdgx4kdIyEoFRSk8lB5iZXluFPhkibFdkX5exJaEGIF3njhM9czZ9potaxKQGiX4IjUZ38cEZ6IkDEaR0QIEfkcC8JFNF9Bre-nVdTCmPMwEzHdQG3nxhiTOEv4OtogmPIYM9ZCh91nZZX2YI3zRrugGgX-GYKH60FgymAAblqVDgJfBX1TgrJBR2sowCpvqnILrY1U4WB7eW-i-7PTu-552L_uXXQ7_VCnOKGhSlTOQTGSpwqY0jEM81TXPXJNCRnyROtY51gLncY5ZyOcDHUKRFDFcZalim6ivUXu1FavM3BeToyr2yhUCdXMSSYySkRCa3BnCc7yCQzl1JqJsu_ya-AaOFgA2lbOWRj9QGRjV45lo1A2CmVjVy7tynldfPyrWBv_KcJbZYq_RRwtIt5MAe__-FxePXVuSdyMGC4S6oXB_DtB2RfJOOWpfLzqSS7S5IadXEpKPwBw5KSe |
CitedBy_id | crossref_primary_10_3233_VES_200705 crossref_primary_10_1007_s00221_004_1974_2 crossref_primary_10_1007_s00221_011_2568_4 crossref_primary_10_1007_s00221_015_4535_y crossref_primary_10_1152_jn_00439_2017 crossref_primary_10_1523_JNEUROSCI_5900_10_2011 crossref_primary_10_1152_jn_00694_2006 crossref_primary_10_1007_s00221_010_2518_6 crossref_primary_10_1007_s00221_013_3635_9 crossref_primary_10_1152_jn_00904_2004 crossref_primary_10_3917_th_711_0062 crossref_primary_10_1097_01_wco_0000199021_48538_d9 crossref_primary_10_1111_j_1749_6632_2002_tb02830_x crossref_primary_10_1007_s00221_006_0491_x crossref_primary_10_1007_s00221_009_1805_6 crossref_primary_10_1152_jn_00892_2000 crossref_primary_10_1007_s10162_010_0210_y crossref_primary_10_1523_JNEUROSCI_2232_08_2008 crossref_primary_10_1152_jn_01333_2006 crossref_primary_10_1196_annals_1325_030 crossref_primary_10_1016_j_neuron_2009_11_010 crossref_primary_10_1007_s00106_013_2738_8 crossref_primary_10_1016_j_actaastro_2005_01_031 crossref_primary_10_1007_s00221_004_1984_0 crossref_primary_10_1016_j_neures_2016_04_006 crossref_primary_10_1152_jn_00197_222 crossref_primary_10_1152_jn_00485_2019 crossref_primary_10_1007_s00221_004_2178_5 crossref_primary_10_3389_fneur_2024_1420699 crossref_primary_10_21790_rvs_2021_20_3_81 crossref_primary_10_1016_j_visres_2004_09_011 crossref_primary_10_1016_j_clinph_2008_03_009 crossref_primary_10_1088_1741_2560_2_3_S02 crossref_primary_10_1016_j_displa_2012_10_002 crossref_primary_10_3389_fneur_2017_00386 crossref_primary_10_1152_jn_00613_2005 crossref_primary_10_1002_ana_10370 crossref_primary_10_1016_S0168_0102_00_00179_6 crossref_primary_10_1007_s00422_009_0347_0 crossref_primary_10_1152_jn_00883_2018 crossref_primary_10_7554_eLife_28074 crossref_primary_10_1063_1_1938347 crossref_primary_10_1016_j_jns_2022_120407 crossref_primary_10_1016_j_visres_2003_10_009 crossref_primary_10_3389_fneur_2019_00063 |
Cites_doi | 10.1016/S0957-4271(97)00001-3 10.1007/BF00228562 10.1007/BF00417361 10.1007/BF00229625 10.1111/j.1749-6632.1992.tb25212.x 10.1152/jn.1986.56.2.439 10.1111/j.1749-6632.1996.tb15712.x 10.1016/0042-6989(92)90249-I 10.1007/978-3-642-65920-1_14 10.1152/jn.1980.43.5.1406 10.1016/0957-4271(95)02039-X 10.1007/PL00005639 10.3109/00016488909139063 10.1016/0301-0082(93)90026-O 10.1152/jn.1983.49.1.152 10.1007/BF00242008 10.1007/s002210050706 10.1152/jn.1991.66.3.851 10.1007/BF00248228 10.1007/BF00228423 10.1152/jn.1996.75.6.2425 10.1016/0306-4522(95)00354-1 10.1007/BF00239580 10.1152/jn.1991.65.5.1183 10.1007/BF00228506 10.3109/00016489509125194 10.1007/978-3-642-65920-1_1 10.3109/00016487609119974 10.1007/BF00247576 10.1152/jn.1992.67.4.861 10.1111/j.1749-6632.1996.tb15707.x 10.1111/j.1749-6632.1996.tb15711.x 10.1152/jn.1996.75.6.2405 10.1152/jn.1996.76.5.3136 10.1152/jn.1976.39.5.996 10.1007/s002210050261 10.1007/BF02738407 10.1152/jn.1991.65.5.1170 10.1007/BF00231654 10.1152/jn.1997.78.4.1775 10.1152/jn.1992.68.6.2128 10.1007/s002210050346 10.1016/0893-6080(90)90070-2 10.3109/00016489109131402 10.1152/jn.1998.80.5.2391 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.1749-6632.1999.tb09179.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 135 |
ExternalDocumentID | 10372066 10_1111_j_1749_6632_1999_tb09179_x NYAS123 ark_67375_WNG_7954P6BM_3 |
Genre | article Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AHDLI CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c5043-a4ab7ea61b5ae6ac2edb5c6327c311d74cc2cb0c9c52b76f04dc5e193a70885a3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 |
IngestDate | Fri Sep 05 02:50:31 EDT 2025 Wed Feb 19 02:32:39 EST 2025 Tue Jul 01 01:28:42 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Wed Jan 22 16:45:25 EST 2025 Wed Oct 30 09:47:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Non-programmatic |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5043-a4ab7ea61b5ae6ac2edb5c6327c311d74cc2cb0c9c52b76f04dc5e193a70885a3 |
Notes | ArticleID:NYAS123 istex:393B22A415049CF81DC6E2B12318208929EA5B09 ark:/67375/WNG-7954P6BM-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 10372066 |
PQID | 69831943 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_69831943 pubmed_primary_10372066 crossref_primary_10_1111_j_1749_6632_1999_tb09179_x crossref_citationtrail_10_1111_j_1749_6632_1999_tb09179_x wiley_primary_10_1111_j_1749_6632_1999_tb09179_x_NYAS123 istex_primary_ark_67375_WNG_7954P6BM_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-01-01 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – month: 01 year: 1999 text: 1999-01-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 1999 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Skipper, J. J. & G. R. Barnes. 1989. Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets. Acta Otolaryngol. 468(Suppl): 289-293. Holly, J. E. & G. McCollum. 1996. The shape of self-motion perception I. Equivalence of classification for sustained motions. Neuroscience 70: 461-486. McConville, K. M. V., R. D. Tomlinson & E. Q. Na. 1996. Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli.J. Neurophysiol. 76: 3136-3148. Viirre, E., D. Tweed, K. Milner & T. Vilis. 1986. A reexamination of the gain of the vestibuloocular reflex.J. Neurophysiol. 56: 439-450. Fernández, C. & J. M. Goldberg. 1976. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics.J. Neurophysiol. 39: 996-1008. Barr, C. C., L. W. Schultheis & D. A. Robinson. 1976. Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol. (Stockh.) 81: 365-375. Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.J. Neurophysiol. 65: 1170-1182. Schöne, H. & H. G. Mortag. 1968. Variation of the subjective vertical on the parallel swing at different body positions.Psychol. Forsch. 32: 124-134. Busettini, C., F. A. Miles, U. Schwarz & J. R. Carl. 1994. Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance.Exp. Brain Res. 100: 484-494. Telford, L., S. H. Seidman & G. D. Paige. 1996. Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.Exp. Brain Res. 109: 407-418. Rude, S. A. & J. F. Baker. 1988. Dynamic otolith stimulation improves the low frequency horizontal vestibulo-ocular reflex.Exp. Brain Res. 73: 357-363. Barnes, G. R. 1993. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.Progr. Neurobiol. 41: 435-472. Borel, L. & M. Lacour. 1992. Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.Exp. Brain Res. 91: 191-206. Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.J. Neurophysiol. 65: 1183-1196. Raphan, T., S. Wearne & B. Cohen. 1996. Modeling the organization of the linear and angular vestibulo-ocular reflexes.Ann. N.Y. Acad. Sci. 781: 348-363. Merfeld, D. M., W. Teiwes, A. H. Clarke, H. Scherer & L. R. Young. 1996. The dynamic contributions of the otolith organs to human ocular torsion.Exp. Brain Res. 110: 315-321. Demer, J. L. 1992. Mechanisms of human vertical visual-vestibular interaction.J. Neurophysiol. 68: 2128-2146. Tomko, D. L., C. Wall III, F. R. Robinson & J. P. Staab. 1988. Influence of gravity on cat vertical vestibulo-ocular reflex.Exp. Brain Res. 69: 307-314. Shelhamer, M., D. M. Merfeld & J. C. Mendoza. 1995. Effect of vergence on the gain of the linear vestibulo-ocular reflex. Acta Otolaryngol. 520(Suppl): 72-76. Paige, G. D. 1994. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging.Exp. Brain Res. 98: 355-372. Schwarz, U. & F. A. Miles. 1991. Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.J. Neurophysiol. 66: 851-863. Seidman, S. H., L. Telford & G. D. Paige. 1998. Tilt perception during dynamic linear acceleration.Exp. Brain Res. 119: 307-314. Telford, L., S. H. Seidman & G. D. Paige. 1997. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance.J. Neurophysiol. 78: 1775-1790. Miles, F. A. & B. B. Eighmy. 1980. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.J. Neurophysiol. 43: 1406-1425. McCrea, R. A., C. Chen-Huang, T. Belton & G. T. Gdowski. 1996. Behavior contingent processing of vestibular sensory signals in the vestibular nuclei.Ann. N.Y. Acad. Sci. 781: 292-303. Tomko, D. L. & G. D. Paige. 1992. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural.Ann. N.Y. Acad. Sci. 656: 233-241. Telford, L., S. H. Seidman & G. D. Paige. 1998. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance.Exp. Brain Res. 118: 115-125. Paige, G. D. 1991. Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. Acta Otolaryngol. 481(Suppl): 282-286. Snyder, L. H. & W. M. King. 1992. The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo-ocular reflex: I. Eye movement responses.J. Neurophysiol. 67: 861-874. Paige, G. D., P. Boulos & S. H. Seidman. 1995. Eye movement responses to low frequency tilt and translation in the squirrel monkey.Soc. Neurosci. Abstr. 21: 138. Seidman, S. H., L. Telford & G. D. Paige. 1995. Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey.Exp. Brain Res. 104: 218-226. Bello, S., G. D. Paige & S. M. Highstein. 1991. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll.Exp. Brain Res. 87: 57-66. Paige, G. D., L. Telford, S.H. Seidman & G.R. Barnes. 1998. Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement.J. Neurophysiol. 80: 2391-2404. Fanelli, R., T. Raphan & C. Schnabolk. 1990. Neural network modelling of eye compensation during off-vertical-axis rotation. Neural Networks 3: 265-276. Merfeld, D. M. & L. R. Young. 1995. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.Exp. Brain Res. 106: 111-122. Paige, G. D., L. Telford, S. H. Seidman & P. Boulos. 1996. The linear vestibulo-ocular reflex (LVOR) following labyrinthectomy.Neurosci. Abst. 22: 661. Crane, B. T., E. S. Viirre & J. L. Demer. 1997. The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration.Exp. Brain Res. 114: 304-320. Angelaki, D. E. & B. J. Hess. 1996. Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys.Ann. N.Y. Acad. Sci. 781: 332-347. Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off-vertical axis rotation.J. Neurophysiol. 75: 2405-2424. Lichtenberg, B. K., L. R. Young & A. P. Arrott. 1982. Human ocular counterrolling induced by varying linear accelerations.Exp. Brain Res. 48: 127-136. Snyder, L. H., D. M. Lawrence & W. M. King. 1992. Changes in vestibulo-ocular reflex (VOR) response anticipate changes in vergence angle.Vision Res. 32: 569-575. Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.J. Neurophysiol. 75: 2425-2440. Chen-Huang, C. & R. A. McCrea. 1998. Viewing distance related sensory processing in the ascending tract of deiters vestibulo-ocular reflex pathway.J. Vest. Res. 8: 175-184. Tomlinson, R. D., K. M. V. McConville & E.-Q. Na. 1996. Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli.J. Vest. Res. 6: 145-158. Paige, G. D. 1983. Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.J. Neurophysiol. 49: 152-168. 1997; 114 1996; 109 1986; 56 1976; 81 1993; 41 1980; 43 1998; 119 1998; 118 1996; 781 1998; 80 1988; 73 1996; 70 1992; 32 1996; 76 1996; 75 1990; 3 1992; 91 1994; 100 1982; 48 1991; 481 1989; 468 1991; 87 1991; 65 1991; 66 1988; 69 1995; 21 1997; 78 1995; 106 1992; 656 1995; 104 1992; 68 1996; 110 1995; 520 1976; 39 1983; 49 1992; 67 1968; 32 1994; 98 1996; 6 1998; 8 1996; 22 e_1_2_5_48_2 e_1_2_5_25_2 e_1_2_5_46_2 e_1_2_5_44_2 e_1_2_5_21_2 Demer J. L. (e_1_2_5_12_2) 1992; 68 Angelaki D. E. (e_1_2_5_3_2) 1996; 75 e_1_2_5_40_2 Angelaki D. E. (e_1_2_5_4_2) 1996; 75 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_15_2 e_1_2_5_7_2 Paige G. D. (e_1_2_5_27_2) 1995; 21 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_17_2 Viirre E. (e_1_2_5_50_2) 1986; 56 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_47_2 e_1_2_5_45_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_28_2 McConville K. M. V. (e_1_2_5_19_2) 1996; 76 e_1_2_5_41_2 Paige G. D. (e_1_2_5_29_2) 1996; 22 Merfeld D. M. (e_1_2_5_22_2) 1995; 106 e_1_2_5_14_2 Paige G. D. (e_1_2_5_24_2) 1983; 49 e_1_2_5_37_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 Paige G. D. (e_1_2_5_30_2) 1991; 65 Snyder L. H. (e_1_2_5_42_2) 1992; 67 e_1_2_5_2_2 Paige G. D. (e_1_2_5_31_2) 1991; 65 e_1_2_5_18_2 e_1_2_5_39_2 Schwarz U. (e_1_2_5_36_2) 1991; 66 Miles F. A. (e_1_2_5_23_2) 1980; 43 |
References_xml | – reference: Barr, C. C., L. W. Schultheis & D. A. Robinson. 1976. Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol. (Stockh.) 81: 365-375. – reference: Fernández, C. & J. M. Goldberg. 1976. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics.J. Neurophysiol. 39: 996-1008. – reference: Paige, G. D. 1991. Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. Acta Otolaryngol. 481(Suppl): 282-286. – reference: Skipper, J. J. & G. R. Barnes. 1989. Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets. Acta Otolaryngol. 468(Suppl): 289-293. – reference: Tomlinson, R. D., K. M. V. McConville & E.-Q. Na. 1996. Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli.J. Vest. Res. 6: 145-158. – reference: Busettini, C., F. A. Miles, U. Schwarz & J. R. Carl. 1994. Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance.Exp. Brain Res. 100: 484-494. – reference: Seidman, S. H., L. Telford & G. D. Paige. 1998. Tilt perception during dynamic linear acceleration.Exp. Brain Res. 119: 307-314. – reference: Snyder, L. H., D. M. Lawrence & W. M. King. 1992. Changes in vestibulo-ocular reflex (VOR) response anticipate changes in vergence angle.Vision Res. 32: 569-575. – reference: Chen-Huang, C. & R. A. McCrea. 1998. Viewing distance related sensory processing in the ascending tract of deiters vestibulo-ocular reflex pathway.J. Vest. Res. 8: 175-184. – reference: Telford, L., S. H. Seidman & G. D. Paige. 1996. Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.Exp. Brain Res. 109: 407-418. – reference: Shelhamer, M., D. M. Merfeld & J. C. Mendoza. 1995. Effect of vergence on the gain of the linear vestibulo-ocular reflex. Acta Otolaryngol. 520(Suppl): 72-76. – reference: Snyder, L. H. & W. M. King. 1992. The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo-ocular reflex: I. Eye movement responses.J. Neurophysiol. 67: 861-874. – reference: McCrea, R. A., C. Chen-Huang, T. Belton & G. T. Gdowski. 1996. Behavior contingent processing of vestibular sensory signals in the vestibular nuclei.Ann. N.Y. Acad. Sci. 781: 292-303. – reference: Crane, B. T., E. S. Viirre & J. L. Demer. 1997. The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration.Exp. Brain Res. 114: 304-320. – reference: Lichtenberg, B. K., L. R. Young & A. P. Arrott. 1982. Human ocular counterrolling induced by varying linear accelerations.Exp. Brain Res. 48: 127-136. – reference: Tomko, D. L. & G. D. Paige. 1992. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural.Ann. N.Y. Acad. Sci. 656: 233-241. – reference: Paige, G. D., L. Telford, S. H. Seidman & P. Boulos. 1996. The linear vestibulo-ocular reflex (LVOR) following labyrinthectomy.Neurosci. Abst. 22: 661. – reference: Angelaki, D. E. & B. J. Hess. 1996. Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys.Ann. N.Y. Acad. Sci. 781: 332-347. – reference: Rude, S. A. & J. F. Baker. 1988. Dynamic otolith stimulation improves the low frequency horizontal vestibulo-ocular reflex.Exp. Brain Res. 73: 357-363. – reference: Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off-vertical axis rotation.J. Neurophysiol. 75: 2405-2424. – reference: Paige, G. D., L. Telford, S.H. Seidman & G.R. Barnes. 1998. Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement.J. Neurophysiol. 80: 2391-2404. – reference: Tomko, D. L., C. Wall III, F. R. Robinson & J. P. Staab. 1988. Influence of gravity on cat vertical vestibulo-ocular reflex.Exp. Brain Res. 69: 307-314. – reference: Barnes, G. R. 1993. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms.Progr. Neurobiol. 41: 435-472. – reference: Fanelli, R., T. Raphan & C. Schnabolk. 1990. Neural network modelling of eye compensation during off-vertical-axis rotation. Neural Networks 3: 265-276. – reference: Schöne, H. & H. G. Mortag. 1968. Variation of the subjective vertical on the parallel swing at different body positions.Psychol. Forsch. 32: 124-134. – reference: Telford, L., S. H. Seidman & G. D. Paige. 1998. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance.Exp. Brain Res. 118: 115-125. – reference: Merfeld, D. M., W. Teiwes, A. H. Clarke, H. Scherer & L. R. Young. 1996. The dynamic contributions of the otolith organs to human ocular torsion.Exp. Brain Res. 110: 315-321. – reference: Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics.J. Neurophysiol. 65: 1170-1182. – reference: Merfeld, D. M. & L. R. Young. 1995. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.Exp. Brain Res. 106: 111-122. – reference: Raphan, T., S. Wearne & B. Cohen. 1996. Modeling the organization of the linear and angular vestibulo-ocular reflexes.Ann. N.Y. Acad. Sci. 781: 348-363. – reference: Schwarz, U. & F. A. Miles. 1991. Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer.J. Neurophysiol. 66: 851-863. – reference: Angelaki, D. E. & B. J. M. Hess. 1996. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity.J. Neurophysiol. 75: 2425-2440. – reference: Paige, G. D. 1994. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging.Exp. Brain Res. 98: 355-372. – reference: Bello, S., G. D. Paige & S. M. Highstein. 1991. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll.Exp. Brain Res. 87: 57-66. – reference: Seidman, S. H., L. Telford & G. D. Paige. 1995. Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey.Exp. Brain Res. 104: 218-226. – reference: Holly, J. E. & G. McCollum. 1996. The shape of self-motion perception I. Equivalence of classification for sustained motions. Neuroscience 70: 461-486. – reference: Borel, L. & M. Lacour. 1992. Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat.Exp. Brain Res. 91: 191-206. – reference: Paige, G. D., P. Boulos & S. H. Seidman. 1995. Eye movement responses to low frequency tilt and translation in the squirrel monkey.Soc. Neurosci. Abstr. 21: 138. – reference: Viirre, E., D. Tweed, K. Milner & T. Vilis. 1986. A reexamination of the gain of the vestibuloocular reflex.J. Neurophysiol. 56: 439-450. – reference: Paige, G. D. 1983. Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal.J. Neurophysiol. 49: 152-168. – reference: Demer, J. L. 1992. Mechanisms of human vertical visual-vestibular interaction.J. Neurophysiol. 68: 2128-2146. – reference: Telford, L., S. H. Seidman & G. D. Paige. 1997. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance.J. Neurophysiol. 78: 1775-1790. – reference: Paige, G. D. & D. L. Tomko. 1991. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.J. Neurophysiol. 65: 1183-1196. – reference: McConville, K. M. V., R. D. Tomlinson & E. Q. Na. 1996. Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli.J. Neurophysiol. 76: 3136-3148. – reference: Miles, F. A. & B. B. Eighmy. 1980. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations.J. Neurophysiol. 43: 1406-1425. – volume: 32 start-page: 569 year: 1992 end-page: 575 article-title: Changes in vestibulo‐ocular reflex (VOR) response anticipate changes in vergence angle. publication-title: Vision Res. – volume: 781 start-page: 348 year: 1996 end-page: 363 article-title: Modeling the organization of the linear and angular vestibulo‐ocular reflexes. publication-title: Ann. N.Y. Acad. Sci. – volume: 98 start-page: 355 year: 1994 end-page: 372 article-title: Senescence of human visual‐vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging. publication-title: Exp. Brain Res. – volume: 781 start-page: 292 year: 1996 end-page: 303 article-title: Behavior contingent processing of vestibular sensory signals in the vestibular nuclei. publication-title: Ann. N.Y. Acad. Sci. – volume: 87 start-page: 57 year: 1991 end-page: 66 article-title: The squirrel monkey vestibulo‐ocular reflex and adaptive plasticity in yaw, pitch, and roll. publication-title: Exp. Brain Res. – volume: 119 start-page: 307 year: 1998 end-page: 314 article-title: Tilt perception during dynamic linear acceleration. publication-title: Exp. Brain Res. – volume: 781 start-page: 332 year: 1996 end-page: 347 article-title: Organizational principles of otolith‐ and semicircular canal‐ocular reflexes in rhesus monkeys. publication-title: Ann. N.Y. Acad. Sci. – volume: 75 start-page: 2405 year: 1996 end-page: 2424 article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off‐vertical axis rotation. publication-title: J. Neurophysiol. – volume: 91 start-page: 191 year: 1992 end-page: 206 article-title: Functional coupling of the stabilizing eye and head reflexes during horizontal and vertical linear motion in the cat. publication-title: Exp. Brain Res. – volume: 114 start-page: 304 year: 1997 end-page: 320 article-title: The human horizontal vestibulo‐ocular reflex during combined linear and angular acceleration. publication-title: Exp. Brain Res. – volume: 49 start-page: 152 year: 1983 end-page: 168 article-title: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. publication-title: J. Neurophysiol. – volume: 8 start-page: 175 year: 1998 end-page: 184 article-title: Viewing distance related sensory processing in the ascending tract of deiters vestibulo‐ocular reflex pathway. publication-title: J. Vest. Res. – volume: 100 start-page: 484 year: 1994 end-page: 494 article-title: Human ocular responses to translation of the observer and of the scene: Dependence on viewing distance. publication-title: Exp. Brain Res. – volume: 68 start-page: 2128 year: 1992 end-page: 2146 article-title: Mechanisms of human vertical visual‐vestibular interaction. publication-title: J. Neurophysiol. – volume: 69 start-page: 307 year: 1988 end-page: 314 article-title: Influence of gravity on cat vertical vestibulo‐ocular reflex. publication-title: Exp. Brain Res. – volume: 56 start-page: 439 year: 1986 end-page: 450 article-title: A reexamination of the gain of the vestibuloocular reflex. publication-title: J. Neurophysiol. – volume: 481 start-page: 282 issue: Suppl year: 1991 end-page: 286 article-title: Linear vestibulo‐ocular reflex (LVOR) and modulation by vergence publication-title: Acta Otolaryngol. – volume: 3 start-page: 265 year: 1990 end-page: 276 article-title: Neural network modelling of eye compensation during off‐vertical‐axis rotation publication-title: Neural Networks – volume: 468 start-page: 289 issue: Suppl year: 1989 end-page: 293 article-title: Eye movements induced by linear acceleration are modified by visualisation of imaginatry targets publication-title: Acta Otolaryngol. – volume: 656 start-page: 233 year: 1992 end-page: 241 article-title: Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural. publication-title: Ann. N.Y. Acad. Sci. – volume: 39 start-page: 996 year: 1976 end-page: 1008 article-title: Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. publication-title: J. Neurophysiol. – volume: 104 start-page: 218 year: 1995 end-page: 226 article-title: Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey. publication-title: Exp. Brain Res. – volume: 73 start-page: 357 year: 1988 end-page: 363 article-title: Dynamic otolith stimulation improves the low frequency horizontal vestibulo‐ocular reflex. publication-title: Exp. Brain Res. – volume: 70 start-page: 461 year: 1996 end-page: 486 article-title: The shape of self‐motion perception I. Equivalence of classification for sustained motions publication-title: Neuroscience – volume: 21 start-page: 138 year: 1995 article-title: Eye movement responses to low frequency tilt and translation in the squirrel monkey. publication-title: Soc. Neurosci. Abstr. – volume: 80 start-page: 2391 year: 1998 end-page: 2404 article-title: Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. publication-title: J. Neurophysiol. – volume: 6 start-page: 145 year: 1996 end-page: 158 article-title: Behavior of cells without eye movement sensitivity in the vestibular nuclei during combined rotational and translational stimuli. publication-title: J. Vest. Res. – volume: 43 start-page: 1406 year: 1980 end-page: 1425 article-title: Long‐term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. publication-title: J. Neurophysiol. – volume: 65 start-page: 1183 year: 1991 end-page: 1196 article-title: Eye movement responses to linear head motion in the squirrel monkey. II. Visual‐vestibular interactions and kinematic considerations. publication-title: J. Neurophysiol. – volume: 67 start-page: 861 year: 1992 end-page: 874 article-title: The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo‐ocular reflex: I. Eye movement responses. publication-title: J. Neurophysiol. – volume: 118 start-page: 115 year: 1998 end-page: 125 article-title: Canal‐otolith interactions in the squirrel monkey vestibulo‐ocular reflex and the influence of fixation distance. publication-title: Exp. Brain Res. – volume: 41 start-page: 435 year: 1993 end-page: 472 article-title: Visual‐vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. publication-title: Progr. Neurobiol. – volume: 76 start-page: 3136 year: 1996 end-page: 3148 article-title: Behavior of eye‐movement‐related cells in the vestibular nuclei during combined rotational and translational stimuli. publication-title: J. Neurophysiol. – volume: 75 start-page: 2425 year: 1996 end-page: 2440 article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity. publication-title: J. Neurophysiol. – volume: 48 start-page: 127 year: 1982 end-page: 136 article-title: Human ocular counterrolling induced by varying linear accelerations. publication-title: Exp. Brain Res. – volume: 110 start-page: 315 year: 1996 end-page: 321 article-title: The dynamic contributions of the otolith organs to human ocular torsion. publication-title: Exp. Brain Res. – volume: 22 start-page: 661 year: 1996 article-title: The linear vestibulo‐ocular reflex (LVOR) following labyrinthectomy. publication-title: Neurosci. Abst. – volume: 81 start-page: 365 year: 1976 end-page: 375 article-title: Voluntary, non‐visual control of the human vestibulo‐ocular reflex publication-title: Acta Otolaryngol. (Stockh.) – volume: 106 start-page: 111 year: 1995 end-page: 122 article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. publication-title: Exp. Brain Res. – volume: 65 start-page: 1170 year: 1991 end-page: 1182 article-title: Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. publication-title: J. Neurophysiol. – volume: 109 start-page: 407 year: 1996 end-page: 418 article-title: Canal‐otolith interactions driving vertical and horizontal eye movements in the squirrel monkey. publication-title: Exp. Brain Res. – volume: 32 start-page: 124 year: 1968 end-page: 134 article-title: Variation of the subjective vertical on the parallel swing at different body positions. publication-title: Psychol. Forsch. – volume: 66 start-page: 851 year: 1991 end-page: 863 article-title: Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. publication-title: J. Neurophysiol. – volume: 520 start-page: 72 issue: Suppl year: 1995 end-page: 76 article-title: Effect of vergence on the gain of the linear vestibulo‐ocular reflex publication-title: Acta Otolaryngol. – volume: 78 start-page: 1775 year: 1997 end-page: 1790 article-title: Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixations distance. publication-title: J. Neurophysiol. – ident: e_1_2_5_10_2 doi: 10.1016/S0957-4271(97)00001-3 – volume: 106 start-page: 111 year: 1995 ident: e_1_2_5_22_2 article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. publication-title: Exp. Brain Res. – ident: e_1_2_5_21_2 doi: 10.1007/BF00228562 – ident: e_1_2_5_35_2 doi: 10.1007/BF00417361 – ident: e_1_2_5_44_2 doi: 10.1007/BF00229625 – ident: e_1_2_5_47_2 doi: 10.1111/j.1749-6632.1992.tb25212.x – volume: 56 start-page: 439 year: 1986 ident: e_1_2_5_50_2 article-title: A reexamination of the gain of the vestibuloocular reflex. publication-title: J. Neurophysiol. doi: 10.1152/jn.1986.56.2.439 – ident: e_1_2_5_33_2 doi: 10.1111/j.1749-6632.1996.tb15712.x – ident: e_1_2_5_43_2 doi: 10.1016/0042-6989(92)90249-I – ident: e_1_2_5_18_2 doi: 10.1007/978-3-642-65920-1_14 – volume: 43 start-page: 1406 year: 1980 ident: e_1_2_5_23_2 article-title: Long‐term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. publication-title: J. Neurophysiol. doi: 10.1152/jn.1980.43.5.1406 – ident: e_1_2_5_49_2 doi: 10.1016/0957-4271(95)02039-X – ident: e_1_2_5_32_2 – ident: e_1_2_5_11_2 doi: 10.1007/PL00005639 – ident: e_1_2_5_41_2 doi: 10.3109/00016488909139063 – ident: e_1_2_5_5_2 doi: 10.1016/0301-0082(93)90026-O – volume: 49 start-page: 152 year: 1983 ident: e_1_2_5_24_2 article-title: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. publication-title: J. Neurophysiol. doi: 10.1152/jn.1983.49.1.152 – ident: e_1_2_5_38_2 doi: 10.1007/BF00242008 – ident: e_1_2_5_37_2 doi: 10.1007/s002210050706 – volume: 66 start-page: 851 year: 1991 ident: e_1_2_5_36_2 article-title: Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. publication-title: J. Neurophysiol. doi: 10.1152/jn.1991.66.3.851 – ident: e_1_2_5_34_2 doi: 10.1007/BF00248228 – ident: e_1_2_5_26_2 doi: 10.1007/BF00228423 – volume: 75 start-page: 2425 year: 1996 ident: e_1_2_5_4_2 article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 2. Inertial detection of angular velocity. publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.75.6.2425 – ident: e_1_2_5_16_2 doi: 10.1016/0306-4522(95)00354-1 – ident: e_1_2_5_17_2 doi: 10.1007/BF00239580 – volume: 65 start-page: 1183 year: 1991 ident: e_1_2_5_31_2 article-title: Eye movement responses to linear head motion in the squirrel monkey. II. Visual‐vestibular interactions and kinematic considerations. publication-title: J. Neurophysiol. doi: 10.1152/jn.1991.65.5.1183 – ident: e_1_2_5_7_2 doi: 10.1007/BF00228506 – ident: e_1_2_5_40_2 doi: 10.3109/00016489509125194 – ident: e_1_2_5_15_2 doi: 10.1007/978-3-642-65920-1_1 – ident: e_1_2_5_6_2 doi: 10.3109/00016487609119974 – ident: e_1_2_5_48_2 doi: 10.1007/BF00247576 – volume: 67 start-page: 861 year: 1992 ident: e_1_2_5_42_2 article-title: The effect of viewing distance and location of the axis of head rotation on the monkey's vestibulo‐ocular reflex: I. Eye movement responses. publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.67.4.861 – volume: 21 start-page: 138 year: 1995 ident: e_1_2_5_27_2 article-title: Eye movement responses to low frequency tilt and translation in the squirrel monkey. publication-title: Soc. Neurosci. Abstr. – ident: e_1_2_5_20_2 doi: 10.1111/j.1749-6632.1996.tb15707.x – ident: e_1_2_5_2_2 doi: 10.1111/j.1749-6632.1996.tb15711.x – volume: 75 start-page: 2405 year: 1996 ident: e_1_2_5_3_2 article-title: Three‐dimensional organization of otolith‐ocular reflexes in rhesus monkeys. 1. Linear acceleration responses during off‐vertical axis rotation. publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.75.6.2405 – volume: 22 start-page: 661 year: 1996 ident: e_1_2_5_29_2 article-title: The linear vestibulo‐ocular reflex (LVOR) following labyrinthectomy. publication-title: Neurosci. Abst. – volume: 76 start-page: 3136 year: 1996 ident: e_1_2_5_19_2 article-title: Behavior of eye‐movement‐related cells in the vestibular nuclei during combined rotational and translational stimuli. publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.5.3136 – ident: e_1_2_5_14_2 doi: 10.1152/jn.1976.39.5.996 – ident: e_1_2_5_46_2 doi: 10.1007/s002210050261 – ident: e_1_2_5_9_2 doi: 10.1007/BF02738407 – volume: 65 start-page: 1170 year: 1991 ident: e_1_2_5_30_2 article-title: Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. publication-title: J. Neurophysiol. doi: 10.1152/jn.1991.65.5.1170 – ident: e_1_2_5_8_2 doi: 10.1007/BF00231654 – ident: e_1_2_5_45_2 doi: 10.1152/jn.1997.78.4.1775 – volume: 68 start-page: 2128 year: 1992 ident: e_1_2_5_12_2 article-title: Mechanisms of human vertical visual‐vestibular interaction. publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.6.2128 – ident: e_1_2_5_39_2 doi: 10.1007/s002210050346 – ident: e_1_2_5_13_2 doi: 10.1016/0893-6080(90)90070-2 – ident: e_1_2_5_25_2 doi: 10.3109/00016489109131402 – ident: e_1_2_5_28_2 doi: 10.1152/jn.1998.80.5.2391 |
SSID | ssj0012847 |
Score | 1.8307376 |
SecondaryResourceType | review_article |
Snippet | : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA) motion] help... A bstract : The primate linear VOR (LVOR) includes two forms. First, eye‐movement responses to translation [e.g., horizontal responses to interaural (IA)... The primate linear VOR (LVOR) includes two forms. First, eye-movement responses to translation [e.g., horizontal responses to interaural (i.a.) motion] help... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | Acceleration Animals Models, Biological Posture - physiology Reflex, Vestibulo-Ocular - physiology Vestibule, Labyrinth - physiology Vision, Ocular - physiology |
Title | Characteristics of the VOR in Response to Linear Acceleration |
URI | https://api.istex.fr/ark:/67375/WNG-7954P6BM-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.1999.tb09179.x https://www.ncbi.nlm.nih.gov/pubmed/10372066 https://www.proquest.com/docview/69831943 |
Volume | 871 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hokpcgJZHw6PdA0JwcBTH-8geA30JqQEFCuW02p2sJVRwUJNIhV_PjNexkqqHgrh77PV4Ht-sZ74FeGELXQYzsFmpbcxkgUXmY45UpdiBlIiUVXga-WSkj0_luzN11oxH8yxM4odoN9zYM-p4zQ7uw2zdyY20GWXMPo_cWd7jpNrDdhlR5oVmIv39ccslVcfhOiwbCssEaxoG0rat59pbrWWr26z4y-ug6DqyrVPT4T34sXyp1JFy3l3MQxd_X-F7_F9vfR_uNhhWDJPRbcGtWG3DZjrV8tc2bDXxYiZeNaTWrx8A9w-sMkOLaSkIe4rP78fiWyXGqVU3ivlUUHlM7ieGiJQSk4E-hNPDg09vj7Pm6IYMmRIt89IHE73Og_JRe-zHSVBIizZY5PnEsBVg6KFF1Q9Glz05QRUJTHpDYU_54hFsVNMq7oCQqEIkHFlScJLWBKrmsRdyP8mt75VRdsAuP5HDhtecj9f47lbqG9KZY5051plrdOYuO1C0sj8Tu8eNpF7WltCK-Itz7o8zyn0ZHTljlfyg35y4ogN7S1Nx5LX8K8ZXcbqYOW0HFPskXfE4WdDK4_ncIK07MKjt4C_W5UZfhx8JiTz5d9GncCfxUvAe0zPYmF8s4nNCXfOwW3vTH9ZZG58 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NmxC8MDa-OgbzA0LwkKppHLt-7IBRYC2obLA9WfbVkdCmdNpaafDXcxenUYv2AIj3XGKf7-N3zvlngOcmU4XXPZMUyoREZpglLqRIVYrpSYlIWYVPIw9HanAsP5zkJ2swXJyFifwQzYYbe0YVr9nBeUN61cu1NAmlzC6fuTO8yUnFh2kTpNyQhDy4FnszbtikqkhcBWZNgZmATc1B2jT23PiulXy1waq_vgmMrmLbKjkdbEK5mFbsSTlrz2e-jT9_Y3z8b_O-B3drGCv60e62YC2U23ArXmz5Yxu26pBxJV7WvNav7gO3ECyTQ4tpIQh-iq-fxuJ7KcaxWzeI2VRQhUweKPqIlBWjjT6A44O3R68HSX17Q4LMipY46bwOTqU-d0E57IaJz5EGrTFL04lmQ0DfQYN512tVdOQE80B40mmKfLnLHsJ6OS3DYxAScx9oQQuKT9JoTwU9dnzqJqlxnSLIFpjFGlmsqc35ho1zu1TikM4s68yyzmytM3vdgqyRvYgEH38k9aIyhUbEXZ5xi5zO7bfRO6tNLj-r_aHNWrC3sBVLjst_Y1wZpvMrq0yPwp-kJx5FE1r6PF8dpFQLepUh_MW47Oi0_4XAyM6_i-7B7cHR8NAevh99fAJ3Ik0Fbzntwvrsch6eEgib-WeVa_0CqDQfvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTSBegA3YCoP5ASF4SNU0jl0_dkAZHytTYbA9WfbFkdAgnbZWGvz13MVp1KI9AOI9lziX-_idc_czwBOTqdLrgUlKZUIiM8wSF1KkKsUMpESkrMLTyAdjtX8k3x7nx814NM_CRH6IdsONPaOO1-zgZ0W56uRamoQyZp9H7gzvcVLtYbqEKNelImjBEGnSkknVgbiOy5riMuGahoK07eu58l4r6WqdNX95FRZdhbZ1bhrdhu-Lt4otKafd-cx38edvhI__67XvwK0GxIphtLoNuBaqTbgej7X8sQkbTcC4EM8aVuvnd4EbCJapocW0FAQ-xecPE_G1EpPYqxvEbCqoPib_E0NEyonRQu_B0ejVpxf7SXN2Q4LMiZY46bwOTqU-d0E57IfC50iL1pilaaHZDND30GDe91qVPVlgHghNOk1xL3fZfVirplXYBiEx94GAZEnRSRrtqZzHnk9dkRrXK4PsgFl8IosNsTmfr_HNLhU4pDPLOrOsM9vozF52IGtlzyK9xx9JPa0toRVx56fcIKdz-2X82mqTy0O1d2CzDuwuTMWS2_K_GFeF6fzCKjOg4Cfpiq1oQUuP54ODlOrAoLaDv1iXHZ8MPxIUefDvortw4_DlyL5_M373EG5Gjgreb9qBtdn5PDwiBDbzj2vH-gUZiB5t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+the+VOR+in+Response+to+Linear+Acceleration&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=PAIGE%2C+GARY+D.&rft.au=SEIDMAN%2C+SCOTT+H.&rft.date=1999-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=871&rft.issue=1&rft.spage=123&rft.epage=135&rft_id=info:doi/10.1111%2Fj.1749-6632.1999.tb09179.x&rft.externalDBID=10.1111%252Fj.1749-6632.1999.tb09179.x&rft.externalDocID=NYAS123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |